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The goal of this investigation is to further develop nonlinear modal numerical simulation 
methods for application to geometrically nonlinear response of structures exposed to 
combined high intensity random pressure fluctuations and thermal loadings.  The study is 
conducted on a flat aluminum beam, which permits a comparison of results obtained by a 
reduced-order analysis with those obtained from a numerically intensive simulation in 
physical degrees-of-freedom.  A uniformly distributed thermal loading is first applied to 
investigate the dynamic instability associated with thermal buckling.  A uniformly 
distributed random loading is added to investigate the combined thermal-acoustic response.  
In the latter case, three types of response characteristics are considered, namely: (i) small 
amplitude vibration around one of the two stable buckling equilibrium positions, (ii) 
intermittent snap-through response between the two equilibrium positions, and (iii) 
persistent snap-through response between the two equilibrium positions.  For the reduced-
order analysis, four categories of modal basis functions are identified including those having 
symmetric transverse (ST), anti-symmetric transverse (AT), symmetric in-plane (SI), and 
anti-symmetric in-plane (AI) displacements.  The effect of basis selection on the quality of 
results is investigated for the dynamic thermal buckling and combined thermal-acoustic 
response.  It is found that despite symmetric geometry, loading, and boundary conditions, 
the AT and SI modes must be included in the basis as they participate in the snap-through 
behavior. 

Nomenclature 
,M  M  = mass matrix (physical and modal coordinates) 

,C  C  = proportional damping matrix (physical and modal coordinates) 
,K  K  = stiffness matrix (physical and modal coordinates) 
,X  q  = displacement response vector (physical and modal coordinates) 

,F  F  = force excitation vector (physical and modal coordinates) 
, NL NLF F  = nonlinear restoring force (physical and modal coordinates) 

Φ  = modal basis function matrix 
, ,u v φ  = horizontal and vertical displacement, and rotation (global physical coordinates) 
T∆  = temperature increment 

t  = time 
, ,d a b  = linear, quadratic nonlinear, and cubic nonlinear modal stiffness coefficients 

⎡ ⎦Ι  = identity matrix 
α  = thermal expansion coefficient 
ζ  = viscous damping factor 
ω  = undamped natural frequencies 
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I. Introduction 
IRECT numerical simulation of nonlinear random response in physical degrees-of-freedom (DoF) is 
computationally intensive even for the simplest structures.  Its use for design of high-cycle-fatigue tolerant 

aerospace vehicle structures, requiring long simulation times to obtain meaningful statistics, is considered 
impractical.  Accordingly, much effort has been spent in recent years to develop accurate reduced-order analyses, 
such as finite-element-based nonlinear modal numerical simulation, which could be suitable for use in design 
environments. 

D 

Aerospace structures exposed to a high-intensity random acoustic loading are often also simultaneously exposed 
to an elevated thermal environment.  Since both acoustic and thermal loadings can cause the structure to respond in 
a geometrically nonlinear fashion, an analysis technique that permits simultaneous loading is required, i.e. linear 
superposition of the acoustic and thermal response is not suitable.  Under certain thermal-acoustic loading 
conditions, a dynamic instability will give rise to a snap-though response,1-3 which can significantly reduce fatigue 
life.  The snap-through problem has previously been investigated using reduced-order analyses with both closed-
form4-6 and finite element (FE)7-9 solutions.  Reduced-order FE analysis can be further classified into so-called 
direct7,8 and indirect9 stiffness evaluation procedure approaches.  For both direct and indirect approaches, the system 
is first transformed to a reduced set of coupled nonlinear equations, which are solved via numerical integration.  
Since the eventual application is the analysis and design of practical structures, this paper focuses on developments 
associated with the indirect approach, which has been implemented for use with commercial finite element codes. 9-

11  The previous work9 using the indirect procedure modeled the dynamic snap-through response with a single 
transverse mode.  However, it has been subsequently shown that a significant improvement can be obtained using a 
basis consisting of both low-frequency transverse-dominated modes and high-frequency in-plane-dominated 
modes.11,12  The present work concentrates on selecting such a basis so that both the transverse and in-plane dynamic 
behaviors of the system can be accurately modeled. 

A clamped-clamped aluminum beam is considered in this work to allow reduced-order analysis results to be 
compared with a numerically intensive simulation in physical DoF.  The dynamic thermal buckling problem is first 
studied by applying a uniformly distributed, positive temperature increment.  The combined thermal-acoustic 
loading is subsequently investigated through the addition of uniformly distributed acoustic loadings of different 
intensities.  Several response characteristics are investigated including: (i) small amplitude vibration around one of 
two stable, buckled equilibrium positions, (ii) intermittent snap-through response between the two buckled 
equilibrium positions, and (iii) persistent snap-through response between the two buckled equilibrium positions.  In 
each case, the reduced-order analysis is performed with two different sets of basis functions, and results are 
compared with those obtained by numerical simulation in physical DoF. 

II. Reduced-Order Numerical Simulation 
The reduced-order analysis is first presented as it is used to study the response to both thermal and thermal-

acoustic loadings.  Similarities between the direct and indirect stiffness evaluation methods are discussed. 

A. Modal Coordinate Transformation 
In the direct stiffness evaluation approach, the equations of motion for a nonlinear system subjected to a change 

in temperature can be expressed in the form7,8,13 

 ( ) ( )1 2( ) ( ) ( ) ( ) ( ), ( ) ( ) ( )Tt t K K T K t K t t t t∆ ∆⎡+ + − ∆ + + = +⎣ ⎤⎦L TMX CX X X X X F F  (1) 

where M is the mass matrix, C is the mass proportional damping matrix (no temperature dependence is assumed), 
and , , and  are the linear, quadratic, and cubic stiffness matrices, respectively.  X is the displacement 
response vector and F is the force excitation vector.  The thermal effect is present on both sides of Eq. (1); as a 
change in the linear stiffness matrix  on the left-hand-side, and as a thermal force vector 

KL 1K 2K

(TK T∆ ∆ ) ∆TF  on the right-
hand-side.  

In the indirect stiffness evaluation approach, the equation of motion is written in the form  

  (2) ( ) ( ) ( ( ), ) ( )t t t T+ + ∆ =NLMX CX F X F t
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Here, the thermal effect is represented entirely on the left-hand-side of the equation in the nonlinear restoring force 
NLF , which also contains the linear, quadratic and cubic stiffness terms.  Comparing Eqs. (1) and (2), a relationship 

between direct and indirect formulations is established, namely,  
 ( ) ( )1 2( ( ), ) ( ) ( ) ( ), ( ) ( )Tt T K K T K t K t t t∆ ∆⎡∆ = − ∆ + +⎣NL L T⎤⎦F X X X X X - F  (3) 

Continuing with the indirect approach, a set of coupled modal equations with reduced DoF is obtained by 
applying the modal coordinate transformation =X qΦ  to Eq. (2), where q is the modal displacement response 
vector.  In this study, the set of modal basis functions, Φ , is formed from the linear eigenvalue problem using only 
that part of the restoring force associated with the linear stiffness, without the effect of temperature.  These are 
sometimes referred to as “cold modes.”  Generally, a small set of L basis functions is included resulting in a modal 
equation of motion that takes the form 

  (4) 1 2( ) ( ) ( ( ), ( ), , ( ), ) ( )Lt t q t q t q t T+ + ∆ =…NLMq Cq F F t

T F

The tilde superscript represents modal quantities, and 

 . (5) 2T T T
r r NL NLζ ω= ⎡ ⎦ = = ⎡ ⎦ = =M M I C C F F FΦ Φ = Φ Φ Φ Φ

B. Indirect Stiffness Evaluation Method 
The previously developed9-11 indirect stiffness evaluation procedure is used.  To summarize, the r-th element of 

the nonlinear restoring force vector in Eq. (4) can be formed by computing  

 ( )1 2
1 1 1

( , , , , ) 1,2, ,
L L L L L L

r r r r
NL L j j jk j k jkl j k l

j j k j j k j l k
F q q q T d T q a q q b q q q r L

= = = = = =

∆ = ∆ + + =∑ ∑∑ ∑∑∑… …      (6) 

where d, a, and b are the linear, quadratic nonlinear, and cubic nonlinear modal stiffness coefficients, respectively.  
The indirect stiffness evaluation procedure reduces the problem of determining the nonlinear modal stiffness to a 
series of static nonlinear problems with prescribed displacement fields and, if required, temperatures.  The 
prescribed displacement fields are formed from combinations of modes in the basis.9-11  Once the resulting nonlinear 
forces are determined, the nonlinear modal stiffness coefficients may be found by solution of a simple algebraic 
system of equations.  Note that the thermal loading can have an arbitrary spatial and through-the-thickness 
distribution, as long as such a distribution is supported by a commercial FE code used to compute the nonlinear 
restoring forces. 

C. Implementation 
The program RANSTEP was used to perform the reduced-order analysis with the indirect stiffness evaluation 

procedure.  In particular, the RANSTEP implementation for MSC.NASTRAN was used because of successful 
application to similar problems.11  The implementation consists of several steps.  The linear eigenvectors are first 
obtained from a normal modes analysis (Solution 103).  The required displacement fields are then formed as a 
summation of selected and appropriately scaled basis functions.  Next, a series of static nonlinear solutions (Solution 
106) are performed at a prescribed elevated temperature to obtain the corresponding restoring forces.  Based on 
these forces, the modal stiffness coefficients are evaluated.  The resulting coupled system of equations, Eq. (4), is 
numerically integrated using the fourth order Runge-Kutta scheme to obtain a modal displacement time history.  An 
inverse modal transformation allows the physical displacement to be computed. 

D. Finite Element Model 
The beam under analysis measured 18-in. x 1-in. x 0.09-in (length x width x thickness).  The FE model consisted 

of 144 CBEAM beam elements, each measuring 0.125-in. in length.  Clamped boundary conditions were applied at 
both ends of the beam by specifying zero displacement and rotation.  The following material properties were used: 

6 6 4
2

410.6 10 , 4.0 10 , 2.588 10 12.4,flb s in in
Fin

E psi G psi µρ α− − −
°

= × = × = × = . 

In the analyses that follow, mass proportional damping corresponding to critical damping of 2.0% for the 
fundamental mode (at 57.8 Hz) was specified. 

Displacement results presented later in the paper are in the global coordinate system, which has its origin at the 
left clamped end of the beam.  The x-axis coincides with the beam mid-surface and stretches along its span, with the 
positive y-axis pointing upwards.  Thus, the in-plane (u) displacement is in the direction of the x-axis, and the 
transverse (v) component in the direction of the y-axis. 

 
American Institute of Aeronautics and Astronautics 

 

3



E. Modal Basis Classification and Selection 
It is helpful to categorize the linear eigenvectors that constitute the modal basis by their spatial distribution and 

by the dominant DoF, e.g. transverse displacement.  For the flat, isotropic and symmetric beam structure considered 
herein, four categories are defined.  Those having symmetric transverse displacements are subsequently referred to 
as symmetric transverse (ST) modes, while those having anti-symmetric transverse displacements are referred to as 
anti-symmetric transverse (AT) modes.  Additionally, those having symmetric in-plane displacements are referred to 
as symmetric in-plane (SI) modes, while those having anti-symmetric in-plane displacements are referred to as anti-
symmetric in-plane (AI) modes.  Due to the absence of linear coupling between transverse and in-plane modes for 
the structure considered, both ST and AT modes have numerical zero in-plane displacement components (u).  
Similarly, both SI and AI modes have numerical zero transverse displacement components (v).  Non-zero rotational 
DoF (φ) are present only in the transverse ST and AT modes.  ST modes have an anti-symmetric rotation 
distribution along the beam span, and AT modes have a symmetric rotation distribution along the beam span.  The 
lowest mode of each of the four categories discussed above is presented in Figure 1.  The listing of the first six 
modes of each category is provided in Table 1.  It is seen that the transverse ST and AT modes have lower natural 
frequencies than the in-plane SI and AI modes. 
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Figure 1:  Lowest ST, AT, SI and AI modes  

of clamped beam. 

Table 1:  Classification of selected eigenvectors. 

Mode 
Designator  

 

 

Mode 
Number 

 

Frequency 
(Hz) 

 
ST1 1 57.78 
ST2 3 312.1 
ST3 7 770.1 
ST4 10 1430.6 
ST5 14 2292.5 
ST6 19 3354.3 
AI1 46 11,243 
AI2 81 22,480 
AI3 115 33,706 
AI4 153 44,917 
AI5 221 56,106 
AI6 231 67,268 
AT1 2 159.2 
AT2 4 515.7 
AT3 8 1075.1 
AT4 13 1836.5 
AT5 16 2798.5 
AT6 21 3959.7 
SI1 28 5621.5 
SI2 64 16,802 
SI3 98 28,095 
SI4 133 39,314 
SI5 178 50,514 
SI6 227 61,691 

 
The most critical task in the reduced-order analysis is the selection of the modal basis, as it dictates the accuracy 

of the reduced-order solution.  It may be intuitive to select a modal basis using characteristics of structural and 
loading symmetry.  For example, for a symmetric planar structure under symmetric transverse loading, a modal 
basis consisting of only ST modes may suffice.  While such intuition may be useful for a linear analysis, it has been 
demonstrated for both flat11 and curved12 structures that such a rationale will lead to an inadequate basis selection for 
the nonlinear problem.  This is due to coupling in the quadratic and cubic stiffness terms.  Therefore, some 
additional guidance in the form of experimental data, theoretical or numerical analysis, or past reduced-order 
modeling experience is beneficial. 

For the beam considered, several factors affected the modal basis selection used in this study.  The first factor 
was earlier experience gained from a reduced-order analysis of symmetric planar structures under symmetric 
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transverse loadings at room temperature (∆T=0) conditions.11   In this case, a combination of low-frequency ST 
modes and high-frequency AI modes was found to compare very well with a numerical simulation in physical DoF.  
From the study of shallowly curved structures,12 the additional inclusion of AT and SI modes was required to 
capture the in-plane behavior associated with autoparametric resonance.  The geometry of the curved structure is 
similar to that of the thermally post-buckled beam, and hence the inclusion of AT and SI modes for the present 
problem is likely beneficial.  Finally, through observations made using results to be subsequently presented from the 
numerical simulation analysis in physical DoF, significant in-plane motion of the center node was found to 
accompany the snap-through response, further substantiating the need for SI modes in the modal basis. 

Thus, the modal basis chosen for this study consisted of all four types of modes.  Based on the frequency range 
of the excitation, the six lowest modes of each four types were used to establish the modal basis.  In the discussion 
that follows, this set will be referred to as 24-mode basis.  To explore the impact of selecting an insufficient basis on 
the quality of the reduced-order results, a truncated basis was assembled from the six lowest ST modes and the six 
lowest AI modes.  This basis lacked the SI modes necessary to capture the in-plane motion at the beam center.  In 
the following, it will be referred to as 12-mode basis. 

F. Modal Stiffness Coefficients 
 The behavior of modal stiffness coefficients as a function of applied temperature increment was examined and 
warrants a discussion.  For the purpose of this investigation, modal stiffness coefficients were computed at room 
temperature, and at a uniformly distributed ∆T of 35°F and 70°F.  There was no thermal gradient through the 
thickness.  Since the critical buckling temperature CRT∆  of the beam was found to be 6.6°F, the two elevated 
temperature cases corresponded to approximately 5.3 and 10.6 times CRT∆ , respectively.  Both the 12- and 24-mode 
bases were used.   

Examination of the nonlinear quadratic and cubic modal stiffness matrices revealed that they were not affected 
by the temperature change.  This observation is in agreement with the classic FE formulation, where the nonlinear 
stiffness matrices are only a function of displacement, regardless of how this displacement was induced.7,8,13 The 
linear modal stiffness coefficients however were found to be strongly dependent on the temperature change.  For the 
room temperature condition, the linear modal stiffness matrix is uncoupled.  The linear stiffness coefficients are the 
positive eigenvalues and equal to the square of the natural frequencies of the system.  Further, since the matrix is 
diagonal, the linear modal stiffness does not contribute to the overall coupling of transverse and in-plane modes.  At 
elevated temperatures, some of the off-diagonal stiffness terms become significant, resulting in a coupled linear 
modal stiffness matrix.  For both temperatures and bases considered, only the portion of the linear matrix 
corresponding to the low-frequency transverse modes (ST in the 12-mode basis, and ST and AT in the 24-mode 
basis) was altered.  The off-diagonal terms were symmetric.  These observations are also consistent with the 
previous classic FE development.13  Moreover, in the case of the 12-mode basis, the low-frequency portion of the 
linear stiffness was fully populated, effectively coupling all ST modes included in the basis.  In the case of the 24-
mode basis, the coupling between ST modes was large, and the coupling between AT modes was large, but no linear 
cross-coupling occurred between the ST and AT modes.  These observations are illustrated in Table 2 with excerpts 
from the linear modal stiffness matrices computed with the 24-mode basis at different thermal loadings. 
   

Table 2:  Selected modal linear stiffness dij coefficients (x106) for the 24-mode basis. 
 

∆T =0°F ST1 AT1 ST2 AT2

ST1 0.132 0 0 0 
AT1 sym 1.001 0 0 
ST2 sym sym 3.845 0 
AT2 sym sym sym 10.50 

 
∆T =35°F ST1 AT1 ST2 AT2

ST1 -0.543 0 0.534 0 
AT1 sym -1.524 0 -0.940 
ST2 sym sym -1.577 0 
AT2 sym sym sym 1.098 

 
∆T =70°F ST1 AT1 ST2 AT2

ST1 -1.218 0 1.068 0 
AT1 sym -4.049 0 -1.880 
ST2 sym sym -6.998 0 
AT2 sym sym sym -8.303 
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Another observation from Table 2 is that the linear stiffness coefficients vary linearly with temperature.  Relative 
to the room temperature condition, the change in magnitude of a linear stiffness coefficient computed at a ∆T of 
70°F is double that of the value computed at a ∆T of 35°F.  Again, this observation is consistent with the classic FE 
development13 and with previous indirect method work.9   Although this observation is not needed in the process of 
computing the set of modal stiffness coefficients by the indirect stiffness evaluation method, it may be exploited 
when temporal temperature variations are required in the analysis.  Effectively, it allows a significant computational 
savings, since only a few linear modal coefficients must be scaled, but not reevaluated, as the temperature changes. 
 Finally, for the elevated temperature case, the change in sign of the affected diagonal terms from positive to 
negative provides useful information.  Consider a basis consisting of only the first ST mode, so the linear stiffness 
corresponds to only the 1-1 entry in Table 2.  A straight line fit at a function of temperature indicates a change in 
sign at 6.8°F.  Since the first ST mode greatly contributes to the first buckled shape, the temperature at which the 
sign changes is close to the first critical buckling temperature 1CRT∆  of 6.6°F.  Similarly, a basis consisting of only 
the first AT mode shows a stiffness sign change at 13.9°F, which is close to the second critical buckling temperature 

 of 13.6°F.  As the temperature increases, the number of negative diagonal entries increases.  In Table 2 for 
example, there are three negative diagonal entries at a ∆T of 35°F, and four negative diagonal entries at a ∆T of 
70°F. 

2CRT∆

III. Dynamic Thermal Buckling Analysis 
The dynamic response during thermal buckling is of interest because it captures the characteristics of a single 

snap-through event.  The dynamic thermal buckling event was induced by an instantaneous temperature increase of 
35°F, uniformly distributed along the length of the beam with a zero through-the-thickness gradient.  The beam was 
initially at rest, with zero displacement and velocity.  In the case of the reduced-order analysis, the initial conditions 
were specified in modal coordinates.  A small decaying transverse perturbation force having an initial magnitude of 
0.125-lbf was applied at the mid-span node to trigger the stability loss.  The force linearly decayed to zero over the 
period of 0.5s.  A fixed integration time step of 1 µs was used for all reduced-order analyses. 

A. Physical DoF Analysis 
For comparison purposes, the physical DoF analysis was performed using ABAQUS/Explicit.  The double 

precision explicit integration scheme with an automatically determined stable time integration step (referred to as 
“element by element” in ABAQUS) was utilized for all analyses.  The finite element model used was identical to the 
MSC.NASTRAN-based model used in the RANSTEP reduced-order analysis, except that ABAQUS B21 beam 
elements were used in place of CBEAM elements. 

B. Thermal Buckling Response  
The displacement response of the mid-span node is shown in Figure 2 and Figure 3 for the transverse and in-

plane components, respectively.  At this location, only the ST modes directly contribute to the transverse response, 
and only the SI modes directly contribute to the in-plane response.  The effect of the AT and AI modes is therefore 
manifested indirectly by altering the system of modal equations.  Consequently, modal time histories corresponding 
to modes ST and SI differ between the 12- and 24-mode bases.  In Figure 2, the 24-mode RANSTEP and physical 
DoF analyses agree quite well, rising from the zero condition with a damped transient response about the final 
buckling displacement of 0.215-in.  The 12-mode RANSTEP analysis comes to the same final displacement, but 
oscillates more toward the positive side of the final displacement.  In Figure 3, it is interesting to note that 
significant in-plane response is not instantaneous, but is delayed by about 0.05s, clearly indicating the time-varying 
contribution of the in-plane modes.  Since the 12-mode basis lacked the SI modes, this basis was incapable of 
representing any in-plane behavior.  The damped transient response eventually settles to the expected zero in-plane 
displacement associated with the static buckled shape. 

Note that a static post-buckling analysis performed with MSC.NASTRAN solution 106 (not shown) yielded 
nearly identical final buckling displacements.  Hence, there are insignificant differences in the manner in which the 
thermal loading is handled between the NASTRAN-based RANSTEP analysis and the ABAQUS analysis.  What is 
important about the dynamic thermal bucking analysis in this work, however, is not the final at-rest state, but the 
transient response leading to that state.  In this light, the 24-mode basis best captures the relevant dynamics of the 
single snap-through event.  Since the thermal-acoustic response next considered contains multiple snap-through 
events, it is expected that the 24-mode basis will also better represent the dynamics than the 12-mode basis. 
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Figure 2:  Transverse displacement response of a 

dynamic thermal buckling event. 
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Figure 3:  In-plane displacement response of a dynamic 

thermal buckling event. 
 

IV. Thermal-Acoustic Response Analysis 
The beam response to a combined thermal-acoustic load was next investigated.  The thermal load was 

instantaneously applied to the beam via a uniformly distributed temperature increase of 35°F with a zero through-
the-thickness gradient.  A random pressure load with a flat excitation spectrum from 0-1500 Hz was generated using 
a previously developed procedure.14  The pressure was uniformly applied along the span in the transverse direction, 
irrespective of the deformation, i.e. follower forces were not utilized.  Three pressure levels of 128 dB, 158 dB, and 
170 dB were considered so that different response regimes could be investigated. 

The beam was initially at rest, with zero displacement and velocity, in the unbuckled state.  A simulated response 
time history of 2.1384s was performed at each level considered.  In the computation of power spectral density (PSD) 
and probability density function (PDF), five ensembles were averaged.  For each ensemble, the initial 0.5s was 
removed to eliminate the start-up transient. 

A. Thermal-Acoustic Response 
Three response regimes are illustrated with ABAQUS/Explicit-generated transverse displacement time histories 

of the mid-span node in Figure 4.  The regimes can be characterized as: (i) small amplitude vibration around one of 
the two stable buckling equilibrium positions (128 dB), (ii) intermittent snap-through response between the two 
buckling equilibrium positions (158 dB), and (iii) persistent snap-through response between the two equilibrium 
positions (170 dB).  

The PSD of the mid-span transverse displacement response at 128 dB is shown in Figure 5.  Since the time 
histories from which these were generated lacked the initial thermal-buckling transient, the results from the 12- and 
24-mode bases compare equally well with the physical DoF simulation. A significant static displacement component 
due to thermal buckling is apparent.  The corresponding PDF is Gaussian, with a non-zero mean (not shown).  With 
the initial thermal-buckling transient removed, the in-plane displacement response was negligible at this location. 

When the level is increased such that intermittent snap-through response occurs, differences between the 12- and 
24-mode bases become apparent.  Figure 6 shows the PSD of the mid-span transverse displacement response at 158 
dB.  Very good agreement is noted between the 24-mode and physical DOF analyses across the frequency range.  
The 12-mode reduced-order analysis however exhibits amplification at some peaks.  All three analyses reflect the 
dominant zero-frequency component.  The in-plane response is shown in Figure 7.  Again, the 24-mode solution 
captured all of the essential features of the physical response.  The 12-mode solution is unable to produce any in-
plane displacement response due to the lack of SI modes in the basis. 
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Figure 4:  Transverse displacement response at 35ºF and 

128, 158, and 170 dB excitations.

Frequency (Hz)

Tr
an

sv
er

se
D

is
pl

ac
em

en
tP

S
D

(in
2 /H

z)

0 500 1000 1500
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

ABAQUS/Explicit
RANSTEP, 24 Modes
RANSTEP, 12 Modes

 
Figure 5:  Mid-span transverse displacement response 

PSD at 35ºF and 128 dB. 
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Figure 6:  Mid-span transverse displacement response 

PSD at 35°F and 158 dB. 

Frequency (Hz)

In
-p

la
ne

D
is

pl
ac

em
en

tP
S

D
(in

2 /H
z)

0 500 1000 1500
10-14

10-13

10-12

10-11

10-10

10-9

10-8

ABAQUS/Explicit
RANSTEP, 24 Modes

 
Figure 7:  Mid-span in-plane displacement response PSD 

at 35°F and 158 dB. 
 
The transverse displacement response PDF at the mid-span is shown in Figure 8 for the physical DoF and 24-

mode reduced-order analyses.  It is clear that the majority of vibration cycles at this level occurred about either of 
the two thermally buckled equilibrium positions.  In particular, for the simulation period considered, the structure 
happened to spend more time oscillating about the lower equilibrium position.  This is also consistent with the 158 
dB time history response presented in Figure 4.  Small values of the probability density in the proximity of the zero 
distribution range indicate the few instances when the response snapped between the two equilibrium positions. 

It is often advantageous to observe the behavior at more than one location to help further identify limitations.  
The quarter-span location was selected for this purpose, as the displacement response there exhibits significant in-
plane and transverse components.  The quarter-span transverse displacement response PSD at the 158 dB excitation 
level is shown in Figure 9.  Like the mid-span response in Figure 6, the 24-mode solution compares favorably with 
the physical DoF solution across the frequency range.  Above 1 kHz, 12-mode solution misses one peak and 
amplifies another.  Again, the dominant zero-frequency component is seen.  The quarter-span in-plane displacement 
PSD is shown in Figure 10.  The 24-mode solution again compares favorably with the physical DoF solution across 
the frequency range, while the 12-mode solution poorly matched the physical response in the low and high-
frequency ranges. 
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To help better understand how these differences manifest themselves, one can observe the contribution of 
various modal displacement components.  Plotted in Figure 11 are the lowest components of each mode type (ST1, 
AT1, SI1, and AI1) for the 24-mode reduced-order solution at 35°F and 158 dB.  Also plotted are the reduced-order 
in-plane and transverse displacement time histories obtained from the inverse modal transformation at the quarter-
span location.  The modal responses from modes ST1 and AT1 are on the order of 10-3, while those from the SI1 and 
AI1 modes are two orders of magnitude smaller.  Mode ST1 appears to be strongly correlated with the transverse 
physical displacement (v), and mode AI1 appears to be strongly correlated with the in-plane physical displacement 
(u).  Of most interest in this figure are modes SI1 and AT1, which are not included in the 12-mode basis.  These 
modes exhibit similar behavior to that of the decaying in-plane transient response of the single dynamic thermal 
buckling event, first seen in Figure 3.  Unlike the mid-span location however, both modes directly contribute to the 
response at the quarter-span location.   A significant increase in the SI1 and AT1 modal responses occur at every 
snap-through event.  Hence these modes play an important role in the response during such events, and consequently 
indicate that the 12-mode basis is insufficient for accurately capturing the snap-through response. 
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Figure 8:  Mid-span transverse displacement response 

PDF at 35°F and 158 dB. 
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Figure 9:  Quarter-span transverse displacement response 

PSD at 35°F and 158 dB. 
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Figure 10:  Quarter-span in-plane displacement response 

PSD at 35°F and 158 dB.
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Figure 11:  Quarter-span physical and modal 
displacement response at 35°F and 158 dB. 

The mid-span transverse and in-plane displacement response PSDs, obtained at a ∆T of 35°F and at the 170 dB 
excitation level, are presented in Figure 12 and Figure 13, respectively.  This excitation was shown in Figure 4 to 
result in a persistent snap-through response.  Both 24-mode PSDs compare very well with the physical DOF 
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solution.  As expected, the transverse response PSD from the 12-mode solution compares less favorably, and does 
not exist for the in-plane response.  Because of the persistent snap-through response, the transverse static component 
was no longer dominant, as shown in Figure 12.  The transverse displacement response PDF for this condition is 
shown in Figure 14.  Here it is shown that as the intensity of snap-through is increased, the rate of the zero-crossings 
increases.  Hence, the center part of the PDF distribution fills in compared to the intermittent snap-through 
conditions. 

Finally, for a fixed temperature increment of 35°F, the number of transverse displacement zero-crossings is 
presented as a function of the random pressure excitation level.  It is seen in Figure 15 that snap-through does not 
occur up to a random pressure level of about 152 dB (0.1152 psi).  Then, beginning in the range between 152 dB and 
158 dB (0.2304 psi), the snap-through behavior is initiated and the number of zero-crossings starts growing as the 
excitation level is further increased.  Results obtained in physical DoF and by the reduced-order analysis are in a 
good agreement despite a relatively short simulation time. 
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Figure 12:  Mid-span transverse displacement response 

PSD response at 35°F and 170 dB.
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Figure 13: Mid-span in-plane displacement response 

PSD response at 35°F and 170 dB. 
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Figure 14: Mid-span transverse displacement response 

PDF at 35°F and 170 dB.
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Figure 15:  Transverse displacement zero-crossing 

intensity at 35°F. 
V. Conclusion 

A reduced-order FE based method for predicting thermo-acoustic random response in a nonlinear regime was 
presented.  Two sets of modal bases were examined in the study, and the corresponding reduced-order analysis 
results were compared with solutions obtained with an analysis in physical DoF. 
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The effect of elevated temperature on the modal stiffness coefficients was first examined.  It was found that only 
the linear stiffness coefficients corresponding to low-frequency transverse displacement modes were affected by the 
temperature change.  These stiffness coefficients were found to vary linearly with temperature.  Quadratic and cubic 
stiffness coefficients were unaffected.  As a result, a computational benefit may be gained for problems with a time-
varying thermal loading magnitude because linear coefficients need only be scaled. 

In the analysis of dynamic thermal buckling and thermal-acoustic response, it was found that a modal basis 
consisting of four types of modes (ST, AT, SI and AI) more accurately predicted the response than a basis consisting 
of only ST and AI modes.  In particular, for both loading conditions, the contribution of SI and AT modes becomes 
more significant as the structure transitions to a different equilibrium position. 

Although not in scope of this study, the fatigue life will be affected in a different manner depending on the 
response regime.  For the response about one of the thermally buckled equilibrium positions, a significant mean 
stress component will be introduced.  The mean stress has been shown to adversely affect the fatigue life.15-17  
Additionally, for intermittent and persistent snap-through, large cyclic stress amplitudes will rapidly accumulate and 
lead to a shorter fatigue life.  Therefore, a continuation of this study to address stress recovery and fatigue estimation 
is deemed to be worthwhile. 
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