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Abstract. Networks are typically studied via computational models, and often in-

vestigations are restricted to the static case. Here we extend the work in Banks, Karr,

Nguyen and Samuels (2008), which demonstrated a simple dynamical system framework

in which to study social network behavior, to include a discrete delay. This delay repre-

sents the time lag that is likely required for an agent to change his/her own characteristics

(e.g., opinions, viewpoints or behavior) after interacting with an agent possessing differ-

ent characteristics. Thus this modification adds significantly to the relevance of the model

in many potential applications. We have shown that the delays can be incorporated into

a stochastic differential equations (SDE) framework in an efficient and computationally

tractable way. Through numerical studies, we see novel outcomes when stochasticity,

delay, or both are considered, demonstrating the need to include these features should

they be present in the network application.

1. Introduction. The study of social networks and many other applications of net-

works have typically been via computational representations of static nodal structures

connected by edges defined by pairwise relationships. We refer the reader to [14, 25, 26]

for an overview of some current approaches and topics in quantitative studies of social

networks. The model developed in [8] provided an alternative simple framework which

allows for a dynamic network while generating some of the behavior observed by more

complex approaches. The model describes the time evolution of agent’s characteristics

(e.g., “sociability quotient” and “outlook on life”) based on their interactions with agents
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with whom they are connected. Computational results with this model reveal rich dy-

namics and also reveal the ease with which the model can be extended to enhance its

representation of a social network. The results of these efforts suggest that other dynam-

ical systems formulations may be profitably used to study network behavior, including

partial differential equations to study spatial effects or delay differential equations for ap-

plications in which time lags in communication-based influences on characteristic changes

may be important.

We focus here on time delays in stochastic models, which may significantly enhance

the relevance of the model to an actual social network. This is done by allowing for

a lag in the change in an agent’s characteristic(s) based on interactions with agents

of different characteristics. Particularly in the context of an individual’s viewpoint or

opinion on matters of religion, politics, or social issues (alcohol use, abortion, etc.),

it is reasonable to assume that these viewpoints are not affected instantaneously upon

encountering an individual with a differing viewpoint. While time delays have a direct

reasonable interpretation in the context of social networks, they are also significant in a

wide variety of other networks, such as information systems, food production networks,

biochemical and neural networks, etc. As evidenced by the literature on these types of

questions in the applications (for example, [12, 13, 20, 24]), there is a general interest in

the numerical solution of network models incorporating both stochastic effects and time

delays.

The question of whether delays (even if small) make a difference in modeling of phys-

ical systems has been of keen interest to mathematical investigators worldwide for some

time (see, for example, the references in [2], including extensive efforts in the Russian

literature cited therein). It has been known for many years in some applications (anti-

rolling stabilization systems in ships [6, 21, 22, 23], automatic steering of high-velocity

aircraft [7, 23], active control in unsteady aeronautics [1, 7], as well as respiratory models

with systemic transport delays [3]), that even small delays can be extremely important.

Essentially, addition of delays to an n-dimensional linear vector system of differential

equations (with corresponding n natural frequencies) results in an infinite-dimensional

system with an infinite number of natural frequencies [11, 18], so that serious questions

arise with respect to concomitant changes in stability, observability, identifiability and

controllability as well as qualitative and numerical properties. On the other hand, it is

also known [15] that some delays can be “harmless” with respect to properties of impor-

tance. Thus, if delays are naturally present (as in some social networks) in a problem,

the question arises as to whether one can safely ignore these in models when performing

computations, carrying out qualitative investigations, designing control regimes, etc. In

this paper we focus on qualitative changes that arise when including delays in stochastic

social network models such as those developed in [8]. In particular, we seek to deter-

mine, through computational studies, whether delays should be given consideration in

these types of models, or if they can be neglected when investigating clustering and other

model behaviors. Further, we seek to understand what (if any) magnitude of delay might

impact the observed system dynamics.

The model developed in [8] does not correspond to a continuous diffusion process,

and hence the usual Markov process methodologies cannot be employed directly on that
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model. For example, conversion of stochastic differential equations (SDEs) to an equiv-

alent Fokker-Planck (FP) system, a partial differential equation of the transition prob-

abilities for the corresponding Markov process of the SDEs, can only be done after a

modest but nontrivial change in the formulation of [8]. This is discussed in [10]. Numer-

ical implementation of nonlinear time delays into a system of SDEs of large dimension

could potentially be problematic. In the technical report [10], we modify the model of

[8], demonstrate that the modification does not alter in significant ways the qualitative

behavior of solutions, and consider the model in both SDE and FP formulations to de-

termine which to pursue as a convenient means to study network dynamics with delays.

Through this exploration it was evident that the Fokker-Planck formulation is not as

amenable as the system of SDEs to considering inclusion of delays for the underlying

social network model. Thus, we study here the extended version of the model derived

in [10], in which the coefficients have been modified so that the corresponding SDE does

describe a continuous Markov diffusion process. In this paper, we explore the effect of a

discrete time delay on the clustering behavior of the dynamic social network model. (We

remark that one could also readily include distributed delays using ideas such as those

in [5] along with those presented below.) We first study the isolated effect of introducing

the time delay into the deterministic version of the model obtained by suppressing noise

in the system. We expand upon the findings in [8] to include stochastic realizations

carried out for a wider range of parameter values in which distinct classes of behavior

occur. Finally, the effects of stochasticity and delay are included simultaneously, and the

significance of including both of these effects in these types of models is discussed.

2. Model. We discuss a model of a social network as a system of stochastic dif-

ferential equations (SDEs) slightly modified from a previously introduced version in [8]

so that the SDE model represents a classic diffusion process. The model describes the

dynamics of agent characteristics Ci(t) ∈ K ⊂ R
m, where m is the number of character-

istics and K is a (compact) constraint set of values of the characteristics of each agent i,

i ∈ N = {1, ..., N}. The characteristics of each agent i are affected by the characteristics

of other agents i′ to which they are connected. The strength of the connection from agent

i to agent i′ at time t is represented by the connectivity e(i, i′, t). These connectivities

are not necessarily symmetric, so it is possible that e(i, i′, t) �= e(i′, i, t). A connection

from agent i to agent i′ ‘exists’ at time t if and only if e(i, i′, t) > 0. When a connection

between two agents exists, the relationship between the two agents is assumed to be ho-

mophilic, and when a connection between two agents does not exist, the characteristics

of agent i′ do not affect those of agent i. The modified model dynamics are given by

dCi(t) =
βi∑

i′ �=i φi,i′(t)

∑

i′ �=i

φi,i′(t) [Ci′(t) − Ci(t)] dt + σdWC
i (t), (1)

de(i, i′, t) = f
(
||Ci(t) − Ci′(t)||2

)
dt + γdW e

i,i′(t), (2)

where βi > 0 is an agent-specific parameter determining the extent to which agent i’s

characteristics are affected by other agents. We define φi,i′(t) = 1
2 (e(i, i′, t)+|e(i, i′, t)|) so

that no agent i′ affects agent i if e(i, i′, t) ≤ 0. In this model, the characteristics of each

agent change according to a weighted average difference between their characteristics
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and those of other agents to which they are connected. The difference is weighted by

φi,i′(t) so that the characteristics of an agent i are more strongly influenced by those

of agents with whom agent i is more strongly connected. We set e(i, i, t) = 0 for all

i and t to avoid agents influencing their own characteristics, and it is assumed that
βi∑

i′ �=i φi,i′ (t)
= 0 if

∑
i′ �=i φi,i′(t) = 0 to maintain definition of the model if a single-agent

cluster is formed. In accordance with the work done in [8], we take f(ξ) = 2e−bξ − 1

where b > 0 is a constant and || · || denotes the usual Euclidean norm in R
m. Changes

in characteristics and connectivities are subject to uncertainty via the Wiener processes

σWC
i (·) and γW e

i,i′(t) with variances σ and γ, respectively.

The version of the model used here therefore represents a classic diffusion process

and has an equivalent Fokker-Planck representation, discussed in more detail in [10].

Although we did not choose to pursue further analysis of the Fokker-Planck system, we

continue studying this version of the model, as no qualitative differences were observed

in model dynamics between the version introduced in [8] and this version.

In an effort to add to the relevance of the model, we incorporate a discrete delay into

Equation (1). The dynamics of the characteristics are now given by

dCi(t) =
βi∑

i′ �=i φi,i′(t− τ )

∑

i′ �=i

φi,i′(t− τ )[Ci′(t− τ ) − Ci(t− τ )]dt + σdWC
i (t). (3)

This modification represents the time delay likely required for an agent to actually be in-

fluenced by another agent having different characteristics. That is, a change in an agent’s

characteristics occurs τ time units after interacting with agents of different characteris-

tics. One way to think of this would be to consider the characteristics as being opinions

or viewpoints, and it then is reasonable to represent a change in one’s opinion as not

occurring instantaneously after exposure to a different viewpoint. Connections between

agents are still determined by the characteristics at the current time t, and Equation (2)

is unchanged.

3. Numerical methods. We outline here the numerical methods used to compute

solutions to the model (2)–(3). First we discuss the typical fourth-order Runge-Kutta

scheme for stochastic systems in Section 3.1. This method is for the non-delayed version

of the model (τ = 0), and was also used in [8]. The implementation of a delay in a

(deterministic) system of nonlinear differential equations with the fourth-order Runge-

Kutta method is contained in Section 3.2. Then the computation of the SDE model with

delays is a matter of modifying the RK in Section 3.2 to incorporate stochasticity as in

Section 3.1.

3.1. Stochastic Runge-Kutta. We describe how to numerically implement the stochas-

tic differential equation model (1)–(2) using the stochastic analogue of the fourth-order

Runge-Kutta method. We use a constant step size h = Δtn = tn − tn−1 in the interval

[t0, T ] where t0 = 0 and the final time T is always reported for the solutions discussed in

Section 4.
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The connections between agents are approximated by

e(i, i′, tn) =e(i, i′, tn−1) + p0f(||Ci(tn−1) − Ci′(tn−1)||2)h (4)

+ (p1 + p2)f(||Ci(tn−1 +
1

2
h) − Ci′(tn−1 +

1

2
h)||2)h

+ p3f(||Ci(tn) − Ci′(tn)||2)h + γΔW e
i,i′(tn),

where f is from the right side of (2), p0 = p3 = 1
6 , p1 = p2 = 1

3 , and ΔW e
i,i′(tn) =

W e
i,i′(tn)−W e

i,i′(tn−1) are standard Wiener increments ([17], p. 489). These are generated

by sampling from a random variable with mean zero and variance h = Δtn. We assume

that the value of Ci(tn+ 1
2h) can be approximated linearly from Ci(tn−1) to Ci(tn) when

Δtn is small, and therefore Ci(tn−1 + 1
2h) may be approximated by Ci(tn−1)+Ci(tn)

2 .

Approximating Equation (1) is more involved since its right side depends on Ci(t) as

well as on the connections e(i, i′, t). If we let

gi(t, Ci(t)) =
βi∑

i′ �=i φi,i′(t)

∑

i′ �=i

φi,i′(t) [Ci′(t) − Ci(t)] ,

then Equation (1) is approximated by

Ci(tn) = Ci(tn−1) + p0Fi0h + p1Fi1h + p2Fi2h + p3Fi3h + σΔWC
i . (5)

Again, ΔWC
i (t) are standard Wiener increments. Necessary quantities to compute (5)

are

Fi0 = gi(tn−1, Ci(tn−1))

C
(1)
i (tn−1) = Ci(tn−1) +

1

2
Fi0h + σ

1

2
ΔWC

i

Fi1 = gi(tn−1 +
1

2
h,C

(1)
i (tn−1))

C
(2)
i (tn−1) = Ci(tn−1) +

1

2
Fi1h + σ

1

2
ΔWC

i

Fi2 = gi(tn−1 +
1

2
h,C

(2)
i (tn−1))

C
(3)
i (tn−1) = Ci(tn−1) + Fi2h + σΔWC

i

Fi3 = gi(tn−1 + h,C
(3)
i (tn−1)),

where the constants p0, p1, p2, p3 take on the same values as in (4). The constraint

Ci(tn) ∈ K is imposed by reassigning an appropriate value on the boundary of K to a

characteristic Ci(tn) if it is ever assigned a value outside the set K.

3.2. Runge-Kutta with nonlinear delay. We next outline a linear spline approxima-

tion to the system (2)–(3), which we consider first in the deterministic case (σ = γ = 0).

Banks and Kappel developed general spline approximation methods for systems of dif-

ferential equations in which all delay terms are linear in [9]. This work was extended in

[4] to address the possibility of nonlinear terms involving a delay.

Consider the system

ẋ(t) = F(x(t), xt, x(t− τ1), ..., x(t− τν)) + G(t) (6)
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for 0 ≤ t ≤ T , x0 = φ, x(0) = η where F is a nonlinear function, F = F(η, φ, y1, ..., yν),

which maps Z × R
nν → R

n. The state space Z here is Z = R
n × L2(−r, 0;Rn) where

0 < τ1 < · · · < τv = r. Here xt denotes the usual function xt = x(t+ θ), −r ≤ θ ≤ 0 and

φ ∈ H1(−r, 0) [9].

Let us define the function F : Rn × C(−r, 0;Rn) ⊂ Z → R
n as

F (z) = F (η, ψ) = F(η, ψ, ψ(−τ1), ..., ψ(−τν)),

where F is the function in (6).

The nonlinear operator A : D(A) ⊂ Z → Z, where D(A) is given by

D(A) = {(ψ(0), ψ)|ψ ∈ H1(−r, 0)},

is defined by

A(ψ(0), ψ) = (F (ψ(0), ψ), Dψ).

Let z(t;φ,G) = (x(t;φ,G), xt(φ,G)), where x is the solution of (6) for φ ∈ H1 and

G ∈ L2. Then, for initial data ζ = (φ(0), φ), z(φ,G) is the unique solution on [0, T ] of

z(t) = ζ +

∫ t

0

{Az(s) + (G(s), 0)}ds.

The approximation method implemented for our problem is based on the linear spline

subspaces ZN approximating the state space Z. The scalar linear splines eNj which are

used to form the basis functions have nodes at tj = −j τ
N j = 0, 1, ..., N , and are piecewise

linear functions defined on [−τ, 0] such that

eNj (ti) = δij =

{
1 if i = j

0 otherwise
.

The basis functions are β̂N = (βN (0), βN), where βN = (eN0 , eN1 , ..., eNN ) ⊗ In, and In is

the n× n identity matrix. If we let ZN
1 denote the corresponding linear spline subspace

of Z, it has dimension dimZN
1 = kn = n(N + 1). We seek approximate solutions zN that

are elements of ZN
1 with coordinate vector αN , or zN = β̂NαN =

∑N
j=0(e

N
j (0), eNj )aNj

where aNj ∈ R
n such that αN = col(aN0 , ..., aNN ).

Let PN = PN
g̃ be the orthogonal projection of Z onto ZN = ZN

1 so that PNz → z for

all z ∈ Z. The weighted inner product is defined by

〈(η1, φ1), (η2, φ2)〉g̃ = ηT1 η2 +

∫ 0

−τ

φ1(θ)
Tφ2(θ)g̃(θ)dθ.

Because we are considering only one discrete delay here, we have that g̃(θ) ≡ 1 and

m = 1 in [9] and [4]. Then we approximate the operator A by AN = PNAPN and the

approximating equations are defined by

zN (t) = PNζ +

∫ t

0

{AN (zN (s)) + PN (G(s), 0)}ds.

Because ZN
1 is finite-dimensional, this is equivalent to the ordinary differential equation

(ODE) system

żN (t) = AN (zN (t)) + PN (G(t), 0), zN (0) = PNζ. (7)
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The approximate initial condition PNζ = PN (φ(0), φ) is determined by the orthogonality

relationship

{PN (φ(0), φ) − (φ(0), φ)} ⊥ ZN ,

where the g̃ subscript has been suppressed because g̃(θ) ≡ 1. This is equivalent to writing

〈β̂NαN − (φ(0), φ), β̂N〉 = 0.

By the properties of inner products,

〈β̂N , β̂N 〉αN − 〈(φ(0), φ), β̂N〉 = 0.

We let QN = 〈β̂N , β̂N 〉 and hN (ζ) = 〈(φ(0), φ), β̂N〉. By applying the definition of the

inner product, we have the following expressions for QN and hN :

QN = βN (0)TβN (0) +

∫ 0

−τ

βN (θ)TβN (θ)dθ (8)

and

hN (φ(0), φ) = βN (0)Tφ(0) +

∫ 0

−τ

βN (θ)Tφ(θ)dθ, (9)

where (φ(0), φ) are initial data for the system (6), x(0) = φ(0) and x(θ) = φ(θ), for

θ ∈ [−τ, 0]. Note that the dimension of QN is dimQN = kn × kn. In the case of linear

spline approximations, QN is given by

QN =
τ

N

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N
τ + 1

3
1
6 0 · · · · · · 0

1
6

2
3

1
6 0 · · ·

...

0
. . .

. . .
. . .

. . .
...

... · · · 0 1
6

2
3

1
6

0 · · · · · · 0 1
6

1
3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊗ In. (10)

Then we can proceed by calculating the coordinate vector αN for the initial piece of the

solution by solving the system

QNαN = hN (φ(0), φ).

We can solve this via Gaussian elimination, but since the dimension of our problem is

large, so is the size of QN . Therefore, we use the fact that QN is a tri-banded matrix to

reduce the number of operations performed.

Then zN (0) = β̂NαN = β̂NwN
0 , which implies αN = wN

0 , and we have the ini-

tial condition for the ODE system (7). In solving this system, we need to compute

AN (zN (t)) at each time t due to the nonlinearity of AN . For each time t, the el-

ement zN (t) ∈ ZN can be written as zN (t) = β̂NαN (t) for some coordinate vector

αN (t). The operator A applied to zN (t) is A(zN (t)) = A(βN (0)αN (t), βNαN (t)) =

(F (βN (0)αN (t), βNαN (t)), DβNαN (t)). Then

AN = PNAPNz = PN (F (βN(0)αN (t), βNαN (t)), DβNαN (t)).
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Because AN (zN (t)) ∈ ZN , it also has a representation of the form AN (zN (t)) = β̂NγN (t).

Using the orthogonality relation as before, we have

{AN (β̂NαN (t))−β̂NγN (t)} ⊥ ZN

〈(β̂NγN (t)−(F (βN (0)αN (t), βNαN (t)), DβNαN (t))), β̂N〉 = 0

〈β̂N , β̂N 〉γN (t) =〈β̂N , (F (βN(0)αN (t), βNαN (t)), DβNαN (t))〉
QNγN (t) = hN (F (βN (0)αN (t), βNαN (t)), DβNαN (t)). (11)

The matrix QN is unchanged from before. The definition of the inner product is again

used to obtain hN , which is given by

hN (AzN (t)) =βN (0)TF (βN (0)αN(t), βNαN (t))

+

∫ 0

−τ

βN (θ)TDβN (θ)dθαN (t). (12)

In the above expression the integral
∫ 0

−τ
βN (θ)TDβN (θ)dθ does not depend on time and

therefore will only need to be computed once during time stepping. We thus have an

equation that one can solve for γN (t), and which can be used in the implementation of

an ODE scheme for the system (7).

Here we describe the Runge-Kutta method for one time step of the ODE system (7).

This scheme is given by

zN (t + Δt) = zN (t) +
1

6
Δt(k1 + 2k2 + 2k3 + k4). (13)

The quantities k1, k2, k3, k4 are

k1 = AN (zN (t)) = β̂NγN
1 (t),

k2 = AN (zN (t) +
1

2
Δtk1) = AN (β̂NαN (t) +

1

2
Δtk1) = β̂NγN

2 (t),

k3 = AN (zN (t) +
1

2
Δtk2) = AN (β̂NαN (t) +

1

2
Δtk2) = β̂NγN

3 (t),

k4 = AN (zN (t) + Δtk3) = AN (β̂NαN (t) + Δtk3) = β̂NγN
4 (t).

We solve equation (11) for γi(t) to use for ki with i = 1, ..., 4. For example, γN
1 is ob-

tained by solving QNγN
1 = h̄N by Gaussian elimination (again, using the tri-bandedness

of QN to reduce the computations), where h̄N is

h̄N = βN (0)TF (βN (0)αN (t), βNαN (t)) +

∫ 0

−τ

βN (θ)TDβN (θ)dθαN (t).

For k2, k3, k4, we solve QNγN
i = h̄N

i with h̄N
i given by

h̄N
i = βN (0)TF (βN (0)αN

i (t), βNαN
i (t)) +

∫ 0

−τ

βN (θ)TDβN (θ)dθαN
i (t).

Here we have used the notation β̂NαN
i (t) = β̂NαN (t) + 1

2Δtki−1 for i = 2, 3, and

β̂NαN
4 (t) = β̂NαN (t) + Δtk3.
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4. Computational results. We first discuss solutions of the deterministic version of

the social network model to address whether and to what extent delays have a significant

impact on model dynamics. The results of this investigation led us to explore some

stochastic scenarios which were not previously explored in [8]. Thus, we include the

results for the stochastic model without delay for comparison to the results when the

delay is positive. As a result, we are able to distinguish between effects on clustering

behavior that are due to the time delay, stochasticity, or a combination of these two

factors. We use here the same 10-agent, 2-characteristic example as in [8] (with, of

course, the stochastic model modified as in (1)).

While the slightly modified model (1)–(2) from that in [8] exhibit qualitatively similar

behavior, parameter values (b, σ, γ) for which given dynamics are observed differ. The

clustering outcomes as a function of the decay parameter b in the function f are:

• 1 cluster of all agents for b ∈ [0, 0.000155),

• 2 clusters: Agents 2 and 7, other agents for b ∈ [0.000155, 0.01390),

• 3 clusters: Agent 2, Agent 7, other agents for b ∈ [0.01390,∞).

This parameter determines how strongly differences affect changes in connectivities be-

tween agents. For the sake of comparison we briefly summarize notable aspects of the

solutions in this case. The value of this parameter is not important for any particular

scenario, as the other numerical values were chosen merely to illustrate the model dy-

namics. Rather, the parameter value of b is reported here as a means of tracking the

effects on clustering behavior with each further modification.

In the deterministic case without delay, the characteristic values appear to change

monotonically before clusters are formed, and only slight variations from this are observed

with the introduction of stochasticity. Even when stochasticity is included, clusters do

not break apart unless the noise dominates the outcome and network structure collapses

entirely. Furthermore, in the original results of [8] and in the reproduction of these

results, sufficiently small amounts of stochasticity do not affect the number of clusters

formed when compared to the deterministic case.

4.1. Delayed deterministic social network model. We considered the deterministic sys-

tem ((σ, γ) = (0, 0)) with varying parameters b and τ on longer time intervals T = 50 to

better quantify long-term behavior. The three-cluster scenarios (in which the agents do

not affect each other’s characteristics and therefore remain in the same original clusters

as in the initial conditions) appear to be robust in the presence of delays. Even large

delays do not seem to affect the solutions of the model in this parameter regime (not

shown).

In contrast, for parameter values that produce a one-cluster scenario (depicted in

Figure 1), the characteristic values of the agents are affected as seen in Figure 2. The

characteristics of Agents 2 and 7, which are initially different from those of the other

agents, oscillate depending on the size of the delay before joining the cluster of other

agents. That is, the trajectories oscillate less with smaller delays, and the amplitude of

the oscillations increases with increasing size of delay. All agents other than Agent 2 and

Agent 7 behave identically and so are represented in these depictions as Agent 1.

Although the top panels ((a) and (b)) of Figure 2 depict the characteristics of Agents

2 and 7 as being significantly different than those of the other agents at the peaks of
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Fig. 1. One-cluster (b = 0.00075) scenario without delay.

the oscillations, the connectivities shown in panels 2(c) and 2(d) are positive for all

agents. Thus, this scenario is interpreted as a one-cluster outcome. In general, when the

characteristics are oscillating around each other and do not diverge over a substantial

time interval, the connectivities between those agents are positive and they are in the

same cluster.

While the long-term behavior of the one- and three-cluster scenarios is observed re-

gardless of the size of delay, the two-cluster outcome is not observed with a sufficiently

large delay. In the absence of any delay (with or without stochasticity), two clusters

were formed for b ∈ [0.000155, 0.01390). Agents 2 and 7 join one cluster and all the other

agents form the other (Figure 3). With large delays (Figure 4(c)), the oscillations in

the characteristics of Agents 2 and 7 grow until they join the cluster of the other agents

(represented as Agent 1). For smaller delays (τ = 0.5 in Figure 4(a)), characteristics

oscillate, but the original two-cluster outcome results. As the delay is increased, the os-

cillations increase in magnitude and in the time interval during which they are observed.

It appears that the delay has a ‘destabilizing’ effect for the two-cluster scenario such that

the oscillations continue once a threshold value of τ is reached (Figure 4(b)). For delays

larger than a threshold value, the oscillations grow such that the two-cluster scenario

grows into a single cluster of all agents (Figure 4(c)). Delays have this effect for smaller

values of b in the interval [0.000155, 0.01390). Connectivities are shown in the bottom

panels of Figure 4 for b = 0.002 to show the cluster formation and dissolution for the

characteristics in the corresponding panels along the top row.
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(a) Agent characteristics with delay τ = 1.5
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(b) Agent characteristics with delay τ = 2.5
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(c) Connections of agent 1 to other agents
with delay τ = 1.5
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(d) Connection of agent 1 to other agents
with delay τ = 2.5

Fig. 2. One-cluster (b = 0.00075) outcomes with the addition of
large delays (τ = 1.5, 2.5).

Similarly, as seen in Figure 5, the delay has a destabilizing effect for the other values of

the parameter b that produce a two-cluster scenario (larger values of b ∈ (0.002, 0.01390)).

For smaller values of delay such as τ = 0.5, oscillations appear for a short time interval

and again dampen so that the two-cluster scenario is preserved. If the delay is increased

slightly to τ = 0.75, it reaches what appears to be a threshold where the oscillations

are sustained (Figure 5(b)). Once the delay is increased further, the two-cluster scenario

forms, although oscillations grow drastically in magnitude. A three-cluster scenario is

briefly established (t ≈ 22 in Figure 5(c)), and the oscillations resume as Agents 2 and 7

form the second cluster again. For larger delays, the three-cluster outcome is sustained

eventually (see Figure 5(d)), and the second cluster does not re-form. The characteristics

of Agents 2 and 7 become less alike with each brief three-cluster configuration, and

eventually, they are sufficiently distinct to not influence each other again.
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Fig. 3. Two-cluster (b = 0.002) scenario without delay.

Of notable significance, we observed a novel clustering outcome different from those

previously observed, shown in Figure 6 with b = 0.0135 and τ = 1.3. A new two-

cluster scenario is formed when characteristics oscillate greatly until one of either Agent

2 or 7 joins the cluster of all other agents (represented by Agent 1). In simulations,

the differences between the frequencies with which Agent 2 or 7 was observed to join the

cluster of other agents was not noticeable. So this configuration is termed 2B throughout

the remainder of this paper.

From these results, one could not conclude that small delays, which may be more

realistic, do not matter in the deterministic social network model. Small delays were

shown to affect characteristic dynamics even though the long-term behavior was not

affected (particularly in the original two-cluster scenario). Incorporating stochasticity,

which represents another aspect of physical realism that one cannot reasonably ignore,

could exacerbate these oscillations in unknown ways.

4.2. Delayed stochastic social network model. We first note that extensive stochastic

realizations were run in [8] for only one value of b—one that produced a 1-cluster scenario.

Because the behavior of the model was significantly affected for other parameter values,

we ran many solutions (not all depicted here) without delay. We use these solutions as a

means to illustrate which changes in solution behavior were due to delay and which were

due to stochasticity in the delayed system.

We discuss results for the case without delay (τ = 0), ‘small’ delay (τ = 0.75),

and ‘large’ delay (τ = 1.3) specifically. The effects of stochasticity were observed at
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(a) Characteristics with small de-
lay τ = 0.5
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(b) Characteristics with medium
delay τ = 0.75
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(c) Characteristics with large de-
lay τ = 1.0
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(d) Connectivities to Agent 1 with

small delay τ = 0.5
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(e) Connectivities to Agent 1 with

medium delay τ = 0.75
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(f) Connectivities to Agent 1 with
large delay τ = 1.0

Fig. 4. Outcomes of simulations using b = 0.002 (which produces
a two-cluster scenario for τ = 0) with small (τ = 0.5), medium
(τ = 0.75), and large (τ = 1.0) delay.
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(a) Characteristics with small delay τ = 0.5
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(b) Characteristics with ‘threshold’ delay
τ = 0.75
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(c) Characteristics with ‘above threshold’

delay τ = 0.85
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(d) Characteristics with large delay τ = 1.0

Fig. 5. Outcomes of simulations using b = 0.0106 (which produces
a two-cluster scenario for τ = 0) for τ = 0.5, 0.75, 0.85, 1.0.

the following levels of stochasticity (σ, γ): (1, 0.5), (2, 1), (5, 6). At high levels of noise,

(σ, γ) = (5, 6), all agents joined one cluster with their characteristics oscillating. Since

this behavior was observed in all cases, these solutions are neither shown here nor dis-

cussed further.

The outcome of all agents forming one cluster is robust to the addition of both sto-

chastic noise and delay. Both of these effects result in the introduction of oscillations in

characteristics, and together the effects are additive. These solutions are not shown as

they do not differ qualitatively from the stochastic studies in [8]. That is, with increasing

noise and/or delay size, the magnitude of the oscillations also increases. However, the

agents remain in the same cluster (all connectivities remain positive) unless the noise

dominates the dynamics and the network structure is lost.
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Fig. 6. Original two-cluster (b = 0.0135) scenario with delay τ = 1.3
giving rise to a novel 2B scenario.

When b is increased to the lower portion of the original 2-cluster interval

[0.00155, 0.01390), stochasticity in the non-delayed case can result in all the agents join-

ing the same cluster in roughly half of the observed realizations, as shown in Table 1.

This was not reported as observed in the study [8] where it would have been termed a

“noise-enlarged” scenario. Recall that large delays in this parameter range (Figure 4)

also resulted in one cluster forming. Increasing noise results in small irregular charac-

teristic oscillations ((a) and (b) of Figure 7), while the addition of noise to the delayed

model ((c) and (d) of Figure 7) dampen the larger and more regular oscillations seen in

the deterministic case. As the delay and hence the oscillations increase, Agents 2 and

7 join the cluster of the other agents regardless of the level of uncertainty considered.

Stochasticity and delay are seen to have the same effect on the solution, transforming a

two-cluster scenario to a one-cluster scenario, and each modification induces oscillations

when considered separately. However, in a sense these aspects tend to cancel each other

out when taken together as the stochasticity destabilizes the oscillations induced by the

delay.

For the larger values of b in the original 2-cluster scenario range, the delays were seen

to destabilize the 2-cluster into a 3-cluster outcome (Figure 5). When stochasticity is

incorporated, a wide range of outcomes are observed. Most notably, one of either Agent

2 or 7 joins the cluster of other agents (represented by Agent 1 in the figures), and the

other agent (either 7 or 2) remains solitary. An example of this (labeled as scenario 2B)

is shown in Figures 8(b) and 8(e). From the computations carried out in this study, it
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(a) τ = 0, (σ, γ) = (1, 0.5)
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(b) τ = 0, (σ, γ) = (2, 1)
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(c) τ = 0.75, (σ, γ) = (1, 0.5)
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(d) τ = 0.75, (σ, γ) = (2, 1)

Fig. 7. Characteristics for typical two-cluster outcomes when b =
0.0026 for low (σ, γ) = (1, 0.5) and medium (σ, γ) = (2, 1) noise
(columns) and no (τ = 0) and small (τ = 0.75) delay (rows).

does not appear that one of Agents 2 or 7 joins the main cluster more frequently than the

other, so they are considered equivalent outcomes. This is a configuration not observed

in the non-delayed case and supports motivation to consider such aspects in network

applications as they might well be representative of actual observed scenarios.

Again, it appears that the addition of moderate levels of stochasticity restores the

solutions to more closely resemble their non-delayed deterministic trajectory. In this case,

the oscillations that lead to a 3-cluster scenario are exacerbated, rather than dampened,

by stochasticity, leading to the wide range of outcomes shown in Figure 8. Further, the

frequency with which the 3-cluster scenario is observed decreases with increasing noise

levels (Table 2). However, a considerable proportion of the outcomes are not observed in

delayed, deterministic, or stochastic versions of the model. Therefore, simulation results

of a network model neglecting to incorporate delayed and/or stochastic effects in a system

where they are likely present may be questionable.
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(a) 2 cluster characteristics,
(σ, γ) = (1, 0.5)
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(b) 2B cluster characteristics,
(σ, γ) = (1, 0.5)
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(c) 3 cluster characteristics,
(σ, γ) = (1, 0.5)
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(d) 2 cluster characteristics,
(σ, γ) = (2, 1)
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(e) 2B cluster characteristics,
(σ, γ) = (2, 1)
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(f) 3 cluster characteristics,
(σ, γ) = (2, 1)

Fig. 8. Characteristics for typical outcomes when b = 0.0106 and
delay τ = 1.3 for low (σ, γ) = (1, 0.5) and medium (σ, γ) = (2, 1)
noise. The frequencies with which each outcome was observed is
reported in Table 2.
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Table 1. Clustering outcomes for b = 0.0026 without delay (τ = 0),
and with small (τ = 0.75) and large (τ = 1.3) delay, and for varying

levels of stochasticity (σ, γ) = (0, 0), (σ, γ) = (1, 0.5), (σ, γ) = (2, 1).
Numbers given are for the fraction out of total number of simulations
of occurrences of the behavior observed.

τ (σ, γ) 1 cluster 2 cluster

0 (0, 0) 1

(1, 0.5) 0.01 0.99

(2,1) 0.47 0.53

0.75 (0,0) 1

(1,0.5) 1

(2,1) 0.23 0.77

1.3 (0,0) 1

(1,0.5) 1

(2,1) 1

Table 2. Clustering outcomes for b = 0.0106 with large delay (τ =
1.3), and with varying levels of stochasticity (σ, γ) = (0, 0), (σ, γ) =
(1, 0.5), (σ, γ) = (2, 1). Numbers given are for the fraction out of 100
simulations of occurrences of the behavior observed.

(σ, γ) 1 cluster 2 cluster 2B cluster 3 cluster

(0,0) 1

(1,0.5) 0.01 0.13 0.34 0.52

(2,1) 0.04 0.33 0.37 0.26

5. Concluding remarks. Because agent clustering is one of the more important

features of dynamic networks, it is of great value to understand the stability of clustering

behavior under perturbations such as noise (stochasticities) in the dynamics or delays

in characteristic responses to contacts or information. As reported here, by considering

either delays or stochastic effects, one can obtain profoundly different outcomes with

respect to agent clustering in the network models proposed in this paper. Even when

the long-term outcome is unchanged with the addition of small delays, there are changes

in short-term dynamics of the solution that are exacerbated by the addition of a small

amount of noise. These findings suggest that it is important to consider both delays and

stochasticity if they may be relevant to the network application.

Through the extensive computations performed in this study, we have identified richer

behavior than reported in [8] when uncertainty is incorporated into the model even in

the absence of a delay. Cluster switching (e.g., a 2-cluster scenario ending up as a 1-

cluster scenario) was observed with the addition of stochasticity that was not seen in

[8], which would have been called “noise-enlarged” in that effort. However, uncertainty

incorporated in the network model via a system of stochastic differential equations rep-

resents only one way to improve upon the physical, social, or biological fidelity of the
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mathematical representation, and novel behavior is observed when the model is further

extended to include delays.

When the delay is considered in the deterministic version of the model, an outcome

that was commonly observed in the non-delayed case is not observed at all for sufficiently

large delays. Even smaller delays result in clusters that can be broken by the addition

of a small amount of stochasticity. Further, including stochasticity along with delays

produces results in cluster forming (the 2B scenarios) that are not observed otherwise.

These studies support the notion that neither delays nor stochasticity can be neglected

in models when present in a social network application if a reasonably realistic repre-

sentation of the social network is desired. Networks incorporating both stochasticity

and delay are of interest in a wide range of applications, and an accessible framework

to study such systems is of considerable interest to many. Here we have demonstrated

that a dynamical system as opposed to computer-based nodal networks is an amenable

framework in which to study these effects in the context of a network.
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