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. . traveling at a constant speed. Emphasis is placed on finding whether snap-through buck-
Jian-San Lin ling will occur. In the quasi-static case when the moving speed is almost zero, there exists
Graduate Student a critical load Q, in the sense that no static snap-through will occur as long as Q is
smaller than Q, . In the dynamic case when the point load travels with a nonzero speed,
Department of Mechanical Engineering, National the critical load , is, in general, smaller than the static one. When Q is greater than

Taiwan University, Taipel, Taiwan 10617 QY. there exists a finite speed zone within which the arch runs the risk of dynamic

snap-through either while the point load is still on the arch or after the point load leaves
the arch. The boundary of this dangerous speed zone can be determined by a more
conservative criterion, which employs the concept of total energy and critical energy
barrier, to guarantee the safe passage of the point load. This criterion requires the nu-
merical integration of the equations of motion only up to the instant when the point load
reaches the other end of the arciDOI: 10.1115/1.1804991

Introduction cient conditions for dynamic stability may be established. The first
u)E_eoretical prediction of dynamic buckling load was conducted by
off and Bruce in 195410], in which they studied the stability of
&sinusoidal arch under unit step loading and ideal impulsive load-

g‘g. Hsu[11,17 and Hsu et al[13] studied the effects of various
rameters on the stability of a flexibly supported sinusoidal arch
er impulsive and other types of time-varying loads. Xu et al.
considered a shallow arch elastically supported at both ends
1 the lateral direction and under impulsive loading. Lin and Chen
5,16 studied the sufficient condition against dynamic snap-
rough for a shallow arch under prescribed end motion. This
ggproach provides a lower bound of the dynamic critical load.
The second approach is to solve the equations of motion nu-
erically to obtain the system response and identify the critical
oad for specified system parameters. Humphféy§ performed
th numerical and experimental studies on the dynamic snap-
rough of a circular arch under uniform impulsive loading. Lock
8] used both a numerical integration method and an infinitesi-

An arch subjected to lateral loads may become elastically
stable. If the initial height of the arch is of the same order as t
span of the arch, the buckling deformation is nearly inextension
On the other hand, an arch is termed shallow if the initial height‘
much smaller than the span. When the lateral load of a shalldl?
arch reaches a critical value, the deformed shape may underggwgl
sudden jump called snap-through buckling. The buckling defor=
mation of a shallow arch will be extensional rather than inexte
sional. Depending on how the lateral load is applied, the sn
through buckling of a shallow arch can be divided into tw
categories, i.e., static buckling and dynamic buckling. In the ca
of static buckling, the lateral load is applied in a quasi-static man-
ner. The first theoretical prediction on the static critical load w.
conducted by Timoshenko in 1934%], in which a pinned sinu-
soidal arch was subjected to a uniformly distributed load. Fu
and Kaplan[2] extended the research by considering a flexibl
supported shallow arch under various kinds of lateral loadin - . . . -
including a concentrated force acting at the midpoint of the arcfia! Stability analysis to predict the dynamic critical load of a
Gjelsvik and Bondef3] presented a complete theoretical and ex2inusoidal arch under a step loading. Lo and Mas6 presented

perimental analysis on a clamped circular arch under a cent?ahybrid met.hod folr snap-t.hrOL;gh stlab.ility .analys.is, W.hiCh “f“}?]or'
concentrated load. Franciosi et fd] extended the conventional POrates an integral equation formulation in conjunction with a
B ite element method. Johnson and Mclya0] investigated nu-

limit analysis to the collapse of arches under repeated Ioadir{ .- T - -
Schreyer and Masuf5] analyzed a clamped circular arch an erically t_he effects of the spa_tlal distribution of impulsive loads
demonstrated that the existence of a bifurcation of the equilibriuif'd 4@mpind21] on the dynamic snap-through of a shallow arch.
state is not an adequate condition for the use of the asymme is approach provides a more accurate prediction of the critical

buckling criterion. Lee and Murph{6] considered the inelastic fodd at the expense of a large amount of calculation. o
9 Phi6] _In all this previous research, the lateral loading, either distrib-

buckling of a clamped circular arch made of work-hardening ma d di d 10 be fixed i In thi
terial. Simitseg7] studied the effect of an elastic foundation orHt€d OF concentrated, is assumed to be fixed in space. In this paper
e plan to study the dynamic stability of a shallow arch under a

the critical loads of a sinusoidal arch under distributed loads. RY

orda[8] conducted a series of experiments to study the effect B?OY'SQ point f?‘m”e' The Eropﬁsed bproblem IS lpoltentlaltly mpor-
small imperfection on the buckling of elastic structures, includingan ecause shallow arches have been crucial elements in numer-
a laterally loaded circular arch. us structures for public transportation. For better understanding

In the case when the lateral load is applied suddenly insteadjfthe response and safety of these structures, it is necessary to
in a quasi-static manner, the phenomenon is dynamic and m dy the behavior of an arch under high-speed moving loads. In

more complicated. Generally speaking, the methodologies used 1 first part of this paper we study the quasi-static case when the
estimating dynamic critical loads of elastic structures can be cl oving speec_i of the point fo_r_ce IS very'small. Our analysis ShOW.S
that there exists a static critical load in the sense that no static

sified into two group$9]. The first approach is to study the total ap-through will occur as long as the point load is smaller than

energy and the phase plane of the system. By this method, suffieP-t"! .
9y P P y y this critical load. The second part of the paper considers the case
Contributed by the Technical Committee on Vibration and Sound for publicatiowhen. the _pomt load traVEIS. with a nonze_ro sp_eed. Similar to the

in the .JDURNAL OF VIBRATION AND ACOUSTICS Manuscript received October Juasi-static case, there exists a dynamic critical load when the

2002; final revision, March 2004. Associate Editor: Chin An Tan. point load travels with a nonzero speed. The dynamic critical load
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* Therefore, for an arch with/r =10 for instance, the effect of the
axial stress wave on the lateral vibration should be negligible as
long asc is smaller than 10.

The initial shape of the arch before the lateral load is applied is
assumed to be in the form

Ug(§)=hsing )

—  his the rise parameter of the arch. It is assumed that the shape of
the loaded arch can be expanded as

L N

u(&,7)=lim 2, ay(7)sinng ®)

N—owo N=1

Fig. 1 Schematic diagram of a shallow arch under a moving
point load After substituting Eqs(7) and (8) into (4) and(5), we obtain the
equations governing,, ,

Sy S N -

is, in general, smaller than the static one. When the point load is = —Nap=n"pay—0,, NnN=123... ©)

greater than the dynamic critical load, there exists a finite spegghere

zone within which the arch runs the risk of dynamic snap-through. "

A simpler but more conservative criterion is then proposed to _ lz 2 2 h?

determine the boundary of this dangerous speed zone. p= 4 ~ K aj— 4 (10)

k=1

Equations of Motion g;=Qsine—h (11)

Figure 1 shows an elastic shallow arch with the two pinned g.=Qsinne, n=23,... (12)

ends being separated by a distariceThe initial shape of the
unloaded arch igy(x). The arch is subjected to a point for@e e(r)=cr (13)
traveling fromx=0 to x=L with a constant speedf . The equa-

tion of motion of the arch can be written as The parameter €e(7)<m represents the position of the point

load on the arch. The overhead dot in E®). represents differen-
PAY = —EI(Y—=Y0) xxxxt P*Y xx— Q* 8(x—c*t) (1) tiation with respect tor. The initial conditions for Eq(9) are

The parameterg, p, A, andl are Young’s modulus, mass density, a1(0)=h (14)
area, and moment of inertia of the cross section of the grths
the induced axial force, an(0)=0, n=23,... (15)
AE (L, a,(0)=0, n=123... (16)
p*(t)= XJ' (Yix—Yox)dx ) o _ _
0 Equilibrium Configurations

S is the Dirac delta function. The boundary conditions yaat x We first consider the case when the moving speetithe point
=0 andL are load is small an_d_ tr_le acceler_ation terms in £9). can be ne-

Y(0) = Yo(0) =Y xx(0) = Yo,e(0) =y(L) —yo(L) tgelﬁcéid. The equilibrium equations governimgcan then be writ-

:y,XX(L)_yO,XX(L):O (3) n4an+n2pan+qn:0, n:1,2,3 o (17)

Equations(1) and (2) can be nondimensionalized to the forms Equation(17) represents an infinite number of coupled nonlinear

T equations for the infinite number of coordinates. While it is, in
U 7=~ (U= Uo) geget PU e~ 5 Q(£—C7) (4)  general, impossible to solve for the infinite numberagfsimul-
taneously, it is possible to use a deduction method to derive the

(=, equation fora;, as demonstrated in the following.

P=5_ | (U Uppdé 5) N=1: We first assume that the number of mo#lessed in Eq.

0 (8) is 1. Then the solutionv; can be solved from the following
where cubic equation,
2
X t [EI a1
u=Y, y=20, =T T2 fila)=as+ 7 (ad=h?)+qs=0 (18)
r r L L2 VAp
®) There are, at most, three one-mode equilibrium positiond\for
¢l [Ap _prL? _2Q*L® -1

= VeI P7 2El’ Q= °Elr N=2: For the case wheN=2 there are, at most, five equilib-

rium positions. After eliminating the axial thruptin Eq. (17) for

r is the radius of gyration of the cross sectigr=1 corresponds n=1 and 2, we can derive the relation betweenand «, as
to the Euler buckling load for a perfectly straight simply sup-

ported beamc=1 corresponds to the speed of the flexural wave _ T 19
of the curved-beam with wave length It is noted thatQ is *2= a; (19)
positive when the concentrated load points downward in Fig. 1. 12 ay— 3

In Eq. (1) we assume that the effect of the axial stress wave on
the lateral vibration is negligible. This is true when the time spedifter substituting Eq(19) into the first equation ir{17), we ob-
by a compressive stress wave traveling back and forth over ttaen the equation for; as

arch for one run is smaller than the period for the arch to vibrate ) 2 3

laterally. The ratio between the lateral period and the longitudinal & d291 _
period is proportional to the slenderness rdtitr of the arch. falay) =) ay= 77| fala) + 7777 =0 (20)
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Fig. 2 Coordinate «; as a function of load position e for an

arch with h=8: (a) Q=18, (b) Q=20, and (¢) Q=18.16

N=k: There are, at most,k2+ 1 equilibrium positions for the

case wherN=k. After eliminatingp in Eqg. (17) for n=1 andj
we can derive the relation between and «; as

—a;Q;
o — 1 ’
NI

After substituting Eq(21) into the first equation if17), we ob-
tain the equation for,,

j=23,...k (21)

aj:

%21

2 3 k—1
Qyxay H
ag

2
1
fk(al)—[al— m} fr_1(ay)+ MFZ

q 2

T } o
(-1

fr_1(@1) =0 is the equation forr; whenN=k—1.

(22)

Convergence Test and Stability Analysis

only seven of them are real. In the case wien0 (i.e., the arch

is free from the point loayl there are three one-mode solutions
(Po,P7 ,P7) involving only @, and two pairs of two-mode so-
lutions (P1,,P13) [15]. It can be shown that for a free arch with
h>4 only positionsP, and P, are stable while all others are
unstable. As the point load moves across the arch, these one and
two-mode solutions will involve all the harmonic modes in expan-
sion (8). However, we retain the names of the equilibrium posi-
tions when the point load moves across the arch. In Fig). ®e
observe that all the solution curves experience no bifurcation as
the point load moves across the arch. Therefore, Bgtland P,
remain stable while all others remain unstable. We use solid and
dashed lines to denote stable and unstable solutions. The stability
properties of these equilibrium positions for a loaded arch can also
be determined by the conventional energy method. As a conse-
quence forQ=18 no shap-through will occur as the point load
moves across the arch quasi-statically. However, it remains un-
known yet whether snap-through will occur if the moving speed
of the point load is no longer negligible. This will be a subject for
later discussion.

In Fig. 2(b) for Q=20 we notice that as the point load moves
across the arch the stablg, solution merges with the unstable
P1, solution via a saddle-node bifurcation et0.76. As a con-
sequence, the arch snaps from g position to the stabld>;
position at this bifurcation point. Three additional saddle-node
bifurcation points are a¢=1.35, 1.79, and 2.38. AQ decreases
from 20 the saddle-node bifurcation points in Figb)2approach
each other and eventually merge into transcritical bifurcation
points whenQ=18.16, as shown in Fig. (). Therefore, Q
=18.16 is a critical load fohh=8 in the sense that no snap-
through will occur when a point load smaller than this value
moves across the arch quasi-statically.

It is noted that among the seven equilibrium positions in Fig. 2,
the solutionsPy, P, P; , andP;, are ultimately important? is
the original configuration before snap-through buckling occurs.
P, is one of the two stable configurationB;, are important
because snap-through buckling occurs when solution curve corre-
sponding toPy merges with the solution curve corresponding to
P, via a saddle-node bifurcation, as shown in Fig) 2nd Zc).
Therefore, to capture the physical essence of the dynamic re-
sponse we are interested in this paper and for the ease of analyti-
cal investigation, we propose to use only the first two harmonic
modes in Eq.(8) in the following analysis. We compared the
solution curves foN=2 to the results foN=4 in Fig. 2 and
found that forN=2 and 4 thea;-curves of the five solutions
(Po,P1 ,P1y) in which we are most interested are almost indis-
tinguishable. More importantly, the saddle-node bifurcation points
responsible for snap-through buckling are almost unchanged.

We observe in Fig. 2 that all solutions excéhf andP; meet
at a point witha;=0 whenq;=0. The range o& in the middle
corresponds t@;>0, while the ranges on both sides correspond
to q;<0. It is also observed that no snap-through will occur when
0;<0. In the range o&é whereq;>0 snap-through majas in Fig.
2(b)] or may not[as in Fig. Za)] occur. These observations can
actually be proved mathematically. The details of the proofs can
be found in[22].

The first question in numerical calculation is how many modes

should be included in the expansi@®). It is observed from Eq.

(22) that the difference between usikgnodes ank— 1 modes in Bifurcation Points

the expansion _is the inclusion of the second term, which is in- As explained previously we can use only the first two modes in
versely proportional t&®. Therefore, we expect that the effects okxpansion(8), i.e., N=2, without losing any important dynamic

the additionakth harmonic in Eq(8) on the original X—1 a;'s

characteristics in which we are interested. Equati®® for N

whenk—1 harmonics are used should be minimal for moderateb¢2 can be rewritten as

largek.
In Fig. 2 we show they,; as a function of load positioafor the

case wherh=_8. Figures 2a)—2(c) are forQ=18, 20, and 18.16,
respectively. The number of mod&kused in the expansion is 4.

While there are, at most, nine equilibrium positions fér4,
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fo(@)=4(3a;+h—Qsine) 4a,+ (af—h?)a;+4(Qsine
—h)]+ Q%3 sirf 2e=0 (23)

To locate the bifurcation point, we differentiate E@3) with
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: Fig. 4 The thick lines are the dynamic responses for an arch
37 7 with h=8, ©=0.001, and Q=18. The thin lines are the same

0 7 7 001,
- = - uasi-static results as from Fig. 2 (a).
4 5 4 q g (@
e
Fig. 3 Relation between load Q and positon e when snap-  additional condition for transcritical bifurcation is that the deriva-
through occurs: (&) h=8 and (b) h=3 tive of f,(«;) with respect to the control parametervanishes
[23], i.e.,

(3a,+h—Qsine)[ad— (h?+2)a;+6(Q sine—h)]

respect tow; . The resulting equation can be rearranged by using —Qai sinecos 2=0 (25)

Eq. (23) in the following form: Q¢ can be determined by substituting the relation betw@emd

4 5 ) ) ) e in Fig. 3 into Eq.(25) and checking if the equality sign in Eqg.
3aj—(h*+2)(Qsine—h)a; +6(Qsine—h)°=0 (24) (25) is satisfied by a routine bisection approach. Further calcula-
tions show tha), increases witth.

After specifyinge andh, we can eliminat&)? and Q® from Egs.

(23) and (24) to obtain a relation betwee@ and «; . After sub- Dynamic Snap-Through

sti_tuting thi_s relation back i_nto Ed23), we can obtain a _pol_yno- The response of the arch will be different when the point load

mial equation fore; . The highest or_der of this polynqmlal IS 18‘travels with a nonzero speed. The response history can be calcu-

'tl)'irflerlartgestal repres_l_ehnts the coord(ljr.\ateloft:]ﬁ’@ Ipo?jmfon when_ lated by integrating Eq(9) numerically with the initial conditions
urcation occurs. The correspondir@ is the load for snap- (14 _(16) From the arguments cited in the preceding sections, we

through buckling. In thI.S‘ manner we can determine the relatlc&e only the first two equations with=1 and 2 in Eq.(9) for

betv_veen load) and posglone xvhen sTap-thrc])cugI_w oceurs. simplicity. In the numerical simulation we also add damping terms
Figures $a) and (b) show these re at_lons dv=8 and 3, re- na; and wa, in these two equations of motion. It is noted that

spectively. For the case whén=8 andQ= 20, for instance, there there is no technical difficulty in using more than two modes in

are a total of four bifurcation points. Sn_ap-th_rough_wnl oceur aéxpansior(S) for numerical simulation except that the calculation
the loadQ=20 moves frome=0 to the first bifurcation poine time will increase

=0.76. This result has already been reported in Fig). VhenQ The quasi-static analysis in Fig. 2 shows that the arch With

is greater than 28.78 then there are only two bifurcation points. ; L s :
On the other hand, whe@ is smaller than 18.16, then no snap;$8 will remain in theP, position as long a® is smaller than

; . =18.16. However, when the speeds increased from zero
Cr 1 ’
Lrough il ocur When the Bt losd moves across the Snamic snaphough may occur even when he Qassmaler
gafe assa eyof the ioad across an arch wits Whil:():Ff)] is de- than Q¢ - One of the '[h.ICk lines in Fig. 4 shows the dynamic
P 9 ' response of the arch with=8, Q=18, ©=0.001, andc=0.1.

noted byQ., and signified by a horizontal dashed line in Fi¢p)3

There are two touching points between the dashed line and thaé @rch snaps to thé, position when the point load moves to
bifurcation curve in Fig. @). As h decreases from 8, these twoll€ Positione=2.2 and settles t&, position thereafter. The equi-
touching points will approach each other and eventually merd8rium positions from quasi-static analysis< 0) are also shown
into one, as shown in Fig.(B) for the case whe=3. For this I Fig. 4 with thin lines for comparison. On the other hand, when
case there are, at most, two bifurcation points for a spectfied the .s.pee(b. is further increased to 1.5, the arch does not have
The critical loadQ,, for h=23 is 4.08. Further calculation showssufficient time to snap before the load reaches the other end and
that for h greater than 3.254, there are two touching points as {paves the arch, as demonstrated by another thick line in Fig. 4.
Fig. 3@). On the other hand, fdn smaller than 3.254, there will However, it must be emphasized that there still exists a possibility
be only one touching point at the center as in Figh)3In other that the arch may continue to deform and snagP{o position
words, for an arch witth<3.254 the midpoint load is the worst after the point load leaves the arch. Therefore, to determine
case for static snap-through. On the other hand, for a higher atghether the arch will snap or not, we have to continue the numeri-
with h>3.254, the worst case occurs when the point load is noteal simulation until the arch settles to one of the stable equilib-
the center. rium positions. For the case with= 1.5 in Fig. 4 our numerical

As demonstrated in Fig.(8) that the critical loadQ,, corre- Ssimulation shows that the arch will settle Ry position eventu-
sponds to the situation when transcritical bifurcation occurs. Tladly. Furthermore, the arch never snap#fo at any instant before
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Fig. 5 The thick lines are the dynamic responses for an arch 5t c=2.6
with h=8, Q=25, and u#=0.001. The thin lines are the results
from quasi-static analysis. 10 , . .
0 5 10 15 20

it settles toP,. Therefore, in the case wher=1.5 no dynamic T

2?21?{;?rt%léggo(i)r?tcluor:dwlreg?/etzethF:aog]rtcll'?,ad Is either still on the arﬁ%. 6 Respons_es after the point load leaves the arch for the
It is noted in Fig. 4 that the static analysis does not predict ttwo speeds in Fig. 5: (&) c=2.4 and (b) c=2.6. The black dots
S no g y p r%?gnlfy the instant when the point load leaves the arch.
dynamic behavior for a small speed-0.1. To demonstrate that
the dynamic behavior indeed approaches the quasi-static result,
we show the response for a smaller speed.05. It can be seen
that the C.Ul'Ve fOl'C:005 fO”OWS, with small OSCi“ation, the ch in F|g 3, predicted from a quasi_static ana|ysis' We are inter-
quasi-static positio?, between the two ends of the arch. ested in comparing the critical loads from both the quasi-static and
The analysis in Fig. 4 suggests that for an arch with8 and  gynamic analyses. As explained in Figs. 4—6 to make certain
Q=18 there exist two critical speeds, denotedchyandc,, . The  whether the arch is safe, we have to observe the response history
arch is safe from snap-through buckling as long as the movingtil the arch eventually settles to a stable equilibrium position. In
speedc is either smaller thar_, or greater tharc ;. In other general, it takes a long calculation time for the arch to settle. To
words, the speed range fron, to c;, is the dangerous speedsimplify the calculation we notice that the arch will not snap if
zone in the sense that the arch may snap dynamically. Obvioudigth of the following two conditions are satisfied) the total
¢ are functions oRQ. energyH gained by the arch at the instant when the point load
Figure 5 shows another case wih-8 andQ=25. The equi- re_aches the other end is smaller than ;he_crltlcal energy barrier
librium positions from the quasi-static analysis are similar to thod¥nd between the two distant stable equilibrium positidiiig;the
in Fig. 2b) and are shown with thin lines. Apparently, for thiscqordlnatea1 remains greater than zero while the point load is
case the critical speect, is zero. On the other hand, when theSt'"T%” Lhe @V_Ch-l It can lk))e s_,hoyvnhthat for an arcfh witke
moving speed is large enough, say 2.6, then the arch will not <Q’ , the critical energy barrier s the str.aln enetgy pos!t!on
have enough time to snap before the load reaches the other end’as On the other hand, for an arch with> I8, the critical
demonstrated by the thick line. Further calculation confirms th&fiergy barrier is the strain energy of positiBg, [15]. The two
the arch settles t@, position after the point load leaves the archconditions can be stated mathematically as

To demonstrate the situation that the arch may continue to deform _ ; + +
and snap after the point load leaves the arch, we show the re- H(e=m)<Min[U(P,),U(P1))] (26)
sponse history for a different speed-2.4 in Fig. 5. Again the a(0<e<m)>0 27

arch does not have enough time to snap before the load reaches )
the other end. However, further calculation shows that the ardfi€ total energyH and the strain energy can be calculated as

will snap toP; after the point load leaves the arch and settles to s
P, eventually. The responses correspondingcte2.4 and 2.6 H=2p%+(a;—h)2+ >, [a2+n*a?] (28)
after the point load leaves the arch are shown in Figa) &nd n=2

6(b), respectively. The damping coefficientused in these calcu- %
lations is chosen to be 0.001. The instant when the point load U=2p%+(a;—h)2+ >, [n*a? (29)
leaves the arch is signified by a black dot on the response curve. n=2
Boundary of Dangerous Speed Zone The physical total energil* and strain energ* are related to
] ) __HandU by
Figures 4—6 suggest that for an arch with two stable equilib-
rium positions when it is free of lateral loading, there may exist a . m™EI’H . mEI’U
dangerous speed zone if the point load is greater than a critical H*= INED EYNER (30)

value Q¢, . Outside this dangerous speed zone the arch will not _ - S
snap either while the point load is still on the arch or after the It is noted that these two conditions are sufficient in the sense

point load leaves the arch. The superscripted syndbiodicates that if they are satisfied, the arch will not snap frdtg to P;
that this dynamic critical load is different from the critical loadeither while the point load is still on the arch or after the point
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25 1. Similar to the quasi-static case there exists a dynamic critical

3 load Qgr when the point load travels with a nonzero speed.

> No dynamic snap-through will occur as long as the point

load Q is smaller tharQZ, . The dynamic critical loa®?, is

in general smaller than the static critical 10Qq, .

iet 2. When the point load is greater tharQY,, there exists a

374t finite speed zone between two critical speedsandc,,

within which the arch runs the risk of dynamic snap-

1.0 e through. In the case whe@ is greater tha., , thencg, is

3 zero.

3. To determine the boundary of the dangerous speed zone we

05] "\W can use a more conservative criterion, which employs the

D2 concept of total energy and critical energy barrier, to guar-

Cor Lm\ . antee the safe passage of the point load. This criterion re-

6 ‘ 18 20 22 24 quires the numerical integration of_ the equations of motion
. only up to the instant when the point load reaches the other

Q. Q. 0 end of the arch.

207 24

Fig. 7 Dangerous speed zone for an arch with h=8 and
p#=0.001. The solid circle indicates that the arch will snap dy-
namically before settling to a stable equilibrium position. The Acknowledgment
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