
d Q
buck-
exists

is
eed,
an

amic
ves
more

ergy
nu-

load

Downlo
Jen-San Chen
Professor

e-mail: jschen@ccms.ntu.edu.tw

Jian-San Lin
Graduate Student

Department of Mechanical Engineering, National
Taiwan University, Taipei, Taiwan 10617

Dynamic Snap-Through of a
Shallow Arch Under a Moving
Point Load
In this paper we study the dynamic behavior of a shallow arch under a point loa
traveling at a constant speed. Emphasis is placed on finding whether snap-through
ling will occur. In the quasi-static case when the moving speed is almost zero, there
a critical load Qcr in the sense that no static snap-through will occur as long as Q
smaller than Qcr . In the dynamic case when the point load travels with a nonzero sp
the critical load Qcr

d is, in general, smaller than the static one. When Q is greater th
Qcr

d , there exists a finite speed zone within which the arch runs the risk of dyn
snap-through either while the point load is still on the arch or after the point load lea
the arch. The boundary of this dangerous speed zone can be determined by a
conservative criterion, which employs the concept of total energy and critical en
barrier, to guarantee the safe passage of the point load. This criterion requires the
merical integration of the equations of motion only up to the instant when the point
reaches the other end of the arch.@DOI: 10.1115/1.1804991#
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Introduction
An arch subjected to lateral loads may become elastically

stable. If the initial height of the arch is of the same order as
span of the arch, the buckling deformation is nearly inextensio
On the other hand, an arch is termed shallow if the initial heigh
much smaller than the span. When the lateral load of a sha
arch reaches a critical value, the deformed shape may under
sudden jump called snap-through buckling. The buckling de
mation of a shallow arch will be extensional rather than inext
sional. Depending on how the lateral load is applied, the sn
through buckling of a shallow arch can be divided into tw
categories, i.e., static buckling and dynamic buckling. In the c
of static buckling, the lateral load is applied in a quasi-static m
ner. The first theoretical prediction on the static critical load w
conducted by Timoshenko in 1935@1#, in which a pinned sinu-
soidal arch was subjected to a uniformly distributed load. Fu
and Kaplan@2# extended the research by considering a flexi
supported shallow arch under various kinds of lateral loadi
including a concentrated force acting at the midpoint of the ar
Gjelsvik and Bonder@3# presented a complete theoretical and e
perimental analysis on a clamped circular arch under a cen
concentrated load. Franciosi et al.@4# extended the conventiona
limit analysis to the collapse of arches under repeated load
Schreyer and Masur@5# analyzed a clamped circular arch an
demonstrated that the existence of a bifurcation of the equilibr
state is not an adequate condition for the use of the asymm
buckling criterion. Lee and Murphy@6# considered the inelastic
buckling of a clamped circular arch made of work-hardening m
terial. Simitses@7# studied the effect of an elastic foundation o
the critical loads of a sinusoidal arch under distributed loads.
orda @8# conducted a series of experiments to study the effec
small imperfection on the buckling of elastic structures, includ
a laterally loaded circular arch.

In the case when the lateral load is applied suddenly instea
in a quasi-static manner, the phenomenon is dynamic and m
more complicated. Generally speaking, the methodologies use
estimating dynamic critical loads of elastic structures can be c
sified into two groups@9#. The first approach is to study the tot
energy and the phase plane of the system. By this method, s
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cient conditions for dynamic stability may be established. The fi
theoretical prediction of dynamic buckling load was conducted
Hoff and Bruce in 1954@10#, in which they studied the stability o
a sinusoidal arch under unit step loading and ideal impulsive lo
ing. Hsu@11,12# and Hsu et al.@13# studied the effects of various
parameters on the stability of a flexibly supported sinusoidal a
under impulsive and other types of time-varying loads. Xu et
@14# considered a shallow arch elastically supported at both e
in the lateral direction and under impulsive loading. Lin and Ch
@15,16# studied the sufficient condition against dynamic sna
through for a shallow arch under prescribed end motion. T
approach provides a lower bound of the dynamic critical load

The second approach is to solve the equations of motion
merically to obtain the system response and identify the crit
load for specified system parameters. Humphreys@17# performed
both numerical and experimental studies on the dynamic sn
through of a circular arch under uniform impulsive loading. Lo
@18# used both a numerical integration method and an infinite
mal stability analysis to predict the dynamic critical load of
sinusoidal arch under a step loading. Lo and Masur@19# presented
a hybrid method for snap-through stability analysis, which inc
porates an integral equation formulation in conjunction with
finite element method. Johnson and Mclvor@20# investigated nu-
merically the effects of the spatial distribution of impulsive loa
and damping@21# on the dynamic snap-through of a shallow arc
This approach provides a more accurate prediction of the crit
load at the expense of a large amount of calculation.

In all this previous research, the lateral loading, either distr
uted or concentrated, is assumed to be fixed in space. In this p
we plan to study the dynamic stability of a shallow arch unde
moving point force. The proposed problem is potentially imp
tant because shallow arches have been crucial elements in nu
ous structures for public transportation. For better understand
of the response and safety of these structures, it is necessa
study the behavior of an arch under high-speed moving loads
the first part of this paper we study the quasi-static case when
moving speed of the point force is very small. Our analysis sho
that there exists a static critical load in the sense that no s
snap-through will occur as long as the point load is smaller th
this critical load. The second part of the paper considers the c
when the point load travels with a nonzero speed. Similar to
quasi-static case, there exists a dynamic critical load when
point load travels with a nonzero speed. The dynamic critical lo

ion
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is, in general, smaller than the static one. When the point loa
greater than the dynamic critical load, there exists a finite sp
zone within which the arch runs the risk of dynamic snap-throu
A simpler but more conservative criterion is then proposed
determine the boundary of this dangerous speed zone.

Equations of Motion
Figure 1 shows an elastic shallow arch with the two pinn

ends being separated by a distanceL. The initial shape of the
unloaded arch isy0(x). The arch is subjected to a point forceQ*
traveling fromx50 to x5L with a constant speedc* . The equa-
tion of motion of the arch can be written as

rAy,tt52EI~y2y0! ,xxxx1p* y,xx2Q* d~x2c* t ! (1)

The parametersE, r, A, andI are Young’s modulus, mass densit
area, and moment of inertia of the cross section of the arch.p* is
the induced axial force,

p* ~ t !5
AE

2L E
0

L

~y,x
2 2y0,x

2 !dx (2)

d is the Dirac delta function. The boundary conditions fory at x
50 andL are

y~0!2y0~0!5y,xx~0!2y0,xx~0!5y~L !2y0~L !

5y,xx~L !2y0,xx~L !50 (3)

Equations~1! and ~2! can be nondimensionalized to the forms

u,tt52~u2u0! ,jjjj1pu,jj2
p

2
Qd~j2ct! (4)

p5
1

2p E
0

p

~u,j
2 2u0,j

2 !dj (5)

where

u5
y

r
, u05

y0

r
, j5

px

L
, t5

p2t

L2
AEI

Ar
(6)

c5
c* L

p
AAr

EI
, p5

p* L2

p2EI
, Q5

2Q* L3

p5EIr

r is the radius of gyration of the cross section.p51 corresponds
to the Euler buckling load for a perfectly straight simply su
ported beam.c51 corresponds to the speed of the flexural wa
of the curved-beam with wave lengthL. It is noted thatQ is
positive when the concentrated load points downward in Fig.

In Eq. ~1! we assume that the effect of the axial stress wave
the lateral vibration is negligible. This is true when the time sp
by a compressive stress wave traveling back and forth over
arch for one run is smaller than the period for the arch to vibr
laterally. The ratio between the lateral period and the longitud
period is proportional to the slenderness ratioL/r of the arch.

Fig. 1 Schematic diagram of a shallow arch under a moving
point load
Journal of Vibration and Acoustics
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Therefore, for an arch withL/r 510 for instance, the effect of the
axial stress wave on the lateral vibration should be negligible
long asc is smaller than 10.

The initial shape of the arch before the lateral load is applie
assumed to be in the form

u0~j!5h sinj (7)

h is the rise parameter of the arch. It is assumed that the shap
the loaded arch can be expanded as

u~j,t!5 lim
N→`

(
n51

N

an~t!sinnj (8)

After substituting Eqs.~7! and ~8! into ~4! and ~5!, we obtain the
equations governingan ,

än52n4an2n2pan2qn , n51,2,3, . . . (9)

where

p5
1

4 (
k51

`

k2ak
22

h2

4
(10)

q15Q sine2h (11)

qn5Q sinne, n52,3, . . . (12)

e~t!5ct (13)

The parameter 0,e(t),p represents the position of the poin
load on the arch. The overhead dot in Eq.~9! represents differen-
tiation with respect tot. The initial conditions for Eq.~9! are

a1~0!5h (14)

an~0!50, n52,3, . . . (15)

ȧn~0!50, n51,2,3, . . . (16)

Equilibrium Configurations
We first consider the case when the moving speedc of the point

load is small and the acceleration terms in Eq.~9! can be ne-
glected. The equilibrium equations governingan can then be writ-
ten as

n4an1n2pan1qn50, n51,2,3, . . . (17)

Equation~17! represents an infinite number of coupled nonline
equations for the infinite number of coordinatesan . While it is, in
general, impossible to solve for the infinite number ofan simul-
taneously, it is possible to use a deduction method to derive
equation fora1 , as demonstrated in the following.

N51: We first assume that the number of modesN used in Eq.
~8! is 1. Then the solutiona1 can be solved from the following
cubic equation,

f 1~a1!5a11
a1

4
~a1

22h2!1q150 (18)

There are, at most, three one-mode equilibrium positions foN
51.

N52: For the case whenN52 there are, at most, five equilib
rium positions. After eliminating the axial thrustp in Eq. ~17! for
n51 and 2, we can derive the relation betweena1 anda2 as

a25
2a1q2

12Fa12
q1

3 G (19)

After substituting Eq.~19! into the first equation in~17!, we ob-
tain the equation fora1 as

f 2~a1!5Fa12
q1

3 G2

f 1~a1!1
q2

2a1
3

144
50 (20)
OCTOBER 2004, Vol. 126 Õ 515
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N5k: There are, at most, 2k11 equilibrium positions for the
case whenN5k. After eliminatingp in Eq. ~17! for n51 and j
we can derive the relation betweena1 anda j as

a j5
2a1qj

j 2~ j 221!Fa12
q1

~ j 221!
G , j 52,3, . . . ,k (21)

After substituting Eq.~21! into the first equation in~17!, we ob-
tain the equation fora1 ,

f k~a1!5Fa12
q1

~k221!
G 2

f k21~a1!1
qk

2a1
3

4k2~k221!2 )j 52

k21 Fa1

2
q1

~ j 221!
G 2

50 (22)

f k21(a1)50 is the equation fora1 whenN5k21.

Convergence Test and Stability Analysis
The first question in numerical calculation is how many mod

should be included in the expansion~8!. It is observed from Eq.
~22! that the difference between usingk modes andk21 modes in
the expansion is the inclusion of the second term, which is
versely proportional tok6. Therefore, we expect that the effects
the additionalkth harmonic in Eq.~8! on the original 2k21 a1’s
whenk21 harmonics are used should be minimal for moderat
largek.

In Fig. 2 we show thea1 as a function of load positione for the
case whenh58. Figures 2~a!–2~c! are forQ518, 20, and 18.16,
respectively. The number of modesN used in the expansion is 4
While there are, at most, nine equilibrium positions forN54,

Fig. 2 Coordinate a1 as a function of load position e for an
arch with hÄ8: „a… QÄ18, „b… QÄ20, and „c… QÄ18.16
516 Õ Vol. 126, OCTOBER 2004
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only seven of them are real. In the case whene50 ~i.e., the arch
is free from the point load!, there are three one-mode solution
(P0 ,P1

1 ,P1
2) involving only a1 and two pairs of two-mode so

lutions (P12
6 ,P13

6 ) @15#. It can be shown that for a free arch wit
h.4 only positionsP0 and P1 are stable while all others ar
unstable. As the point load moves across the arch, these one
two-mode solutions will involve all the harmonic modes in expa
sion ~8!. However, we retain the names of the equilibrium po
tions when the point load moves across the arch. In Fig. 2~a! we
observe that all the solution curves experience no bifurcation
the point load moves across the arch. Therefore, bothP0 and P1
remain stable while all others remain unstable. We use solid
dashed lines to denote stable and unstable solutions. The sta
properties of these equilibrium positions for a loaded arch can
be determined by the conventional energy method. As a co
quence forQ518 no snap-through will occur as the point loa
moves across the arch quasi-statically. However, it remains
known yet whether snap-through will occur if the moving spe
of the point load is no longer negligible. This will be a subject f
later discussion.

In Fig. 2~b! for Q520 we notice that as the point load move
across the arch the stableP0 solution merges with the unstabl
P12

2 solution via a saddle-node bifurcation ate50.76. As a con-
sequence, the arch snaps from theP0 position to the stableP1

2

position at this bifurcation point. Three additional saddle-no
bifurcation points are ate51.35, 1.79, and 2.38. AsQ decreases
from 20 the saddle-node bifurcation points in Fig. 2~b! approach
each other and eventually merge into transcritical bifurcat
points whenQ518.16, as shown in Fig. 2~c!. Therefore,Q
518.16 is a critical load forh58 in the sense that no snap
through will occur when a point load smaller than this val
moves across the arch quasi-statically.

It is noted that among the seven equilibrium positions in Fig
the solutionsP0 , P1 , P1

2 , andP12
6 are ultimately important.P0 is

the original configuration before snap-through buckling occu
P1

2 is one of the two stable configurations.P12
6 are important

because snap-through buckling occurs when solution curve co
sponding toP0 merges with the solution curve corresponding
P12

2 via a saddle-node bifurcation, as shown in Figs. 2~b! and 2~c!.
Therefore, to capture the physical essence of the dynamic
sponse we are interested in this paper and for the ease of an
cal investigation, we propose to use only the first two harmo
modes in Eq.~8! in the following analysis. We compared th
solution curves forN52 to the results forN54 in Fig. 2 and
found that forN52 and 4 thea1-curves of the five solutions
(P0 ,P1

6 ,P12
6 ) in which we are most interested are almost ind

tinguishable. More importantly, the saddle-node bifurcation poi
responsible for snap-through buckling are almost unchanged.

We observe in Fig. 2 that all solutions exceptP0 andP1
2 meet

at a point witha150 whenq150. The range ofe in the middle
corresponds toq1.0, while the ranges on both sides correspo
to q1,0. It is also observed that no snap-through will occur wh
q1,0. In the range ofe whereq1.0 snap-through may@as in Fig.
2~b!# or may not@as in Fig. 2~a!# occur. These observations ca
actually be proved mathematically. The details of the proofs
be found in@22#.

Bifurcation Points
As explained previously we can use only the first two modes

expansion~8!, i.e., N52, without losing any important dynamic
characteristics in which we are interested. Equation~22! for N
52 can be rewritten as

f 2~a1!54~3a11h2Q sine!2@4a11~a1
22h2!a114~Q sine

2h!#1Q2a1
3 sin2 2e50 (23)

To locate the bifurcation point, we differentiate Eq.~23! with
Transactions of the ASME
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respect toa1 . The resulting equation can be rearranged by us
Eq. ~23! in the following form:

3a1
42~h212!~Q sine2h!a116~Q sine2h!250 (24)

After specifyinge andh, we can eliminateQ2 andQ3 from Eqs.
~23! and ~24! to obtain a relation betweenQ anda1 . After sub-
stituting this relation back into Eq.~23!, we can obtain a polyno-
mial equation fora1 . The highest order of this polynomial is 18
The largesta1 represents the coordinate of theP0 position when
bifurcation occurs. The correspondingQ is the load for snap-
through buckling. In this manner we can determine the relat
between loadQ and positione when snap-through occurs.

Figures 3~a! and ~b! show these relations forh58 and 3, re-
spectively. For the case whenh58 andQ520, for instance, there
are a total of four bifurcation points. Snap-through will occur
the loadQ520 moves frome50 to the first bifurcation pointe
50.76. This result has already been reported in Fig. 2~b!. WhenQ
is greater than 28.78 then there are only two bifurcation poi
On the other hand, whenQ is smaller than 18.16, then no sna
through will occur when the point load moves across the a
quasi-statically.Q518.16 can be considered as an upper limit
safe passage of the load across an arch withh58, which is de-
noted byQcr and signified by a horizontal dashed line in Fig. 3~a!.
There are two touching points between the dashed line and
bifurcation curve in Fig. 3~a!. As h decreases from 8, these tw
touching points will approach each other and eventually me
into one, as shown in Fig. 3~b! for the case whenh53. For this
case there are, at most, two bifurcation points for a specifiedQ.
The critical loadQcr for h53 is 4.08. Further calculation show
that for h greater than 3.254, there are two touching points a
Fig. 3~a!. On the other hand, forh smaller than 3.254, there wil
be only one touching point at the center as in Fig. 3~b!. In other
words, for an arch withh,3.254 the midpoint load is the wors
case for static snap-through. On the other hand, for a higher
with h.3.254, the worst case occurs when the point load is no
the center.

As demonstrated in Fig. 2~c! that the critical loadQcr corre-
sponds to the situation when transcritical bifurcation occurs. T

Fig. 3 Relation between load Q and position e when snap-
through occurs: „a… hÄ8 and „b… hÄ3
Journal of Vibration and Acoustics

aded 16 Oct 2008 to 140.112.113.225. Redistribution subject to ASME 
ing

.

ion

as

ts.
-

rch
or

the
o
rge

s
in

t
rch

t at

he

additional condition for transcritical bifurcation is that the deriv
tive of f 2(a1) with respect to the control parametere vanishes
@23#, i.e.,

~3a11h2Q sine!@a1
32~h212!a116~Q sine2h!#

2Qa1
3 sine cos 2e50 (25)

Qcr can be determined by substituting the relation betweenQ and
e in Fig. 3 into Eq.~25! and checking if the equality sign in Eq
~25! is satisfied by a routine bisection approach. Further calcu
tions show thatQcr increases withh.

Dynamic Snap-Through
The response of the arch will be different when the point lo

travels with a nonzero speed. The response history can be c
lated by integrating Eq.~9! numerically with the initial conditions
~14!–~16!. From the arguments cited in the preceding sections,
use only the first two equations withn51 and 2 in Eq.~9! for
simplicity. In the numerical simulation we also add damping ter
mȧ1 and mȧ2 in these two equations of motion. It is noted th
there is no technical difficulty in using more than two modes
expansion~8! for numerical simulation except that the calculatio
time will increase.

The quasi-static analysis in Fig. 2 shows that the arch withh
58 will remain in theP0 position as long asQ is smaller than
Qcr518.16. However, when the speedc is increased from zero
dynamic snap-through may occur even when the loadQ is smaller
than Qcr . One of the thick lines in Fig. 4 shows the dynam
response of the arch withh58, Q518, m50.001, andc50.1.
The arch snaps to theP1

2 position when the point load moves t
the positione52.2 and settles toP1

2 position thereafter. The equi
librium positions from quasi-static analysis (c50) are also shown
in Fig. 4 with thin lines for comparison. On the other hand, wh
the speedc is further increased to 1.5, the arch does not ha
sufficient time to snap before the load reaches the other end
leaves the arch, as demonstrated by another thick line in Fig
However, it must be emphasized that there still exists a possib
that the arch may continue to deform and snap toP1

2 position
after the point load leaves the arch. Therefore, to determ
whether the arch will snap or not, we have to continue the num
cal simulation until the arch settles to one of the stable equi
rium positions. For the case withc51.5 in Fig. 4 our numerical
simulation shows that the arch will settle toP0 position eventu-
ally. Furthermore, the arch never snaps toP1

2 at any instant before

Fig. 4 The thick lines are the dynamic responses for an arch
with hÄ8, mÄ0.001, and QÄ18. The thin lines are the same
quasi-static results as from Fig. 2 „a….
OCTOBER 2004, Vol. 126 Õ 517
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it settles toP0 . Therefore, in the case whenc51.5 no dynamic
snap-through occurs when the point load is either still on the a
or after the point load leaves the arch.

It is noted in Fig. 4 that the static analysis does not predict
dynamic behavior for a small speedc50.1. To demonstrate tha
the dynamic behavior indeed approaches the quasi-static re
we show the response for a smaller speedc50.05. It can be seen
that the curve forc50.05 follows, with small oscillation, the
quasi-static positionP0 between the two ends of the arch.

The analysis in Fig. 4 suggests that for an arch withh58 and
Q518 there exist two critical speeds, denoted byccr

2 andccr
1 . The

arch is safe from snap-through buckling as long as the mov
speedc is either smaller thanccr

2 or greater thanccr
1 . In other

words, the speed range fromccr
2 to ccr

1 is the dangerous spee
zone in the sense that the arch may snap dynamically. Obvio
ccr

6 are functions ofQ.
Figure 5 shows another case withh58 andQ525. The equi-

librium positions from the quasi-static analysis are similar to th
in Fig. 2~b! and are shown with thin lines. Apparently, for th
case the critical speedccr

2 is zero. On the other hand, when th
moving speed is large enough, say,c52.6, then the arch will not
have enough time to snap before the load reaches the other en
demonstrated by the thick line. Further calculation confirms t
the arch settles toP0 position after the point load leaves the arc
To demonstrate the situation that the arch may continue to def
and snap after the point load leaves the arch, we show the
sponse history for a different speedc52.4 in Fig. 5. Again the
arch does not have enough time to snap before the load rea
the other end. However, further calculation shows that the a
will snap toP1

2 after the point load leaves the arch and settles
P1

2 eventually. The responses corresponding toc52.4 and 2.6
after the point load leaves the arch are shown in Figs. 6~a! and
6~b!, respectively. The damping coefficientm used in these calcu
lations is chosen to be 0.001. The instant when the point l
leaves the arch is signified by a black dot on the response cu

Boundary of Dangerous Speed Zone
Figures 4–6 suggest that for an arch with two stable equi

rium positions when it is free of lateral loading, there may exis
dangerous speed zone if the point load is greater than a cri
value Qcr

d . Outside this dangerous speed zone the arch will
snap either while the point load is still on the arch or after
point load leaves the arch. The superscripted symbold indicates
that this dynamic critical load is different from the critical loa

Fig. 5 The thick lines are the dynamic responses for an arch
with hÄ8, QÄ25, and mÄ0.001. The thin lines are the results
from quasi-static analysis.
518 Õ Vol. 126, OCTOBER 2004
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Qcr in Fig. 3, predicted from a quasi-static analysis. We are in
ested in comparing the critical loads from both the quasi-static
dynamic analyses. As explained in Figs. 4–6 to make cer
whether the arch is safe, we have to observe the response hi
until the arch eventually settles to a stable equilibrium position
general, it takes a long calculation time for the arch to settle.
simplify the calculation we notice that the arch will not snap
both of the following two conditions are satisfied:~i! the total
energyH gained by the arch at the instant when the point lo
reaches the other end is smaller than the critical energy ba
lying between the two distant stable equilibrium positions;~ii ! the
coordinatea1 remains greater than zero while the point load
still on the arch. It can be shown that for an arch with 4,h
,A18, the critical energy barrier is the strain energyU of position
P1

1 . On the other hand, for an arch withh.A18, the critical
energy barrier is the strain energy of positionP12

6 @15#. The two
conditions can be stated mathematically as

H~e5p!<Min@U~P1
1!,U~P12

6 !# (26)

a1~0,e,p!.0 (27)

The total energyH and the strain energyU can be calculated as

H52p21~a12h!21(
n52

`

@ȧn
21n4an

2# (28)

U52p21~a12h!21(
n52

`

@n4an
2# (29)

The physical total energyH* and strain energyU* are related to
H andU by

H* 5
p4EI2H

4AL3
, U* 5

p4EI2U

4AL3
(30)

It is noted that these two conditions are sufficient in the se
that if they are satisfied, the arch will not snap fromP0 to P1

2

either while the point load is still on the arch or after the po

Fig. 6 Responses after the point load leaves the arch for the
two speeds in Fig. 5: „a… cÄ2.4 and „b… cÄ2.6. The black dots
signify the instant when the point load leaves the arch.
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load leaves the arch. On the other hand, the arch may or may
snap if these two conditions are not satisfied. These conserv
criteria allow us to determine the boundary of dangerous zone
integrating Eq.~9! up to the instant when the point load reach
the other end without going further thereafter.

In Fig. 7 we try to determine the dangerous speed zone in
Q-c space for an arch withh58. We divide the parameter spac
in Fig. 7 into 50350 points. For each of these parameter points
examine conditions~26! and~27! and locate the point at which th
equal sign of condition~26! is satisfied. The damping coefficien
m is chosen to be 0.001. To verify the validity of these criteria
also continue the simulation until the arch settles to an equilibr
position. If the arch at any time snaps to positionP1

2 , we put a
solid circle at the parameter point. On the other hand, if the a
never snaps before it settles, then we put an open circle a
parameter point. It is observed that outside the dangerous s
zone only open circles are present. On the other hand, while m
of the circles inside the dangerous zone are solid, there are a
open circles inside the dangerous speed zone. In the case
c50, the critical loadQcr518.16 is predicted from quasi-stati
analysis. The dynamic critical loadQcr

d as defined above is 16.62
In other words, the arch will not snap as long as the point loaQ
is smaller thanQcr

d no matter what the moving speed is. In th
case whenQcr

d ,Q,Qcr both ccr
2 and ccr

1 are nonzero. On the
other hand whenQcr,Q, ccr

2 is reduced to zero.

Conclusions
In this paper we study the dynamic behavior of a shallow a

under a point loadQ traveling at a constant speedc. Emphasis is
placed on finding whether snap-through will occur if the ar
possesses two stable equilibrium positionsP0 and P1

2 when it is
free of lateral loading. The first part of the paper considers
quasi-static case when the moving speed is almost zero. Se
conclusions can be summarized in this regard.

1. There exists a critical loadQcr in the sense that no stati
snap-through will occur as long as the loadQ is smaller than
Qcr .

2. In the case whenQ is greater thanQcr , the solution curves
of P0 andP12

2 configurations will merge into a saddle-nod
bifurcation point. At the bifurcation point the arch will sna
to the positionP1

2 .

The second part of the paper considers the case when the
load travels with a nonzero speed. Some more conclusions ca
summarized in this regard.

Fig. 7 Dangerous speed zone for an arch with hÄ8 and
mÄ0.001. The solid circle indicates that the arch will snap dy-
namically before settling to a stable equilibrium position. The
open circle indicates that the arch will never snap.
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1. Similar to the quasi-static case there exists a dynamic crit
load Qcr

d when the point load travels with a nonzero spee
No dynamic snap-through will occur as long as the po
loadQ is smaller thanQcr

d . The dynamic critical loadQcr
d is

in general smaller than the static critical loadQcr .
2. When the point loadQ is greater thanQcr

d , there exists a
finite speed zone between two critical speedsccr

2 and ccr
1 ,

within which the arch runs the risk of dynamic sna
through. In the case whenQ is greater thanQcr , thenccr

2 is
zero.

3. To determine the boundary of the dangerous speed zon
can use a more conservative criterion, which employs
concept of total energy and critical energy barrier, to gu
antee the safe passage of the point load. This criterion
quires the numerical integration of the equations of mot
only up to the instant when the point load reaches the ot
end of the arch.
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