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Abstract 

Strong motion obtained in instrumental short-span 
bridges show the importance of the abutments in the dynamic 
response of the whole structure. Many models ha ve heen used in 
order to take into account the influence of pier foundations 
although no reliable ones have been used to analyse the 
abutment performance. In this work three-dimensional Boundary 
Element models in frecuency domain have been proposed and 
dimensionless dynamic stiffness of standard bridge ahutmcnts 
have been obtained. 

1 Introduction 

The study of the dynamic response of bridges, specially 
to seismic actions, has reached a great interest because the 
amount of bridge failures which have happened in recent 
earthquakes: Loma Prieta (1989), Northridge (1994), Kohe 
(1995). 

Among many other aspects soil structure interaction is a 
very important aspect to be taken into account in the dynamic 
modelling of those structures. Many studies have asses 
numerically the soil-structure phenomena: Ma-Chi Chen and J. 
Penzien 0979) [2], D.R. Somaini (1984) [14], J.P. Wolf (1985) 
[22], Spyrakos (1990) [15], [16] and E. Maragakis (1989) [8]. 
In the same sense, studies based on the response of instrumented 
structures to seismic actions require to take into account large 
concentrated damping factors to include those effect11 using 
system identification techniques: C.B. Crouse, B. Hushmad and 
G.R. Martín (1987) [3], J.C. Wilson (1986) [19], S.D. Wemer, 
J.L. Beck and M.B. Levine [18]. 

These studies pointed out the importance of soil­
structure interaction effects both in pier foundations and 
abutments. As techniques similar to those used in other kind 
structures may be employed in pier foundations, we are going to 
focus only in the af?utments effects which largely depend on 
deck-abutment connection and their tipology: 

• In decks simply supported on the abutments these effects 
are small because the elastomeric bearings act as seismic 
isolators.· However the deck might contact the abutment if 
seismic buffers are installed; they may act also when the 
displacements are greater than a prefied value or because 
the expansion joint between the deck and the ahutment i11 
not dimensioned to absorved the induced dynamic 
displacements. 
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• In short span bridges and undercrossing structures in 
urban areas, the portal effect may be used in order to 
reduce the stresses in the abutments, taking the horizontal 
loads through the bridge deck from one abutment to the 
other one. In those cases, the knowledge of the stiffnes 
properties of the soil-abutment system is required. 

• The use of integral abutments, in which the deck is 
monolithic with the abutments, causes a saving in both 
installation and maintenance of the expansion joinK 
Displacements due to thermal and theoretical deformations 
are released through the flexibility of the soil-abutment 
system usually founded on piles. 

• In long span bridges with high piers subjected to strong 
horizontal accelerations due to live loads, like in railway 
bridges, or to seismic actions, the deck can be fixed to one 
of the abutments in order to reduce the stresses on the 
piers. 

The studies carried out by J.C. Wilson and B.S. Tan 
[20], [21], include a frrst attempt to make a simplified 
representation of the approaching embankments and present 
numerical values of the damping and stiffness that would be 
necessary to understand the values registered in an actual 
instrumented structure. 

This study will show the evaluation of the dynamic 
stiffnesses in two and three dimensional abutments and their 
application to the dynamic behavior of bridges. It will summarize 
our attempt to apply well known techniques to solve a new 
problem: E. Alarcón et al. [1], A.M. Cutillas et al. [9], [10], 
[11], [12], [13]. 

Fundamental Soil-structure Interaction equations will he 
formulated and Boundary Element Method will be applied to 
obtain, for both cases, the stiffnesses as a function of 
dimensionless variables in the frequency domain. 

2 Dynamic soil-structure interaction 

2.1 Formulation 

The interaction analysis assumes the existence of a 3-
dimensional domain n E R3 which will be divided into a 
bounded sub-domain, Q 5 the structure, and an unhounded 
subdomain, half-space, Qg the soil, Fig. 1, where 



For both the soil an the structure an elastic or linear 
viscoelastic behavior will be assumed. 

For convenience, in soil subdomain the situation prior to 
the structure construction will be refered as free field and thc 
excavation subdomain will be that part occupied hy the 
structure. 
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Figure 1: Soil and bridge structure subdomain 

The numerical treatment mak:ing use of Finite Element or 
Boundary Methods requires the discretization of these domains. 
The node notation will be as usual [22]. 

Subscripts have the following meanings: 

s: nodes belonging only to the structure 
b: soil-structure interface nodes 
g: soil domain with excavation 
f: soil domain without excavation 
e: excavated soil domain 

Fig. 1 shows the subdomains in the case of a bridge 
structure. 

The equations of motion in the discretized domain Q can 
be formulated in the frecuency domain: 

[ -ro2 M+ iroC +K ]u(ro) = P(ro) 

S(ro)u(ro) = P(ro) (2) 
where: 

S(ro) = -ro2 M+ iroC +K= Kest (K*+ iroC*) (3) 

is the dynamic stiffness matrix, or impedance matrix. 
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2.2. S obstructores method. Equations of motion 

The most widely used technique in linear interaction prohlems in 
the so called Substructure method. Due to the different 
characteristics of the soil and structure domains, it is useful to 
obtain the dynamic stiffness for both of them independently and, 
later on, to perform a coupled analysis. 

This approach allows the use of different discretizations 
and different analytical and numerical techniques in each 
subdomain. 

According to eq.2, and the dynamic equilihrium 
equations in the structure and soil domain and the compatibi1ity 
equations at the interface, the complete soil-stn·:;ture equations 
are: 

(4) 

Where 

(5) 

is the total displacements and s~b is the dynamic stiffness matrix 

of the structure for the nodes in contact with the soil, ug is the 

ground motion without the structure and s~b is the dynamic 

stiffness matrix of the soil. 
Those equations point out the three steps in which every 

soil-structure interaction problem may be studied: 
• Step 1: Soil motion calculation at the foundation leve!, or 

at the soil-structure interface u8• Such motion can be 
obtained using the known surface motion, by means of a 
deconvolution process or based on the scattered motion 
calculation from the known motion far away from the 
surface. 

• Step 2: Dynamic stiffness analysis of the soil S~, that is of 

the free soil surface plus the indentations produced by the 
foundation excavations. 

• Step 3: Analysis of the structure once the dynamic stiffness 
matrix obtained in step 2 has been added and suhmitted to 
the motion obtained in step l. 

These equations may be simplified when a rigid 
foundations, is assumed. The degrees of freedom at the interface 
nodes are reduced to six times the number of supports, if 
multiple support excitation is considered or to only six degrees 
of freedom if the same motion is considered in all the supports. 

3 Boundary Elements Method 

The Boundary Element Method, B.E.M. is one the most 
powerful techniques to analyze dynamical problem.s in 
unbounded continuum media like those involved in soil-structure 
interaction phenomena. 

The method applies discretizing techniques to the 
integral formulation of Elastodynamic Problems obtained from 
the Dynamic Reciproca/ Theorem and the Fundamental 
Solutions, [4], [7]. 

3.1. Dynamic Reciproca) Theorem 



Classical Betti' s Reciproca! Theorem of elastostatics was 
obtained for elastodynamic by D. Graffi in 1946-1947, and 
further extended to unbounded domains by Wheeler and 
Stemberg in 1968. 

If two different Elastodynamic States are considered: 

(6) 

where U¡, t¡ and b¡ are the displacements, tractions and body 
forces vectors respecti vely. 

Let Q be a regular region with boundary r = an. The 
Reciproca! Theorem in the frecuency domainis: 

where the variables represent their arnplitude in the steady-state 
situation. 
3.2. Integral equations 

The reciproca! theorem will be applied taking the actual 
elastodynamic as EA and being EB that corresponding to a unit 
concentrated impulse load following direction i: 

(X) 

where O is the Dirac's delta distribution 
For the EB state, zero initial conditions are prescribed. 

The corresponding displacements and tractions may be written 
as: 

where the expresions for Uii and Tii are known. 
The following integral equations are obtained: 

C(s)u¡ (s;ro) = fru9 (x.s;ro)tj (x;ro)dr­

- fr T9 (x,s;ro)uj (x;ro)dr + 

(9) 

+ p J.a U !i (x, s; ro) b j ( x; ro) dQ (1 O) 

where: 

¡ IifsEn 

C(S) = i if S E r with smooth on s 
O if S E Qc 

nc is the complement of n, the domain considered. 

3.3. Integral equations discretization 

(11) 

The Boundary Elements Method applies the robust 
domain discretization and variable interpolation techniques from 
Finite Elements Method to the solution of integral equations 1 O. 

In frecuency domain equations, only the discretization of 
the geometrical variables is required. 

The boundary, in 3-D domains, will be discretized inta 
surface elements. The domain will be discretized inta salid 
elements whcih actually are integration cells. 

The discretization of the integral equations leads ta a 
linear system of equations: 

Hu· Gt=F (12) 
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Where u and t are the displacements and traction vectors 
at the boundary, respectively. 

If the body forces are not considered, the matrix 
equation will be reduced to: 

Hu=Gt (13) 

to salve every mixed boundary value problem. 

4 Dynamic stiffness analysis 

The dynamic-stiffness matrix evaluation af the sail s;b i.c; 

the second step in every soil-structure analysis. It is necessary ta 
salve the mixed boundary value problem in the subdomain Og 
where the displacements are known in part or total soil-structure 
interface, (d0u) and in the rest of the boundary (aQt) tractions 
are null. 

If a flexible contact between soil and structure is 
considered it will be necessary to salve such boundary value 
problems in as many nades as degrees of freedom exist at the 
interface. In a rigid contact case, the displacements and the 
resultant of stresses may be referred to a characteristic point. 
The number of boundary value problems ta be solved are equal 
to the total number of foundations times the number of degrees 
of freedom considered. 

Recent strong motion records obtained in instrumented 
short span bridges show the importance of the abutments in the 
dynamic response of the whole structure. 

Sorne models have been proposed in arder to evaluate 
the dynamic influence of the abutments. Surprisingly they are 
very different to those used in the analysis of surface 
foundations. 

J.C. Wilson and B.S. Tan (1990) [20], [21] show an 
interesting study about the embankment-abutment influence in 
the seismic response of Meloland Road Overpass. In a first part 
of the study a 2D fmite element model is propased to abtain the 
vertical and horizontal static stiffness of the whole embankment­
abutment and its natural frecuency. 

With the experimental data and employing system 
identification techniques, an important reduction of 
embankment-abutment natural frecuency was detected and high 
damping ratios between 25 and 45% were identified. These 
concentrated damping radios represent modal damping ratios 
from 3 to 12% for certain modes in the whole structure. 

Applicatian of Boundary Element Method to this 
particular interaction problem will justify numerically the 
results obtained experimentally [13]. 

4.1. Calibration models 

In arder ta test the validity of B.E.M. the problems 
proposed by J.H. Wood (1973) [23] and H. Tajimi (1973) [17] 
were selected as benchmarks. 

They are related to wall retaining structures both in 
bounded and unbounded damains; the second one is specially 
suited to be solved by B.E.M. techniques. 

Those benchmarks allow the stablisment of discretization 
criteria for the solution of the new problems. 

4.1.1. Wood's model 

The dynamic analytical solutions were always abtained 
based on the free vibration modes of the madel shown in 
Fig.2.a-b. 



The upper horizontal boundary is a free one while the 
lower is fi«id. The vertical boundaries represent smooth rigid 
walls. A linear elastic behaviour of the soil is assumed. 

Two forced solutions were analyzed: horizontal 
harmonic forcing on rigid boundaries and rotating harmonic 
forcing of a wall. 

Horizontal hannonic forcing: 

a) 
b) 

¡[' ' : :1 
e) 

figme 2: Wood's model 

A horizontal harmonic displacement is imposed on the 
rigid horizontal boundary and on the vertical smooth rigid walls 
Fig.l.a. This horizontal displacement derive from a harmonic 
aceleration of the base. A constant aceleration in frecuency 
domain implies a frecuency dependent displacementc;; in this 
domain: 

üb (t) = aeirol (14) 

(15) 

where a. is the constant amplitude of the aceleration and A( ro) i~ 
the frecuency dependent displacement amplitude. 

a. 
A( ro)= --2 

(l) 

(16) 

(17) 

Dissipation effects were taken into account in W ood 's 
analysis by addition of viscous damping terms. These terms 
include non linear behaviour within the soil structure and the 
radiation of energy from the system owing to the fact that in 
general the boundaries are not perfectly rigid. 

To duplicate the results a constant boundary element 
mesh was built. Special care must be taken with the corners to 
obtain accurate results Fig.l.c. 

Dissipation effects are naturally taken into account in the 
viscoelastic formulation with an hysteretic damping coefficient. 

Complex amplitude ratios of resultant forces and 
moment of the horizontal stresses behind the rigid wall against 

dimensionless frecuency n = ~ are shown in Fig.3 ro in the 
ros 

angular frecuency of the imposed displacement; Cs . 
ros= n- IS 

2H 
the natural angular frecuency of the lowest pure shear mode of 

an infinite stratum, and c5 = ~ is the shear waves 

propagation velocity. 
Resultant forces and moments are normalized to the 

static ones. 
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Figure 4: Rocking harmonic forcing: Stress distribution 

Rocking harmonic forcing 

In this case a rigid rotational deformation of the wall 
around its base is considered Fig.2.b. 

Stress distribution behind the rigid wall both statical and 
dynamical case is shown in Fig.4 where it is seen that B.E.M. 
results agree with Wood's ones. 

u,•o 
Taa •O 

.!... r,. '•r•o 

TAJIMI'S PR08LEM 

a) 

Figure 5: Tajimi's model 

4.1.2. Tajimi's Model 

lE M MODEL. 

b) 

Tajimi obtained a solution for the harmonically forced 
wall problem in a quarter space using two-dimensional elastic 
wave propagation theory Fig.5.a. In the static case (excitation 
frequency equals to zero) his results agree with those ohtained 
by W.D.L. Finn (1963) [6]. 

The comparison with the B.E.M. model is shown in 
Fig.5.b. 

Horizontal translation of the wall 

The numerical results ot total pressure distrihution is 
expressed in the form of dimensionless functions S1 , Sz. Fig.6.a. 



and the dimensionless frecuency rol-! , v 5 = c5 = {Q for a 
Vs VP 

velocity ratio of shear to longitudinal waves of ~ = 1 13 which 
vP 

correspond toa Poisson's ratio v = 0.4375. 
The resultant force acting behind the wall can he 

determined from: 

The good agreement between analytical (Tajimi's) and 
numerical results (B.E.M.) can be seen in Fig.6.a. 

Rocking of the wall 

The total pressure distribution in this case can he 
expresed as: 

from: 
The resultant moment about the bottom is determined 
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Fignre 6: Tajimi·s model. Stress distribution and resultant 

with the )ame pararr ~ters used in the horizontal translation of 
the wall. 

The results are shown in Fig.6.b. 
Sorne considerations must be done about the B.E.M. 

mesh: 

• Special care must be taken with corners. Small elementli of 
the same size must be employed around each one or 
special integral rules have to be implemented. 

• There is a singularity in the stress field at the bottom of the 
wall so a careful discretization must be used. 

• As two of the boundaries are unbounded, element mesh 
must be truncated in a sensible way to guaranteee the 
accuracy. 

- In the static case (ro= 0), good results have been obtained 
for L/H = 20 and 50 constant elements. 
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- In the dynamic case (ro -:t: 0), good results have been 
obtained with an adaptive mesh dependi}Jg on the 
frecuency with L = As /4 where As is the wave length for 
shear waves and the size of the element less than As /6. 

4.2. Dynamic stifness of bridge abutments 

Although the application fiel of two dimensional models 
is quite large, most of bridge abutments ha ve a three dimensional 
behaviour. 

The abutment used in this study has a vertical front wall 
and two lateral walls perpendicular to the first one (Fig.7). 

The main assumptions are: 

• Linear viscoleastic behaviour of the soil whose main 
parameters are: density p, shear modulus G, Poisson 's 
ratio v and damping ratio ~-

• Rigid behaviour of the walls 

Sorne special assumptions have been done about the 
abutment-embankment geometry in order to reduce the variables 
involved: 

• The approach embankment, behind the wall, is considered 
horizontal and unlimited. Next to the wall the grade of the 
embankment is small because it is usually located in a 
vertical parabolic alinegment close to its vertex. The small 

Figure 7:· Typical three dimensional abutment 

grading produce embankment lengths from twenty to 
thirty times the wall height which can be considered 
unlimited for this purposes. 

• The influence of the lateral slopes of the embankment has 
not been considered. A granular type material is usually 
employed to build the approach embankments so sorne 
planes and transition eones are needed to make them 
stable. As these parts of the embankments are not really 
well compacted, their capacity to resist an stress increment 
is very small. Ji is hoped that to neglect the slopes 
influence may not affect to the stiff component although it 
could underestimate the damping component evaluation. 



• As a frrst approach to the problem the foundation of the 
walls have not been considered in order to isolate the wa1ls 
influence. The foundation have a big influence in the 
vertical component of the dynamic stiffness. 

Under those assumptions the boundary value prohlem to 
be solved is shown in Fig.8. The geometry is a rectangular prism 
on the halfspace which represent the approach emhankments 
with the following boundary conditions: 

• The horizontal planes, z = O y z = H, are the free 
boundaries of the half space and the emhankment 
respectively. The tractions in those planes are null. 

• The vertical plane x = O, is the plane contact between the 
embankment and the front wall of the abutmcnt. The 
displacements are known in order to evaluate the stifness 
of the system. 

• The vertical planes y = B/2 y = -B/2 have both a contact 
with the lateral walls of the abutment, O S x < C. where 
the displacements are known and a free boundary x 2 C. 

T=O 

Figure S: Boundary value problem 

The structure of the dynamic stiffness matrix of the 
standard abutment, S&o (ro), may be expresed referred to the 

coordinate system (O;XYZ) in the following way: 

xz. 

O Sy O Sy,xx O Sy,zz 

S~ O Sz O Sz,yy O 

Syy,x O Syy,z O Syy O 

O Szz,y O Szz,xx O Szz 

(22) 

There are null terms because of the plane of symmetry 

Direct stifnesses thet is, the main diagonal terrn will be 
specially studied, because the coupled stiffnesses have a less 
dominant role. 
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The stiffness terms may be expressed as usual: 

S(ro) = K(ro) = Kst [k(ro)+ia0 c(ro)] (23) 

with ao == roH 1 Cs 

The variables involved in the discretization of the 
geometry like the free discretized surface and the characteristic 
size of the elements have been studied in [10]. The last one of 
these two variables is most important for the frecuency range 
studied. The different boundary element meshes used to 
compare the results are shown in Fig.9. 

For the dimensionless ratios B/H = 2 and C/H = 1 the 
static stifnesses may be expressed as: 

Kx =6.01 GH 
2-v 

K =4.90 GH 
Y 2-v 

K =6.08 GH 
z 2-v 

K = 5.69 GH
3 

xx 2-v 

K = 5.10 GH
3 

YY 2-v 

GH3 

Kzz =9.27--
2-v 

(24) 

The Poisson's ratio dependence of the dimensionless 
dynamic stiffness in the forrn (23), is shown in Figs.IO, 11 and 
12, which are the longitudinal and transverse displacement~ and 
the rotation in a vertical plane. 

The displacements stiffness components kx , ky and kz 
have a similar v dependence. For a dirnensionless frecuency ao 
less than 2 (ao < 2), there is not any Poisson's ratio dependence. 
For bigger values this dependence could be very important, 
specially for kx and kz components and great v values (v > 0.4) 

The rotation stiffness cornponents kxx , kyy and kzz and all 
the damping components e, have a very homogeneus v 
dependent behaviour for the range of frecuencies studied. This 
dependence may be considered 

n-1 

n-3 

n-2 

Figure 9: Three dimensional model. Boundary element 
mesh es 
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Figure 10: Abutment on the half-space. Dynamic stiffnesses /\'.1'· 

¡; dependence 

This variation is similar to those obtained by Veletsos for 

superficial circular footing [5]. . . 
It is worth mentioning the decreasmg values m the 

stiffness components, even reaching negative values. Negati~e 
values show that inertial affects are larger than stiffness ones for 
such frecuencies. 

As the real part of the dynamic stiffness is: 

2 K(m) = R[S(m)] =K- m M (25) 

for sorne m values the term ai M may be greater than K and the 
dynamic stiffness will be negative. . . 

In a different way, damping components have mcreasmg 
values with frecuency for the range studied. 

5 Conclusions 

The main conclusions of this work may be summarized 

as follows: 
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Fig1tn' 11: Abutment on the half-space. Dynamic stiffnesses l\·,1 · 

'' dependence 

• High damping ratios have been detected in the dynamic 
response of instrumented structures subjected to strong 
seismic motion or subjected to forced motions in tield 
experiments. These values are obtained for special modes 
of response both in pier foundations and abutments. 
These modes of response may be produced by the contact 
between deck and abutment. This contact will be caused 
accidentally or by design requirements. 

• Boundary Element Method (B.E.M.) is the most powerful 
technique in the analysis of dynamical prohlems in 
unbounded domains. 

• Two dimensional calibration models have been employed 
to verify B.E.M. techniques agreement in earth retaining 
structures analysis. 

• A three dimensional bridge abutment with frontal and 
lateral walls has al so been anal yzed. 

The size of the elements employed in the discretization is 
the main parameter to be taken into account in a 3D mesh. 

• Parametric studies analysing the influence of Poisson' s 
ratio and the depth of a rigid base, both in the static and 
dynamic case, have been undergone. 
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