
Dynamic Social Community Detection and Its
Applications

Nam P. Nguyen*¤, Thang N. Dinh, Yilin Shen, My T. Thai

Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America

Abstract

Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The
knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-
aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing
strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this
structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work
focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we
adaptively update the network community structure based on its history instead of recomputing from scratch? To this end,
we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also
tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively
updates and discovers the new community structure based on its history together with the network changes only. This
flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its
lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on
both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we
demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2)
worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based
techniques employing QCA as a community detection core outperform current available methods.

Citation: Nguyen NP, Dinh TN, Shen Y, Thai MT (2014) Dynamic Social Community Detection and Its Applications. PLoS ONE 9(4): e91431. doi:10.1371/
journal.pone.0091431

Editor: Jesus Gomez-Gardenes, Universidad de Zarazoga, Spain

Received November 6, 2013; Accepted December 18, 2013; Published April 10, 2014

Copyright: � 2014 Nguyen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is partially supported by NSF CAREER Award #0953284 and DTRA YIP HDTRA1-09-1-0061. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: npnguyen@towson.edu

¤ Current address: Department of Computer and Information Sciences, Towson University, Towson, Maryland, United States of America

Introduction

Many social networks in practice commonly exhibit the

property of containing community structure [1,2], i.e., they

naturally divide into groups of nodes with denser connections

inside each group and fewer connections crossing between groups.

In general, nodes and connections in a social network typically

represent network users and their social interactions (e.g.,

friendships in Facebook, following in Twitter or professional

connections in LinkedIn), respectively. Members in each social

community typically have some certain interests in common such

as photography, movies, music or travel, and hence, they tend to

interact more frequently with each other than with users who are

outside of their community. Community detection in a social

network, as a result, is the gathering of its users into groups in such

a way that nodes in each group are densely connected inside and

sparser outside.

Community detection and graph clustering problem are closely

related to each other due to their nature. Nevertheless, it is

noteworthy to differentiate between them. While these two

problems share the same objective of partitioning network nodes

into groups, the number of clusters in graph clustering is often

predefined (or given as a part of the input) whereas the number of

communities is typically unknown in community detection. In the

visualization perspective, communities display the whole network

organization as a compact and more understandable level where

each community can represent a functional group or an entity

in the system. At this level, community structure provides us

meaningful insights into network’s organizational principles, and

consequently, sheds light on preventing potential vulnerability and

security threats such as network corruption and computer virus

and worm propagation [3]. Studies on community detection on

static networks can be found in an excellent survey [4], as well as

in the work of [5–7] and references therein.

Real-world social networks, however, are not always static. In

fact, most popular social sites in reality (such as Facebook, Twitter

and LinkedIn) evolve heavily and witness a rapid expansion in

terms of size and space over time. As a result, they lend themselves

naturally to the field of dynamic networks. A dynamic network is a

special type of evolving complex graphs in which changes are

frequently introduced over time. In the senses of OSNs, these

changes are commonly introduced by users joining in or

withdrawing from one or more communities, by friends and

friends connecting together, or by new users making friend with

one another. Although any of these social events seems to have a

little effect to a local structure of the network on one hand; the

network’s dynamics over a long duration on the other hand, may

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e91431

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0091431&domain=pdf

lead to a significant transformation of the entire community

structure, and consequently raise a natural need of reidentification.

However, the rapid and unpredictable changing topological

structures of dynamic social networks makes it an extremely

complicated yet challenging problem.

Although one can certainly execute one of the available static

community detection methods [5,8–10] all over again to find the

new structure whenever the network evolves, he may encounter

some disadvantages that cannot be neglected (1) the expensive

execution time of the specific method on large networks, (2) the

trap of local optima, and (3) the almost same reaction to a small

change to some local parts of the network. A better, much efficient

and less time consuming approach to accomplish this expensive

task is to adaptively update the network communities from the

previously discovered structures, which obscure the hassle of

repeatedly recomputation from scratch. This adaptive approach is

the main focus of our study in this paper. In Figure 1, we briefly

generalize the idea of community structure adaptation in an

evolving network: the network evolves from time t to t+1 under the

change DGt. The adaptive algorithm A quickly finds the updated

community structure C(Gtz1) based on the previous structure

C(Gt) together with the changes DGt.

In an application perspective, the detection of communities in a

dynamic social network is of considerable advantages. To give a

sense of its effects, let us consider the routing problem in

communication network where nodes and links represent people

and mobile communications, respectively. Due to nodes’ mobility

and unstable links properties of the network, designing an efficient

routing scheme is extremely challenging. However, since people

have a natural tendency to form groups of communication, there

exist groups of densely connected nodes in the underlying

MANET as a reflection, and hence, forms community structure

in that MANET. An effective routing algorithm, as soon as it

discovers the network communities, can directly route or forward

messages to nodes in the same or a related community as the

destination. By doing in this way, we can avoid unnecessary

messages forwarding through nodes in different communities, and

therefore can lower down the number of duplicate messages and

overhead information, which are essential factors in MANETs.

The contributions of this paper are threefold. First, we propose

QCA, a fast adaptive framework for efficiently identifying the

disjoint community structure of dynamic social networks. Our

approach takes into account the structural history and works on

network changes only, thus significantly reduces computational

cost and time requirement. We also carry out theoretical results

regarding communities’ behaviors over time, which are the

fundamentals of our method. Second, we extensively evaluate

the proposed framework on both synthesized and real dynamic

social traces. Experimental results show that QCA achieves not

only competitive modularity scores but also high quality commu-

nity structures in a timely manner. Finally, we apply QCA method

to two practical applications: forwarding strategies in MANETs

and worm containment in OSNs. Simulation results show that

strategies utilizing QCA outperform current available methods

and confirm its applicability in social network problems.

Preliminaries

In this section we first present the graph notations that will be

used throughout the paper. We then formulate the dynamic social

network, the objective function and finally the problem definition

based on the defined notations.

Notations
Let G= (V, E) be an undirected and unweighted graph

representing a social network with N nodes and M edges. Let

C~fC1,C2,::,Ckg denote a disjoint partitioning of V, where Ci[C
is a community of G. For each vertex u[V , its degree, the

community containing u and the set of its adjacent communities

are respectively denoted by du, C(u) and NC(u). For any S(V ,

let mS , dS , and euS be the number of links inside S, the total degree

of vertices in S, and the number of connections from u to S,

respectively. The pairs of terms node and vertex, as well as edge and

link and are used interchangeably.

Dynamic networks
Let Gs

~(V s,Es) be a time dependent network snapshot

recorded at time s. Denoted by DV s and DEs the sets of vertices

and links to be introduced (or removed) at time s, and let

DGs
~(DV s,DEs) denote the change in terms of the whole

network. The next network snapshot Gsz1 is expressed as

Gsz1
~Gs|DGs. A dynamic social network G is a sequence of

network snapshots evolving over time: G~(G0,G1,::,Gs,:::).

Objective function
To quantify the quality of a detected network community

structure, we use the widely accepted measure called modularity Q
[11], defined as

Q~

X

C[C

(
mC

M
{

d2
C

4M2
):

Generally, Q is the fraction of all links within communities less the

expected value of the same quantity in a graph whose nodes have

the same degrees but links are distributed randomly, and the

higher modularity Q, the better network community structure is.

Hence, our objective is to find a community assignment for

network vertices so that Q is maximized.

Problem Definition
Given a dynamic social network G~(G0,G1,::,Gs) where G0 is

the original network and G1, G2,…, Gs are the network snapshots

obtained through DG1, DG2,…, DGs, we need to devise adaptive

algorithms to efficiently identify the network community structure

at any time point as well as to trace the evolution of the network

communities.

Methods

Let us first discuss how changes introduced to the evolving

network topology affect the structure of its communities. We use

the term intra-community links to denote edges whose two endpoints

belong to the same community, and the term inter-community links to

denote those with endpoints connecting different communities.

For each community C, the connections linking C with other

Figure 1. The overview of our adaptive community structure
detection algorithm.
doi:10.1371/journal.pone.0091431.g001

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e91431

communities are much fewer than those within C itself, i.e., nodes

in C are densely connected inside and sparsely connected outside.

Intuitively, adding intra-community links inside or removing inter-

community links between communities of G will strengthen those

communities and make the structure of G more clear. Vice versa,

removing intra-community links and inserting inter-community

links will loosen the structure of G. However, when two commu-

nities have less distraction caused by each other, adding intra or

removing inter-community links makes them more attractive to

each other and thus, leaves a possibility that they will be combined

to form a new community. The community updating process, as a

result, is challenging since an insignificant change in the network

topology can possibly lead to an unexpected transformation of its

community structure. We will discuss in detail the possible behaviors

of dynamic network communities in the following subsections.

In order to reflect changes introduced to a social network, its

underlying graph is frequently updated by either inserting or

removing a node or a set of nodes, or by either introducing or

deleting an edge or a set of edges. In fact, the introduction or

removal of a set of nodes (or edges) can be decomposed as a

sequence of node (or edge) insertions (or removals), in which a

single node (or a single edge) is introduced (or removed) at a time.

This observation helps us to treat network changes as a collection

of simple events where a simple event can be one of newNode,

removeNode, newEdge, removeEdge whose details are as follow:

N newNode (V|fug): A new node u together with its associated

edges are introduced. u could come with no or more than one

new edge(s).

N removeNode (V \fug): A node u and its adjacent edges are

removed from the network.

N newEdge (E|feg): A new edge e connecting two existing nodes

is introduced.

N removeEdge (E\feg): An existing edge e in the network is

removed.

Algorithms
Our approach first requires an initial community structure C0,

which we call the basic structure, in order to process further. Since

the input model is restricted as an undirected and unweighted

network, this initial community structure can be obtained by

performing any of the available static community detection

methods [5,8,9]. To obtain a good basic structure, we choose

the method proposed by Blondel et al. [8] which produces a good

network community structure in a timely manner [4].

New node. Let us consider the first case when a new node u
and its associated connections are introduced. Note that u may

come with no adjacent edges or with many of them connecting

one or more communities. If u has no adjacent edge, we create a

new community for it and leave the current structure intact. The

interesting case happens, and it usually does, when u comes with

edges connecting one or more existing communities. In this latter

situation, we need to determine which community u should join in,

or which nodes in other communities that should together with u

form a new community in order to maximize the gained

modularity. In addition, the introduction of u might cause some

part of an existing community to leave its current host and move to

another community. To handle this case, we first determine

whether any neighbor node of u should change its community

membership or not. There are several local methods introduced

for this task, for instance the algorithms of [5,9]. Our method is

inspired by a physical approach proposed in [12], in which each

node is influenced by two forces: FC
in (to keep u stays inside

community C) and FC
out (the force a community C makes in order

to bring u to C) defined as follow:

FC
in (u)~euC{

du(dC{du)

2M
,

and

FS
out(u)~ max

S[NC(u)
feuS{

dudoutS

2M
g,

where doutS is of opposite meaning of dS .

Taking into account the above two forces, we first determine

whether a node u should form a new community with other nodes

in its neighbor communities. This is done by iteratively selecting

nodes that are more attracted by C(u) rather than its current

community (the outer ‘‘while’’ loop in Table 1 Algorithm 1).

Otherwise, node u can actively determines its best community

membership by computing those forces and either lets itself join

the community S having the highest FS
out(u) (if FS

out(u)wF
C(v)
in (u))

or stays in the current community C(v) otherwise. By Proposition 1,

we bridge the connection between those forces and the objective

function, i.e., joining the new node in the community with the

highest outer force will maximize the local gained modularity. The

process is presented in Table 1 Algorithm 1.

Proposition 1. Let C be the community having the maximum FC
out(u)

when a new node u with degree p is added to G, then joining u in C gives the

maximal gained modularity (Note: All proofs are included in the Appendix).

Table 1. Algorithm 1. New_Node.

Input: New node u with associated links; Current structure Ct .

Output: An updated structure Ctz1

1: C(u) r A new community of only u;

2: Done r False;

3: while (!Done) do

4: for (v M N(u) and v is not visited) do

5: Find F
C vð Þ
in vð Þ and F

C uð Þ
out vð Þ;

6: end for

7: Sort v M NC(u) by its F
C uð Þ
out vð Þ given F

C uð Þ
out vð ÞwF

C vð Þ
in vð Þ.

8: Let v be the stack containing these sorted nodes;

9: if (v~~0=) then

10: Done r True;

11: end if

12: C(u) r C(u) < {pop(v)};

13: Marked v as visited;

14: end while

15: for C M NC(u) do

16: Find FC
out uð Þ;

17: end for

18: if maxC FC
out uð ÞwFCu

in uð Þ then

19: Let Cu/argmaxC FC
out uð Þ

� �

;

20: Update Ctz1 : Ctz1/ Ct\Cuð Þ| Cu|uð Þ;

21: end if

doi:10.1371/journal.pone.0091431.t001

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 3 April 2014 | Volume 9 | Issue 4 | e91431

Proof. Let D be a community of G and D?C, we show that

joining u in D contributes less modularity than joining u in C. The

overall modularity Q when u joins in C is

Q~
mCzeuC
Mzp

{
(dCzeuCzp)2

4(Mzp)2
z

mD

Mzp
{

(dDzeuD)
2

4(Mzp)2
zA,

where A is the summation of other modularity contributions.

Similarly, joining u to D gives

Q’~
mC

Mzp
{

(dCzeuC)
2

4(Mzp)2
z

mDzeuD
Mzp

{
(dDzeuDzp)2

4(Mzp)2
zA,

and

Q{Q’~
1

Mzp
(euC{euDz

p(dD{dCzeuD{euC)

2(Mzp)
):

Now, since C is the community that gives the maximum FC
out(u),

we obtain

euC{
p(dCzeuC)

2(Mzp)
weuD{

p(dDzeuD)

2(Mzp)
,

which implies

euC{euDz
p(dD{dCzeuD{euC)

2(Mzp)
w0:

Hence, Q{Q’w0 and thus the conclusion follows. h

New edge. When a new edge e~(u,v) connecting two

existing vertices u,v is introduced, we divide it further into two

subcases: e is an intra-community link (totally inside a community

C) or an inter-community link (connects two communities C(u) and

C(v)). If e is inside a community C, its presence will strengthen the

internal modularity structure of C according to Proposition 2.

Furthermore, by Proposition 3, we know that adding e should not

split the current community C into smaller modules. Therefore, we

leave the current network structure intact in this case.

The interesting situation occurs when e is a link connecting

communities C(u) and C(v) since its presence could possibly make u

(or v) leave its current module and join in the new community.

Additionally, if u (or v) decides to change its membership, it can

advertise its new community to all its neighbors and some of them

might eventually want to change their memberships as a con-

sequence. By Proposition 4, we show that should u (or v) ever

change its community assignment, C(v) (or C(u)) is the best new

community for it. But how can we quickly decide whether u (or v)

should change its membership in order to form a better com-

munity structure with higher modularity? To this end, we provide

a criterion to test for membership changing of u and v in Pro-

position 5. Here, if both Dqu,C,D and Dqv,C,D fail to satisfy the

criteria, we can safely preserve the current network community

structure (Corollary 1). Otherwise, we move u (or v) to its new

community and consequently let its neighbors determine their best

modules to join in, using local search and swapping to maximize

gained modularity. Figure 2a describes the procedure for this latter

case. The detailed algorithm is described in Table 2 Algorithm 2.

Proposition 2. For any C[C, if dCƒM{1 then adding an edge

within C will increase its modularity contribution.

Proof. The portion QC that community C contributes to the

overall modularity Q is:

QC~
mC

M
{

d2
C

4M2
:

When a new edge coming in, the new modularity Q0
C is

Q0
C~

mCz1

Mz1
{

(dCz2)2

4(Mz1)2
:

Taking the difference between the two expressions Q0
C and QC

gives

Figure 2. Possible behaviors of the dynamic community structure.
doi:10.1371/journal.pone.0091431.g002

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e91431

DQC~
4M3

{4mCM
2
{4dCM

2
{4mCMz2d2

CMzd2
C

4(Mz1)2M2

§
4M3

{6dCM
2
{2dCMz2d2

CMzd2
C

4(Mz1)2M2

§
(2M2

{2dCM{dC)(2M{dC)

4(Mz1)2M2
§0

The last inequality holds since dCƒM{1 implies 2M2
{2dCM

{dC§0. h

Proposition 3. If C is a community in the current snapshot of G, then

adding any intra-community link to C should not split it into smaller modules.

Proof. Assume the contradiction, i.e, C should be divided into

smaller modules when an edge is added into it. Let X1,X2,::,Xk be

disjoint subsets of C representing these modules. Let di and eij be

the total degree of vertices inside Xi and the number of links going

from Xi to Xj, respectedly. Assume that, W.L.O.G., when an edge

is added inside C, it is added to X1.

Recall that

QC~
mC

M
{

d2
C

4M2
,

and

QXi
~

mi

M
{

d2
i

4M2
,

(where mi is short for mXi
). Prior to adding an edge to C, we have

QCw

X

k

i~1

QXi
,

or equivalently,

mC

M
{

d2
C

4M2
w

X

k

i~1

(
mi

M
{

d2
i

4M2
):

Since X1,X2,::,Xk are disjoint subsets of C, it follows that

dC~
Pk

i~1 di and

mC~

X

k

i~1

miz

X

ivj

eij :

The above inequality equals to

mC

M
{

X

k

i~1

mi

M
w

d2
C

4M2
{

X

k

i~1

d2
i

4M2
,

or

X

ivj

eijwq

P

ivj didj

2M
r:

Now, assume that the new edge is added to X1 and C is split into

X1,X2,::,Xk which implies that dividing C into k smaller

communities will increase the overall modularity, i.e, Q0
Cv

Pk
i~1 QXi

. This implies that

Q0
Cv

X

k

i~1

QXi

u

Pk
i~1 miz

P

ivj eijz1

Mz1
{

(
Pk

i~1 diz2)2

4(Mz12)

v
m1z1

Mz1
{

(d1z2)2

4(Mz1)2
z

X

k

i~2

(
mi

Mz1
{

d2
i

4(Mz1)2
)

u

Pk
i~1 miz

P

ivj eijz1

Mz1
{

(
Pk

i~1 diz2)2

4(Mz12)

v

Pk
i~1 miz1

Mz1
{

(d1z2)2

4(Mz1)2
{

X

k

i~2

d2
i

4(Mz1)2

u
X

ivj

eijv

Pk
i~1 di{2d1z

P

ivj didj

2(Mz1)

Since
Pk

i~1 di{2d1v2M, we have

q
P

ivj didj

2M rv
X

ivj

eijv

Pk
i~1 di{2d1z

P

i=j didj

2(Mz1)

vq
P

ivj didj

2M rz1,

and thus the conclusion follows. h

Proposition 4. When a new edge (u,v) connecting communities C(u)

and C(v) is introduced, C(v) (or C(u)) is the best candidate for u (or v) if it

should ever change its membership.

Table 2. Algorithm 2. New_Edge.

Input: Edge {u, v} to be added; Current structure Ct .

Output: An updated structure Ctz1 .

1: if (u and v[=V) then

2: Ctz1/Ct| u,vf g;

3: else if (C(u)?C(v)) then

4: if (Dqu,C(u),C(v),0 and Dqv,C(u),C(v),0) then

5: return Ctz1/Ct ;

6: else

7: w r arg max{Dqu,C(u),C(v), Dqv,C(u),C(v)};

8: Move w to the new community;

9: for (t M N(w)) do

10: Let t determine its best community;

11: end for

12: Update Ct+1;

13: end if

14: end if

doi:10.1371/journal.pone.0091431.t002

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e91431

Proof. Let C:C(u) and D:C(v). Recall the outer force that a

community S applies to vertex u is

FS
out(u)~eSu{

dudoutS

2M
:

We will show that the presence of edge (u,v) will strengthen FD
out(u)

while weakening the other outer forces FS
out(u), i.e, we show that

FD
out(u) increases while FS

out(u) decreases for all S[=fC,Dg.

FD
out(u)new{FD

out(u)old

~(eDu z1{
(duz1)(doutDz1)

2(Mz1)
){(eDu {

dudoutD

2M
)

~
2MzdudoutD

2M
{

dudoutDzdoutDzduz1

2(Mz1)

§
2MzdudoutD

2(Mz1)
{

dudoutDzdoutDzduz1

2(Mz1)
w0

and thus FD
out(u) is strengthened when (u,v) is introduced.

Furthermore, for any community S[C and S[=fC,Dg,

FS
out(u)new{FS

out(u)old~(eSu{
(duz1)doutS

2(Mz1)
){(eSu{

dudoutS

2M
)

~doutS(
du

2M
{

duz1

2(Mz1)
)v0

which implies FS
out(u) is weakened when (u,v) is connected. Hence,

the conclusion follows. h

Proposition 5. Assume that a new edge (u,v) is added to the network.
Let C:C(u) and D:C(v). If Dqu,C,D:4(Mz1)(euDz1{euC)z

euC(2dD{2du{euC){2(duz1)(duz1zdD{dC)w0 then joining u

to D will increase the overall modularity.

Proof. Node u should leave its current community C and join in

D if

QDzuzQC{uwQCzQD,

or equivalently,

mDzeDz1

Mz1
{

(dDzduz2)2

4(Mz1)2
z

mC{eC

Mz1
{

(dC{du{eC)
2

4(Mz1)2

w
mD

Mz1
{

(dDz1)2

4(Mz1)2
z

mC

Mz1
{

(dCz1)2

4(Mz1)2

u4(Mz1)(eDz1{eC)zeC(2dD{2du{eC)

{2(duz1)(duz1zdD{dC)w0
h

Corollary 1. If the condition in Proposition 5 is not satisfied, then
neither u nor its neighbors should be moved to D.

Node removal. When an existing node u in a community C is

removed, all of its adjacent edges are disregarded as a result. This

case is challenging in the sense that the resulting community is very

complicated: it can be either unchanged or broken into smaller

pieces and could probably be merged with other communities. Let

us consider two extreme cases when a single degree node and a node

with highest degree in a community is removed. If a single degree

node is removed, it leaves the resulted community unchanged

(Proposition 7). However, when a highest degree vertex is removed,

the current community might be disconnected and broken in to

smaller pieces which then are merged to other communities as

depicted in Figure 2c. Therefore, identifying the leftover structure of

C is a crucial part once a vertex in C is removed.

To quickly and efficiently handle this task, we utilize the clique

percolation method presented in [2]. In particular, when a vertex u

is removed from C, we place a 3-clique to one of its neighbors and

let the clique percolate until no vertices in C are discovered

(Figure 2d). We then let the remaining communities of C choose

their best communities to merge in. The detailed algorithm is

presented in Table 3 Algorithm 3.

Edge removal. In the last case when an edge e~(u,v) is

removed, we divide further into four subcases: (1) e is a single edge

connecting only u and v, (2) either u or v has degree one, (3) e is an

inter-community link connecting C(u) and C(v), and (4) e is an intra-

community link. If e is an single edge, its removal will result in the

same community structure plus two singletons of u and v

themselves. The same reaction applies to the second subcase

when either u or v has single degree due to Proposition 7, thus

results in the prior network structure plus u (or v). When e is an

inter-community link, the removal of e will strengthen the current

network communities (Proposition 6) and hence, we just make no

change to the overall network structure.

The last but most complicated case happens when an intra-

community link is deleted. As depicted in Figure 2b, removing this

kind of edge often leaves the community unchanged if the

community itself is densely connected; however, the target module

will be divided if it contains substructures which are less attractive

or loosely connected to each other. Therefore, the problem of

identifying the structure of the remaining modules is important.

Proposition 9 provides us a convenient tool to test for community

bi-division when an intra-community link is removed from the

host community C. However, it requires an intensive look for all

subsets of C, which may be time consuming when C is big. Note

that prior to the removal of (u,v), the community C hosting this

link should contain dense connections within itself and thus, the

removal of (u,v) should leave some sort of ‘quasi-clique’ structure

[2] inside C. Therefore, we find all maximal quasi-cliques within

the current community and have them (as well as leftover

singletons) determine their best communities to join in. The

detailed procedure is described in Table 4 Algorithm 4.

Proposition 6. If C1 and C2 are two communities of G, then the

removal of an inter-community link connecting them will strengthen modularity

contributions of both C1 and C2.

Table 3. Algorithm 3. Node_Removal.

Input: Node u M C to be removed; Current structure Ct .

Output: An updated structure Ctz1 .

1: i r 1;

2: while (N uð Þ=0=) do

3: Si r{Nodes found by a 3-clique percolation on v M N(u)};

4: if (Si~~0=) then

5: Si r {v};

6: end if

7: N(u) r N(u)\Si;

8: i r i+1;

9: end while

10: Let each singleton in N(u) consider its best communities;

11: Let each Si consider its best communities as in [8]

12: Update Ct ;

doi:10.1371/journal.pone.0091431.t003

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e91431

Proof. Let Q1 and Q0
1 be the modularities of C1 before and after

the removal of that link. We show that Q0
1wQ1 (and similarly,

Q0
2wQ2) and thus, C1 and C2 contribute higher modularities to

the network. Now,

Q0
1{Q1~(

m1

M{1
{

(d1{1)2

4(M{1)2
){(

m1

M
{

d2
1

4M2
)

~m1(
1

M{1
{

1

M
)z

1

4
(
d1

M
{

d1{1

M{1
)(
d1

M
z

d1{1

M{1
)

Since all terms are all positive, Q0
1{Q1w0. The same technique

applies to show that Q0
2wQ2. h

Proposition 7. The removal of (u,v) inside a community C where only

u or v is of degree one will not separate C.

Proof. The proof of this proposition is similar to that of

proposition 3. h

Proposition 8. (Separation of a community) Let C1(C and

C2~C\C1 be two disjoint subsets of C. (C\C)|fC1,C2g is a commu-

nity structure with higher modularity when an edge crossing C1 and C2 is

removed, i.e., C should be separated into C1 and C2, if and only if

e12v
d1d2{dCz1

2(M{1)
z1.

Proof. Let Q0
1, Q0

2 and Q0
C denote the modularity contribution of

C1, C2 and C after an edge crossing (X1,X2) has been removed. Now,

e12v
d1d2{dCz1

2(M{1)
z1

u
2d1d2{2dCz2

4(M{1)2
w

e12{1

M{1

u
(d1zd2{2)2

4(M{1)2
{

(d1{1)2

4(M{1)2
{

(d2{1)2

4(M{1)2

w
m1zm2ze12{1

M{1
{

m1{1

M{1
{

m2{1

M{1

u
m1{1

M{1
{

(d1{1)2

4(M{1)2
z

m2{1

M
{

(d2{1)2

4(M{1)2

w
m1zm2ze12{1

M{1
{

(d1zd2{2)2

4(M{1)2

uQ0
1zQ0

2wQ0
C

Thus, the conclusion follows. h

Proposition 9. (Community bi-division) For any community C, let a

and b be the lowest and the second highest degree of vertices in C, respec-

tively. Assume that an edge e is removed from C. If there do not exist subsets

C1(C and C2:C\C1 such that e is crossing C1 and C2 and

minfa(dC{a),b(dC{b)g

2M
ve12v

(dC{2)2

8(M{1)
z1, then any bi-division

of C will not benefit the overall Q.

Proof. From Proposition 8, it follows that in order to really

benefit the overall modularity we must have

d1d2

2M
ve12v

d1d2z1

2(M{1)
z1:

Now we find an upper bound for the RHS inequality. Since

d1zd2~dC , it follows that

e12v
d1d2{dCz1

2(M{1)
z1ƒ

(d1zd2)
2

4
{dCz1

2(M{1)
z1

ƒ

d2
C
4
{dCz1

2(M{1)
z1~

(dC{2)2

8(M{1)
z1:

For a lower bound of the LHS inequality, we rewrite d1d2 as

d1d2~d1(dC{d1)~d1dC{d2
1 and find the non-zero minimum

value on the range d1[½a,b�. In this interval, d1dC{d2
1 is

minimized either at d1~a or d1~b. Therefore,

minfa(dC{a),b(dC{b)g

2M
ƒ

d1d2

2M
ve12ƒ

(dC{2)2

8(M{1)
z1:

That concludes the proof. h

Finally, our QCA framework is presented in Table 5 Algorithm 5.

Table 4. Algorithm 4. Edge_Removal.

Input: Edge (u, v) to be removed; Current structure Ct .

Output: An updated clustering Ctz1 .

1: if ((u, v) is a single edge) then

2: Ctz1/ Ct\ u,vf gð Þ| uf g| vf g;

3: else if (Either u (or v) is of degree one) then

4: Ctz1/ Ct\C uð Þð Þ| uf g| C uð Þ\uf g;

5: else if (C(u)?C(v)) then

6: Ctz1/Ct ;

7: else

8: % Now (u, v) is inside a community C %

9: L= {Maximal quasi-cliques in C};

10: Let the singletons in C\L consider their best communities;

11: end if

12: Update Ctz1 ;

doi:10.1371/journal.pone.0091431.t004

Table 5. Algorithm 5. Quick Community Adaptation (QCA)
Framework.

Input: G;G0= (V0, E0), E~ E1,E2,::,Esf g a collection of simple events

Output: Community structure Ct of G
t at time t.

1: Use [8] to find an initial community clustering C0 of G0;

2: for (t r 1 to s) do

3: Ct/Ct{1 ;

4: if (Et~~newNode uð Þ) then

5: Handle New Node Ct,uð Þ;

6: else if (Et~~newEdge u,vð Þð Þ) then

7: Handle New Edge Ct, u,vð Þð Þ;

8: else if (Et~~removeNode uð Þ) then

9: Handle Remove Node Ct,uð Þ;

10: else

11: Handle Remove Edge Ct, u,vð Þð Þ;

12: end if

13: end for

doi:10.1371/journal.pone.0091431.t005

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e91431

Results

In this section, we first validate our approaches on different

synthesized networks with known groundtruths, and then present

our findings on real world traces including the Enron email [13],

arXiv eprint citation [14], and Facebook social networks [15]. To

certify the performance of our algorithms, we compare QCA to

three notable adaptive methods including (1) MIEN algorithm

proposed by Thang et al. [16], (2) FacetNet framework proposed

by Lin et al. [17], and (3) OSLOM method suggested by

Lancichinetti et al. [18].

Results on synthesized networks
Of course, the best way to evaluate our approaches is to validate

them on real networks with known community structures.

Unfortunately, we often do not know that structures beforehand,

or such structures cannot be easily mined from the network

topology. Although synthesized data might not reflect all the

statistical properties of real networks, they do provide us

embedded groundtruths via planted communities, and the ability

to vary other parameters such as sizes, densities and overlapping

levels, etc. Testing community detection methods on generated

data has become an common practice widely accepted in the field

[4]. Hence, a comparison between QCA and other dynamic

algorithms on synthesized data not only certifies its performance

but also provides us the confidence to its behaviors on real world

traces.

Setup. We use the well-known LFR benchmark [4] to

generate 40 networks with 10 snapshots. Parameters are: the

number of nodes N~f1000,5000g, the mixing parameter

m~f0:1,0:3g controlling the overall sharpness of the community

structure. The experiments are averaged over 1000 runs for

consistency. In order to quantify the similarity between the

identified communities and the ground truth, we adopt a well

known measure in Information Theory called Normalized Mutual

Information (NMI). NMI has been proven to be reliable and is

currently used in testing community detection algorithms [4].

NMI(U ,V) equals 1 if structures U and V are identical and equals

0 if they are totally separated, and the higher NMI the better. Due

to space limit, the readers are encouraged to read [4] for NMI

formulas.

Results. The NMI and Modularity values are reported in

Figures 3 and 4. As depicted in their subfigures, the NMI values

and modularities indicated by our QCA method, in general, are

very high and competitive with those of OSLOM while are much

better than those produced by MIEN and FacetNet methods. On

Figure 3. NMI scores on synthesized networks with known communities.
doi:10.1371/journal.pone.0091431.g003

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e91431

these generated networks, we observe that MIEN and FacetNet

perform well when the mixing parameter m is small, i.e., when the

network community structures are clear, however, their perfor-

mances degrade dramatically when these structures become less

clear as m gets larger. Particularly, MIEN’ and FacetNet’ NMI

scores and modularities in all test cases are fairly low and usually

from 10% to 50% and 5% to 15% worst than those produced by

QCA. This implies the network communities revealed by these

methods are not as high similarity to the ground-truth as QCA

algorithm. On the generated networks, OSLOM algorithm

performs very well as suggested through its high NMI scores and

modularity values. In particular, OSLOM tends to perform better

than QCA in the first couple of network snapshots, however, its

performance is taken over by QCA when the networks evolve over

time, especially at the end of the evolution where OSLM reveals

big gaps in similarity to the planted network communities (Note

that the higher NMI score at the end of the evolution, the better

the final detected community structure). This concludes that the

network communities discovered by QCA are of the best similarity

to ones planted in the ground-truth in comparison with other

methods.

Results on real-world traces
We next present the results of QCA algorithms on real world

dynamic social networks including ENRON email [13], arXiv e-

print citation [14], and Facebook networks [15]. Due to the lack of

appropriate communities corresponding to these traces, we report

the performance of the aforementioned algorithms in reference to

the static method proposed by Blondel et al. [8]. In particular, we

will show the following quantities (1) modularity values, (2) the

quality of the identified network communities through NMI

scores, and (3) the processing time of our QCA in comparison with

other methods. The above networks possess to contain strong

community structures due to their high modularities, which was

the main reason for them to be chosen.

For each network, time information is first extracted and a

portion of the network data (usually the first snapshot) is then

collected to form the basic network community structure. Our

QCA method (aslo MIEN and OSLOM) take into account that

basic community structure and run on the network changes

whereas the static method has to be performed on the whole

network snapshot for each time point. In this experiment,

FacetNet method does not appear to complete the tasks in a

timely manner, and is thus excluded from the plots.

Figure 4. Modularity values on synthesized networks with known communities.
doi:10.1371/journal.pone.0091431.g004

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 9 April 2014 | Volume 9 | Issue 4 | e91431

ENRON email network. The Enron email network contains

email messages data from about 150 users, mostly senior

management of Enron Inc., from January 1999 to July 2002

[13]. Each email address is represented by an unique ID in the

dataset and each link corresponds to a message between the sender

and the receiver. After a data refinement process, we choose 50%

of total links to form a basic community structure of the network

with 7 major communities, and simulate the network evolution via

a series of 21 growing snapshots.

Results.

Figure 5a, our QCA algorithm archives competitively higher

modularities than the static method but a little bit less than MIEN,

and is far better than those obtained by OSLOM. Moreover,

QCA also successes in maintaining the same numbers of

communities of the other two methods MIEN and Blondel while

OSLOM’s are vague (Figure 5b). In particular, the modularity

values produced by QCA very well approximate those found by

static method with lesser variation. There are reasons for that.

Recall that our QCA algorithm takes into account the basic

community structures detected by the static method (at the first

snapshot) and processes on network changes only. Knowing the

basic network community structure is a great advantage of our

QCA algorithm: it can avoid the hassle of searching and com-

puting from scratch to update the network with changes. In fact,

QCA uses the basic structure for finding and quickly updating the

local optimal communities to adapt with changes introduced

during the network evolution.

The running time of QCA and the static method in this small

network are relatively close: the static method requires one second

to complete each of its tasks while our QCA does not even ask for

one (Figure 5c). In this dataset, MIEN and OSLOM requires a

little more time (1.5 and 2.4 seconds in average for MIEN and

OSLOM) to complete their tasks. Time and computational cost

are significantly reduced in QCA since our algorithms only take

into account the network changes while the static method has to

work on the whole network every time.

As reported in Figure 5d, both the NMI scores of ours and

MIEN method are very high and relatively close to 1 while those

obtained by OSLOM fall short and are far from stable. These

results indicate that in this Enron email network, both QCA and

MIEN algorithms are able to identify high quality community

Figure 5. Simulation results on Enron email network.
doi:10.1371/journal.pone.0091431.g005

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 10 April 2014 | Volume 9 | Issue 4 | e91431

 We first evaluate the modularity values computed

by QCA, MIEN, OSLOM, and Blondel methods. As shown in

structure with high modularity and similarity; however, only our

method significantly reduces the processing time and computa-

tional requirement.

arXiv e-print citation network. The arXiv e-print citation

network [14] has become an essential mean of assessing research

results in various areas including physics and computer sciences.

This network contained more than 225K articles from January

1996 to May 2003. In our experiments, citation links of the first

two years 1996 and 1997 were used to form the basic community

structure of our QCA method. In order to simulate the network

evolution, a total of 30 time dependent snapshots are created on a

two-month regular basis from January 1998 to January 2003.

Results.

algorithm at each network snapshot to Blondel as well as to MIEN

and OSLOM methods. It reveals from Figure 6a that the

modularities returned by QCA are very close to those obtained

by the static method with much more stabler and are far higher

than those obtained by OSLOM and MIEN. In particular, the

modularity values produced by QCA algorithm cover from 94%

up to 100% that of Blondel method and from 6% to 10% higher

than MIEN and at least 1.56better than OSLOM. In this citation

networks, the numbers of communities detected by OSLOM take

off with more than 1200 whereas those found by QCA, MIEN and

Blondel methods are relatively small (Figure 6b). Our QCA

method discovers more communities than both Blondel and

MIEN as the network evolves and this can be explained based on

the resolution limit of modularity [19]: the static method might

disregard some small communities and tend to combine them in

order to maximize the overall network modularity.

A second observation on the running time shows that QCA

outperforms the static method as well as its competitor MIEN:

QCA takes at most 2 seconds to complete updating the network

structure while Blondel method requires more than triple that

amount of time, MIEN and OSLOM asks for more than 5 times

(Figure 6c). In addition, higher NMI scores of QCA than MIEN’s

and especially OSLOM’s scores (Figure 6d) implies network

communities identified by our approach are not only of high

similarity to the ground truth but also more precise than that

detected by MIEN, while the computational cost and the running

time are significantly reduced.

Facebook social network. This dataset contains friendship

information among New Orleans regional network on Facebook

Figure 6. Simulation results on arXiv e-print citation network.
doi:10.1371/journal.pone.0091431.g006

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 11 April 2014 | Volume 9 | Issue 4 | e91431

We compare modularity results obtained by QCA

[15], spanning from September 2006 to January 2009 with more

than 60K nodes (users) connected by more than 1.5 million

friendship links. In our experiments, nodes and links from

September 2006 to December 2006 are used to form the basic

community structure of the network, and each network snapshot is

recored after every month during January 2007 to January 2009

for a total of 25 network snapshots.

Results.

algorithm achieves competitive modularities in comparison with

the static method, and again far better than those obtained by

MIEN and OSLOM method, especially in comparison with

OSLOM whose perform was nice on synthesized networks. In the

general trend, the line representing QCA results closely approx-

imates that of the static method with much more stability.

Moreover, the two final modularity values at the end of the

experiment are relatively the same, which means that our adaptive

method performs competitively with the static method running on

the whole network.

Figure 7c describes the running time of the three methods on

the Facebook data set. As one can see from this figure, QCA takes

at least 3 seconds and at most 4.5 seconds to successfully compute

and update every network snapshot whereas the static method,

again, requires more than triple processing time. MIEN and

OSLOM methods really suffer on this large scale network when

requiring more than 106and 116 that amounts of QCA running

times. In conclusion, high NMI and modularity scores together

with decent executing times on all test cases confirm the

effectiveness of our adaptive method, especially when applied to

real world social networks where a centralized algorithm, or other

dynamic algorithms, may not be able to detect a good network

community structure in a timely manner.

However, there is a limitation of QCA algorithm we observe on

this large network and want to point out here: As the the duration

of network evolution lasts longer over time (i.e., the number of

network snapshots increases), our method tends to divide the

network into smaller communities to maximize the local modu-

larity, thus results in an increasing number of communities and a

decreasing of NMI scores. Figure 7b and 7d describes this

observation. For instance, at snapshot 12 (a year after December

2006), the NMI score is approximately 1/2 and continues

decaying after this time point. It implies a refreshment of network

community structure is required at this time, after a long enough

Figure 7. Simulation results on Facebook social network.
doi:10.1371/journal.pone.0091431.g007

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 12 April 2014 | Volume 9 | Issue 4 | e91431

 The evaluation depicted in Figure 7a reveals that QCA

duration. This is reasonable since activities on an online social

network tend to come and go rapidly and local adaptive pro-

cedures are not enough to reflect the whole network topology over

a long period of time.

A social-aware message forwarding strategy in MANETs
In this section, we present a practical application where the

detection of network community structures plays an important role

in routing strategies in MANETs. A MANET is a dynamic

wireless network with or without the underlying infrastructure, in

which each node can move freely in any direction and organize

itself in an arbitrary manner. Due to nodes mobility and unstable

links nature of a MANET, designing an efficient routing scheme

has become one of the most important and challenging problems

on MANETs.

Recent researches have shown that MANETs exhibit the

properties of social networks [20–22] and social-aware algorithms

for network routing are of great potential. This is due to the fact

that people have a natural tendency to form groups or com-

munities in communication networks, where individuals inside

each community communicate with each other more frequent

than with people outside. This social property is nicely reflected to

the underlying MANETs by the existence of groups of nodes

where each group is densely connected inside than outside. This

resembles the concept of community structure in Mobile Ad hoc

Networks.

Multiple routing strategies [21,23] based on the discovery of

network community structures have provided significant enhance-

ment over traditional methods. However, the community detec-

tion methods utilized in those strategies are not applicable for

dynamic MANETs since they have to recompute the network

structure whenever changes to the network topology are intro-

duced, which results in significant computational costs and processing

time. Therefore, employing an adaptive community structure

detection algorithm as a core will provide a speedup as well as

robust to routing strategies in MANETs.

We evaluate five routing strategies (1) WAIT: the source node

waits until it meets the destination node (2) MCP: A node keeps

forwarding the messages until they reach the maximum number of

hops (3) LABEL: A node forwards or sends the messages to all

members in the destination community [20] (4) QCA: A Label

version utilizing QCA as the dynamic community detection

method and lastly, (5) MIEN: A social-aware routing strategy on

MANETs [16].

Even though WAIT and MCP algorithms are very simple and

straightforward to understand, they provide us helpful information

about the lower and upper bounds on the message delivery ratio,

time redundancy as well as message redundancy. The LABEL

forwarding strategy works as follow: it first finds the community

structure of the underlying MANET, assigns each community with

the same label and then exclusively forwards messages to

destinations, or to next-hop nodes having the same labels as the

destinations. MIEN forwarding method utilizes MIEN algorithm

as a subroutine. QCA routing strategy, instead of using a static

community detection method, employs QCA algorithm for

adaptively updating the network community structure and then

uses the newly updated structure to inform the routing strategy for

forwarding messages.

We choose Reality Mining data set [24] provided by the MIT

Media Lab to test our proposed algorithm. The Reality Mining

data set contains communication, proximity, location, and activity

information from 100 students at MIT over the course of the

2004–2005 academic year. In particular, the data set includes call

logs, Bluetooth devices in proximity, cell tower IDs, application

usage, and phone status (such as charging and idle) of the

participated students of over 350,000 hours (~440 years). In this

paper, we take into account the Bluetooth information to form the

underlying MANET and evaluate the performance of the above

five routing strategies.

For each routing method, we evaluate the followings (1)

Delivery ratio: The portion of successfully delivered over the total

number of messages (2) Average delivery time: Average time for

a message to be delivered. (3) Average number of duplicated

messages for each sent message. In particular, a total of 1000

messages are created and uniformly distributed during the

experiment duration and each message can not exist longer than

a threshold time-to-live. The experimental results are shown in

Figure 8a, 8b and 8c.

Results. Figure 8a describes the delivery ratio as a function of

time-to-live. As revealed by this figure, QCA achieves much better

delivery ratio than MIEN as well as LABEL and far better than

WAIT. This means that QCA routing strategy successfully delivers

many more messages from the source nodes to the destinations

than the others. Moreover, as time-to-live increases, the delivery

ratio of QCA tends to approximate the ratio of MCP, the strategy

with highest delivery ratio.

Comparison on delivery time shows that QCA requires less time

and gets messages delivered successfully faster than LABEL, as

depicted in Figure 8c. It even requires less delivery time in com-

parison with the social-aware method MIEN. This can be explained

as the static community structures in LABEL can possibly get

message forwarded to a wrong community when the destinations

eventually change their communities during the experiment. Both

QCA and MIEN, on the other hand, captures and updates the

community structures on-the-fly as changes occur, thus achieves

better results.

The numbers of duplicate messages presented in Figure 8b

indicate that both QCA and MIEN achieves the best results. The

numbers of duplicated messages of MCP method are substantially

higher than those of the others and are not plotted. In fact, the

results of QCA and MIEN are relatively close and tend to

approximate each other as time-to-live increases.

In conclusion, QCA is the best social-aware routing algorithm

among five routing strategies since its delivery ratio, delivery time,

and redundancy outperform those of the other methods and are

only below MCP while the number of duplicate messages is much

lower. QCA also shows a significant improvement over the naive

LABEL method which uses a static community detection method

and thus, confirms the applicability of our adaptive algorithm to

routing strategies in MANETs.

Worm containment in social networks
In this section, we present a practical application of QCA

method in Worm Containment in OSNs. Since their introduction,

popular social network sites such as Facebook, Twitter, Bebo, and

MySpace have attracted millions of users worldwide, many of

whom have integrated those sites into their everyday lives. On the

bright side, OSNs are ideal places for people to keep in touch with

friends and colleagues, to share their common interests, or just

simply to socialize online. However, on the other side, social net-

works are also fertile grounds for the rapid propagation of mali-

cious softwares (such as viruses or worms) and false information.

Facebook, one of the most famous social sites, experienced a

wide propagation of a trojan worm named ‘‘Koobface’’ in late

2008. Koobface made its way not only through Facebook but also

Bebo, MySpace and Friendster social networks [25][26]. Once a

user’s machine is infected, this worm scans through the current

user’s profile and sends out fake messages or wall posts to everyone

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 13 April 2014 | Volume 9 | Issue 4 | e91431

in the user’s friend list with titles or comments to appeal to people’s

curiosity. If one of the user’s friends, attracted by the comments

without a shadow of doubt, clicks on the link and installs the fake

‘‘flash player’’, his computer will be infected and Koobface’s life

will then cycle on this newly infected machine.

Worm containment problem becomes more and more pressing

in OSNs as this kind of networks evolves and changes rapidly over

time. The dynamics of social networks thus gives worms more

chances to spread out faster and wider as they can flexibly switch

between existing and new users in order to propagate. Therefore,

containing worm propagation on social networks is extremely

challenging in the sense that a good solution at the previous time

step might not be sufficient or effective at the next time step.

Although one can recompute a new solution at each time the

network changes, doing so would result in heavy computational

costs and be time consuming as well as allowing worms spreading

out wider during the recomputing process. A better solution

should quickly and adaptively update the current containing

strategy based on changes in network topology, and thus can avoid

the hassle of recomputation.

There are many proposed methods for worm containment on

computer networks by either using a multi-resolution approach

[27], or using a simplification of the Threshold Random Walk

scan detector [28], or using fast and efficient worm signature

generation [29]. There are also several methods proposed for

cellular and mobile networks [30][31]. However, these approaches

fail to take into account the community structure as well as the

dynamics of social networks, and thus might not be appropriate for

our problem. A recent work [3] proposed a social-based patching

scheme for worm containment on cellular networks. However, this

method encounters the following limitations on a real social

network (1) its clustered partitions do not necessarily reflect the

natural network communities, (2) it requires the number of clusters

k (which is generally unknown for social networks) must be

specified beforehand, and (3) it exposes weaknesses when dealing

with the network’s dynamics.

To overcome these limitations, our approach first utilizes QCA

to identify the network community structure, and adaptively keeps

this structure updated as the network evolves. Once network

communities are detected, our patch distribution procedure will

select the most influential users from different communities in

order to send patches. These users, as soon as they receive patches,

will apply them to first disinfect the worm and then redistribute

them to all friends in their communities. These actions will contain

Figure 8. Experimental results on the Reality Mining data set.
doi:10.1371/journal.pone.0091431.g008

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 14 April 2014 | Volume 9 | Issue 4 | e91431

worm propagation to only some communities and prevent it from

spreading out to a larger population. To this end, a quick and

precise community detection method will definitely help the

network administrator to select a more sufficient set of critical

users to send patches, thus lowering down the number of sent

patches as well as overhead information over the social network.

We next describe our patch distribution. This procedure takes

into account the identified network communities and selects a set

of influential users from each community in order to distribute

patches. Influential users of a community are ones having the most

relationships or connections to other communities. In an adversary

point of view, these influential users are potentially vulnerable

since they not only interact actively within their communities but

also with people outside, and thus, they can easily fool (or be

fooled by) people both inside and outside of their communities. On

the other point of view, these users are also the best candidates for

the network defender to distribute patches since they can easily

announce and forward patches to other members and non-

members. In Table 6 Algorithm 6, we present a quick algorithm

for selecting the set of most influential users in each community.

This algorithm starts by picking the user whose number of social

connections to outside communities is the highest, and temporarily

disregards this user from the considering community. This process

repeats until no connections crossing among communities exists.

This set of influential users is the candidate for the network

defender for distributing patches.

Experimental results
We present the results of our QCA method on the Facebook

network dataset [15] and compare the results with the social based

method (Zhu’s method [3]) via a weighted version of our

algorithms. One notable feature of this dataset is time information

(stamped at every moment the information was recorded)

representing the dynamics of the network, which nicely suits our

method.

Set up. The worm propagation model in our experiments

mimics the behavior of the famous ‘‘Koobface’’ worm, i.e., worms

are able to explore their victim’s friend list and then send out fake

messages containing malicious links for propagating. The proba-

bilities of activating the worm is proportional to communication

frequency between the victim and his friends. The time taken for

worms to spread out from one user to another is inversely

proportional to the communication frequency between this user

and his particular friend. Finally, when a worm has successfully

infected a user’s computer, it will start propagating as soon as this

computer connects to a specific social network (Facebook in this

case). When the fraction of infected users reaches a threshold a,

the detection system raises an alarm and patches will automatically

be sent to most influential users selected by Table 6 Algorithm 6.

Once a user receives the patch, he will first apply it to disinfect the

worm and then will have an option to forward it to all friends in his

community. Each experiment is seeded with 0.02% of users to be

initially infected by worms.

We compare infection rates of the social-based method of Zhu’s

and ours. The infection rate is computed as the fraction of the

remaining infected users over all infected ones. The number of

clusters k in Zhu’s method is set to be 150 in static and 200 in

dynamic networks, and for each value of k, the alarming threshold

a is set to be 2%, 10%, and 20%, respectively. Each experiment is

repeated 1000 times for consistency.

Result. Figure 9, 10 show the results of our experiments for

three different values of k and a. We first observe that the longer

we wait (the higher the alarm threshold is), the higher number of

users we need to send patches to in order to achieve the desired

infection rate. For example, with k= 150 clusters and an expected

infection rate of 0.3, we need to send patches to less than 10%

number of users when a= 2%, to more than 15% number of users

when a= 10% and to nearly 90% of total influential users when

a= 20%.

A second observation reveals that our approach achieves better

infection rates than the social-based method of Zhu’s in a static

version of the social network as depicted in Figure 9. In particular,

the infection rates obtained in our method are from 5% to 10%

better than those of Zhu’s. When the network evolves as new users

join in and new social relationships are introduced, we resize the

number of cluster k and recompute the infection rates of the social

based method with the number of cluster k= 200, and the alarm

threshold a= 2% and 10% respectively. As depicted in Figures 10,

our method, with the power of quickly and adaptively updating

the network community structure, achieves better infection rates

than Zhu’s method while the computational costs and running

time is significantly reduced. As discussed, detecting and updating

the network community is the crucial part of a social based

patching scheme: a good and up-to-date network community

structure will provide the network defender a tighter set of

vulnerable users, and thus, will help to achieve lower infection

rates. Our adaptive algorithm, instead of recomputing the network

structure every time changes are introduced, quickly and

adaptively updates the network communities on-the-fly. Thanks

to this frequently updated community structure, our patch

distribution procedure is able to select a better set of influential

users, and thus helps in reducing the number of infected users once

patches are sent.

Finally, a comparison on running time on the two approaches

shows that time taken for Zhu’s method is much more than our

community updating procedure, and hence, may prevent this

method to complete in a timely manner. In particular, our

approach takes only 3 seconds for obtaining the basic community

structure and at most 30 seconds to complete all the tasks whereas

[3] requires more than 5 minutes to divide the communication

network into modules and selecting the vertex separators. In that

delay, worm propagation may spread out to a larger population,

and thus, the solution may not be effective. These experimental

results confirm the efficiency of our approach on social networks.

Table 6. Algorithm 6. Patch Distribution Algorithm.

Input: G= (V, E) and its community structure C~ C1,C2,::,Cp

� �

Output: The set of influential users P.

1: P/0=;

2: for Ci[C do

3: while (Au unvisited in Ci satisfying maxu[Ci
eCi
out uð Þ

� �

w0) do

4: Let v/argmaxu[Ci
eCi
out uð Þ

� �

;

5: P/P|v;

6: Mark v as visited in Ci;

7: end while

8: end for

9: Send patches to users in P;

doi:10.1371/journal.pone.0091431.t006

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 15 April 2014 | Volume 9 | Issue 4 | e91431

Related work

Community detection on static networks has attracted a lot of

attentions and many efficient methods have been proposed for this

type of networks [32]. Detecting community structure on dynamic

networks, however, has so far been an untrodden area. In [33], the

authors defined time graphs that captured the link creation as a

point phenomena in time of a directed evolving graph, and studied

the evolution of the blogosphere in terms of changes such as in-

degree, out-degree, etc. Another work [34] studied the growth of

the a wide range of real-world evolving graphs and provided a new

kind of graph generator that produced networks with the

discovered patterns. In [35], the authors suggested a method for

observing the evolution of web communities by first revealing

network communities at each time point, and then quantifying

changes that occurred to network communities based on com-

munity changes such as emerging, growing and shrinking.

One of the most seminal work [2] proposed an innovative

method for detecting communities on dynamic networks the based

on k-clique percolation technique.. This approach can detect

overlapping nodes in different network communities; however, its

internal k-clique percolation technique may require high comput-

ing resources and thus, may be time consuming especially on large

OSNs. A work in [13] presented GraphScope, a parameter-free

method for detecting clusters on time-evolving graphs based on

mutual information and entropy functions. However, it requires a

recomputation of the number of sources and destinations each

time the graph segments change without utilizing its previously

computed information. Thus, it might not lend itself effectively to

the field of adaptive algorithms. [36] attempted to track the evolv-

ing of communities over time, using a few static network snapshots.

A recent work of [37] proposed a detection method based on

contradicting the network topology and the topology-based

propinquity - the probability of a pair of nodes involved in a

community. Another attempt which is closely related to our work

includes [38] in which the authors proposed FacetNet, a framework

to track community evolutions in a unified process. In this

framework, the community structure at a given time step is found

both by the observed the network data and the prior distribution

given by historic community structures. A limit of this framework

is that at each time step, the underlying algorithm should be

executed for multiple values of m-the number of communities,

which might prevent this framework from being effective on real

world social networks.

Figure 9. Infection rates on static network with k=150 clusters.
doi:10.1371/journal.pone.0091431.g009

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 16 April 2014 | Volume 9 | Issue 4 | e91431

The authors [39] present a framework for detecting dynamic

communities with a constant factor approximation. This property

is nice, however, this method also requires some predefined costs

to penalize people moving in or out of a community, which might

be generally unknown in dynamic social networks. A recent work

[16] proposes a social-aware routing strategy, named MIEN,

which also makes uses of a modularity-based procedure for quickly

updating the network structure. In particular, MIEN tries to

compose and decompose network modules in order to keep up

with the changes and uses fast modularity algorithm [5] to update

the network modules. However, this method may be time

consuming due to the high complexity of [5].

Conclusions

We presented QCA, an adaptive method for detecting and

tracing community structures in dynamic social networks. We

show that our adaptive method is not only effective in identifying

high quality network community structures, but also has the great

advantage of fast running time, which is suitable for large OSNs.

We prove some theoretical results which are the basic observations

of our approach. Finally, via practical applications in forwarding

and routing stategies in MANETs and worm containment on

social networks, we show that our QCA method promises a wide

range of real applications not only on mobile computing but also

on OSNs as it can be deployed into many community detection

modules.

Author Contributions

Conceived and designed the experiments: NN TD MT. Performed the

experiments: NN TD YS. Analyzed the data: NN TD MT. Contributed

reagents/materials/analysis tools: NN TD YS MT. Wrote the paper: NN

TD YS MT.

References

1. Girvan M, Newman MEJ (2002) Community structure in social and biological

networks. Proceedings of the National Academy of Sciences 99: 7821–7826.

2. Palla G, Pollner P, Barabási AL, Vicsek T (2009) Social group dynamics in

networks. In: Gross T, Sayama H, editors, Adaptive Networks, Springer:

Springer Berlin Heidelberg, Understanding Complex Systems. pp. 11–38.
doi:10.1007/978-3-642-01284-6-2.

3. Zhu Z, Cao G, Zhu S, Ranjan S, Nucci A (2009) A social network based patching
scheme for worm containment in cellular networks. In: INFOCOM 2009, IEEE.
IEEE: IEEE, pp. 1476–1484. doi:10.1109/INFCOM.2009.5062064.

Figure 10. Infection rates on dynamic network with k=200 clusters.
doi:10.1371/journal.pone.0091431.g010

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 17 April 2014 | Volume 9 | Issue 4 | e91431

4. Lancichinetti A, Fortunato S (2009) Community detection algorithms: A
comparative analysis. Phys Rev E 80: 056117.

5. Newman MEJ (2004) Fast algorithm for detecting community structure in
networks. Phys Rev E 69: 066133.

6. Dourisboure Y, Geraci F, Pellegrini M (2007) Extraction and classification of
dense communities in the web. In: Proceedings of the 16th international
conference on World Wide Web. New York, NY, USA: ACM, WWW ’07, pp.
461–470. doi:10.1145/1242572.1242635.

7. Leskovec J, Lang KJ, Mahoney M (2010) Empirical comparison of algorithms
for network community detection. In: Proceedings of the 19th international
conference on World wide web. New York, NY, USA: ACM, WWW ’10, pp.
631–640. doi:10.1145/1772690.1772755.

8. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment 2008: P10008.

9. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very
large networks. Physical Review E 70: 066111.

10. Wakita K, Tsurumi T (2007) Finding community structure in mega-scale social
networks: [extended abstract]. In: Proceedings of the 16th international
conference on World Wide Web. New York, NY, USA: ACM, WWW ’07,
pp. 1275–1276. doi:10.1145/1242572.1242805. URL http://doi.acm.org/10.
1145/1242572.1242805.

11. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in
networks. Phys Rev E 69: 026113.

12. Ye Z, Hu S, Yu J (2008) Adaptive clustering algorithm for community detection
in complex networks. Phys Rev E 78: 046115.

13. Sun J, Faloutsos C, Papadimitriou S, Yu PS (2007) Graphscope: parameter-free
mining of large time-evolving graphs. In: Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining.
New York, NY, USA: ACM, KDD ’07, pp. 687–696. doi: 10.1145/
1281192.1281266. URL http://doi.acm.org/10.1145/1281192.1281266.

14. ArXivData (2003) KDD Cup 2003. Available: http://www.cs.cornell.edu/
projects/kddcup/datasets.html. Accessed 2014 Mar 23.

15. Viswanath B, Mislove A, Cha M, Gummadi KP (2009) On the evolution of user
interaction in facebook. In: Proceedings of the 2nd ACM workshop on Online
social networks. New York, NY, USA: ACM, WOSN ’09, pp. 37–42.
doi:10.1145/1592665.1592675. URL http://doi.acm.org/10.1145/1592665.
1592675.

16. Dinh T, Xuan Y, Thai M (2009) Towards social-aware routing in dynamic
communication networks. In: Performance Computing and Communications
Conference (IPCCC), 2009 IEEE 28th International. IEEE: IEEE, pp. 161–168.
doi:10.1109/PCCC.2009.5403845.

17. Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2008) Facetnet: a framework
for analyzing communities and their evolutions in dynamic networks. In:
Proceedings of the 17th international conference on World Wide Web. New
York, NY, USA: ACM, WWW ’08, pp. 685–694. doi: 10.1145/
1367497.1367590. URL http://doi.acm.org/10.1145/1367497.1367590.

18. Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011) Finding statistically
significant communities in networks. PLoS ONE 6: e18961.

19. Fortunato S, Barthlemy M (2007) Resolution limit in community detection.
Proceedings of the National Academy of Sciences 104: 36–41.

20. Hui P, Crowcroft J (2007) How small labels create big improvements. In:
Proceedings of the Fifth IEEE International Conference on Pervasive
Computing and Communications Workshops. Washington, DC, USA: IEEE
Computer Society, PERCOMW ’07, pp. 65–70. doi: 10.1109/PERCOMW.
2007.55. URL http://dx.doi.org/10.1109/PERCOMW.2007.55.

21. Daly EM, Haahr M (2007) Social network analysis for routing in disconnected
delay-tolerant manets. In: Proceedings of the 8th ACM international symposium
on Mobile ad hoc networking and computing. New York, NY, USA: ACM,
MobiHoc ’07, pp. 32–40. doi:10.1145/1288107.1288113. URL http://doi.acm.
org/10.1145/1288107.1288113.

22. Chaintreau A, Hui P, Crowcroft J, Diot C, Gass R, et al. (2007) Impact of
human mobility on opportunistic forwarding algorithms. Mobile Computing,
IEEE Transactions on 6: 606–620.

23. Hui P, Crowcroft J, Yoneki E (2008) Bubble rap: social-based forwarding in

delay tolerant networks. In: Proceedings of the 9th ACM international

symposium on Mobile ad hoc networking and computing. New York, NY,

USA: ACM, MobiHoc ’08, pp. 241–250. doi:10.1145/1374618.1374652. URL

http://doi.acm.org/10.1145/1374618.1374652.

24. Eagle N, Pentland A (2006) Reality mining: sensing complex social systems.

Personal Ubiquitous Comput 10: 255–268.

25. KoobfaceWorm (2008) Available: http://www.pcworld.com/article/155017/

facebook_virus_turns_your_computer_into_a_zombie.html. Accessed 2014 Mar

23.

26. KoobfaceWorm (2008) Available: http://news.cnet.com/koobface-virus-hits-

facebook/. Accessed 2014 Mar 23.

27. Sekar V, Xie Y, Reiter MK, Zhang H (2006) A multi-resolution approach

forworm detection and containment. In: Proceedings of the International

Conference on Dependable Systems and Networks. Washington, DC, USA:

IEEE Computer Society, DSN ’06, pp. 189–198. doi: 10.1109/DSN.2006.6.

URL http://dx.doi.org/10.1109/DSN.2006.6.

28. Weaver N, Staniford S, Paxson V (2004) Very fast containment of scanning

worms. In: Proceedings of the 13th conference on USENIX Security

Symposium - Volume 13. Berkeley, CA, USA: USENIX Association, SSYM’04,

, pp. 3–3. URL http://dl.acm.org/citation.cfm?id = 1251375.1251378.

29. Kim HA, Karp B (2004) Autograph: toward automated, distributed worm

signature detection. In: Proceedings of the 13th conference on USENIX Security

Symposium - Volume 13. Berkeley, CA, USA: USENIX Association, SSYM’04,

pp. 19–19. URL http://dl.acm.org/citation.cfm?id = 1251375.1251394.

30. Wang P, González MC, Hidalgo CA, Barabási AL (2009) Understanding the

spreading patterns of mobile phone viruses. Science 324: 1071–1076.

31. Bose A, Shin KG (2006) Proactive security for mobile messaging networks. In:

Proceedings of the 5th ACM workshop on Wireless security. New York, NY,

USA: ACM, WiSe ’06, pp. 95–104. doi:10.1145/1161289.1161307. URL

http://doi.acm.org/10.1145/1161289.1161307.

32. Fortunato S (2010) Community detection in graphs. Physics Reports 486: 75–

174.

33. Kumar R, Novak J, Raghavan P, Tomkins A (2003) On the bursty evolution of

blogspace. In: Proceedings of the 12th international conference on World Wide

Web. New York, NY, USA: ACM, WWW ’03, pp. 568–576. doi:10.1145/

775152.775233. URL http://doi.acm.org/10.1145/775152.775233.

34. Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws,

shrinking diameters and possible explanations. In: Proceedings of the eleventh

ACM SIGKDD international conference on Knowledge discovery in data

mining. New York, NY, USA: ACM, KDD ’05, pp. 177–187. doi:10.1145/

1081870.1081893. URL http://doi.acm.org/10.1145/1081870.1081893.

35. Toyoda M, Kitsuregawa M (2003) Extracting evolution of web communities

from a series of web archives. In: HYPERTEXT ’03: Proceedings of the

fourteenth ACM conference on Hypertext and hypermedia. New York, NY,

USA: ACM Press, pp. 28–37. doi:10.1145/900051.900059.

36. Hopcroft J, Khan O, Kulis B, Selman B (2004) Tracking evolving communities

in large linked networks. Proceedings of the National Academy of Sciences of the

United States of America 101: 5249–5253.

37. Zhang Y, Wang J, Wang Y, Zhou L (2009) Parallel community detection on

large networks with propinquity dynamics. In: Proceedings of the 15th ACM

SIGKDD international conference on Knowledge discovery and data mining.

New York, NY, USA: ACM, KDD ’09, pp. 997–1006. doi: 10.1145/

1557019.1557127. URL http://doi.acm.org/10.1145/1557019.1557127.

38. Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2009) Analyzing communities

and their evolutions in dynamic social networks. ACM Trans Knowl Discov

Data 3: 8:1–8:31.

39. Tantipathananandh C, Berger-Wolf T (2009) Constant-factor approximation

algorithms for identifying dynamic communities. In: Proceedings of the 15th

ACM SIGKDD international conference on Knowledge discovery and data

mining. New York, NY, USA: ACM, KDD ’09, pp. 827–836. doi:10.1145/

1557019.1557110. URL http://doi.acm.org/10.1145/1557019.1557110.

Dynamic Community Detection and Its Applications

PLOS ONE | www.plosone.org 18 April 2014 | Volume 9 | Issue 4 | e91431

http://doi.acm.org/10.1145/1242572.1242805
http://doi.acm.org/10.1145/1242572.1242805
http://doi.acm.org/10.1145/1281192.1281266
http://www.cs.cornell.edu/projects/kddcup/datasets.html
http://www.cs.cornell.edu/projects/kddcup/datasets.html
http://doi.acm.org/10.1145/1592665.1592675
http://doi.acm.org/10.1145/1592665.1592675
http://doi.acm.org/10.1145/1367497.1367590
http://dx.doi.org/10.1109/PERCOMW.2007.55
http://doi.acm.org/10.1145/1288107.1288113
http://doi.acm.org/10.1145/1288107.1288113
http://doi.acm.org/10.1145/1374618.1374652
http://www.pcworld.com/article/155017/facebook_virus_turns_your_computer_into_a_zombie.html
http://www.pcworld.com/article/155017/facebook_virus_turns_your_computer_into_a_zombie.html
http://news.cnet.com/koobface-virus-hits-facebook/
http://news.cnet.com/koobface-virus-hits-facebook/
http://dx.doi.org/10.1109/DSN.2006.6
http://dl.acm.org/citation.cfm?id=1251375.1251378
http://dl.acm.org/citation.cfm?id=1251375.1251394
http://doi.acm.org/10.1145/1161289.1161307
http://doi.acm.org/10.1145/775152.775233
http://doi.acm.org/10.1145/1081870.1081893
http://doi.acm.org/10.1145/1557019.1557127
http://doi.acm.org/10.1145/1557019.1557110

