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ABSTRACT

This thesis deals with two important topics in soil-structure interaction: seismic earth

pressures against rigid walls and the seismic response of pile foundations. These two dis

parate problems are linked by a common method of solution which is an approximation

to the response of the half-space, either linear or non-linear.

The approximate formulation permits analytical solutions against rigid walls when

the backfill is uniform and elastic. The solution agrees very closely with an existing ex

act solution. For elastic non-homogeneous backfills and for non-linear soil response the

approximate formulation is expressed using the finite element method.

An efficient computer program SPAW has been developed to determine dynamic

thrusts and moments against rigid walls for arbitrary non-homogeneous soil layers. Re

sults of analyses show that the peak dynamic thrusts are larger for a uniform soil profile

than when the shear modulus of the soil varies linearly or parabolically with depth. The

program SPAW also possesses the ability of modelling the effect of soil non-linearity on

dynamic thrusts. Studies showed that an increase of peak dynamic thrust may be ex

pected due to soil non-linearity, compared with results from a linear elastic analysis.

A quasi-3D finite element method of analysis has been proposed to determine dy

namic response of pile foundations subjected to horizontal loading. A computer program

PlUMP has been developed for the analyses of elastic response of pile foundations in

cluding the determination of pile impedances as a function of frequency. The analysis
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is conducted in the frequency domain. The program can analyze single piles and pile

groups in arbitrary non-homogeneous soil layers.

Another quasi-3D finite element computer program PILE3D has been developed for

the analysis of non-linear response of pile foundations in the time domain. The program

is suitable of dynamic analyses of single piles and pile groups. The soil non-linearity

during shaking is modelled using a modified equivalent linear method. Yielding of the

soil is taken into account and there is a no-tension option controffing the analysis.

The proposed quasi-3D model has been validated using the elastic solutions from

Kaynia and Kausel (1982), Novak and Noganii (1977) and Novak (1974), Fan et al.

(1991), data from full scale vibration tests of a single pile and a 6-pile group, and data

from centrifuge tests of a single pile and a 2x2 pile group under strong shaking from

simulated earthquake. Excellent results have been obtained using the proposed method.

Time-dependent variations of dynamic impedances of pile foundations during shaking

have been evaluated for the model pile foundations used in the centrifuge tests. The

analyses quantify the reduction in the stiffnesses of the pile foundations with the increased

level of shaking. The translational stiffness decreases the most during strong shaking;

the rotational stiffness k60 decreases the least. However, the damping of pile foundations

increases with the level of shaking.
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Chapter 1

Introduction

This thesis deals with two important topics in soil-structure interaction: seismic earth

pressures against rigid walls and the seismic response of pile foundations. These two

disparate problems are linked by a common method of solution based on an approxima

tion to the response of the half-space, either linear or non-linear. In the case of the pile

foundations, the piles are modelled as linear beam element inclusions in the half space.

The rigid wall solution has important applications: seismic earth pressures against

deep basement walls, buried containment structures and the wingwalls of dams. The

seismic analysis of pile foundations remains a challenging problem both in engineering

practice and in research. The action of pile foundations is a key element in evaluat

ing properly the response of pile-supported buildings, bridges and offshore platforms to

earthquake loading. Characterization of the stiffness and damping of pile foundations is

a complex major task for large bridges with multiple points of seismic input. The method

developed in this thesis for solving these two major soil-structure interaction problems is

capable of simulating important features of seismic interaction.

The methodology used for solving the rigid-wall problem is essentially a 2-D plane

strain application of the quasi-3D theory developed for dealing with more general 3-D

soil-structure systems subjected to horizontal shaking. The basic idea of the proposed

quasi-3D theory is that the dynamic motions excited in a 3-D half-space by shear waves

1



Chapter 1. Introduction 2

propagating vertically is governed primarily by compression waves propagating in the

principal shaking direction and shear waves propagating in the two other directions.

Other types of waves in the 3-D half-space are ignored in the analysis because they are

assumed to be less significant. This assumption will be validated later using elastic so

lution based on a full 3-D formulation.

In the seismic analysis and design of rigid-wall systems, the basic challenge is to eval

uate the magnitude and distribution of dynamic soil pressures against the walls induced

by ground shaking. In addition to the evaluation of dynamic soil pressures against rigid

walls with elastic homogeneous soil backfills, there are two important issues relative to

rigid walls. The first issue is the accurate evaluation of dynamic soil pressures against

rigid walls with arbitrary non-homogeneous backfills. The second issue is the appropriate

modelling of soil non-linearity under relatively strong shaking. Therefore, a portion of

this thesis is devoted to developing a cost-effective method for dealing with arbitrary

non-homogeneous soil proffle and soil non-linearity.

In the first part of this thesis, the 2-D plane strain formulation of the quasi-3D theory

is used to obtain solutions of dynamic soil pressures against rigid walls with uniform

backfills. Then the theory is implemented into an effective finite element program. The

finite element method of analysis is used to explore the effect of soil non-homogeneity on

dynamic pressures on rigid walls. Effect of soil non-linearity under strong shaking is also

investigated.

The second part of this thesis is devoted to dynamic response of pile foundations

subjected to horizontal shaking. Pile foundations are widely used in civil engineering
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works. Pile-group foundations are used to support important structures such as high-

rise buildings, bridges, and large power transmission towers. When these pile-supported

structures are located in a seismic active zone, concerns arise on how piles, either individ

ually or in groups, respond to earthquake loading. Many studies have been conducted on

the dynamic response of pile foundations, most of which are restricted to elastic response.

This thesis describes the development of a cost-effective and reliable numerical proce

dure which can be used to study dynamic response of pile foundations when foundation

soils are non-linear and nonhomogeneous. The quasi-3D theory is adopted to the dynamic

analyses of pile foundations. A number of solutions for elastic homogeneous response have

been developed in order to validate the proposed quasi-3D method by comparing the re

sults with the published elastic solutions based on full-3D formulation.

OUTLINE OF THE THESIS

Chapter 2 gives a review of existing methods for determining dynamic soil pressures

on rigid walls and presents objectives of the present research study.

Chapter 3 gives a simplified method of analysis for rigid wall-soil systems subjected to

horizontal dynamic loads assuming linear elastic response of the soil. Analytical solutions

of dynamic soil pressures against rigid walls with homogeneous soil backfills are derived

first. Dynamic thrusts against rigid walls are determined using both sinusoidal motions

and earthquake motions as input. The results from the present analysis are validated by

comparison with the published results developed from full 2-D elastic response analysis

by Wood (1973). Studies are made to examine the accuracy of the response spectrum

method for determining peak dynamic thrust against rigid walls.



Chapter 1. Introduction 4

Chapter 4 extends the method of analysis to deal with rigid walls with an arbitrary

nonhomogeneous soil profile. Analyses are performed to study the pattern of dynamic

thrusts against rigid walls for nonhomogeneous soil profiles. Finally the effect of soil

non-linearity on dynamic response of rigid walls is explored by using the equivalent lin

ear approach (Seed and Idriss, 1967).

Chapter 5 gives a review for current methods of dynamic response analysis of pile

foundations and outlines the objectives of this thesis for the analysis of pile foundations.

Chapter 6 presents a quasi-3D finite element method for dynamic response analysis

of pile foundations assuming elastic response of soil and piles. The proposed model is

verified first against elastic solutions of single piles by Kaynia and Kausel (1982). Then

the proposed model is calibrated using data from a full-scale vibration test on a single pile.

Chapter 7 applies the proposed quasi-3D theory to the dynamic analysis of elastic

response of pile groups. The proposed model for pile groups is verified first against elastic

solutions by Kaynia and Kausel (1982) and then against results of a field vibration test

on a 6-pile group by Crouse and Cheang (1987).

Chapter 8 applies the proposed quasi-3D theory to the dynamic analysis of pile foun

dations under earthquake loading taking the non-linear response of the soil into account.

The non-linear finite element analysis is conducted in the time domain. Procedures for

modeffing non-linear soil response are also described in this chapter.
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Chapter 9 describes the validation of the proposed model for non-linear dynamic re

sponse of pile foundations using data from centrifuge tests of a single pile and a 2x2

pile group. The variations of dynamic impedances of pile foundations with time during

shaking are also evaluated and demonstrated for the model pile foundations.

Chapter 10 summarizes the developments described in earlier chapters and presents

the conclusions arising from the various studies.



Part I

Dynamic Thrusts on Rigid Walls
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Chapter 2

Dynamic analyses of rigid walls

2.1 Literature review

For seismic design of a rigid wall it is important to know the magnitude and distribution

of seismic pressure on the wall induced by earthquake motion. Probably the earliest

researches dealing with seismic induced earth pressure on retaining structures were those

of Mononobe (1929) and Okabe (1926). The Mononobe-Okabe method is the modifi

cation of Coulomb’s classic earth pressure theory which takes into account the inertia

forces caused by earthquake accelerations. Seed and Whitman (1970) made a detailed

evaluation of the Mononobe-Okabe method. One of the basic requirements of applying

the Mononobe - Okabe method is that the wall has to move sufficiently to create a limit

equilibrium state in the backfill. This condition is not satisfied in most rigid wall cases.

Several researchers have used elastic wave theory to derive seismic backfill pressure

against a rigid wall. Matuo and Ohara (1960) obtained an approximate elastic solu

tion for the dynamic soil pressure on a rigid wall using a two-dimensional analytical

model. They simplified the problem by assuming zero vertical displacement in the soil

mass. This simplification leads to infinitely large wall pressure when Poisson’s ratio of

the soil is equal to 0.5 as in a fully saturated undrained backfill. Scott (1973) used a one

dimensional elastic shear beam connected to the wall by Winkler springs to model the

problem. The advantage of this model is that close-form solutions can easily be obtained.

7



Chapter 2. Dynamic analyses of rigid walls 8

The disadvantage is that his solution requires a representative value of the Winkler spring

constant. Scott used Wood’s (1973) solutions to define the characteristics of the Win

kler spring constant. However, the Winkler spring constant was determined only for the

first-mode motion. For a wall with relatively long backfill (L*/H >4 ), the accuracy of

Scott’s first-mode solution deteriorates rapidly with the increase of L*/H ratio.

Wood (1973) made a comprehensive study on the behaviour of the rigid soil-retaining

structures subjected to earthquake motions. His work is considered to be one of the more

important contributions to understanding of this problem.

Wood’s solution of rigid-wall problem. In Wood’s solution, the soil is assumed

to be an isotropic homogeneous elastic material. The wall-soil system was assumed to

satisfy the condition of plane strain. The analytical solutions were obtained assuming

a smooth contact between the wall and the backfill; that is, the vertical boundaries are

assumed to be free from shear stresses. Figure 2.1 shows the rigid-wall soil system used

in Wood’s study and the associated boundary conditions.

The modal frequencies Wnm for the wall-soil system shown in Figure 2.1 are not ex

plicitly expressed in Wood’s solution. For the homogeneous backfill, the modal frequency

Wnm is governed by

2 =r2
—

(2.1)



Chapter 2. Dynamic analyses of rigid walls 9

RIGID WALL PROBLEM

Figure 2.1: Wall-soil system used in Wood’s study (after Wood, 1973)

and

32_r2’flfl (2.2)

where V, V3 are the compression wave velocity and shear wave velocity of soil, r =

and parameters c, /3 have particular values for each mode. They must satisfy the follow

ing equation

( 2+;
+

(r2
}sinhaH. sinh/3H —

{4r2+
‘
2 }coshaH.cosh/3H+4(r2+/32)=O (2.3)

The roots of the frequency equations were numerically evaluated using Newton’s

method on a digital computer. An iterative process was used to compute the roots

indicated by sign changes in the frequency equations.

Homogenous elastic soil
(Plane strain)
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It can be seen that the frequency solution is too complicated to apply in practice.

Although graphic solutions of modal frequency were given by Wood, these solutions are

limited to particular values of Poisson’s ratio. Furthermore modal frequencies are not

available when the soil backfill is non-homogeneous, which is normally the case encoun

tered in reality.

The complex-amplitudes of steady-state wall force for a one-g-amplitude harmonic

base forcing were presented in Wood’s study as

F’(w) = Fnm
(2.4)1

(1)+2inm
Wflm

where Fnm is the static-one-g modal force per unit length. Mathematical expression

of Fnm is not available in Wood’s solution, but graphic results of Fnm were presented.

The one-g static force per unit length of wall was obtained by applying a static hori

zontal acceleration of one-g throughout the soil layer. The static force acting on the wall

due to 1-g static horizontal loading, F8, is expressed as

7H2
2135{2B sinhrH + C(2rH + k’ + 1)e

+D(—2rH + k’ + 1)e’” — (C + D)(k’ + 1) —k2rH} (2.5)

Where constants C,, D, B are parameters associated with the flth mode and prop

erties of soil. Their detailed formulations can be found in Wood (1973).

For a L*/H ratio of 5.0, the force F8r can be approximated satisfactorily using about

20 terms in Eq.2.5. A smaller number of terms are required for L*/H less than 5.0 and
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a larger number for L*/H greater than 5.0.

Wood’s solution is quite complicated even under very idealistic conditions of a ho

mogeneous soil layer under harmonic loading. Therefore, in engineering practice Wood’s

solution is applied approximately. The dynamic thrust is approximately taken as -yH2A

(Whitman, 1991) for a horizontal acceleration Ag, which is the static force for a wall-soil

system with L*/H=10 and 11 = 0.4. The use of this expression must be justified in many

cases especially at resonance when the fundamental frequency of the wall-soil system is

very close to the predominant frequency of the excitation motion. At resonant condition

the dynamic thrust are likely to be much greater than the static force.

For earthquake type of loading, Wood (1973) states “In view of the uncertainties

inherent in the estimation of earthquake-induced pressures on walls, computation of the

response time-history is probably not warranted and approximate evaluation may often

be satisfactory”. Wood proposed that the response spectrum method is applied to esti

mate the peak dynamic thrust on the wall for earthquake loading.

Although Wood’s solution for dynamic thrust on rigid walls is mathematically correct

for harmonic loading, uncertainties and difficulties arise when his method is applied in

practice to the wall-soil system under earthquake loading. Significant errors of dynamic

thrusts may be caused by using the response spectrum method proposed by Wood.

The other restriction of Wood’s solution is that his method is not capable of dealing

with rigid walls having arbitrarily nonhomogeneous backfills. In addition the effect of

soil non-linearity on the dynamic thrust under strong motions cannot be assessed using

Wood’s method.
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2.2 Objectives of current research

Due to the limitations of Wood’s solution in engineering practice, the current research is

targeted to find an effective method for determining the dynamic thrusts on rigid walls

subjected to horizontal dynamic loads. A proposed method is used to analyze wall-soil

systems with nonhomogeneous soil profiles and to study the effect of soil non-linearity

on dynamic response.

The method of analysis is formulated based on simplified elastic wave equations. The

equations of motion are established considering dynamic force equilibrium in the hori

zontal direction only. An analytical solution for dynamic pressures against rigid walls

is derived first for homogeneous backfihls. Under harmonic horizontal loading, peak dy

namic thrusts against rigid walls are determined.

For earthquake loading, time-history response of dynamic thrust is determined using

the mode-superposition method. .The time-history response of each mode is added up in

phase. The commonly used Response Spectrum method is also used to predict the peak

dynamic thrust. The accuracy of the response spectrum method is evaluated against the

rigorous mode-superposition method.

The proposed method is then applied to the wall-soil systems with nonhomogeneous

backfills. A finite element program SPAW (Seismic Pressures Against Rigid Walls) was

developed to implement the analysis. The computational time and cost for time-history

analysis is negligible using SPAW. The dynamic analyses of nonhomogenous soil profiles
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are illustrated through two types of soil profiles, soil profiles with linear and parabolic

variations of shear moduli with depth. Analyses are performed for both harmonic loading

and earthquake loading assuming elastic response.

The effect of soil non-linearity on dynamic thrusts against rigid walls was also studied.

The equivalent linear approach (Seed and Idriss, 1967) is used to model non-linear soil

response. The effect of the intensity of shaking on dynamic thrusts against rigid walls is

investigated for soil profiles with parabolic variations of shear moduli with depth.



Chapter 3

Dynamic Thrusts on Rigid Walls with Uniform Elastic Backfihls

3.1 Introduction

A method is proposed for determining the dynamic thrust against a rigid soil-retaining

structure subjected to horizontal dynamic loads. The method is based on simplified elas

tic wave equations. The equation of motion is derived from dynamic force equilibrium in

the horizontal direction only. Two types of waves, shear waves and compression waves,

are considered to define the horizontal motions of the backfills.

The dynamic equation of motion is solved analytically taking into account the bound

ary conditions of the problem. The solution is applied first to obtain the total thrust

acting on the wall due to horizontal one-g static loading to estimate the accuracy of the

approximate solutions against Wood’s exact solutions from the 2-D plane strain analysis.

Simple explicit expressions for computing the dynamic thrusts are presented for both

sinusoidal motion and earthquake motion. Time history solutions of the dynamic thrusts

for earthquake motions can be readily obtained using the mode superposition method.

Studies were made to examine the different patterns of dynamic thrusts for harmonic

loading and earthquake loading.

Finally the response spectrum method is applied to obtain the peak dynamic thrusts

14
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for earthquake motions. The accuracy of the response spectrum method is also investi

gated.

3.2 Dynamic analysis of rigid wall-soil system

Figure 3.1(a) shows the geometry of the problem and its boundary conditions. A uniform

elastic soil layer is confined by two vertical rigid walls at its two side boundaries and a

rigid base. The soil layer has a total length of 2L and height of H. Subjected to horizontal

seismic body force, the soil layer in the system generates an antisymmetric field of hori

zontal normal stresses o with zero stresses at x = L. The original wall-soil problem

can be equivalently represented by half of its geometry using this antisymmetric condi

tion. The equivalent problem is shown in Figure 3.1(b), and this is the physical model

that will be analyzed. The ground acceleration is input at the base of the wall-soil system.

The soil is assumed to be a homogeneous, isotropic, visco-elastic solid with a shear

modulus G and Poisson’s ratio v. The equations of dynamic force equilibrium for the

backfill in the horizontal and vertical directions are written as

50 9r 82u
(3.1)

--- + -- = (3.2)

where o and o, are the normal stresses in the X and Y directions, respectively, and

r is the shear stress in the x-y plane. u and v are the displacements in the X and Y

directions, respectively.
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(a)

Y ôu/ôy=O

homogeneous elastic soil

(plane strain)
H u=O u=O

(b)
y

ôuIôy=O

homogenous elastic soil

(plane strain)
H u=O ôuIôxO

U=OL

Figure 3.1: Definition of rigid-wall problem (a) original problem (b) equivalent problem
by using antisymmetric condition
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For the two-dimensional plane strain conditions, the stress components are related to

the displacements by

2G ôu Ov
= 1— 2l1:1 — v)— +v] (3.3)

2G 8v 8u
a.y= (3.4)

ôu Ov
(3.5)

Although the problem involves two displacement components u and v, only the horizontal

displacement u is taken into account in the analysis to simply the solution of the problem.

The equation of dynamic force equilibrium in the horizontal direction Eq.3.1 is used in

the analysis. Considering various forms of approximation to the problem, the governing

equation of the undamped free vibration of the backfill in the horizontal direction can be

written as

82u c92u
+ G— = (3.6)

and the normal stress o, is given by

(3.7)

where p is the mass density of the soil backfill, t is time, 6 and /3 are functions of Poisson’s

ratio v.

Eq. 3.6 suggests that the dynamic response of the backfill is governed by two types of

waves: the shear wave and the compression wave. The compression wave in the backfill

produces the dynamic earth pressure against the rigid wall given by Eq. 3.7.
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The precise expressions for 6 and /3 depend on the approximations used to model the

wall-soil system. Three cases are examined and their corresponding expressions for 6 and

/3 are given below.

(i). v=0 assumption. In this case, the displacements in the vertical direction Y are

assumed to be zero.

Using this assumption, o, and r, are obtained from Eq. 3.3 and Eq. 3.5 as

2(1—v) Elu
— G— (3.8)1—2v ox

9u
(3.9)

Substituting Eq. 3.8 and Eq. 3.9 into Eq. 3.1 and comparing with Eq.

3.6, one finds

6 /3
= 2(1

(3.10)1 — 2v

(ii). o=O assumption. In this case, the normal stresses in the vertical direction Y

are assumed to be zero.

Applying the assumption to Eq. 3.4, one finds that

Ely 1) Ott
311Ely 1—vOx

Therefore,o and OT1,/Oy are obtained from Eq. 3.3 and Eq. 3.5 as

2 Elu
= G— (3.12)1—i’ Ox
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1)
313

— 1_vôx2 L )
Substituting Eq. 3.12 and Eq. 3.13 into Eq. 3.1 and comparing with Eq.

3.6, one finds

(3.14)

(3.15)

(iii). the proposed model. In this case, the shear stresses are modelled using the shear

beam analogy(see Appendix 1 for detail).

In this model, the shear stress r is given by

— (3.16)

The normal stress o is found by assuming o,=O in the backfill

2 ott
= (3.17)

1—LI OX

Substituting Eq. 3.16 and Eq. 3.17 into Eq. 3.1 and comparing with Eq.

3.6, one finds

2
1—ti

Three different models yield three different expressions for the coefficient 8 in Eq.

3.6. However the dynamic response of the wall-soil system for these three cases can be

represented by the same equation, Eq. 3.6. Therefore the general derivation of dynamic
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solutions proceeds from Eq. 3.6.

Assume the displacement solution has the form

u(x,y,t) = (A. sin amx + B cosamx)(C sin by + D cosby) Ymn(t)

Applying the boundary conditions

u—0 at..y=0

u=0 at..x=0

The constants B and D are determined to be zero.

u(x, y,t) = sin amx sin by Ymn(t)

= . COSam . sin by . Ymn(t)

= E2C1b sin amx cosby Ymn(t)

Applying the other two boundary conditions

Ou
—=0 at..z=L

au
at..y=H

one obtains

am COS amL = 0

cos bH = 0
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therefore

b
(2n—1)7r

2H
(2m — 1)ir

am— 2L
The mode shape functions are written as

4’mn(,y) =C1sinby . sin a,x (3.20)

and the displacement solution becomes

u(x,y,t) Emn(,y) Ymn(t) (3.21)

Substituting Eq. (3.21) into 3.6, one obtains

—G(6a + b) Ymn(t) pmn(t)

—a + b)
=

____

= W?flfl

the natural frequencies of the system are found to be

= + 8a) (3.22)

the frequency of the first mode is

w1 = 4pH2(’8L2) (3.23)

In the case of an undamped forced vibration subjected to a ground acceleration i0(t),

the governing equation becomes

— (8G— + G—) = —püo(t) (3.24)
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Substituting Eq. (3.21) into Eq. (3.24), multiplying the equation by the mode shape

functions, and integrating over the domain, one obtains that

JJ pij%j(t)4)mndXdy+JJ G(8a+bj)4ijYtj4’mndxdy = _iio(t)JJ pmn(x, y).ckdy
Applying the orthogonality conditions and recalling Eq. (3.22), one obtains

JJ pdxdy . mn(t) + J J pdxdy WYmn(t) = _ü0(t) JJ pmn(X, y)

Ymn(t) + Ymn(t) = _i10(t) mn

where

— ffpsin(a,mx) . sin(b1y)dx.dy
f f p sin (1mm) sin (by)dx4y

16
amn = 2 (3.25)(2m — 1)(2n — 1)ir

Let Ymn(t) = amn fmn(t)

frnn(t) + W,nn fmn(t) = ....ii0(t) (3.26)

For a damped forced vibration of the wall-soil system, a constant modal damping

ratio ). is introduced

jL(t) + 2iXWmn fmn(t) + W,nn fmn(t) = —i10(t) (3.27)

For a given ground excitation iic(t) , a close-form solution of the displacement u is

found to be

u(x, y, t) = EE sin amx Sjfl by mn frnn(t)
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where fmn(t) is the time history solution of Eq. (3.27) corresponding to a particular

modal frequency Wmn. It is noted that Eq. (3.27) is the standard damped vibration

equation of a single degree of freedom system.

The dynamic earth pressure acting on the wall is determined to be the normal stress

o at x=O. The dynamic pressure distribution along the wall is

o,(x,y,t)o =

= 13Gamamn sin(by) . fmn(t)

The total dynamic thrust acting on the wall is

P(t) = j(xyt) .dy

P(t) = 13G . am mnf(t)

P(t) = 3G.
2(2n1)2L/H (3.28)

The total dynamic moment acting at the base of the wall is

M(t)
=1H

,y,t)o dy

M(t) = ._amn.sin(bnH)f(t) (3.29)

For a harmonic input üo(t) = . eict, the amplitude of the steady-state response

fmn(t) is found from Eq. 3.27 to be

max 330Jmn — (2 —w2) + 2i W
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For any excitation iio(t) the time history of the modal dynamic thrust associated

with a particular mode is obtained using Eq. (3.28). The time-history of the dynamic

thrust for the desired number of modes are then determined using the mode-superposition

method. Therefore the peak dynamic thrust acting on the wall can be determined exactly

for any type of input motion.

For earthquake motion the peak modal thrust acting on the wall associated with the

modal frequency Wmn could be determined using the pseudo-spectral velocity The

pseudo-spectral velocity is derived from response spectral displacement by

— omn
-1v

where is also the peak of fmn(t) corresponding to an excitation frequency Wmn.

From Eq. 3.28 the peak modal thrust Fmn is determined as

—G
16 5[4n

mn/3 2 2 (.7r (2n— 1) L/HWmn

Estimation of the peak dynamic thrust is made by combining the individual peak

modal thrusts by some approximate method. Either the absolute summation or the root

square summation of the peak modal thrust is commonly used.

3.3 Static 1-g solution: Validation of model

In the previous section, three models namely, v = 0, a-,=O, and the proposed model,

were presented which yielded different expressions for the coefficient 8 in Eq. 3.6. It is

necessary to examine the accuracy of solution provided by each model. Wood’s rigorous

solution (Wood, 1973) provides a measure for evaluating the accuracy of the approximate
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solutions. Wood’s solution for 1-g static horizontal loading is given in Eq. 2.5.

To allow a measure of the accuracy of the approximate solutions, a 1-g static solution

is derived using the proposed approximate method. The 1-g static solution is the limit

dynamic solution when the period of the dynamic motion becomes infinitely long. From

Eq. 3.27 the static deflection produced by a 1-g static force is given by

frn.n(t) = (3.33)
mn

The corresponding 1-g static thrust is obtained by substituting Eq. 3.33 into Eq. 3.28

= G/3gE 2

16
2 (3.34)ir (2n — 1) WmnL/H

The 1-g static moment acting at the base of the wall is obtained from Eq. 3.29

M3 = G/3gE2am mn sin(bH)
(3.35)

bnWmn

The total thrust against the wall due to 1-g static horizontal force is determined by

doing a double summation for modes m and n from Eq. (3.34). A normalized thrust

ratio is introduced and defined as

THRUST RATIO
TOTAL . THRUST

(3.36)
p

where Amax is the peak ground acceleration in m/sec2, ft/sec2 or other consistent

unit.

Comparison of the accuracy of approximate solutions The approximate solu

tions are used to obtain the total 1-g static force for two wall-soil systems: one with a
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semi-infinite backfill and the other one with a finite backfill. The semi-infinite backfill is

approximated by using L/H=5.O and the finite backfill is represented by using L/H=l.5.

Results from the different analyses are compared in Figure 3.2 (a) and 3.2 (b) for L/H=5.O

and L/H=1.5, respectively. The following observations may be made based on the results.

The proposed model gives results that are in very good agreement with Wood’s

exact results for both L/H=5.O and L/Hz=l.5. The approximation of the pro

posed model works even better for walls retaining finite backfill (L/H=1.5).

Usually this model gives total force slightly less than the exact total force.

The o,=O model yields results that are in very good agreement with the exact

results for L/H=5.O. For wall-soil systems with L/H=5.O, the accuracy of the

o,=O model is comparable to that of the proposed model. The difference be

tween the two models is that the o-!,=O model overestimates the response but

the proposed model underestimates the response slightly.

However for L/H=1.5, the o,=O model does not give as good results as the

proposed model does. The solutions from the proposed model are much closer

to the exact solutions than those from the o,=O model. The o,=O model may

overestimate the total force by about 18%. The proposed model only under

estimates the total force by 4%.

When the v=O model is applied, the accuracy of the solution is very good

provided v < 0.3. As v exceeds 0.3, the solutions start to deviate from the ex

act solutions. For L/H=5.0, the accuracy of the solution from the v=0 model

becomes unacceptable as v> 0.4.

Recently Veletsos and Younan (1994) made studies on rigid walls with horizontally
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Figure 3.2: Comparis0 of the accuracy of approm solutjo for d-w1 systems
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semi-infinite backfills. The accuracy of the o,=O model and v=0 model were examined

in that paper against Wood’s rigorous solution. They reached similar conclusions to the

above regarding the accuracy of these two models. Their conclusions were made for the

semi-infinite backfills only, which is similar to the case with L/H=5.0.

The studies presented conclude that the proposed model gives the best approximation

to solutions for the rigid-wall systems with infinite backfills and finite backfills. There

fore, the proposed model will be used for all further studies with 8 = /3 = 2/(1 — v).

Static 1-g solution using 8 = 2/(1 — v) Additional analyses were carried to study

the accuracy of the solution for the entire range of L/H ratios. Figure 3.3(a) and Figure

3.3(b) show the relationship between the normalized thrust ratios and the L/H ratios for

v = 0.3, 0.4 and 0.5. The results from Wood’s study (Wood, 1973) are shown in Figure

3.3(a), and the results from this study are shown in Figure 3.3(b). The two solutions

agree fairly well for the entire range of L/H ratio. In general, the thrust ratios determined

from this study are about 5 % less than that predicted by Wood. Although Wood’s solu

tion that was obtained from a 2-dimensional plane strain analysis is more accurate than

that from this study, the small amount of error in the thrust ratio is compensated for by

the convenience of using the much simpler expression of the total thrust shown in Eq.

(3.34). The simplicity in determination of the total thrust leads to ready application in

engineering.

The thrust ratios plotted in Figure 3.3 are found to be independent of the shear mod

ulus G of the backfill. The total thrusts increase with the increase of b/H ratio, but they

approach steady values for L/H > 4. For L/H=5.0 and v = 0.4, the total thrust under



Chapter 3. Dynamic Thrusts on Rigid Walls with Uniform Elastic Backfihls 29

1.2 -

__________

: (a) Woods
1.0

0 -

F—

- a • a. Poisson’s ratio 0.3
0.6 oooo Poisson’s ratio 0.4

D -
Poisson’s ratio 0.5

F-

0.2 -

1111111111111111111111 iii iiii liiIiIIIiiIliiiii

1 2 3 4 5
L/H

1.2 -

: (b) author’s
1.0 :-

0 -

0.8
.-...-.Pcsson’sratio0.3

- oaooo Poisson’s ratio 0.4
0.6 &Pöissöñ’dtio U.5

D -

F-

0.2 -.

0.0 c_I_i I I i i I I I I I I I I I I I I I I I I I I I I I I I I I I I 15

L/H

Figure 3.3: Normalized thrust ratios for 1-g static solution(a) Wood’s solution (b) au
thor’s solution



Chapter 3. Dynamic Thrusts on Rigid Walls with Uniform Elastic Backilils 30

10.0
Poisson’s ratio 0.3

E nnnr Poisson’s ratio 0.4o.u Poisson’s ratio 0.5

6.0 —

____

ci)-c

(• i_ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
1 2 3 4 5

L/H

Figure 3.4: Heights of thrusts due to 1-g static horizontal force (wall height H=lOm)

1-g static horizontal force is estimated to be 1.0 -yH2. For a lOm high wall and a backfill

with unit weight 7=19.6 kN/m3,the total thrust is calculated to be 1960 kN for per unit

wide wall. For values of ii other than 0.3, 0.4 and 0.5, the 1-g static thrusts are easily

obtained using Eq. (3.34).

The height of the resultant thrust above the base of the wall due to the 1-g static

horizontal force is plotted in Figure 3.4 against the L/H ratio for v = 0.3, 0.4 and 0.5.

The heights of resultant thrusts are identical for v = 0.3, 0.4 and 0.5. They remain

constant when Lull is greater than 1.0. The heights of the resultant thrusts are about

0.611 above the base of the wall.
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3.4 Dynamic thrusts under sinusoidal motions

Dynamic amplification of structural response depends on the ratio of the frequency of the

input excitation to the fundamental frequency of the structure. Resonant response occurs

when the excitation frequency matches the fundamental frequency. For wall-soil systems,

a simple approach is to take the fundamental frequency of the backfill w8 to approximate

the frequency of the system. This representation is especially useful for wall-soil systems

with long backfills, where the fundamental frequency of the wall-soil system is very close

to the fundamental frequency of the backfill. However, for wall-soil systems with finite

backfills, the fundamental frequency of the combined wall-soil system W is more critical.

Therefore, two frequency ratios fRi and fR2 are used to investigate the dynamic

amplification of the wall-soil systems. The frequency ratio fRi is defined by the ratio

between the angular frequency w of the input motion and the natural angular frequency

w3 of the fundamental mode of the infinite horizontal backfill. The frequency ratio fRi

is quantitatively expressed as

fRi = w/w8 (3.37)

For a uniform soil profile, w8 is determined by w8 =V6ir/2H, in which V3 is the shear

wave velocity of the backfill.

The frequency ratio fR2 is defined by the ratio between the angular frequency of the

input motion (w) and the fundamental angular frequency (w11) of the wall-soil system.

The frequency ratio fR2 is expressed as

fR2 = (3.38)
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Figure 3.5: Accuracy of solutions versus number of modes used

For a uniform soil profile, the fundamental angular frequency w11 of the wall-soil sys

tem can be determined by using Eq. 3.23.

Before proceeding with the analysis of dynamic amplification as a function of fre

quency ratio, studies were made first to examine the relationship between the accuracy

of solutions and the number of modes used. Figure 3.5 shows the accuracy of dynamic

thrust obtained using increasing number of modes in the dynamic solution. Analyses

were carried out at one randomly selected frequency for each L/H ratio. Frequencies

corresponding to fRi =1.0 and fRi = 1.14 were used for Lull = 5.0 and L/H = 1.5,

respectively. For all analyses v = 0.4 and ) = 10% were used.

The solutions converged very fast for the problems investigated. By just using the

first mode, about 75% accuracy in the solutions was achieved for L/H=5.0 and 82% for

L/H=l.5. Excellent accuracy (95%) was obtained by using the first 10 modes. Although
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a much smaller number of modes could be used to compute the dynamic response ade

quately for engineering purpose, 600 modes were used here to get an ‘exact’ solution for

assessing the accuracy of the results. From Eq. 3.28, it can be seen that the solution

converges very fast as the number of mode n increases. The number of mode n required

is usually much less than the number of mode m required in the dynamic solution. Stud

ies also showed that a larger number of mode n is necessary for wall-soil systems with

smaller L/H ratios. Therefore a combination of n=2 and m=300 was used for L/H=5.0,

and another combination of n=6 and m=100 was used for L/H=1.5.

The amplitudes of steady-state dynamic thrusts were determined using Eq. 3.28 and

Eq. 3.30 for harmonic excitations at different frequencies. The amplitudes of dynamic

thrusts are normalized according to Eq. (3.36). The normalized thrust ratios are plotted

against the frequency ratio fRi in Figure 3.6(a) for L/H=5.0 and in Figure 3.6(b) for

L/H=1.5. The dynamic thrusts increase very fast as the excitation frequency approaches

the fundamental frequency of the wall-soil system. At resonant conditions, the peak dy

namic thrusts are 2.4pH2Amaz for L/H=5.0 and 3.OpH2Amaa, for L/H=1.5. Because the

static thrusts are 1.OpH2Amax for L/H=5.0 and 0.86pH2Ama,,, for L/H=1.5, their corre

sponding dynamic amplification factors are 2.4 for L/H=5.0 and 3.5 for L/H=1.5. The

results suggest that the dynamic amplification for wall-soil systems with finite backfills

is larger than that for wall-soil systems with semi-infinite backfills.

The results also show that resonance occurs at a frequency ratio fRi = 1.05 for

L/H=5.O and at fRi = 1.55 for L/H=1.5. Hence for two identical walls with identical

soil properties, the fundamental frequency of the wall-soil system with L/H=1.5 is about

1.45 times that with L/H=5.0.
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Chapter 3. Dynamic Thrusts on Rigid Walls with Uniform Elastic Backfills 35

3.5 Dynamic thrusts under earthquake motions

Dynamic thrusts are computed for wall-soil systems with L/11=5.0 and L/H=1.5. The

walls have a fixed height 11=10 m. The soil backfill has Poisson’s ratio ii = 0.4, unit

weight 7 = 19.6 kN/m3 and a constant damping ratio A=10%.

Two earthquake acceleration records were used in the analysis, the SOOE acceleration

component of the 1940 El Centro earthquake, and the S9OE acceleration component of

the 1989 Loma Prieta earthquake recorded at Yerba Buena island. The peak acceleration

of the El Centro input is 0.348g, but it was scaled down to 0.07g to simulate the linear

elastic response of the wall-soil system under a small input motion. The peak accelera

tion of the Loma Prieta input is 0.067g.

The time histories of dynamic thrusts were computed using Eq. (3.28) by mode su

perposition method. As examples, time histories of dynamic thrusts against rigid walls

are shown in Figure 3.7 for the El Centro input and in Figure 3.8 for the Loma Prieta

input. From Figure 3.7 (a) it is interesting to see that the high frequency content of the

input motion has been filtered out when the input motion passes through a relatively soft

backfill with G=9810 kPa. For this case, the computed peak dynamic thrust is about

182 kN/m.

A typical time history of the height of dynamic thrust is illustrated in Figure 3.9.

The most frequently occurring height of dynamic thrust is 0.6211 above the base of the

wall. In the region of peak thrust a height of 0.611 would be seem a good value for design.

The impact of frequency ratios fRi and fR2 on the dynamic thrusts against rigid walls
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Table 3.1: Peak dynamic thrusts for walls with L/H=5.0 and 11=10 m,

G w8 Dynamic thrust (kN/m) Dynamic thrust (kN/m)
(kPa) rad/sec (El Centro input) ( Loma Prieta input)
613.0 2.750 48.4 77.5
1360.0 4.096 54.2 -

2453.0 5.501 74.2 79.3
4286.0 7.272 120.1 -

6131.0 8.697 152.6 -

9810.0 11.001 182.2 174.7
20020.0 15.716 132.8 159.5
61313.0 27.503 144.5 161.4

is examined by varying the shear modulus G of the backfill. The shear moduli of the

backfills vary from 613 kPa to 61313 kPa, which gives a distribution of the fundamental

frequency of the backfill w8 from 2.75 to 27.503 rad/sec. The computed peak dynamic

thrusts are listed in Table 3.1 for wall-soil systems with L/H=5.0 and in Table 3.2 for

L/H=1.5. The variation of shear moduli and the angular frequencies w8 are also listed

in these Tables. For the El Centro input, the maximum values among the peak dynamic

thrusts are 182 kN/m for L/H=5.0 and 194.6 kN/m for L/H=1.5. For the Loma Prieta

input, the maximum values among the peak dynamic thrusts are 174.7N/m for L/H=5.0

and 170.0 kN/m for L/H=1.5. These results suggest that the peak dynamic thrusts are

little dependent on the L/H ratio under earthquake motions.

The frequency ratios fRi and fR2 are determined using Eq. 3.37 and Eq. 3.38, re

spectively. In these equations the excitation frequency w of the input motion is required.

For earthquake motions, the excitation frequency w is taken to be the predominant fre

quency of the earthquake. The predominant frequency of an earthquake motion is the

frequency at which the response spectral acceleration has the maximum value in the
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Table 3.2: Peak dynamic thrusts for walls with L/H=1.5 and H=10 m,A=10%

G Dynamic thrust (kN/m) Dynamic thrust (kN/m)
(kPa) rad/sec (El Centro input) ( Loma Prieta input)
801.5 3.144 54.8
1090.0 3.667 75.0 86.8
1905.0 4.848 116.0 -

2453.0 5.501 133.7 126.4
4360.0 7.334 194.6 170.0
5805.0 8.463 179.1 145.4
9810.0 11.001 130.9 151.0
39240.0 22.002 134.5 143.9

12-

___

- L/H=5.0; H=10 m; Poissons rato 0.4;
- shear modu!us 9810 kPa; damping 10 z;

E 10— fttQJOpt

14tyJt+11rr1t1
HEIGHT OF THRUST : 6.20 meters
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Figure 3.9: A time history of the height of dynamic thrust, L/H=5.0
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acceleration spectrum. Therefore the excitation frequencies of the El Centro input and

the Loma Prieta input are determined to be 11.64 rad/sec and 10.13 rad/sec, respectively.

The peak dynamic thrusts are normalized using Eq. 3.36. The normalized thrust

ratios are plotted against the frequency ratio fRi in Figure 3.10 and against the fre

quency ratio fR2 in Figure 3.11. Based on results from the limited number of analyses

for earthquake motions, it is suggested that the peak dynamic thrusts are 1.30pH2Ama

for L/H=5.0 and 1.38pH2Ama for L/H=1.5. Because the static thrusts are 1.0pH2Ama

for L/H=5.0 and 0.86pH2Am for L/H=1.5, their corresponding the dynamic amplifica

tion factors are about 1.3 for L/H=5.0 and 1.6 for L/H=1.5.

A significant observation is made that the dynamic amplification under earthquake

motions due to resonance is much less than that under sinusoidal motions. Under sinu

soidal motions, the dynamic amplification factors at resonance are 2.4 for L/H=5.0 and

3.5 for L/H=1.5. The dynamic amplification factors under earthquake motions are about

50% of that under sinusoidal motions.

3.6 Accuracy of the response spectrum method

The response spectrum method is commonly used to determine the responses of structures

subjected to earthquake motions. The response spectrum method which adds modal val

ues without taking the phases of the modes into account is much simpler than the direct

mode superposition method. Therefore it is of interest to check on the accuracy with

which the peak dynamic thrust can be determined using the response spectrum approach.
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The accuracy of the response spectrum method is measured by a thrust factor Cp

defined as

c
=

(3.39)

where the total spectral thrust P31. is evaluated using the response spectrum method

by summation of peak modal thrusts Fmn. Pma is the exact solution which is evaluated

using the mode superposition method. The values of the thrust factor Cp gives a measure

of the accuracy of the response spectrum method.

The peak modal thrust Fmn is determined from Eq. 3.32 using the pseudo-spectral

velocity S of the input motion corresponding the modal frequency Wmn. The pseudo-

spectral velocities for the two selected acceleration records, the El Centro input and the

Loma Prieta input, are shown in Figure 3.12(a) and 3.12(b), respectively.

Since the peak modal thrust only represents the peak value for a particular mode,

the determination of the total spectral thrust F8,, must be based on some form of mode

summation. Summation of the absolute peak modal values (ABS) or the Square Root of

the sum of the Squares of the peak modal values (RSS) are used.

When the absolute summation (ABS) is used in the response spectrum method, the

total spectral thrust F8,, is determined by

P51. = EY2Fmn (3.40)

When the root square summation (RSS) is used in the response spectrum method,

the total spectral thrust P8, is determined by
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= (3A1)

Values of the thrust factor C1’ were determined for both sinusoidal motions arid earth

quake motions. The earthquake motions are represented by the El Centro input and the

Loma Prieta input. The studies were made for L/H=5.0 and L/H=1.5. 600 modes were

used for obtaining both P, and Fm

Discussion of results When the RSS method was used, the relationship between the

thrust factor Cp and the frequency ratio fRi was obtained and is shown in Figure 3.13.

For harmonic loading the thrust factor Cp changes very much with frequency. The re

sponse spectrum method could overestimate or underestimate the peak dynamic thrust

by 80% to 100%. For earthquake loading the thrust factor CF is usually greater than

one, mostly around 1.5. The response spectrum method usually underestimates the peak

dynamic thrust by as much as 50%. However the thrust factor changes for a different soil

profile and a different frequency ratio. The uncertain variation of Cp makes it difficult

to apply the response spectrum method for determining the actual peak dynamic thrust

-ma2, in practice.

When the absolute summation (ABS method) was used, the relationship between the

thrust factor Cp and the frequency ratio fRi was determined and is shown in Figure 3.14.

For low frequency ratios, such as fRi < 0.8, the total spectral thrust P, obtaining from

the ABS method agrees very well with the exact solution Fma, under sinusoidal motions.

However under earthquake motions, about 20% overestimate of peak dynamic thrust is

expected for the same frequency ratio. For high frequency ratios, such as fRi > 1.5,

the peak dynamic thrust may be overestimated by as much as 50% when the response
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spectrum method is used.

Therefore it is recommended that the mode superposition method be used in order

to accurately determine the peak dynamic thrusts against rigid walls. The response

spectrum method may be used for approximately estimating the peak dynamic thrusts

against rigid walls. The use of ABS method is suggested when the response spectrum

method is selected, especially at low frequency ratios.



Chapter 4

Dynamic Thrusts on Rigid Walls with Non-homogeneous Soil Profiles

4.1 Introduction

The first objective of this chapter is to explore the effects of typical backfill non-homogeneity

on the magnitude of dynamic thrusts for elastic response. Two types of soil profiles have

been analyzed. They are profiles with linear and parabolic variations of shear modulus

with depth.

The second objective of this chapter is to evaluate the influence of soil non-linearity

on the magnitude and point of application of dynamic thrusts. The moduli and damping

of soils are known to be strain dependent (Seed and Idriss, 1967). The equivalent linear

elastic analysis developed by Seed and Idriss (1967) is used to simulate the soil non-linear

response. Dynamic response characteristics such as magnitude of dynamic thrust, fun

damental frequency of the system, and amplification factors of ground acceleration are

determined for different intensities of acceleration input.

Elastic analysis. The undamped forced vibration equation of motion of the backfill is

written as

82u 82u 82u
— (8G— + G-) = —p’äo(t) (4.1)

49
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Figure 4.1: A composition of non-homogenous soil profile

where 6 is equal to 2/(1-v), ii is Poisson’s ratio of soil, and üo(t) is the base accelera

tion caused by the earthquake.

Figure 4.1 shows the type of non-homogeneous soil profiles that will be analyzed in

this chapter. The backfill behind the wall is consisted of layered soils with different prop

erties in each layer. The wall is considered to be rigid, and it does not move relative to

the base. The boundary conditions for this system are also shown in Figure 4.1.

Analytical solutions are in general not possible for nonhomogeneous backfills. There

fore, the finite element method is employed to analyze dynamic response of the wall-soil

system.

4.2 Finite element formulation and its validation

A finite element developed especially for this study is shown in Figure 4.2. The element

consists of 6 nodes with 6 horizontal displacement variables. The displacement field has a
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Figure 4.2: A composition of the finite element used in SPAW

linear variation along the vertical direction and a quadratic variation along the horizontal
direction.

Let the displacement u be represented by

u=EN2.u2 i=1,6

The shape functions N are given by

N1 =

N2 x(b—y)

N3 = xy

N4 =

N5 =

N6 = xy(a — x)

Galerkin’s general procedure of weighted residuals is used to develop the stiffness and
mass matrices of the finite element shown in Figure 4.2. The stiffness matrix [K] is
given by
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[Kj = + (4.2)

The diagonal mass matrix of the element is found to be

[M1 = f{iiii44} (4.3)

The stiffness and mass formulations shown in Eq. (4.2) and Eq. (4.3) are then applied

to every element in the system. The global stiffness matrix [K] and the mass matrix [M]

are assembled accordingly. The equations of motion in matrix form are written

[M]{’ii} + [C]{ri} + [K]{u} = —[M]{I}ii0(t) (4.4)

where [C] is the damping matrix, and {I} is a column vector of 1.

The natural frequencies of the system are determined by analyzing the eigen val

ues of the system. The damping matrix of each finite element is obtained according to

the desired degree of damping of the element. In this manner the damping matrix [C] is

evaluated. A finite element program SPAW was developed based on these considerations.

Validation of F.E. method To validate the reliability of the finite element analysis, it

was applied first to two uniform soil profiles for which close-form solutions were obtained

in the previous chapter.

The geometric mesh used in the finite element analyses is shown in Figure 4.3. This

mesh consists of 3 elements in each layer with 20 layers. The horizontal dimensions of

these elements are subjected to change proportionally to the L/H ratio. This mesh has
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Figure 4.3: A finite element mesh used for dynamic analyses

been used for all finite element analyses presented in this chapter.

The finite element method is applied first to a uniform soil profile (L/H=5.0,H=10.Om)

with G=9810 kPa and )L=10 %. The fundamental frequency of this wall-soil system is

1.75 Hz. This system is shaken by the SOOE acceleration component of the 1940 El

Centro earthquake scaled to 0.07g. The time history of dynamic thrust against the wall

computed using the finite element method is shown by the solid line in Figure 4.4(a). The

dashed line represents the closed form solution in Figure 3.7. The agreement between

the two solutions is excellent over the entire time histories of dynamic thrusts.

The finite element method is next applied to a second uniform soil profile (L/H=1.5,

H=10.Om) with a higher shear modulus of 0=39240 kPa and .\ = 10%. This wail-soil

system is stiffer than the previous one. The fundamental frequency of this system is 2.54

Hz. The time histories of dynamic thrusts computed using the finite element method

and the close-form solution are shown in Figure 4.4(b). Here again excellent agreement

is observed between the dynamic thrusts computed by the two methods of analysis.

H
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These comparative studies verify that the finite element formulation constructed for

this problem is a reliable technique for evaluating the dynamic response of the wall-soil

system and that the mesh employed is an appropriate one.

The finite element mesh used for the rigid wall analysis has been embedded in the

computer program SPAW. There is no need for other users to construct the mesh. The

dynamic analyses can be performed by just inputting the basic soil properties of each

layer. The time history analyses only take few minutes in a PC486 33MHz computer.

4.3 Linear elastic analyses with non-homogeneous soil profiles

In this analysis the shear modulus G and damping ratio ) for a given soil profile retain

constant values throughout the analysis. They are not considered to be functions of

strains. ? =10% and v =0.4 are used. The horizontal length of the soil layer is con

strained at L/H=5.0. Two types of soil profiles are examined, a profile with a linear

variation of shear moduli with depth and a profile with a parabolic variation of shear

moduli with depth.

Two types of motions, the sinusoidal motion and the earthquake motion, are applied

to the two types of soil profiles. For the sinusoidal motion, the amplitudes of the steady

state dynamic thrusts are determined. For earthquake motion, the peak dynamic thrusts

developed during shaking are determined. Again the El Centro input is used as the input

of earthquake motion in this study.

Analyses were performed to examine the relationship between the thrust ratio and
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the frequency ratio. The frequency ratio fR2 defined in Eq. 3.38 is used for this study.

The thrust ratio has been defined in Eq. 3.36 to be thTUSt/(pH2Ama), where is

the peak acceleration of the input motion in m/sec2,ft/sec2 or other consistent unit.

Figure 4.5 shows the relationship between the thrust ratio and the frequency ratio

fR2 for linear soil profiles. At resonance, the peak dynamic thrusts are 1.56pH2Ama un

der sinusoidal motions and 1.OOpH2Amaa, under earthquake motions. Because the static

thrust is about 0.71pH2Ama,, their corresponding dynamic amplification factors are de

terniined to be 2.2 for sinusoidal motions and 1.4 for earthquake motions.

Figure 4.6 shows the relationship between the thrust ratio and the frequency ratio for

parabolic soil profiles. In general, the thrust ratios are greater than those for linear soil

profiles by 20%. At resonance, the peak dynamic thrusts are 1.87pH2Amax under sinu

soidal motions and 1.18pH2JLunder earthquake motions. Because the static thrust is

about 0.82pH2Amax, their corresponding dynamic amplification factors are determined

to be 2.3 for sinusoidal motions and 1.4 for earthquake motions.

The dynamic response of parabolic soil profiles is compared with dynamic response of

uniform soil profile in Figure 4.7. For sinusoidal motions, the dynamic thrust ratios for

parabolic soil profiles are less than those for uniform soil profiles in the frequency range

of fR2 < 2.0.

The limited analyses conducted suggest that the dynamic thrust at resonance for

sinusoidal motions are about 60% greater than that for earthquake motions with same

peak acceleration. It should be noted that the earthquake motions are represented by

the El Centro input only.
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Figure 4.6: Relationships between thrust ratio and frequency ratio fR2 for parabolic soil
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The other important aspect of dynamic thrust is the location of the resultant thrust

on the wall. Typical time histories of heights of dynamic thrusts for the three types of

soil proffles are illustrated in Figure 4.8. The results are obtained using the El Centro

input as input motion. For linear soil profiles dominant height of dynamic thrust is at

O.48H above the wall base. For parabolic soil profiles this height becomes 0.5111 above the

wall base. The uniform soil profile gives an average height of 0.62H above the wall base.

Generally the height of dynamic thrust increases as the soil profile becomes more uniform.

Modal frequencies of wall-soil systems with different soil profiles are shown in Ta

ble 4.3. Essentially the natural frequencies of the wall-soil systems become more widely

spaced as the soil becomes more uniform.
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Table 4.3: Patterns of first 10th natural frequencies for three types of soil profiles (wa,
rad/sec)

frequencies frequencies frequencies
flth freq. (linear profile) (parabolic profile) (constant profile)

1 11.3 11.35 11.70
2 13.1 14.20 16.32
3 15.2 18.80 22.90
4 16.4 20.60 30.19
5 19.9 26.00 33.24
6 25.6 29.10 35.13
7 26.4 29.70 37.79
8 27.2 30.80 45.53
9 29.4 33.40 53.36
10 33.2 38.50 55.15

4.4 Equivalent linear simulation of non-linear response under earthquake

loads

A method of analysis for modelling the non-linear response of soil was proposed by Seed

and Idriss (Seed & Idriss, 1967), which is designated the equivalent linear method of
analysis. In this method a set of elastic shear moduli and viscous damping ratios which
are compatible with a measure of the effective shear strains induced by an earthquake

are used to approximate the hysteretic behaviours of soils. The equivalent linear elastic
method is widely used for dynamic analyses in practice.

The equivalent linear method for modelling nonlinear behaviour is used in this study.

Since the level of shear strain in each element is not known at the beginning of the anal

ysis, strain compatible moduli and damping ratios are achieved by an iterative process.
The effective strain used to determine moduli and damping is chosen to be 0.65 of the
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peak dynamic strain for the earthquake type of motions. The damping ratio of the wall-

soil system in each iteration is estimated by using an average value of damping ratios for

all soil elements in the system.

Two wall-soil systems with parabolic variation of shear modulus are analyzed using

the equivalent linear technique. One wall has a stiff backfill with a shear modulus of

132,000 kPa at the base of the backfill. The other wall has a backfill with a shear modu

lus of 66,000 kPa at the base. The wall height in each case is 11=10 m with L/H=5.0. The

wall-soil systems are shaken using the El Centro acceleration record as the base motion.

The effects of non-linearity on the dynamic responses of the systems are explored using

increasing levels of input acceleration. The peak accelerations of input motions vary from

0.05g to 0.35g in increments of 0.05g.

The data on shear strain dependent moduli and damping presented by Seed and Idriss

(Seed & Idriss, 1970) were employed. At shear strain levels of 0.0001, 0.0005, 0.001, 0.005,

0.01, 0.05, 0.1, 0.5, and 1.0 percent, the values of G/GmO.a, were selected as 100, 98.3,

95.8, 84.3, 74.3, 43.0, 29.6, 10.9, 6.1 percent, respectively. The values of D/Dmaa, cor

responding to the above strain levels are the follows: 0.018, 0.055, 0.073, 0.158, 0.275,

0.457, 0.579, 0.891, 1.0. The maximum damping ratio Dmax is chosen to be 30%.

Figure 4.9 shows the dynamic response of the stiff site. The intensity of shaking is

measured by the peak acceleration of the input motion. The amplification of ground

acceleration shows its peak at an input acceleration of 0.15g. The dynamic thrust ratio,

the frequency ratio and the damping ratio increase steadily with the increase of the level

of shaking. The increasing level of shaking results in reduction of shear moduli and con

sequently reduction in the fundamental frequency of the wall-soil system. This results
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Figure 4.9: Dynamic responses of a stiff, site due to non-linear effect,G0=132,000 kPa

in an increase in the frequency ratio fR2. The dynamic thrust ratio increases from 0.83

for linear elastic response associated with low input accelerations to 1.04 for highly non

linear response at the higher levels of input acceleration. The effect of strong shaking on

the dynamic thrust is clearly shown in Figure 4.10. At a base acceleration of 0.35g the

dynamic thrust increases 25% due to the non-linear effect.

Figure 4.11 shows the dynamic response of the soft site. There is no clear indication

of resonant response such as seen in Figure 4.9. The dynamic thrust ratio is 1.233 at a

peak base acceleration of 0.2g and remains almost constant up to an input acceleration

of 0.35g. The dynamic thrust increases about 23% due to the non-linear effect. The

amplification factor of ground accelerations decreases from 3.0 to 2.2 with the increasing

level of input acceleration.
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Figure 4.11: Dynamic responses of a soft site due to non-linear effects,G0=66,000 kPa
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The studies from equivalent linear analyses reveal that the dynamic thrust ratios

usually increase with the levels of input accelerations. For the cases investigated, the

increase of dynamic thrust due to non-linear effect is about 25% of the dynamic thrust

obtained from a linear elastic analysis.
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Dynamic Analyses of Pile Foundations

66



Chapter 5

Dynamic analyses of pile foundations

Dynamic soil-pile-structure interaction is a challenging area to geotechnical researchers

and engineers. A very common example is the 3-D dynamic analysis of a pile foundation

for a bridge abutment. The analysis involves modelling of soil-pile-soil interaction, the

effects of the pile cap, non-linear soil response, and in many cases incorporates seismi

cally induced pore water pressures. There are many approaches to solving the dynamic

response of pile foundation.

Novak (1991) gave an extensive review of the more widely accepted methods of anal

ysis for piles under dynamic loads. His study showed that pile group response can not be

deduced from single pile response without taking pile-soil-pile interaction into account

and that the dynamic characteristics of pile groups are strongly frequency dependent and

may differ significantly from the characteristics of a single pile.

5.1 Dynamic analyses of single pile response

Analytical modelling of single pile response may be divided into two major categories,

elastic continuum models coupling the soil and pile in a unified system and the lumped

mass-spring-dashpot models. The elastic continuum models are mostly used for the

analysis of pile foundation subjected to low level excitation such as problems related

67
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to machine foundations. The lumped mass models are formulated by separating the re

sponse of piles from the soil medium. The contribution of the soil medium to the dynamic

response of pile foundation is taken into account by using empirically or analytically de

rived Winkler type springs and viscous dashpots along the pile shaft.

Elastic continuum models The analytical approach that can model the interaction

between the pile and soil using the theory of continuum mechanics is very difficult. Ac

curate mathematical solutions of the problem are not available even for the idealistic

assumptions of linear elasticity or viscoelasticity, homogeneous soils and the pile being

welded to the soil. Thus various approximate formulations have been developed. An

approximate solution for the horizontal response of an endbearing pile in a homogeneous

soil layer was presented by Tajimi (1966). His formulation neglected the vertical compo

nent of the motion.

The work of Novak, Nogami and their co-workers (Novak, 1974; Nogami and No

vak, 1977; Novak and Aboul-Ella, 1978a,1978b; Novak et al., 1978; Novak and Sheta,

1980,1982) is particularly significant in advancing solutions to the problem of an elastic

beam vibrating in a homogeneous or multi-layered elastic isotropic continuum subjected

to dynamic pile head loading. In 1974, Novak formulated a simple approach based on

plane strain soil reactions. His formulation may be interpreted as a plane strain complex

transmitting boundary attached directly to the pile. The solution was first presented for

a homogeneous soil layer without any material damping. Material damping was later

included in closed form expressions for soil reactions in Novak et al. (1978). The for

mulation of the plane strain approach was further extended by Novak and Aboul-Ella

(1978a,1978b) to include layered media. The computer program PILAY was formulated
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for these types of solutions.

In using Novak’s formulation much of attention is focused on the pile head impedance

functions. The impedances have a great influence on the response of pile supported build

ings and structures. The pile head impedances can be defined as the transfer functions

describing the ratios between the complex valued displacement response at the pile head

and the harmonic forces (or moments) applied at the pile head.

Pile head impedances derived using elastic theory are most appropriate for low level

shaking where the dynamic pile head forces induce essentially elastic strains in the soil

around the pile. The pile head impedance is usually expressed in terms of complex shear

moduli, the real part of which represents the secant elastic stiffness of the soil and the

imaginary part accounts for material (hysteretic) damping. Consequently the pile head

impedance has both a real component and an imaginary component. The real compo

nent represents the elastic stiffness of soil while the imaginary component indicates energy

losses due to wave propagation away from the pile (radiation damping) and hysteretic

damping in the soil. For low level of excitation hysteretic damping is small and system

damping is mostly dominated by radiation energy losses.

The real component of pile head impedance derived using Novak’s plane strain ap

proach has been found to diminish as the frequency approaches zero (Novak and Aboul

Ella, 1978a). This result is not realistic. Novak and Nogami have suggested that plane

strain soil reactions can be used provided low frequency corrections are applied. In

the computer program PILAY, a frequency cut-off is applied for determining pile head

impedances of single piles. Nogami and Novak use static stiffness when the dimension

less frequency a = wro/V5 is less than about 0.3, where w is the excitation frequency, r0
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is the pile radius and V8 is the effective shear wave velocity of soil in the depth range

where maximum pile bending occurs. Alternatively at lower frequencies, the pile head

impedance can be taken as constant and equal to that calculated at a suitable dimen

sionless frequency, such as a 0.3.

In PILAY analysis, constant damping coefficients are assumed when the dimension

less frequency a is less than 0.3. That is, the damping coefficients are assumed to be

independent of frequency when a < 0.3. This assumption does not necessary hold espe

cially when the frequency independent hysteretic damping is significant. Other methods

for determining the damping of pile foundations are given below. It should be noted,

however, the Novak’s solutions were primarily intended for for machine foundations for

which a is usually greater than 0.3.

The imaginary component (damping) of pile head impedance, represents the

energy losses along the pile. For an equivalent viscously damped system, the viscous

dashpot coefficient c (damping coefficient) is defined as the ratio of the damping and

the frequency cjj = Cj/w. The equivalent viscous damping coefficients vary with

depth z along the pile because the hysteretic damping varies with pile defiections and

strain in the near field. Gazetas and Dobry (1984) proposed a simple formulation for

computing the damping coefficients. According to them, the damping coefficients consist

of the radiation and hysteretic damping components, or ci., = C,. + The radiation

damping coefficients c,. given by Gazetas and Dobry have been found in good agreement

with those derived by Novak et al. (1978) and Roesset and Angelides (1980). The expres

sions proposed by Gazetas and Dobry are frequency and depth dependent. For depths

greater than 2.5 times the pile diameter the radiation dashpot coefficient is given as
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cr = 4rop8V8{1+
[(hl
]125}()°75a°25 (5.1)

in which a is the dimensionless frequency a = wro/ 17, w is the frequency of excitation,

r0 is the pile radius and V8 is the free field shear wave velocity. For shallower depths, the

radiation dashpot coefficient is given as

c,. =8ropsV8()075a_025 (5.2)

Recently Gazetas et al. (1993) proposed a simpler expression for the viscous damping

coefficient along the pile. The frequency dependent radiation damping coefficient for

vertical motions is expressed as

TI .., —0.25
Cz—PsVs(Lao

and for horizontal motions

c =6p8V8da°25 (5.4)

in which d is the pile diameter and a0 = wd/V3. These formulations were used in a

Beam-on-Dynamic-Winkler foundation simplified model by Gazetas et al. (1993).

The pile head impedances are often used as foundation spring and dashpot param

eters in the analysis of superstructures subjected to earthquake loading. This type of

analysis in which the pile foundations are replaced by springs and dashpots is usually

called uncoupled analysis.

The assumption generally made in an uncoupled analysis is that one may use the free

field surface accelerations as input into the base of the superstructure. The assumption
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actually neglects the influence of foundation-ground may have on the motions of the pile

cap. The motions of the pile cap may differ significantly from the motions of the free

field surface due to kinematic interaction between the pile and soil.

The influence of kinematic interaction on pile head accelerations has been studied by

Gazetas (1984) and Fan et al. (1991). In the latter publication, comprehensive studies

were made on the kinematic seismic response of single piles and pile groups. The influ

ence of kinematic interaction may become significant if the stiffness ratio between the

pile and the soil is high, such as E/E8 > 10, 000.

An uncoupled superstructure analysis that neglects kinematic interaction appears to

be valid provided the free field surface motions are dominated by relatively low frequency

waves. The neglect of kinematic interaction generally results in an overestimate of dy

naniic pile cap motions transmitted to the superstructure.

The other difficulty in an uncoupled analysis lies in selecting appropriate equivalent

elastic moduli of soil compatible with strains occurring during a strong earthquake. The

reduction of soil stiffness and the increase of damping associated with a strong shaking

are sometimes modelled crudely in these analyses by making arbitrary reductions in the

shear moduli and arbitrarily increasing the viscous damping. For this reason the results

of these studies have not proved very useful for the response of pile foundations to earth

quake loading.

The effect of soil non-linearity on pile head impedances of single piles has been in

vestigated for dynamic pile-head loads by Angelides and Roesset (1981). A cylindrical
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Figure 5.12: Variation of pile horizontal stiffness, k with force and frequency due to
soil non-linearity (after Angelides and Roesset, 1981)

region of soil surrounding the pile is modelled by using toroidal finite elements. A con
sistent boundary matrix was placed at the edge of this core region. The equivalent linear
method (Seed and Idriss, 1967) was used to model the non-linear soil response. Even
neglecting slippage and gapping, they demonstrated a dramatic reduction of horizontal
pile head stiffness by applying harmonic horizontal force at the pile head (Figure 5.12).
Similar studies using the program PILE3D described in chapter 8 confirm the finding of
Angelides and Roesset (1981). The effect of soil non-linearity on pile head stiffness is
significant and must be taken into account with appropriate accuracy.

Lumped mass-spring-dashpot models. A more complex analysis of the seismic re
sponse of single piles which incoporates the non-linear response of soil is based on an
approach in which pile foundation and the superstructure are analyzed as a combined
system. The interaction between the pile and the near field soil is modelled using a series
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of non-linear Winkler springs derived from full scale test measurements or non-linear

finite element solutions (Yegian and Wright, 1973; Arnold et al., 1977; Matlock et al.,

1978a,1978b; Bea et al.,1984; Nogami and Chen, 1987). The stiffness of one of these

springs represents the combined stiffness of the strain softened, near field soil and the

exterior free field soil whose properties are governed by the intensity of the earthquake

ground motions. The method of analysis relating to the use of Winkler springs is usually

referred as lumped mass models.

At large displacements, the response of pile foundation is controlled by the non-linear

characteristics of soil at high strain, pile separation (gapping), slippage and friction. It

is difficult to incorporate these factors in a continuum model. Therefore lumped mass

models, such as these employed by Penzien (1970), Matlock et al. (1978a,1980) and oth

ers, have been used to model the pile response at large displacements. For example the

dynamic pile analysis program SPASM (single pile analysis with support motion) was

formulated by Matlock et al. (1978a,1980) for realistic pile response analysis.

Models of this type are versatile for analysis of single piles. However difficulties exist

in relating the characteristics of the discrete elements to standard geotechnical param

eters of soil. Various non-linear resistance-deflection relationships known as p-y curves

and t-z curves have been proposed. The soil stiffness at a particular depth is established

using as input a non-linear soil resistance versus lateral pile deflection (p-y) curve where y

represents the relative deflection between the pile and the moving ground during shaking

and p is the net soil resistance to the pile motion.

Specification of the mathematical form of the backbone p-y curves for both static and
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cyclic pile head loading of piles in sand and clay are available from several sources (Amer

ican Petroleum Institute,1979; Stevens and Audibert,1986; Gazioglu and O’Neill,1984;

Murchison and O’Neill, 1984). These recommendations have come from the results of

full scale pile head loading tests. Extensive data on the p-y curves and non-linear pile re

sponse were obtained by Yan (1990) using the hydraulic gradient similitude method and

by Gohl (1991) using the centrifuge testing. The most commonly used set of specification

for constructing p-y curves is based on the recommendations of the American Petroleum

Institute (1986). Mostly used in offshore structures, these p-y curves are available for

clay and sand, and they make a difference between static loading and cyclic loading.

However the validity of their use for earthquake analysis of piles has not been verified.

In SPASM analysis, the response of the structure relies on both the accuracy of p-y

curves for representing the soil non-linearity and the accuracy of time-history input of

free field displacements. Verification studies of this method by Gohi (1992) using data

from centrifuge tests showed that the dynamic response of a structure is sensitive to the

time-history input of free field displacements. The SPASM program underpredicts pile

fiexural response. A key difficulty in using SPASM is the accurate determination of free

field input motions to be used along the embedded length of the pile. The damping

properties are determined separately by methods such as the one proposed by Gazetas

and Dobry (1984). The so-called coupled method in SPASM is actually a semi-coupled

method. The method only couples the super-structure with piles, but it does not couple

piles with their surrounding soils directly. Therefore the SPASM analysis is not applica

ble to analysis of pile groups.
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5.2 Dynamic analysis of pile groups

Currently pile group stiffness and damping coefficients are widely used in dynamic sub-

structuring analysis of superstructure-pile foundation. The analysis of dynamic response

of pile group is limited to elastic response using uncoupled multi-step analysis. The

method of analysis (Gazetas et al., 1992) involves estimation of the dynamic founda

tion impedance and effective input motions applied to the base of the superstructure.

Dynamic sub-structuring analysis is generally carried out using modal analysis incorpo

rating equivalent elastic pile group stiffness and damping coefficients. The pile group

stiffness and damping coefficients necessary for the analysis are evaluated using one of

the following methods or a combination.

A useful solution to the three-dimensional dynamic boundary-value problem has been

developed by Kaynia and Kausel (1982). Results from Kaynia and Kausel (1982) show

that dynamic stiffness and damping of pile group are highly frequency dependent and

may significantly differ from that of a single pile. Both stiffness and damping of a pile

group can be either reduced or increased due to pile-soil-pile interaction. They may

exhibit very sharp peaks or be affected even for very large pile spacings. The dynamic

characteristics of a pile group may be explained by pile-soil interaction which depends

on the ratio of the wave length to pile spacing. At higher frequencies the waves propa

gating from a loaded pile in the group may be moving out of phase at the location of an

adjacent pile. The occurrence of this phase shift may result in negative interaction coef

ficients which suggests that the stiffness of a dynamically loaded pile group may in fact

be higher than the combined stiffness of a single pile multiplied by the number of piles

in the group. However these analytical results are limited to linear elastic response. The

sharp peaks in dynamic stiffness and damping of the elastic solution may be suppressed
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due to soil non-linearity.

The concept of the dynamic interaction factor has been proposed by Kaynia and

Kausel (1982) as an extension of the widely used static interaction factor approach (Pou

los, 1971, 1975, 1979). The dynamic interaction factor approach is an approximation of

the more rigorous pile group analysis. The use of dynamic interaction factors avoids the

heavy computing effort involved in a rigorous pile group analysis. A set of interaction

factors is available for floating piles, homogeneous soil and a limited selection of param

eters in Kaynia and Kausel (1982) and for vertical vibration in linearly nonhomogeneous

soil in Banerjee (1987). El-Marsafawi et al. (1992a, 1992b) presented approximate pro

cedures for estimating dynamic interaction factors based on boundary element analysis,

the work of Kaynia (1982), Kaynia and Kausel (1982), Davies et al. (1985) and Gazetas

(1991a, 1991b). These dynamic interaction factors are limited to elastic response, and

mostly for homogeneous soil.

A procedure for estimating dynamic stiffness and damping of a pile group in nonho

mogeneous soil was developed and incorporated in a computer program DYNA3 (Novak

et al.,1990). In DYNA3 analysis the Novak plane strain pile soil interaction approach

is used to determine stiffness and damping of each single pile, which is similar to that

employed in PILAY analysis. The dynamic impedance of pile group is then determined

by considering the soil pile interaction (or group effect) based on the concept of dynamic

interaction factors. The dynamic interaction factors used in DYNA3 are the combination

of the static interaction factor by Poulos and Davies (1980) for vertical loading and El

Sharnouby and Novak (1986) for horizontal loading and the dynamic interaction factors

by Kaynia and Kausel (1982). Although DYNA3 analysis can deal with nonhomogeneous

soil, the analysis is limited to linear elastic response and to the use of elastic dynamic
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interaction factors.

The methods for direct group analysis of pile foundations based on a continuum model

are limited to linear elastic behaviour using either boundary element or finite element

techniques. The linear elastic assumption severely limits the applicability of these mod

els in describing response of pile groups to moderate to strong shaking where significant

soil non-linearity develops and changes the extent of interaction between piles. While

non-linear 3-D finite element analyses have been carried out for research purposes to ex

amine pile to pile interaction under static lateral loading (Brown and Shie, 1991), these

methods are rarely used in practice. Dynamic 3-D finite element analyses of pile group

response incorporating non-linear soil response have not been carried out to date.

5.3 Objectives of this research

In following chapters a continuum theory for analyzing dynamic response of single piles

and pile groups is presented. The proposed method of analysis models the dynamic pile-

soil-pile interaction as a fully coupled system and also possesses ability of modelling soil

non-linear response under strong earthquake loading.

A simplified quasi-3D wave equation is proposed to describe the dynamic motion of

soil under horizontal shaking. The coupled equations of motions between the pile and

soil are solved using the finite element method. A finite element program PlUMP is

developed to compute pile head impedances of single pile and pile group by applying

harmonic forces or moments at pile head. Analyses are carried out in the frequency

domain.
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Studies are carried out to validate the applicability of the proposed quasi-3D model

for simulating the elastic response of pile foundations. Calibration of the proposed model

is made first against the elastic solutions by Kaynia and Kausel (1982). Verification of

the proposed model is next conducted using data from full-scale vibration tests on an

expanded base concrete pile and on a 6-pile group supporting a large transformer.

Attention is then focused on extending the proposed model to incorporate non-linear

soil response under strong shaking. Dynamic analysis of pile foundation is carried out

in the time domain and the procedure of this analysis is incorporated in a computer

program PILE3D. The non-linear characteristics of soil is modelled by using a modified

equivalent linear method of analysis. Also effective routines are incorporated in PILE3D

to model the yielding of the soil and the gapping that may occur in the area near the

pile head.

The capability of the quasi-3D model for simulating the non-linear dynamic response

of pile foundation subjected to earthquake loading is validated using data from the cen

trifuge tests on a single pile and a 2x2 pile group. Under strong shaking soil non-linearity

is significant and changes with time. The level of soil non-linearity also varies in space

at a certain time during shaking. Therefore the dynamic stiffness and damping of pile

foundation change with time. The variations of dynamic stiffness and damping of pile

foundations during shaking are demonstrated for the model pile foundations used in the

centrifuge tests.



Chapter 6

Elastic Response of Single Piles: Theory and Verification

6.1 Introduction

In this chapter, a quasi-3D finite element method of analysis is proposed to determine

the dynamic response of pile foundations subjected to horizontal loading. The proposed

model is based on a simplified 3-D wave equation. The 3-dimensional dynamic response

of soil is simulated by displacements in the horizontal shaking direction. Displacements in

the vertical direction and in the horizontal cross-shaking direction are neglected. There

fore a quasi-3D wave equation is established.

The finite element method is employed to solve the quasi-3D wave equation in the

3-D half-space domain. Elastic analyses are conducted in the frequency domain.

Since the elastic solutions developed by Kaynia and Kausel (1982) are the benchmark

solutions for the dynamic response of pile foundations, they solutions are used to cali

brate the proposed model for elastic response. Dynamic impedances of single piles are

computed and compared with those obtained by Kaynia and Kausel (1982). Kinematic

response of single piles is analyzed; and results are compared with those obtained by

Fan et al. (1991) who used solutions by Kaynia and Kausel. Data from full-scale forced

vibration testing on a single pile are also used to validate the proposed model.

80
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6.2 Dynamic analyses of pile foundations: formulation

Under vertically propagating shear waves (Figure 6.1) the soils mainly undergo shear

deformations in XOY plane except in the area near the pile where extensive compression

deformations in the direction of shaking develop. The compression deformations also

generate shear deformations in YOZ plane, seeing Figure 6.1. Under the light of these

observations assumptions are made that dynamic motions of soils are governed by the

shear waves in XOY plane and YOZ plane, and the compression waves in the shaking

direction, Y. Deformations in the vertical direction and normal to the direction of shaking

are neglected. Comparisons with full 3-D elastic solutions confirm that these deformations

are relatively unimportant for horizontal shaking.

Let v represent the displacement of soil in the shaking direction, Y. The compression

force is 8G1. The shear force in XOY plane is G1, and the shear force in YOZ

plane is The two shear waves propagate in Z direction and X direction, respec

tively. The inertial force is p$; Applying dynamic force equilibrium in Y-direction,

the dynamic governing equation under free vibration of the soil continuum is written as

82v 82v 82vG’ + + Ps (6.1)

where G* is the complex shear modulus, Ps is the mass density, and = 2/(1
—
v) for

a Poisson’s ratio v. Since soil is a hysteretic material, the complex shear modulus G* is

expressed as = G(1 + i 2A), in which G is the shear modulus of soil, and A is the

hysteretic damping ratio of soil. The radiation damping will be included later.

The displacement field at any point in each element is modelled by the nodal dis

placements and appropriate shape functions. A linear displacement field is assumed in
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Figure 6.1: The principle of quasi-3D dynamic pile-soil interaction in the horizontal
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156 221 54 —131

221 412 131 .3l2

54 131 156 —221

—131 _3l2 —22l 412

The radiation damping is modelled using velocity proportional damping. The

ing force Fd per unit length along the pile is given by

Fd=c,,-- (6.7)

where ca, is the radiation dashpot coefficient for horizontal motion.

A simple expression for the radiation dashpot coefficients c, which was proposed by

Gazetas et al. (1993) and is given in Eq. 5.4, is used in the analysis. Applying the same

procedure as that used to obtain mass matrix, the radiation damping matrix [C’] for a

pile element is

156 221 54 —131

221 412 131 _3l2

54 131 156 —221

—131 _3j2 —221 4j2

The global dynamic equilibrium equation in matrix form is written as

[M*j{i} + [C*j{)} + [K*]{v} = {P(t)} (6.9)

in which {i}, {i} and {v} are the nodal acceleration, velocity and displacement, re

spectively, and P(t) is the external dynamic loads applied.

pEAl
[M ]ji

— 420 (6.6)

damp-

* Cr1
pi1e (6.8)
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Figure 6.3: Pile head impedances

6.3 Pile head impedances

The impedances are defined as the complex amplitudes of harmonic forces (or mo

ments) that have to be applied at the pile head in order to generate a harmonic motion

with a unit amplitude in the specified direction (Novak,1991).

The concept of translational and rotational impedances is illustrated in Figure 6.3.

The translational, the cross-coupling, and the rotational impedances of pile foundations

used in this analysis are defined as

• K: the complex-valued pile head shear force required to generate unit lateral

displacement (v=1.O) at the pile head while the pile head rotation is fixed (S = 0).

• K8: the complex-valued pile head moment generated by the unit lateral displace

ment (v=1.0) at the pile head while the pile head rotation is fixed (S = 0)
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• K88: the complex-valued pile head moment required to generate the unit pile head

rotation ( 1.0) while pile head lateral displacement is fixed (v=0)

Since the pile head impedances K,,,,, K,,8,K88 are complex valued, they are usually

expressed by their real and imaginary parts as

= k1 + i C (6.10)

= +i (6.11)

in which and are the real and imaginary parts of the complex impedances,

respectively, and i = cj = Cj/w = coefficient of equivalent viscous damping; and

w is the circular frequency of the applied load. and C1 are usually referred as the

stiffness and damping at the pile head. All the parameters in Eq. 6.10 are dependent on

frequency w.

Determination of impedances K,,,,, K,,8 and K88 Pile head impedances will be

evaluated as functions of frequency by subjecting the system to a series of harmonic

loads. Under harmonic loading P(t) = Poeit, the displacement vector is of the form

v = voet, and Eq.6.9 is rewritten as

{[K] + i . w[C*]
—w2[M]}{vo} = {P0} (6.12)

or

[K]global{VO} = {P0} (6.13)
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where

[K1gzabo1 [K*j + i w[C] —w2[.M] (6.14)

According to the definition, impedances K,,,, and Kue can be found by applying a unit

horizontal displacement at the pile head under the condition of a fixed pile head rotation.

Eq.6.13 becomes

0

[K]gia&ai 1.0 = K,,,, (6.15)

0.0 K,,8

where v are the displacements of the nodes other than pile head.

Dividing Eq. 6.15 by Ku,, and eliminating the row of zero rotation, one obtains

Iv/K,,l 1 0 1
[K]9z0b = (6.16)

I v J (1.0)

where v = 1/K,,,,. The moment at pile head M corresponding to v is also computed.

This suggests that an easy alternative for determining pile head impedances is to

apply a unit horizontal force at the pile head and calculate the complex displacement at

the pile head v. Therefore the pile head impedances K,,,, and K,,9 are determined

K,,,, = (6.17)

K,,9 = (6.18)
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Using the same principle, the rotational impedance K88 can be determined by applying

a unit moment at the pile head under the condition of a fixed pile head horizontal dis

placement. The rotational impedance K88 is determined as

K88 = (6.19)

where 8 is the rotation at the pile head caused by the unit moment at the pile head.

Because of reciprocity principle, the cross-coupling impedance K8 and K8 are identical.

6.4 Verification of the proposed model: pile head impedances

In order to assess the accuracy of the proposed quasi-3D finite element approach, the

impedance functions for single piles are determined and compared with the analytical

results by Kaynia and Kausel (1982). Analyses were performed in the frequency domain

for elastic conditions. Impedances K8,K88 will be presented as functions of the

dimensionless frequency a0, where a0 is defined

a0 = (6.20)

in which w is the angular frequency of the exciting loads (force and moment) at the

pile head, d is the diameter of the pile, and V1 is the shear wave velocity of the soil

medium. For a uniform soil profile with a shear modulus G and a mass density p, V8 is

computed by V8 =

It is found that for given values of E/E8 and a0, the ratios K/(E8d),K8/(E3d2),

and K98 /(E8d3)hold unchanged for any soil modulus E5 of a uniform soil profile. There

fore the normalized impedances K/(E5d),K8/(E8d2),andK88/(E8d3),are presented
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single piles:

L d
Ep/Es = 1,000
L/d > 15 (floating pile)
soil damping 5 %

Poisson’s ratio 0.4

Figure 6.4: A pile-soil system used for computing impedances of single piles

as a function of the dimensionless frequency a0 when other parameters are given.

Figure 6.4 shows a pile-soil system and its relative parameters. A ratio of Er/ES =

1, 000, which was used by Kaynia and Kausel, is adopted for the analysis, where E and

are the Young’s moduli of the pile and the soil, respectively. The soil medium has a

Poisson’s ratio v = 0.4 and a hysteretic damping ratio )L = 5%. A mass density ratio

pp/pa =1.4 is used here.

Due to symmetry, only half of the full mesh is required to model the response of

pile-soil interaction. The half mesh, shown in Figure 6.5, consists of 1463 nodes and 1089

elements. The use of half mesh reduces the size of the global matrix by a factor of 4.0

with a corresponding large reduction in computational time. It took about 300 seconds

to determine the dynamic impedances for each frequency using a 486 PC computer.
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VI,

/

Figure 6.5: Finite element modeffing of single pile for computing impedances

When the symmetric condition is applied, the Young’s modulus E and the mass

density Pp of the pile should be reduced by a factor of two in the case of a single pile

which is bisected the axis of symmetry. This reduction is due to the fact that the central

pile has been shared evenly by the other half of the full mesh. For the same reason, the

applied loads (force and moment) at the pile head should be reduced by a factor of 2.0.

These adjustments are automatically included in the program PlUMP.

Discussion of results The normalized quantities K/(E3d),K6/(E9d2),K98/(E3d3)

are presented as functions of dimensionless frequency a0. Since the impedances are com

plex quantities, their values are expressed in term of their real partsk1(stifFness) and

imaginary partsC1(damping) according to Eq.6.l0. Hence the normalized stiffness and

damping are compared with those obtained by Kaynia and Kausel (1982), and they are

shown in Figure 6.6, 6.7, and 6.8, respectively.
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Figure 6.6: Normalized stiffness k, and damping C versus a0 for single piles
(E/E, 1000, ii =0.4, )=5%)
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Figure 6.7: Normalized stiffness k9 and damping Cue versus a0 for single piles
(E/E5 = 1000, ‘ =0.4, A=5%)
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Figure 6.8: Normalized stiffness k99 and damping C versus a0 for single piles
(E/E6 = 1000, z’ =0.4, )=5%)
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The computed impedances K8, and K88 agree well with those obtained by Kay

nia and Kausel. Both solutions show that dynamic stiffnesses increase slightly as the

dimensionless frequency a0 increases. The computed quantities are slightly smaller than

those by Kaynia and Kausel, which implies their modelling of the pile-soil systems results

in stiffer response. The translational stiffness computed by Kaynia and Kausel are

about 10% larger than those from current study. The other two stiffnesses k8 and k98

show less sensitivity to the method of computation. The differences of k8 and k98 from

the more exact solutions are about 5%.

However, the difference of impedance between the two solutions is insignificant in

practice when soil non-linearity is an important factor. In many cases reduction of soil

shear moduli with the increase of shear strain is significant. Quantitatively modelling of

reduction of shear moduli, especially in the near field of the pile, is important for the

determination of pile head impedances. It will be shown later that the proposed method

has the ability to determine the non-linear dynamic impedances as the soil moduli de

crease with the increase of shear strain under strong shaking.

Comparison with solutions by Novak et al. Using the mesh shown in Figure 6.5,

stiffness k,and damping C were computed for a Er/ES ratio of 295. The results are

then compared to solutions presented by Novak and Nogami (1977), and Novak’s ap

proximate (Novak,1974). Figure 6.9(a) and 6.9(b) show comparisons on stiffness and

damping, respectively. The values of dynamic stiffness computed by Novak and Nogami

are about 25% larger than those computed by author. For a0 > 0.3, values of dynamic

stiffness from Novak’s approximate solution are about 10% larger than those computed

by author. For dimensionless frequency a0 less than 0.3, dynamic stiffness computed by
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Figure 6.9: Comparison of stiffness and damping C with solutions by Novak and
Nogami (1977), Novak (1974)
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Figure 6.10: Comparison of stiffness for different mesh size

Novak’s approximate method diminishes with the decrease of frequency. The damping

from Novak and Nogaini or Novak’s approximate method is normally larger than damp

ing computed in the present study (Figure 6.9(b)).

Effect of the number of finite elements The number of finite elements used in the

analysis has some influence on the impedances computed using the proposed method.

Theoretically accuracy of the results increases with the number of finite elements. Espe

cially at a high frequency (such as a0 > 0.3), the number of finite elements needs to be

very large to capture the possible number of modes that are significant to the response

of pile foundations at that frequency.

Figure 6.10 shows a comparison of the dynamic stiffness computed by two different

meshes. It is clear that some differences exist between results from the two meshes around
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d

Lid = 20
1 .5L

soil damping 5%

Poisson’s ratio 0.4

-4

base motion

Figure 6.11: Pile foundation for analysis of kinematic response

a0=O.3. A finer mesh with more finite elements is better to represent the dynamic re

sponse accurately.

6.5 Verification of the proposed model: kinematic interaction

A pile-soil system shown in Figure 6.11 is subjected to a harmonic displacement vbei1t

at its rigid base. The dynamic response at the pile head may be same as or very close

to the dynamic response at the free field surface if the pile is very flexible. However in

many cases the dynamic response at the pile head differs significantly from the response

at the free field surface because piles are generally much stiffer than soil and thus modify

soil deformations. This type of interaction between piles and soils is called kinematic

interaction
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6.5.1 Kinematic interaction factors

The dynamic motions at the free field surface and at the pile head are different due to the

kinematic interaction between the pile and the soil. Let the harmonic displacements at

the free field surface be represented by v11 ei f1t , and at the pile head by vet and &peiat,

in which v, and 8, are the complex amplitudes of the translational displacement and the

rotational displacement, respectively.

Absolute values of complex amplitudes of harmonic displacements are used for deter

mining the kinematic interaction factors. The kinematic interaction factors I,. and I, are

defined after Gazetas (1984) as

= (6.21)

= d
(6.22)

in which Ui,, U1I and are the absolute values of the complex amplitudes v,, V11

and , respectively; and d is the diameter of the pile.

6.5.2 Computed kinematic interaction factors

The kinematic interaction factors are obtained for pile-soil systems with a flexible pile

(E/E8 = 1, 000), and with a stiff pile (E/E, = 10, 000). The other parameters of the

systems are shown in Figure 6.11.

The accuracy of the quasi-3D finite element method is checked against the boundary

integral method developed by Kaynia and Kausel (1982) and used by Fan et al. (1991).
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The computed kinematic interaction factors I, and ‘ç1 as functions of the dimension

less frequency a0 are plotted in Figure 6.12 for E/E8=1,000 and in Figure 6.13 for

E/E=10,000 together with the interaction factors obtained by Fan et al. (1991). A

comparison of the two sets of factors shows that there is very good agreement between

the quasi-3D solutions and the boundary element solutions.

The kinematic interaction becomes more significant when the stiff pile is placed in

the soil. ForE/E8=10,000, the response of the pile head is significantly reduced when

the dimensionless frequency a0 is greater than 0.25. At a0 = 0.35, the amplitude of

the translational displacement at the pile head is only 45% of the amplitude of the

displacement at the free field surface.

6.6 Verification of the proposed model: forced vibration testing

Dynamic vibration testing of an expanded base concrete pile was conducted and reported

by Sy and Siu (1992). The vibration test was carried out by applying very low harmonic

loads at the structural mass, which generated elastic response in the system. This pro

vides an opportunity to validate the quasi-3D model for elastic response.

6.6.1 Description of site condition and test results

The testing site is located in the Fraser river delta south of Vancouver. The soil profile

at the testing site consists of 4 m of sand and gravel fill overlying a 1 m thick silt layer

over fine grained sand to 40 m depth. A seismic cone penetration test (SCPT 88-6)

was conducted 0.9 m from the test pile location. In addition a mud-rotary drill hole (
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Figure 6.12: Kinematic interaction factors versus a0 for Er/ES = 1, 000
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Figure 6.14: The in-situ measured geotechnical data (after Sy and Siu, 1992)

DH88-2) was carried out 2.4 m from the test pile location. The measured in-situ shear

wave velocity data are presented in Figure 6.14, together with the cone penetration test

(CPT) data and the Standard Penetration Test (SPT) data.

The layout of the pile test is shown in Figure 6.15. The pile is an expanded base

concrete pile (Franki-type), which had a nominal 510 mm diameter shaft down to 7.6

m depth with an estimated 0.93 m diameter spherical base. In order to perform the

vibration test, the top of the cast-in-situ concrete shaft was extended above the ground

surface, and a structural mass consisting of 1.6 m cube of reinforced concrete was then

formed on top of the pile. The final length of the additional pile shaft was 1.37 m with

150 mm above the ground surface.

Sinusoidal sweep testing was carried out for determining the fundamental frequency
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Figure 6.15: The layout of the full-scale vibration test on a single pile (after Sy and Siu,
1992)

and damping ratio of the system. Harmonic loads with an amplitude of 165 N was ap

plied horizontally at the center of the shaker ( Figure 6.15). The shaker is located at 2.03

m above the pile head. The measured fundamental frequency of the structure-pile-soil

system was 6.5 Hz. The damping ratio was determined to be 4%. The damping ratio

was calculated from the measured response curve using the bandwidth method (Clough

and Penzien, 1975).

6.6.2 Computed results using the quasi-3D model

The structural properties of the pile cap and the test pile used in the analysis are pre

sented in Table 6.4. The shear wave velocity (V6)1 unit weight and damping ratio (D3)

used in the analysis are shown in Figure 6.16. According to Sy and Siu (1992), except

for the top 1.2 m depth, an upper bound of the measured V, values was used to account

for the effect of soil densification caused by pile installation. However V6 values at the
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Table 6.4: Structural properties of pile cap and test pile (after Sy and Siu, 1992)

Parameter I Unit I Value
. PILE CAP AND SHAKER

Mass Mg 10.118 -_

Mass moment of inertia Mg in2 4.317
Height to center of gravity in 0.8

, TEST_PILE
Top 1.37m : axial rigidity (EA) MN 6350
Top 1.37m : flexural rigidity (El) MN in2 141
1.37-7.77m : axial rigidity (EA) MN 5150
I.37-7.77m flexural rigidity (El) tIN in2 92
Base axial rigidity (EA) tIN 14,720
Base : flexural rigidity (El) MN in2 800
Material damping ratIo 0.01
Poisson’s ratio 0.25

upper 1.2 m were reduced since the original soil around the extended pile shaft section

was replaced by the loose backfill. Poisson’s ratio v 0.3 was assumed for all soil layers.

Figure 6.17 shows the 3-D finite element model used for obtaining the pile head

impedances. The finite element model consists of 1225 nodes and 889 elements with one

beam element above the ground surface representing the pile segment above the ground.

The expanded concrete base was modelled by a solid element rather than a beam element

in the finite element analysis. The dynamic impedances K,,9, andK88 were obtained

at the pile head.

After the dynamic impedances of the pile foundation have been determined, the dy

namic response of the pile cap can be obtained by performing a structural analysis. The

translational and rotational response of the pile cap are obtained by using the dynamic



0

DE
PT

H
(m
)

0)
1
1
,
1
1
1
1
1

.1

CD I
-
.

CD CD CD CD 0 0 CD CD p CD p Ci) CD CD

0
I

I

U
q CD I cj CD U
) 0 2 p CD CD Ci
)

Ci
)

CD -
S
.

CD p p Cl
)
-S
.

U
)
n p CD (I
D p C
,)

-S
.

I C
D

_
l
_
I
I
I
I
I
I
I
I
I
1
_
I
l
I
I
I
I
,
i

1%
)

-
I_n 0

—
.
C

3

p Cl
) 0 Cl
) CD 0 CD p C.) p 0

-
Cl
)

K
’

I

_
_
_
_
_
_
_

I
I

I
I

I
I

I
I

I
I

I
I

I
I

D 0



Chapter 6. Elastic Response of Single Piles: Theory and Verification 107

Figure 6.18: An uncoupled system modelling the horizontal motions of structure-pile cap
system

solution of a two-degree of freedom system (Figure 6.18). Under harmonic loads, the

translational displacement amplitude v, and the rotational displacement amplitude 6,, at

the pile head are computed according to the following equation

2 m m h9 I v,, + iC k9 + iC9 f 1 1 ‘o—w ç
m h9 ( 8 J k9 + iC9 k99 + iC99 ( 6,, J ( M0

(6.23)

where m is the mass of the pile cap and shaker, h9 is the height of the centre of

gravity to the pile head, and .1 is the mass moment of inertia at the centre of gravity;

C are the stiffnesses and dampings at the pile head; P0 and M0 are amplitudes of

the harmonic external force and moment, respectively, applied at the pile head.

The quantities v and 6,, are determined using the testing loads. During the test har

monic horizontal loads with amplitude of 165 N was applied at the shaker, which caused

2DF system



Chapter 6. Elastic Response of Single Piles: Theory and Verification 108
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Figure 6.19: Amplitudes of horizontal displacement at the centre of gravity of the pile
cap versus the excitation frequency

a moment of 335 N.m at the pile head. ThereforeP0=165 N and M0 335 N.m were

used in Eq. 6.23 for obtaining v, and 8. The horizontal displacement amplitude at the

centre of gravity of the mass can now be calculated by

vcg = v, + 8, (6.24)

The analyses were carried out at different frequencies w. The computed horizontal

displacement amplitude at the center of gravity of the mass versus frequency w is shown

in Figure 6.19.

Discussion of results Very clear and pronounced peak response is observed for the

horizontal motion. Maximum horizontal displacement at the center of gravity of the pile

cap occurs at an excitation frequency around 6.67 Hz compared to a measured resonant

frequency of 6.5 Hz. The damping ratio is evaluated from the response curve in Figure
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6.19 using the bandwidth method. The computed damping ratio is 6% compared to a

measured damping ratio of 4%. This analysis demonstrates that the proposed model has

the capability of modelling the dynamic response of single piles.



Chapter 7

Elastic Response of Pile Groups: Theory and Verification

7.1 Introduction

The quasi-3D model applied in the previous chapter to single piles is also applicable to

the analysis of elastic response of pile groups under horizontal excitation. However, the

horizontal displacement is coupled with rocking of the group. The rocking impedance of

pile group is the measure of the resistance to rotation of the pile cap provided by the

resistance of each pile in the group to vertical displacements.

In this chapter, the determination of the rocking impedance of a pile group is formu

lated first by applying the quasi-3D model in the vertical direction. For the verification

of the proposed model, dynamic impedances of a 2x2 pile group are computed and com

pared with those by Kaynia and Kausel (1982). Finally, results of a full-scale vibration

test on a 6-pile group are used to verify the proposed model.

7.2 Rocking impedance of pile group

The rocking impedance of a pile group reflects the resistance of the pile group to the

rotation of the pile cap when piles are attached to a pile cap. If the piles can be consid

ered pinned to the pile cap the rotation of the pile cap does not cause moments at pile

heads, but it does induce vertical axial forces at pile heads as shown in Figure 7.1. The

110
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rigid base
Figure 7.1: The mechanism of rocking in a pile group

rocking impedance K,.. of a pile group is defined as the summation of moments around

the centre of rotation of the pile cap. These moments are caused by the axial forces at
all pile heads required to generate a harmonic rotation with unit amplitude at the pile
cap. This definition is quantitatively expressed as

Kr,. . F whefl...cap 1.0 (7.1)

where r are distances between the centre of rotation and the pile head centres, and F

are the amplitudes of axial forces at the pile heads.

In the analysis, the pile cap is assumed to be rigid. For a unit rotation of the pile

cap, the vertical displacements w’ at all pile heads can be easily determined accord

ing to their distances from the center of rotation r. Now the task is to determine the

axial forces F at the pile heads which are required to generate these vertical displace

ments w’. The quasi-3D model is applied in the vertical direction to accomplish this task.

centre of
0

pile cap pile

r
rj
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7.3 Dynamic equation of motions in the vertical direction

Under a vertically propagating compression wave, the soil medium mainly undergoes

compression deformations in the vertical direction. In the two horizontal directions,

shearing deformations are generated due to the internal friction of the soil. Although

compressions occur in the two horizontal directions, assumptions are made that the nor

mal stresses in the two horizontal directions are small and can be ignored. Therefore

the dynamic motions of the soil are governed by the compression wave in the vertical

direction and the shear waves propagating in the two horizontal direction X and Y as

shown in Figure 7.2.

By analogy to the principle used in the previous chapter, the quasi-3D wave equation

of soil in the vertical direction is given by

G— + G*4 + 6ZG4 =p$ (7.2)

where G* is the complex shear modulus, P8 is the mass density of soil, and 6 is a

function of Poisson’s ratio v. Based on assumptions that normal stresses in the two

horizontal directions X and Y are zero, it is determined 6 = 2(1 + 1?).

The stiffness matrix [K]801 and mass matrix [M]801 are evaluated from Eq. 7.2 for

each soil element as described earlier.

Under a vertical propagating compression wave, the undamped free vibration equa

tion of motion for a pile element is given by
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Figure 7.2: The quasi-3D model in the vertical direction, Z

82w 82w= pA-- (7.3)

where EA is the compression rigidity of the pile, and p, is the mass density of the pile.

The stiffness matrix [K]pjie and the mass matrix [M]jie of the pile element are given by

and

(7.4)

(7.5)

The radiation damping under vertical motion is also modelled using velocity propor

tional damping. The radiation dashpot coefficient c2, which was proposed by Gazetas et

al. (1993) and is given in Eq. 5.3, is used in the analysis. The radiation damping matrix
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for a pile element is given by

ci 2 1
[C]piie = (7.6)

12

The global dynamic equilibrium equation in matrix form is given by

[M]{’th} + [C]{tb} + [K]{w} = {P(t)} (7.7)

in which {zui}, {zi} and {w} are the nodal acceleration, velocity and displacement, re

spectively, and P(t) is the external dynamic loads applied.

7.4 Determination of rocking impedance

In order to evaluate the rocking impedance of pile group, harmonic forces P(t) = Poeit

are applied, which generate harmonic displacements w = woeit. Therefore, Eq.7.7 is

rewritten as

[K]global{WO} {P0} (7.8)

where

[K]globaj = [K] + i w[C] —w2[M] (7.9)

Since the vertical displacements at the pile heads {wç,wç, •, •,WPm}T are known, the

axial forces {F1,F2, , , Fm}T at the pile heads are determined by
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0

W2 0

Knm
0 (7.10)

Kmn Kmm
F1

W Fm
Where Knm, Kmn, and Kmm are sub-matrices of the global matrix Kgio&ai, and

{w1,w2, •,
•,w}T are vertical displacements at nodes other than the pile heads. The pile

head axial forces {F1,F2,,Fm}T can be determined if the displacements {wi,w2,., .,wn}T

are known. Applying the matrix separation technique to Eq. 7.10 yields

Wi

[K] + [Knml
= { 0 } (7.11)

Wn

and
Wi

F1
Wi

[Kmnj +[Kmm] • (7.12)

Fm
Wn

After the displacement vector {w1,w2,., .,w}T is computed from Eq.7.11, the pile

head axial force vector {F1, , Fm} is then determined using Eq. 7.12 . Now the rocking

impedances of the pile group are evaluated using Eq. 7.1. The procedure for computing

rocking impedances of pile group is incorporated in the computer program PlUMP.
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F

____________________ _________________

2x2 pile group:

L Ep/Es = 1,000

d s/d=5.0

L/d > 15 (floating pile)

soil damping 5 %

Poisson’s ratio 0.4

S •I
Figure 7.3: A pile-soil system used for computing impedances of pile groups

7.5 Elastic response of pile group: results and comparisons

The dynamic impedances of a 4-pile (2x2) group with s/d=5.0 are presented, in which s

is the centre to centre distance of two adjacent piles and d is the pile diameter. A rigid

pile cap is rigidly connected to the four pile heads as shown in Figure 7.3. A stiffness

ratio of the pile and soil E/E2 = 1000 is used, and a mass density ratio Pa/Pp 0.7 is

applied.

The dynamic impedances of pile groups were obtained by Kaynia and Kausel (1982)

for a half-space soil medium. In approximating the half-space soil medium using the

finite elements, a rigid base is assumed at a depth of 5L (L=length of pile) beyond the

tip of the pile. The dynamic impedances are evaluated at the bottom of the pile cap.
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Discussion of results In order to show the pile group effect, dynamic impedances of

the pile group are normalized to the static stiffness of the pile group expressed as the

stiffness of a single pile times the number of piles in the group. The normalized dynamic

impedances of the pile group, which are called the dynamic interaction factors, are there

fore defined as

a,,,,
N.kV°V

(7.13)

a,,9
N.k,,°9 (7.14)

K88
a99

=
(7.15)

LV 96

in which k,,,, k,,°9,k906 are static stiffnesses of a single pile identical to those in the pile

group that is placed in the same soil medium, and N is the number of piles in the pile

group ( N=4 for a 4-pile group). K99 in Eq. 7.15 is the individual rotational impedance

at the head of each pile due to the geometrical and material properties of the pile.

In order to present the results graphically, the complex-valued dynamic interac

tion factors a23 are separated by their real parts a(stiffness) and imaginary parts

a(damping). The computed dynamic interaction factor a(stiffness) is compared in

Figure 7.4(a) with that by Kaynia and Kausel (1982). Very good agreement is observed

between the two solutions for dimensionless frequency a0 < 0.28. For a0 > 0.28, the

computed values are about 25% higher than those by Kaynia and Kausel. The computed

interaction factors a(damping) are in good agreement with those by Kaynia and Kausel

(Figure 7.4(b)).

The dynamic interaction factors a,,,,, and a99 of the pile group are shown in Fig

ure 7.5(a) for stiffness component and in Figure 7.5(b) for damping component. The
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results show that the translational stiffness (or cx) shows the greatest effect of group

pile-soil interaction; whereas the rotational stiffness k88 (or aee) shows the least effect

(Figure 7.5(a)). However their corresponding damping components show the reverse

trend (Figure 7.5(b)). For a0 < 0.3 the stiffness interaction factors ave, and cxee are

in the range of 0.6, 0.7 and 0.9, respectively.

Because the piles are rigidly connected to the pile cap at the pile heads, the total

rotational impedance of the pile group consists of both the rocking impedance Kr

of the pile group and the rotational impedance K98 at the head of each pile

= K. + K89 (7.16)

Following the notation used by Kaynia and Kausel, the total rotational impedance of the

pile group K7 is normalized as K/(N. r? in which k° is the static vertical

stiffness of a single pile placed in the same soil medium.

The normalized quantity K’/(N k) is compared in Figure 7.6 with that

by Kaynia and Kausel. Very good agreement between the two solutions is seen for the

stiffness component (Figure 7.6(a)). Good agreement between the two solutions for the

damping components also exists for a0 < 0.3 (Figure 7.6(b)). For a0> 0.3, the computed

damping component is about 25% less than that by Kaynia and Kausel.

It has been shown that the proposed model can well simulate the dynamic character

istics of pile groups. The conclusion is drawn from comparisons with analytical results

by Kaynia and Kausel. To further verify the applicability of the proposed model for

simulating the elastic response of pile group, field vibration tests of a 6-pile group are
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Figure 7.4: Comparison of dynamic interaction factor a.,, with solution by Kaynia and
Kausel for 2x2 pile groups (E/E3 = 1000,s/d 5.0)
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analyzed in the next section.

7.6 Full-scale vibration test on a 6-pile group

A quick release horizontal vibration test was performed on a full-scale pile group founda

tion of a large transformer bank (Bank 79) located at the Duwamish substation, Seattle,

Washington. Test data and analytical results were reported by Crouse and Cheang

(1987). The foundation of the transformer consists of a pile cap with 6 vertical piles

embedded in 40 ft of loose saturated, sandy soils overlying stiff soil.

The transformer-pile cap system is analyzed using the proposed quasi-3D finite ele

ment method of analysis. Results of this analysis are used to verify the applicability of

the proposed model for pile group.

7.6.1 Description of vibration and its testing results

The transformer and foundation system has been described in detail in Crouse and

Cheang (1987) and are briefly summarized below. The soil profile at the location of

transformer bank consists of mostly loose to medium dense sand to silty sand, with some

dense sand or gravelly sand layers, overlying very dense gravelly sand glacial till at 12.2

m depth. The ground water table was at a depth of 3.7 m. The in-situ shear wave ye

locities (V3) measured from a downhole seismic survey in the sand to silty sand deposits

are 125 m/sec in the upper 3.7 rn and 165 rn/sec below 3.7 m depth. Figure 7.7 shows

the idealized soil proffle at Duwaniish Station according to Crouse and Cheang (1987).
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Figure 7.8 shows the transformer bank and the pile foundation. The transformer,

weighing 326 kip is anchored to concrete pedestals which is a continuous part of the pile

cap. The pile cap has a dimension of 13.4 ft by 8.00 ft. The pile cap is embedded beneath

the ground surface as shown in Figure 7.8. The pile foundation consists of 6 vertical, 12

inches O.D. by 0.172 inch wall thickness, concrete filled steel pipe piles. These piles are

spaced at 4.67 ft and 5.00 ft centre to centre in the X and Y directions, respectively. All

the piles are extended into the very dense glacial till layer at 40 ft depth. The composite

compressional rigidity (EA) and the flexural rigidity (El) of the each concrete filled pipe

pile are 5.1 x 1081b and 4.24 x 1071b.ft2,respectively, where E= Young’s modulus, A:=

cross section area, and 1= bending moment of inertia.

123Chapter 7. Elastic
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soil profile at Duwamish Substation ( after Crouse and Cheang,

The quick-release free vibration test was conducted by Crouse and Cheang (1987).
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A sling was attached to the transformer, and then pulled and quickly released to let the

structure vibrate freely. The motions were recorded at various locations on the founda

tion. Tests were performed in both principal horizontal directions, NS or Y-axis and EW

or X-axis, of the transformer foundation.

The resonant frequencies and damping ratios of the transformer foundation system

were determined from the recorded time histories of transient vibrations by Crouse and

Cheang (1987). The measured fundamental frequencies in NS and EW directions are 3.8

Hz and 4.6 Hz, respectively. The measured damping ratios in the NS and EW directions

are 6% and 5%, respectively.

7.6.2 Computed results using the proposed model

In present analysis the soil profile shown in Figure 7.7 is used except the shear modulus

distribution modified by Sy (1992) is adopted. According to Sy (1992), a correction on

measured shear wave velocity was made to account for the soil densification due to pile

installation. An increase of 4% in low strain shear modulus Gma values was applied to

the measured free field values for this correction. Poisson’s ratio ii = 0.3 and material

damping ratio ) =5% are used for all soil layers in present analysis.

Figure 7.9(a) and 7.9(b) show the finite element models used in the analysis for ob

taming dynamic impedances in NS direction and EW direction, respectively. Dynamic

impedances of the pile foundation are computed covering an excitation frequency range

from 0 Hz to 6 Hz. At this stage of the analysis, the effect of pile cap embedment is

not taken into account. The computed impedances of the pile group corresponding to

the excitation frequencies at 3.74 Hz in NS direction and at 4.63 Hz in EW direction are
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listed in Table 7.6. The stiffness and damping values shown in this Table are referenced

to the bottom of the pile cap.

In order to determine the resonant frequencies of the transformer-pile cap system,

dynamic response of the system is computed by subjecting the system to horizontal har

monic forced excitation at different frequencies. Figure 6.18 shows the structural mass

and its supporting dynamic impedances (springs and dashpots). Eq. 6.23 is used again

for obtaining dynamic response of the structural mass at a particular excitation frequency.

Harmonic force and moment were applied at the centre of gravity of the transformer-pile

cap system. According to Crouse and Cheang, the transformer and pile cap have a total

mass of 1.13 x i0 slugs. The height of centre of gravity of the system is 10.9 ft above the

pile head. The moments of inertia are 4.38 x lO5slug.ft2 and 5.46 x lO5slug.ft2 about

axes in the NS direction and in the EW direction, respectively.

The response curves of the transformer-pile cap system are shown in Figure 7.10 in

dashed lines. The resonant frequency of the system is the excitation frequency at which

the peak dynamic response of the system occurs. The damping ratios are determined

using the the bandwidth method from the response curves. The computed resonant fre

quencies and damping ratios are shown in Table 7.5. Results are presented together with

the measured values.

Effect of pile cap embedment In the previous analysis the effect of pile cap-soil in

teraction was not included. According to Crouse and Cheang, gaps between the pile cap

and the soil underneath it may exist due to settlement of soil. Also conventionally the

effect of pile cap-soil interaction has been included by considering the soil reaction acting
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Table 7.5: Computed resonant frequencies and damping ratios without the effect of pile
cap embedment

Resonant frequencies (Hz) Damping ratios
Computed Measured Computed Measured
NS EW NS EW NS EW NS EW
3.50 4.37 3.8 4.60 0.08 0.06 0.06 0.05

on the vertical sides of the pile cap (Prakash and Sharma, 1990 & Novak et al.,1990).

Therefore in this analysis only the soil reactions acting on the vertical sides of the pile

cap are included and the soil reactions acting on the base of the pile cap are not consid

ered. The side reaction due to pile cap embedment usually result in increased foundation

stiffness and damping. According to Beredugo and Novak (1972), the foundation stiffness

and damping due to pile cap embedment can be determined using the plain strain soil

model.

The rectangular pile cap had an area of 106.67 ft2, an equivalent radius of 5.83 ft.

The embedment depth of the pile cap was 1.75 ft, and the shear modulus of soil at that

depth was 6.0 x iO psf. Based on these data, using Beredugo and Novak’s solution, the

stiffness and damping due to pile cap embedment are determined at the bottom of the

pile cap as

Translation

k = 4.20 x 106 lb/ft

C = 1.33 x iO . lb/ft

Cross-coupling
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Table 7.6: Computed stiffness and damping of the transformer pile foundation

N-S (f=S. 74 Hz) E- W (f=4. 6S Hz)
with without with without

embed. effect embed. effect embed. effect embed. effect
k(lb/ft) 2.46e-b7 2.04e+7 2.55e+7 2.13e+7
k8(lb/rad) -2.21e+7 -2.57e+7 -2.43e+7 -2.79e+7

k’(lb.ft/rad) 1.34e+9 1.25e-b9 2.59e-l-9 2.50e+9
C(lb/ft) 10.Oe+6 7.05e+6 8.81e-l-6 5.O5eH-6
Ce(lb/rad) -5.lOe+6 -7.62eH-6 -1.97e-f-6 -5.25e--6

C”(1b.ft/rad) 9.20e-l-7 6.91e+7 1.74e+8 1.44e+8

k8 = 3.68 x 106 lb/rad

= 1.16 x iO . ib/rad

Rotation

= 9.34 x 1W lb.ft/rad

= 1.03 x 106 w lb.ft/rad

After adding the stiffness and damping due to pile cap embedment to these of the pile

group, the combined stiffness and damping of the transformer foundation are determined

and they are shown in Table 7.6 at the resonant frequencies.

The dynamic response of the transformer-pile cap system is obtained including the

effect of pile cap embedment. Figure 7.10 shows the response curves of the transformer

pile cap system when the effect of pile cap embedment is included. They are compared

with those when the embedment effect is not included. It can be seen that the pile cap

embedment results in increased stiffness and damping of the transformer foundation.
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Table 7.7: Measured and computed resonant frequencies and damping ratios including
the effect of pile cap embedment

Natural frequencies (Hz) Damping ratios
Computed Measured Computed Measured
NS EW NS EW NS EW NS EW
3.74 4.63 3.8 4.60 0.09 0.09 0.06 0.05

The computed and measured resonant frequencies and damping ratios of the transformer-

pile cap system are given in Table 7.7. The computed resonant frequencies including the

effect of pile cap embedment are 3.74 Hz and 4.63 Hz in the NS direction and in the EW

direction, respectively. The corresponding measured resonant frequencies are 3.8 Hz and

4.6 Hz. The computed resonant frequencies match very well with the measured frequen

cies in both principal directions. However, the computed damping ratios are about 50%

to 80% higher than the measured damping ratios.



Chapter 8

Non-Linear Analysis of Seismic Soil-Pile-Structure Interaction

8.1 Introduction

In this chapter the quasi-3D finite element method of analysis described in chapter 6

and 7 is used to model dynamic response of pile foundations subjected to earthquake

loading. Since earthquake excitation is a random process, the non-linear finite element

analysis is conducted in the time domain. The use of time-domain analysis makes it

possible to model the variations of soil properties with time under earthquake loading.

Therefore, adjustments in the proposed model are made first to accommodate the time-

domain analysis. Then studies are focused on modelling non-linear response of the soil

under earthquake loading.

A finite element program PILE3D has been developed for dynamic analysis of pile

foundation under earthquake loading. In PILE3D, the shear stress-strain relationship of

soil is simulated to be either linear elastic or non-linear incrementally elastic. When the

non-linear option is used, the shear modulus and the hysteretic damping are determined

using a modified equivalent linear approach based on the levels of dynamic shear strains.

Features such as shear yielding and tension cut-off are incorporated in PILE3D also. The

dynamic response of pile groups can be effectively modelled using PILE3D.

132
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8.2 Quasi-3D finite element analysis in the time domain

The basis of the quasi-3D finite element method of analysis for pile foundations has been

given in Chapter 6 and Chapter 7. In these chapters, dynamic analyses were performed in

the frequency domain. To accommodate the time-domain analysis presented herein, some

adjustments are required in the formulation of the global dynamic equilibrium equation

given in Eq. 6.9.

The adjustment is made first to the formulation of the mass matrix. For dynamic

analyses in the time domain, the use of a diagonal mass matrix can save both computa

tional time and space. Thus the diagonal mass matrix formulations are used in PILE3D

to construct [M]eiem for both the soil element and the beam element. The diagonal mass

matrices for the soil element and the beam element are given by

[M]80, = PS vol
{1.0, 1.0,1.0,1.0,1.0,1.0, 1.0, 1.0} (8.1)

[Mlbeam = pAl{1/2, 1/78, 1/2, 1/78} (8.2)

The adjustment is made next to the formulation of stiffness matrix and damping ma

trix. In Eq. 6.9, the stiffness matrix [K*] is formulated using the complex shear modulus

= G(1 + i . 2)i). In the time-domain analysis, the stiffness matrix [K] is formulated

using the real shear modulus C. The hysteretic damping ratio .\ of soil is included using

equivalent viscous damping and its formulation is given below.

A procedure for estimating damping coefficients for each individual element proposed

by Idriss et al. (1974) is employed in PILE3D. The main advantage of this procedure

is that a different degree of damping can be applied in each finite element according its

shear strain level. The damping is essentially a Rayleigh-type damping, assuming the
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damping is contributed one half by mass and the other half by stiffness. In each time

period LT the global stiffness matrix [K] is computed based on the individual shear

modulus in each element, and the global mass matrix [M} is always constant through the

time domain. The fundamental natural frequency w1 of the pile-soil system is obtained

by solving the corresponding eigenvalue problem.

The fundamental frequency of the pile-soil system w1 is then applied to every soil

element in the system. The damping matrix for a soil element is given by

[C]eiem [M]eiem -+- /3. [K]eiem (8.3)

in which

a = ‘e1em

= elem/LL1

and )telem is the hysteretic damping ratio of soil in the element and is determined

based on the level of shear strain in the element.

The global mass matrix [Mj, the global stiffness matrix [K] and the global damping

matrix [C] are assembled from each individual finite element. Therefore under earthquake

loading, the global dynamic force equilibrium equation in matrix form is given by

[M]{’ü} + [C]{’ô} + [K]{v} = —[M]{I} i,(t) (8.4)

in which ib(t) is the base acceleration, and {I} is a column vector of 1. {i}, {z)} and

{v} are the relative nodal acceleration, velocity and displacement, respectively.
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8.3 Solution scheme for dynamic equation

There are two methods for solving a dynamic equation, the mode-superposition method

and the direct step-by-step integration method (dough and Penzien,1975; Newmark,1959;

Wilson et al.,1973).

The mode-superposition method is very useful when a linear system is to be ana

lyzed. This method requires the evaluation of the vibration modal frequencies and their

corresponding modal vectors. It basically uncouples the response of the system, and

evaluates the response of each mode independently of others. The main advantage of

this approach is that the dynamic response of a system can be evaluated by considering

only some vibration modes even in systems that may have many degrees of freedom; thus

the computational efforts may be significantly reduced. However the mode-superposition

approach is not applicable to non-linear systems.

The direct step-by-step integration method is applicable to both linear and non-linear

systems. The non-linear analysis is approximated by analyses of a succession of different

linear systems. In other words, the responses of the system are computed for a short time

interval assuming a linear system having the same properties determined at the start of

the interval. Before proceeding to the next time interval, the properties are determined

so that they are consistent with the state of displacement and stress at that time.

The direct step-by-step integration procedure developed by Wilson et al. (1973) was

employed in PILE3D to solve the dynamic equation Eq.8.4.
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The equation Eq.8.4 is solved by an incremental form

[Mj{} + [Cj{ii} + [K]{v} = —[M]{I} z..i,(t) (8.5)

Since Eq. 8.5 is used for solving the incremental values of dynamic response, the

dynamic equilibrium should be ensured by checking equation Eq. 8.4 after each step of

integration. During the dynamic analysis unbalanced force {L.P}unbal is computed after

each integration step

{J.P}unbal = — [C]{)} — [K]{v} — [M]{I} . (t) (8.6)

This unbalanced force is then added to the right hand side of equation Eq. 8.5 in the

next step of integration to satisfy dynamic equilibrium.

8.4 Non-linear analysis

Typical relationships between shear stress and strain at different strain amplitudes under

dynamic cyclic loading is shown in Figure 8.1. Firstly the shear stress increases with the

shear strain non-linearly. Secondly the loading-unloading curve forms a hysteresis ioop.

The shape of the T
— 7 curve determines the degree of reduction of shear modulus with

shear strain, and the area of the hysteresis ioop represents the amount of strain energy

dissipated during the cycle. The dissipated energy implies the degree of material damp

ing at this strain level.

In a dynamic analysis involving hysteretic non-linearity, a rigorous method of analysis

in modelling the shear stress-strain behaviour is to follow the actual loading-unloading

reloading curve. This method has been successfully applied in 1-D ground motion anal

yses (Finn et al., 1977, Lee and Finn, 1978) and 2-D plane strain analyses (Finn et aL,

1986). However this method requires updating the tangential shear modulus for all soil
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stress

strain

Figure 8.1: Hysteretic stress - strain relationships at different strain amplitudes

elements and building up stiffness matrix in every time step of integration. This proce

dure is too time-consuming for 3-D analysis.

The equivalent linear method is employed in PILE3D to model the soil non-linear

hysteretic behaviour. The equivalent linear method was initially proposed by Seed and

Idriss (1967), and it has been widely accepted and used in soil dynamic analyses. The

spirit of this method is that the hysteretic behaviour of soil can be approximated by a

set of effective shear moduli and viscous damping which are compatible with the levels

of shear strains. Figure 8.2(a) shows typical relationships between the ratio G/Gmax

effective shear modulus G over the shear modulus at very low strain Gmax, and the

effective shear strain. Figure 8.2(b) shows typical relationships between damping ratio

and the shear strain.

G2

(strain) 2
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Figure 8.2: Relationships between shear moduli, damping ratios and shear strains (after
Seed and Idriss, 1970 & Seed et al.,1986)
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The equivalent linear method has been applied in the computer code SHAKE (Schn

able et al., 1972) for 1-D ground motion analyses and QUAD-4 (Idriss, 1974) for 2-D

plane strain analyses. Here the procedures of this method are incorporated in the quasi-

3D dynamic pile-soil interaction analysis. However they are used with some modifications.

In SHAKE, analysis is performed using initial shear moduli and dampings for the

entire input acceleration record; then a second analysis is performed for the same ac

celeration record using constant shear moduli and dampings which are compatible to

the effective shear strains obtained from the first analysis. In other words, the shear

modulus and damping are determined according to the shear strain using curves such as

those shown in Figure 8.2. Iteration process is used to achieve the compatibility between

modulus, damping and shear strain. Analyses cease when the differences between the

moduli and dampings in the two subsequent analyses are with the desired given values.

There is a disadvantage of the equivalent linear method used in SHAKE. A set of con

stant values of shear modulus and damping is usually not appropriate to represent the

non-linear behaviour of soil within the whole time domain. Especially under earthquake

type of loading the level of shear strain usually changes very much from the beginning,

through the middle to the end of the time domain. The common-used criterion of taking

the effective shear strain equal to 65% of the maximum shear strain may not applicable

in many cases.

A procedure of applying the equivalent method based on the periodical level of shear

strain is proposed to overcome this problem. This procedure requires no iteration pro

cess. Figure 8.3 shows the idea of this method. In this procedure an assumption is made

that the effective shear moduli and damping in a period of time /.T, remain constant
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responses, A

time

ti ti+1 tj

Figure 8.3: The principle of modified equivalent linear method

and are determined by the peak shear strain in the previous period T_1 based on re

lationships such as those shown in Figure 8.2. The shear moduli and damping ratios in

all soil elements are then determined for the period of time. PILE3D has the capability

allowing the use of different curves input by users.

The selection of the length of time period is based on the fundamental frequency of

the input earthquake motion, and this length can be selected by users. The length of

time period is selected neither too short to take too much computational time nor too

long to lose the accuracy of the analysis. A length between 0.4 second and 1.0 second is

good for the earthquake records used in the analysis presented in the thesis.

A
A

,AAiA

tj+1
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Figure 8.4: Simulations of shear yielding and tension cut-off

8.5 Features in dealing with yielding, tension

Apart from the non-linear shear stress-strain relationship, shear yielding of soil material

occurs when the shear stress exceeds the shear strength of the material. When yield

ing occurs the soil element may develop significantly large shear deformation under very

small increment of shear stress. In other words the shear modulus of the soil is signif

icantly reduced due to shear yielding. The shear yielding is prominent near the pile head.

A numerical procedure is included in PILE3D so that the shear modulus is reduced

to a very smafl value when shear yielding occurs. Figure 8.4(a) shows the principle of

this procedure. The shear stress used for this purpose is the maximum shear stress in

the vertical plane; while the shear strength r1 is input by users according to the type of

soil. The shear strength r1 may be determined by c+o0 . tanq5 ( c is the cohesion, q is

the friction angle, and is the effective overburden stress).
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On the other hand, cracking or tensile failure may occur when the total lateral nor

mal stress of a soil element exceeds the tensile strength of soil. For sands any tensile

stress developing may lead to a tensile failure. When a tensile failure occurs soil has

no resistance. A no-tension model shown in Figure 8.4(b) is used to accommodate this

phenomenon. One of the criteria built in PILE3D for checking tension is

0dynamc > O + 0j (8.7)

where o is the static lateral stress of the soil element, and 0j is the tensile strength

of soil, and0dynamic is the dynamic lateral stress computed during the analysis.

The options of checking shear yielding and allowing no-tension to develop in soils are

available only when a dynamic step-by-step integration procedure is used. These features

overcome the difficulties that may be encountered in a pure elastic analysis. In a pure

elastic analysis no controls on the shear yielding or the tensile failure can be enforced.

The application of these features has been found very effective in eliminating the over-

stiffness of soil in the zone near the pile.

8.6 Soil parameters required in PILE3D analysis

The method was developed so that fundamental soil parameters are used.

Shear modulus of soil The key parameter required for this analysis is the low-strain

shear modulus of soil. The low strain shear modulus is also called the maximum

shear modulus. The Gmax can be determined accurately by measuring the shear wave
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velocity V3 of soil, then

Gmax = p V2

= 7/g V2 (8.8)

where p is the mass density of soil, and -y is the unit weight of soil and g is the gravity

acceleration, 9.81 rn/sec2.

When data on shear wave velocity are not available, empirical equations may be

applied to estimate the low strain shear modulus Gmax. A useful empirical equation

proposed by Hardin and Drnevich (1972) is of the form

Gm = 32O.8(2.9÷ (°(OCR’ (8.9)

in which

e void ratio;

OCR = overconsolidated ratio;

k = a constant dependent on the plasticity of the soil;

Pa = atmospheric pressure, 101.3 kPa;

= current mean normal effective stress.

The Hardin and Drnevich equation is applicable for both sands and clays. For clays

it is recommended that the equation be used when the void ratio is in the range of 0.6

to 1.5. The variation of constant k with plasticity index PT is given in Table 8.8.

For most practical purposes, Seed and Idriss (1970) proposed another useful expres

sion for estimating Gmax of granular soils (sands and gravels)
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Table 8.8: Relationship between Hardin and Drnevich constant k and plasticity index PT
(after Hardin and Drnevich, 1972)

PT 0.0 20 40 60 80 >100
k 0.0 0.18 0.30 0.41 0.48 0.50

Gma, = 1000(k2)maw(ø)°5 inpsf units (8.10)

The coefficients (k2)ma was found to vary from about 30 for loose sands to about 75

for dense sands. Values of (k2)maa for relatively dense gravels are generally in the range

of about 80 to 180.

A useful relationship between (k2)maa, and SPT (N1 )6o values was proposed by Seed

et al. (1986)

(k2)ma = 20(N1) (8.11)

For clays the maximum shear modulus may be calculated based on the undrained

shear strength, S,, using the equation

Gmcut = Kctay Su (8.12)

in which Kday is a constant for a given clay. From Seed and Idriss (1970) the typical

values of Kciay vary between 1000 to 3000.

Damping ratio and other parameters The second input required in the analysis is

the relationship between damping ratio and the shear strain of soil. Although variation
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Figure 8.5: Comparison of damping ratios for sands and gravelly soils (after Seed et al.,
1986)

may be expected for specific soil material, typical values of damping ratios as function

of shear strain were given by Seed et al. (1986) for sands and gravelly soils, and they are

shown in Figure 8.5. Other parameters required in the analysis are Poisson’s ratio and

shear strength of soil.

8.7 Aspects relative to analysis of pile group

The program PILE3D has the capability of simulating the dynamic response of a pile

group supporting a rigid pile cap. Analysis is done in a fully coupled manner. The rigid

pile cap is represented by a concentrated mass at the centre of gravity of the pile cap,

and the mass is rigidly connected to the piles by a massless rigid bar.

Figure 8.6 shows the principle for modelling a pile cap in PILE3D. The pile cap is

modelled as a rigid body in the analysis. The motions of the pile cap are represented
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rocking impedance

Figure 8.6: A diagram showing the representation of pile group supporting structure

by the motions of the pile nodes which are connected to the bottom of the pile cap.

These nodes are called the pile head nodes. The pile head nodes have identical defiec

tions (translations and rotations in the vertical plane) as the pile cap does. Therefore a

principal restraining pile head node can be used to represent the motions of all pile head

nodes or of the pile cap. In the finite element analysis the translation and rotation of

all pile head nodes in the group are restrained to the principal pile head node. In this

way, identical defiections of all pile head nodes are achieved. The mass of the pile cap

is connected to the principal pile head node so that all pile head nodes share the same

mass, stiffness and defiections.

On the other hand, under seismic loading the pile cap rotation is primarily resisted

by the rocking impedance of the pile group. The rocking impedance is induced by the

vertical resistance of the piles. In the proposed quasi-3D analysis the rocking impedance

cannot be included directly because the vertical and horizontal motions are uncoupled.
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The rocking impedance of the the pile group is included in the analysis by using the

following procedures.

The rocking stiffness and damping is updated at selected times during the horizontal

mode analysis by using PILE3D in the vertical mode. The procedure for computing

rocking impedance Krr has been given in chapter 7. The rocking impedance is computed

using the current values of strain dependent shear moduli and damping ratio of soil. The

current rocking impedance (stiffness and damping) is then transferred to the pile cap as

rotational stiffness and damping.

The rocking impedance of pile group is important to the dynamic response under hor

izontal shaking, and it has been properly treated in the dynamic analysis of pile group

using PILE3D.



Chapter 9

Analyses of Centrifuge Tests of Pile Foundations

9.1 Introduction

In this chapter the proposed quasi-3D finite element method of analysis is used to ana

lyze the non-linear response of model pile foundations subjecting to horizontal loading

in centrifuge tests. Centrifuge tests on a single pile and a 2x2 pile group are analyzed

using the computer program PILE3D. The computed results are compared with those

measured in the centrifuge tests. The ability of the proposed model for simulating the

non-linear response of pile foundations is evaluated.

During strong shaking, the shear modulus and damping ratio of soil medium change

with time, which causes corresponding changes in the dynamic impedances of pile foun

dations. These variations in dynamic impedances with time during strong shaking are

evaluated for the model pile foundations. This is the first time that the time-histories of

dynamic impedances have been calculated.

9.2 Dynamic analysis of centrifuge test of a single pile

9.2.1 Description of centrifuge test on a single pile

A centrifuge test on a single pile was carried out at the California Institute of Technol

ogy (Caltech) by B. Gohi (1991). Detailed data on the centrifuge test are given by Gohi

148
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(1991). Details of the test may also be found in a paper by Finn and Gohi (1987). A

centrifuge acceleration of 60g was used for the test.

Figure 9.1 shows the soil-pile-structure system used for the single pile test. The effect

of the super-structure was simulated by clamping a rigid mass at the pile head. The

pile head mass was instrumented using a non-contact photovoltaic displacement trans

ducer and an Entran miniature accelerometer. The locations of the accelerometer and

light emitting diode (L.E.D.) used by the displacement sensor are shown in Figure 9.1.

The pile head displacements were measured with respect to the moving base of the soil

container. The prototype parameters of the single pile test is shown in Figure 9.2. The

model pile has a unit weight of 74.7 kN/m3. The prototype pile has an outer diameter

douter 0.5712 m and an inner diameter dinner = 0.5412 m. The flexural rigidity of the

prototype pile is 172,614 kN.m2.

The sand used for the centrifuge test was a loose sand with a void ratio co = 0.78

and a mass density p = 1.50Mg/rn3.The friction angle of the sand was determined to

be 300. Gohi (1991) has showed that the low strain shear moduli of the sand foundation

vary as the square root of the depth, and that they can be quantitatively evaluated by

using the Hardin and Black (1968) equation

()
— e01 I NO.5
— V

‘ + e0

where e0 is the in-situ void ratio of the sand and o is the mean normal effective confining

stress in kPa. The mean normal effective confining stress is computed from the effective

vertical stress o
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Figure 9.1: The layout of the centrifuge test for a single pile
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Figure 9.2: The prototype model of the single pile test
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1-1-2K0
0m O•j (9.2)

Using e0 0.78 and a lateral stress coefficient K0 0.4 for the loose sand, Gohi showed

that measured shear wave velocities and those computed by using the Hardin and Black

equation are in good agreement.

A horizontal acceleration motion is input at the base of the system. The peak accel

eration of the input motion is 0.158g. During the centrifuge test, accelerations at the free

field surface and at the pile head and displacements at the top of the super-structure were

recorded. Dynamic moments at the selected locations along the pile shown in Figure 9.1

were also recorded during the test.

The computed Fourier amplitude ratios of the pile head response and the free field

motion with respect to the input motion are given in Figure 9.3(a) and Figure 9.3(b),

respectively. The natural frequency of the free field acceleration is estimated to be 2.75

Hz, and the fundamental frequency of the pile to be 1.1 Hz. The period of the pile

response is much longer than the period of the free field motion.

9.2.2 Dynamic analysis of the single pile

The centrifuge test of single pile is analyzed at the prototype scale. Figure 9.4 shows

the finite element model used in the analysis. The sand deposit is divided into 11 lay

ers. A decreasing thickness of layer is used toward the soil surface. This arrangement

would allow more detailed modelling of the stress and strain field where lateral soil-pile
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Figure 9.4: The finite element modeffing of centrifuge test

interaction is strongest. The pile is modelled using 15 beam elements including 5 ele

ments above the soil surface. The super-structure mass is treated as a rigid body, and

its motion is represented by a concentrated mass at the centre of gravity. A very stiff

beam element with fiexural rigidity 1000 times that of the pile was used to connect the

mass and the pile head. The motion of any point in the rigid super-structure can be

determined according to its geometric relationship to the reference point, the pile head.

The present finite element mesh consists of 666 nodes and 456 elements.

The finite element analysis was carried out in the time domain. The non-linear anal

ysis was performed to account for the changes of shear moduli and damping ratios due

to dynamic shear strains. According to Gohi (1991), the shear-strain dependency of the

shear modulus and damping ratio used in the analysis is shown in Figure 9.5. The maid-

mum shear modulus Gm was calculated according to Eq. 9.1. The maximum damping

ratio of the loose sand was taken as 25% following Gohi (1991).
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Figure 9.5: The relationships between shear modulus, damping and the shear strain for
the loose sand

Results of analysis The computed and measured accelerations in the free field and

at the pile head are shown in Figure 9.6 and Figure 9.7, respectively. There is good

agreement between the measured and the computed accelerations.

The computed and measured time histories of displacements at the top of the structure

are plotted in Figure 9.8. The computed displacements are smaller than the measured

displacements in the first 10 sec of motion. However, the computed peak displacement is

56 mm compared to the measured peak displacement of 67 mm, with an error of about

16%. The frequency content of the displacement response has been captured satisfacto

rily by the analysis.
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The computed time histories of moments in the pile at the soil surface and at a depth
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Figure 9.6: The computed versus measured acceleration response at the free field

of 3 m (near point of maximum moment) are plotted against the measured time histories

in Figure 9.9 and Figure 9.10, respectively. Satisfactory agreement between the com
puted and the measured moments is observed in the range of larger moments.

The distributions of the computed and measured bending moments along the pile at

the instant of peak pile deflection are shown in Figure 9.11. The computed moments agree

very well with the measured moments. The bending moments increase to a maximum at

a depth of 3.5 diameters, and then decrease to zero at a depth around 12.5 diameters.

The moments along the pile have same signs at any instant time, suggesting that the

inertial interaction caused by the pile head mass was dominant and the pile was vibrating

in its first mode. The measured peak moment is 325 kN.m, whereas the computed peak

moment is 344 kN.m with an error of 6% overestimate.
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Figure 9.9: The computed versus measured moment response at the soil surface

z

Fz

0

z
z
aD

400

157

z
‘ 200
Fzw

0

z
—20C

z
bJ
aD

—40C
0.00 10.00 20.00

TIME ( SEC )

MEASURED
:

------- COMPUTED

.

I I I I I I

30.00

500

250

0

—250

—500
0

: MEASURED
- COMPUTED

I I I I I I I I I I I I I I I I I I

.00 10.00 20.00 30.00
TIME ( SEC )

Figure 9.10: The computed versus measured moment response at depth D=3m
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Figure 9.11: The computed versus measured moment distribution of the pile at peak pile
deflection

Under earthquake loads the shear moduli and damping ratios of soil vary with both

the time and the location. The proposed non-linear analysis is capable of tracing the

variation of soil properties at any instant during shaking. As examples of this feature,

distributions of soil shear moduli at depths of 0.25 m and 2.10 in are plotted in Figure

9.12 at an instant t=12.58 sec, and in Figure 9.13 at another instant t=17.11 sec. It is

seen that at a certain depth such as 2.10 m the soil shear moduli in the near field of the

pile are much less than the shear moduli in the far field.

At any instant during shaking, a set of soil properties are determined for each soil

element. Therefore the dynamic impedances of the pile foundation can be evaluated

corresponding to soil properties at this instant. The variation of dynamic impedances of

pile foundations with time during shaking is evaluated. These non-linear pile impedances
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(b) at depth 2.10 m

Figure 9.12: 3-D plots of the distribution of shear moduli at t=12.58 sec
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include effect of pile-soil kinematic interaction and inertial interaction from the super

structure.

Dynamic impedances under an earthquake motion The concept of dynamic

impedance is formulated to reflect the complex force-deflection relationship of a pile foun

dation under harmonic pile head loading at a specific excitation frequency. This concept

is well suited for the dynamic analysis of a machine foundation which is normally excited

at specific frequencies. However under earthquake excitation, the pile foundations do

not usually vibrate at a constant frequency. Strictly speaking, the concept of dynamic

impedance does not apply directly in dynamic analyses of pile foundations involving

earthquake motions.

Conventionally dynamic impedances are used in sub-structuring analysis of pile sup

porting structures. Pile head impedances are usually computed at the dominant fre

quency of excitation appropriate to an earthquake motion. In normal design prior to an

earthquake event, it would appear logical to select the fundamental frequency of the pile

as the frequency of interest, provided the earthquake motions are expected to contain sig

nificant frequency contents around the fundamental frequency of the pile. An alternative

technique is to explore variations of dynamic stiffness and damping of the pile foundation

in the frequency range of an earthquake motion, such as from 0 Hz to 10 Hz. The latter

approach is used in this study to look into the characteristics of dynamic stiffness and

damping as functions of frequency.

The dynamic impedances (stiffness and damping Ci,) of the single pile are com

puted using program PlUMP. These impedances are determined at the ground surface.
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Excitation frequencies of 1.91 Hz, 6.0 Hz and 10 Hz are selected to explore the effect of

excitation frequency on dynamic impedances of pile foundations. Frequency is limited to

the 0-10 Hz range considered appropriate for seismic loading.

Stiffnesses of the pile foundation during shaking At the excitation frequency

f=1.91 Hz, the dynamic stiffnesses of the pile decrease dramatically as the level of shak

ing increases (Figure 9.14). The dynamic stiffnesses experienced their lowest values in

the 10 to 14 seconds range when the maximum accelerations occurred at the pile head.

It can be seen that the translational stiffness ku,, decreased more than the rotational

stiffness kee or the cross-coupling stiffness k. At their lowest levels, decreased to

20,000 kN/m which is only 13.8 % of its initial stiffness of 145,000 kN/m. k,,6 decreased

to 45,000 kN/rad which is 36% of its initial stiffness of 125,000 kN/rad. ke showed the

least effect of shear strain. It decreased to 138,000 kN.m/rad which is 63.6% of its initial

stiffness of 217,000 kN.m/rad. The stiffnesses rebounded when the level of shaking de

creased with time. Representative values of the pile stiffnesses k,,,, ,k,,9 and k66 for the use

in a structural analysis might be selected as 40,000 kN/m, 65,000 kN/rad and 160,000

kN.m/rad, respectively, on the basis of the time histories shown in Figure 9.14. These

stiffnesses are 27.6%, 52% and 73.7% of their original stiffnesses.

The variations of translational stiffness k,,,, and rotational stiffness k66 with time at

different excitation frequencies are shown in Figure 9.15. It can be seen that the exci

tation frequency has little influence on the dynamic stiffness of the pile foundation for

frequency less than 10 Hz. The dynamic stiffnesses of the pile foundation may be con

sidered independent of frequency under seismic loading.
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Figure 9.14: Variation of stiffnesses k9,k99 of the single pile at f=1.91 Hz
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Figure 9.15: Variation of stiffnesses ku,., and k with time under different excitation
frequency
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Figure 9.16: Variation of translational damping C,,, versus time under different frequency

Dampings of the pile foundation during shaking The variatin of damping with

the excitation frequency is different from that of the stiffness. The values of dampings

usually increase with the excitation frequency due to the frequency-dependent radiation

damping. Figure 9.16 shows typical variations of the translational damping C,,,, versus

time as the excitation frequency increases. It is seen that the amount of incremental

damping due to the change of frequency is roughly proportional to the amount of incre

mental frequency. Same patterns are observed for the cross-coupling damping C,,9 and

the rotational damping C98. Under these observations and due to the fact that hysteretic

damping is independent of frequency w, the following expression is proposed to represent

dampings C3 of pile foundations under seismic loading

C, — C2 +Rw°75 (9.3)

/AqJf/

where C represents the frequency-independent hysteretic damping, and R.,, is the
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Figure 9.17: Variation of hysteretic dampings C, C9 and C of the single pile

radiation damping constant, w is the excitation frequency w = 2irf

The hysteretic damping C were determined by using very low excitation frequency

(such as f=0.01 Hz) when computing impedances. Figure 9.17 shows the variations of

hysteretic damping contributions C, (translation), C (cross-coupling) and C (rota

tion) with time. The rotational hysteretic damping is less sensitive to the change of

shaking level than the other two hysteretic dampings. Representative values of 12,000

kN/m, 11,000 kN/rad, and 12,000 kN.m/rad may be selected to represent the hysteretic

dampings of Crn,, C,,9 andC99, respectively.

The radiation damping constants are computed using Eq. 9.3. As expected the

radiation damping constants H1, fail into a relatively narrow zone in the time domain

when the frequency changes from 1.91 Hz to 10 Hz. Figure 9.18 shows the translational

radiation damping constant R,,,, with time for the three frequencies analyzed. A value of
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850 of R, is typical for representing the translational radiation damping. Applying the

same concept, a value of 600 is found typical for both R1,6 and R60.

The results of studies on pile impedances are summarized in Table 9.1. Since the

damping C3 are functions of excitation frequency the resulting damping coefficients

(c,j = Cq/w) are different at different excitation frequencies. For instance at w = 12

rad/sec (f=1.91 Hz), the damping coefficients c, c,8,C89 have values of 1457 kN.sec/m,

1239 kN.sec/rad and 1322 kN.m.sec/rad, respectively. However the corresponding damp

ing coefficients change to 741 kN.sec/m, 604 kN.sec/rad and 635 kN.m.sec/rad if the

excitation frequency changes to 31.41 rad/sec (f = 5 Hz).

Effect of structural mass on pile impedances In the analysis described early the

effect of the structural mass on the dynamic impedances has been included. The heavy

structural mass would significantly increase the level of non-linearity of soil in the near
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Figure 9.18: Variation of radiation damping constant R. at different frequencies
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Table 9.9: Parameters of dynamic impedances of single pile

Average Minimum Hysteretic Radiation damping
stiffness stiffness damping C constant R3

k(kN/m) 40,000 20,000
C(kN/m) 12,000 850
ke(kN/rad) 65,000 45,000
C9(kN/rad) 11,000 600
kee(kN.m/’rad) 160,000 138,000
Cee(kN.m/rad) 12,000 600

field, and thus significantly affect the dynamic impedances. It is important to include

the structural mass at the pile head in the analysis so that the non-linear behaviour of

soil can be adequately modelled.

Studies were conducted to explore the effect of structural mass on dynamic stiffnesses

of pile foundations. The centrifuge tests presented early were re-analyzed by not taking

the structural mass into account. A set of time-dependent shear moduli and damping

ratios of soil were obtained. Dynamic impedances of the pile foundation were computed

again using the new sets of soil properties. The effect of the structural mass on dynamic

stiffnesses of the pile foundation is illustrated in Figure 9.19. The translational and ro

tational stiffnesses are used to display this effect.

The dynamic stiffnesses of the pile foundation with the full structural mass are much

less than those without structural mass. This is because soils in the near field of the pile

are much more strongly mobilized when the structural mass is present during shaking.
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Figure 9.19: Comparison of dynamic stiffnesses of pile foundations with full structural
mass and without structural mass
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9.2.4 Computational times

The non-linear analysis was carried out in the time domain. The average CPU time using

a PC-486(33MHz) computer needed to complete one step integration is 7.0 sec for the

finite element grid shown in Figure 9.4, and 3 hours of CPU time are required for an input

record of 1550 steps. The computation time is much shorter for a linear elastic analy

sis when the shear moduli of soil foundation remain constant through the tMime domain.

The average computational time for computing the dynamic impedances using PlUMP

is 50 seconds for one set of soil properties. The total computational time required to gen

erate curves as shown in Figures 9.14 is about 30 minutes.

9.3 Dynamic analysis of centrifuge test of a pile group

9.3.1 Description of centrifuge test on a 4-pile group (2x2)

A centrifuge test on a 4-pile (2x2) group was conducted by Gohi and reported by Gohl

(1991) and Finn and Gohl (1987). The test setup is shown in Figure 9.20. The piles

were set in a 2x2 arrangement at a centre to centre spacing of 2 pile diameters or 1.14

m. The properties of piles in the group are same as those of the single pile. Two of the

four piles were instrumented. The piles in the group were rigidly clamped to a stiff pile

cap, and four cylindrical masses were bolted to the cap at locations shown in the Figure

9.20. The top of the pile cap was the location where the four pile heads were clamped to

the structural mass. A pile cap accelerometer and a displacement L.E.D. were placed at

locations shown in the figure. The displacement L.E.D. was located 46 mm (2.76 m in

prototype scale) above the four pile heads.
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After being converted to the prototype scale, the pile cap has a mass of 220.64

kN.sec2/mand a mass moment of inertia about centre of gravity I = 715.39 kN.sec2.m.

The centre of gravity was 0.96 m above the pile-head. The piles had a free standing length

of 1.21 m above the soil surface.

The sand used for the pile-group test was a dry dense sand with a void ratioe0=0.57

and a mass density p = 1.70Mg/rn3.The friction angle of the dense sand was 45°. Gohl

(1991) showed that the small strain shear modulus Gmcza, can be evaluated using the

Hardin and Black equation (Eq. 9.1) with a lateral stress coefficient K0 = 0.6.

The four pile group was shaken by a simulated earthquake acceleration motion. Peak

accelerations of up to 0.14g were applied to the base of the foundation and were domi

nated by frequencies in the range of 0 to 5 Hz. The free field accelerations were strongly

amplified through the sand deposit to values of up to 0.26g at the surface. Pile cap

accelerations of up to 0.24g and displacements up to 60 mm were recorded during the

test. Residual displacements of up to 10 mm remained at the end of earthquake motion.

9.3.2 Dynamic analysis of the pile group

In the analysis, the pile cap was treated as a rigid body. Hence all pile heads, which were

rigidly connected to the bottom of the pile cap, bad identical translational and rotational

defiections as the pile cap. In the finite element analysis, restrained nodes are used to

impose the identical motions on the nodes. This technique of restraining nodes has been

described in the earlier chapter and was applied in the analysis of pile groups.
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Figure 9.20: The layout of centrifuge test for 4-pile group (after Gohi, 1991)
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Another important issue in the analysis of pile groups is to incorporate rocking stiff

ness and damping into the analysis of horizontal motions. In the proposed quasi-3D

analysis, the horizontal motions are uncoupled with the vertical motions. The rocking

stiffness induced by the vertical resistance of piles can not included directly in the quasi-

3D analysis of horizontal motions. However the rocking impedances (resistance) may

significantly restrain the rotational motions of the pile heads, and the effect of rock

ing impedances on the horizontal motions must be taken into account. The rocking

impedances may be even larger than the rotational impedances from the pile heads, es

pecially when the pile spacing is large.

The rocking impedances of the pile cap are included in the analysis of pile groups.

They are computed by performing a separate quasi-3D analysis in the vertical mode dur

ing the analysis in the horizontal mode. This impedance calculation is made using the

current values of strain dependent shear moduli and damping ratios of soil. The theory

and procedures for computing such rocking impedances have been given in chapter 7.

After the rocking impedances were computed for each time period, they are transferred

to the pile cap as rotational stiffness and damping.

The finite element mesh used for the pile group analysis is shown in Figure 9.21. The

mesh used in the present analysis has 947 nodes and 691 elements. The sand foundation

was modelled by 11 horizontal layers with a smaller thickness toward the sand surface.

Each pile was modelled using 15 beam elements including 5 elements for the part above

soil surface. A very stiff massless beam element was used to connect the structural mass

to the pile heads.

The analysis was carried out using the non-linear option to simulate the changes of
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Figure 9.21: Finite element modelling of the 2x2 pile group

shear moduli and damping of soil with the shear strain. According to Gohi (1991), the

shear-strain dependency of current shear moduli G and damping ratio D of the dense

sand are shown in Figure 9.22. The small strain shear moduli Gm are functions of the

overburden stresses and are estimated according to Eq. 9.1. The maximum hysteretic

damping ratios Dm of the sand foundation are taken as 25 % following Gohi (1991).

Results of analysis Fig.9.23 shows the computed acceleration response at the pile cap

versus the measured acceleration response. There is fairly good agreement between the

measured and the computed accelerations. The computed peak acceleration at the pile

cap is O.23g which agrees very well with the measured peak acceleration of 0.24g.

The computed displacement at the top of the structural mass matches fairly well with

the measured displacement in the first 11 secs of motion (Figure 9.24). The computed

displacement response did not show any residual displacement; whereas the measured
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Figure 9.22: The relationships between shear modulus, damping and the shear strain for
the dense sand

displacement response showed a permanent residual displacement of about 10 mm at the

end of earthquake motion. This is because the analysis is carried out using the equivalent

linear elastic approach.

The computed moment time history in the instrumented pile at a depth of 2.63 m

in the area of maximum moment is plotted against the measured moment time history

in Figure 9.25. There is good agreement between the measured and the computed mo

ments. The distribution of computed and measured bending moments along the pile

at the instant of peak pile cap displacement are shown in Figure 9.26. The computed

moments agree reasonably well with the measured moments, especially in the range of

maximum moments. The computed peak moment is 203 kN.m compared to a measured

peak moment of 220 kN.m.
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Figure 9.27: Variation of stiffnesses k8 of the 4-pile group at ft=1.91 Hz

9.3.3 Non-linear impedances of the 4-pile group

Applying the same technique as used in the analysis of single pile, dynamic impedances of

the 4-pile group are evaluated. To illustrate the results of this analysis, the translational

stiffness k and the cross-coupling stiffness k06 of the 4-pile group are presented.

The variations of stiffnesses and k9 of the 4-pile group with time are shown in

Figure 9.27 at an excitation frequency f=1.91 Hz. The dynamic stiffnesses of the 4-pile

group k1, and k9 were reduced dramatically at times when strong ground motions oc

curred. decreased to 80,000 kN/m from its initial stiffness of 460,000 kN/m; whereas

k6 decreased to 160,000 kN/rad from its initial stiffness of 420,000 kN/rad. The stiff

nesses k and !c were reduced to about 17% and 38% of their initial stiffnesses.
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Chapter 10

Summary and Suggestions for Future Work

10.1 Dynamic thrusts on rigid walls

Approximate methods for determining the dynamic thrusts against rigid walls subjected

to horizontal dynamic loads were presented. Analytical solutions were obtained for the

dynamic thrusts against rigid walls.

Calibration was made by comparing the approximate 1-g static solutions with Wood’s

exact l-g static solution. Results showed that the proposed model using the shear beam

analogy produces best approximation to solution of the rigid-wall problem. The com

puted total static thrusts are about 5% less than those from Wood’s solution for any

Lull ratio, in which H is the height of the wall and L is the half length of the soil backfill

confined by two vertical rigid walls.

Dynamic analyses have been performed for wall-soil systems with uniform backfills

and subjected to both sinusoidal motion and earthquake motion. The wall-soil systems

with semi-infinite backfihls are approximated by using L/H=5.O; the wall-soil systems

with finite backfills are represented by using L/H=1.5.

Under sinusoidal motion, at resonant conditions the peak dynamic thrusts are 2.4pH2Amaa,

for L/H=5.O and 3.OpH2Am for L/H=1.5. The static thrusts are 1.OpH2Ama, for

179
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L/H=5.O and 0.86pH2Amaa, for L/H=1.5. Therefore, their corresponding dynamic am

plification factors are 2.4 for L/H=5.0 and 3.5 for L/H=1.5. These results strongly

suggest that the use of a static force for dynamic loading may result in serious underes

timate of the dynamic thrusts against rigid walls.

The earthquake motions are represented by the scaled records of the El Centro and

the Loma Prieta ground motions. The results of analyses show that the peak dynamic

thrusts are 1.3OpH2Amaa, for L/H=5.0 and 1.38pH2Ama for L/H=1.5. Their correspond

ing dynamic amplification factors are about 1.3 for L/H=5.0 and 1.6 for L/H=1.5. The

dynamic amplification factors under earthquake motions are about 50% of that under

sinusoidal motions.

Finite element formulations for evaluating the dynamic thrusts against rigid walls

with non-homogeneous soil profiles have been presented. Comparisons with close-form

solutions showed that the dynamic thrusts can be predicted accurately using the pro

posed finite element method of analysis.

An efficient computer program SPAW has been developed for determining the dy

namic thrusts and moments against rigid walls. The program was designed for dynamic

analysis of rigid walls with arbitrary non-homogeneous soil layers under sinusoidal mo

tions and earthquake motions. A finite element mesh necessary for the analysis has been

embedded in SPAW so that only the properties of soil layers are required for input. The

computational time for a dynamic time-history analysis is only few minutes in a PC486

33MHz computer.
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For soil profiles with linear variation of shear modulus with depth, the analyses re

vealed that the peak dynamic thrust at resonance is L56pH2Amaa, for sinusoidal motions.

The peak dynamic thrust reduces to 1.OpH2Aa,, for the scaled El Centro input. For soil

profiles with parabolic variation of shear modulus with depth, the peak dynamic thrust

at resonance is 1.87pH2Ama for sinusoidal motions. The peak dynamic thrust reduces

to 1.l8pH2Amax for the El Centro input.

Because the static force is about O.7lpH2Amax for linear soil profiles and 0.82pH2Amax

for parabolic soil profiles. The corresponding dynamic amplification factors are 2.3 for

sinusoidal motions and 1.4 for earthquake motions. The dynamic thrust at resonance for

sinusoidal motions are about 60% greater than that for earthquake motions with same

peak acceleration.

Results from the equivalent linear elastic analyses show that the non-linearity of soils

has significant effects on the dynamic thrusts. For parabolic soil proffles the peak dy

namic thrust of a wall-soil system under strong shaking (0.35g) due to non-linear effect

is about 25% higher than that obtained using the linear elastic analysis. This result was

obtained using the scaled El Centro input as the base motion. For wall-soil systems that

have different soil profiles or that are subjected to other earthquake motions, the finite

element program SPAW can be readily applied to evaluate the dynamic response of the

systems.

The conclusions made on the study of dynamic thrusts on rigid walls are presented

as follows:
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1. The proposed simplified wave equation has been successfully applied to determine

the dynamic thrusts and moments acting on rigid walls. It implies that the dynamic

motions of soil structure under horizontal motions are mainly governed by the waves

in the horizontal directions.

2. It is recommended that the mode superposition method be used to determine the

peak dynamic thrusts against rigid walls. The use of the absolute summation of

modal thrust is suggested when the response spectrum method is selected, especially

at low frequency ratios.

3. When wall-soil systems are subjected to dynamic loading, the total thrusts com

puted using the 1-g static solution should not be used to represent the peak dynamic

thrust. The use of static solution may cause significant error of dynamic thrust es

pecially at resonance. A dynamic analysis is required under dynamic loading.

4. The height of the resultant dynamic thrust is generally suggested to be at 0.611

above the base of the wall for a wall height of H. However for non-homogeneous

soil profiles, such as linear soil profiles or parabolic soil profiles, the height may

decrease to about 0.511.

5. The peak dynamic thrusts become large when the soil profile becomes more uniform.

Under sinusoidal motions, the peak dynamic thrusts at resonance are 1.56pH2Am,

1.87pH2Amacj, and 2.4OpH2Amax for linear, parabolic and uniform soil profiles, re

spectively. For scaled El Centro input, the peak dynamic thrusts are 1.00pH2Amam,

1.l8pH2Amczx and 1.3OpH2Amaz for linear, parabolic and uniform soil profiles, re

spectively. These results are obtained for wall-soil systems with L/H=5.0 and

A=10%.

6. The effect of soil non-linearity on the dynamic thrust seems to be significant for
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rigid walls. A 25% increase of peak dynamic thrust may be expected for wall-soil

systems subjected to earthquake motions with peak accelerations in the order of

O.35g, compared to results from a linear elastic analysis.

Suggestions For future research, studies should be focused on including the effects

of seismic pore water pressures in a saturated backfill on the dynamic thrusts. The

development of pore water pressure may significantly reduce the shear moduli of soils.

Also one should be aware of that the mechanism of liquefaction in soil layers confined by

rigid walls is different from that in a free field. The shear strains of soils are much less

especially in the area near the wall.

10.2 Dynamic analyses of pile foundations

A quasi-3D finite element method of analysis has been proposed to determine dynamic

response of pile foundations subjected to horizontal loading. The proposed model is

based on a simplified 3-D wave equation. The 3-dimensional dynamic response of soil

is simulated by displacements in the horizontal shaking direction. Displacements in the

vertical direction and in the horizontal cross-shaking direction are neglected. The use of

the proposed simplified wave equation greatly saves the computing space and comput

ing time for the finite element analysis. However it maintains adequate accuracy in the

modelling of the dynamic response of pile foundations.

The proposed quasi-3D theory is first incorporated using the finite element method

in the frequency domain. This formulation is used for the analysis of elastic response

of pile foundations. Elastic solutions of Kaynia and Kausel (1982) have been used to

validate the proposed model for elastic response. Dynamic impedances of single piles

and 2x2 pile groups have been computed and compared with those obtained by Kaynia
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and Kausel (1982). Also kinematic interaction factors of single piles have been computed

and compared with those obtained by Fan et al. (1991) who used solutions by Kaynia

and Kausel. The computed results from the proposed quasi-3D model agreed well with

the results by Kaynia and Kausel.

Full scale vibration tests of a single pile and a 6-pile group have been analyzed us

ing the proposed quasi-3D model. For the single expanded base pile, the computed

fundamental frequency of the pile cap system was 6.67 Hz, which agreed well with the

measured fundamental frequency of 6.5 Hz. The computed damping ratio is 6% com

pared to a measured damping ratio of 4%. For the 6-pile group supporting a transformer

bank, the computed fundamental frequencies of the transformer-pile cap were 3.74 Hz and

4.63 Hz in the NS and EW directions, respectively, which agreed well with the measured

fundamental frequencies of 3.8 Hz and 4.6 Hz in the corresponding two directions. The

computed damping ratios of the system in the two directions were 9% and 9%, compared

to measured damping ratios of 6% and 5%. The damping ratios were overestimated using

the proposed model.

The proposed quasi-3D method is also formulated in the time domain using the finite

element method. This formulation is targeted for the analyses of non-linear response of

pile foundations under earthquake loading. The time-domain analysis allows modelling

the variations of soil properties with time under earthquake loading.

The procedures of non-linear time-domain analysis are incorporated in the computer

program PILE3D. In PILE3D, the shear stress-strain relationship of soil is simulated to

be either linear elastic or non-linear elastic. When the non-linear option is used, the

shear modulus and the hysteretic damping are determined using a modified equivalent
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linear approach based on the computed levels of dynamic shear strains. Features such

as shear yielding and tension cut-off are incorporated in PILE3D as well. The dynamic

response of pile groups can also be effectively modelled using PJLE3D.

Centrifuge tests of a single pile and a 2x2 pile group have been analyzed using the

proposed quasi-3D finite element method of analysis. The ability of the program PILE3D

to model the dynamic response of the pile supported structures under moderately strong

shaking has been proven adequate for engineering purpose. These studies suggest that the

shear-strain dependent shear moduli and damping ratios of soil is modelled adequately

in the analysis by using the modified equivalent linear approach. Also the approximate

method for modelling the shear yielding and the tension cut-off seems to yield satisfac

tory results.

The other important feature of the proposed method is that the time histories of

dynamic impedances of single piles and pile groups can be computed. This is the first

time that this has been done.

The results of analyses showed that stiffnesses of the pile foundations decrease with

the level of shaking; the dampings of the pile foundations increase with the level of shak

ing. In a seismic event, the translational stiffness kr,, decreases the most due to the shear

strain dependency of the stiffness; the rotational stiffness k99 shows the least effect of

shear strain. At the moderately strong shaking of the centrifuge tests, the translational

stiffness would decrease to as much as 15% of its initial stiffness; however the rotational

stiffness decreases to about 60% of its initial stiffness. The variation of the cross-coupling

stiffness k,,6 is around 50% of its initial stiffness.
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The dynamic stiffnesses of pile foundations are little affected by the excitation fre

quencies in the range of earthquake loadings, f 10Hz. However the damping usually

increases with excitation frequency. The damping can be represented by the hysteretic

and radiation damping components. The coefficient of equivalent viscous damping can

be determined according to the damping at any specific frequency. Generally viscous

damping coefficients decrease with excitation frequency.

The quasi-3D finite element method has been proven to be a very cost-effective

method. Using a PC-486 (33MHz) computer, 3 hours of CPU time are required to

conduct the non-linear analysis of a single pile for an input record of about 30 seconds.

For the same length of input record, 30 minutes of CPU time is required for computing

the pile impedances associated with the time-dependent soil properties.

Studies presented in this thesis lead to general conclusions on dynamic response of

pile foundations as follows:

1. The proposed quasi-3D finite element method of analysis is an effective approach for

determining elastic response of pile foundations and analyzing non-linear response

of pile foundations under earthquake loading. The simplified 3-D wave equations

of motion greatly reduce the computing time of the finite element analysis. The

error of results caused by the quasi-3D model is minor especially at low frequencies

such as those in an earthquake motion.

2. A quasi-3D finite element program PlUMP has been developed for analyses of elas

tic response of single piles and pile groups. Analyses are performed in the frequency

domain. The proposed model has been vaJidated using the elastic solutions from
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Kaynia and Kausel (1982) and data from full scale vibration tests of a single pile

and a 6-pile group.

3. A quasi-3D finite element program PILE3D has been developed for the analyses

of non-linear response of single piles and pile groups. Analyses are performed in

the time domain. The characteristics of soil non-linearity with strains is modelled

using the modified equivalent linear approach. Other features such as the modelling

of shear yielding and tension cut-off are incorporated in PILE3D. The program is

applicable for analyses of single piles as well as pile groups.

4. The proposed model for modelling non-linear response of pile foundations under

earthquake loading has been validated using data from centrifuge tests of a single

pile and 2x2 pile group. Satisfactory results have been obtained.

5. Time-dependent variations of dynamic impedances of pile foundations during shak

ing can be evaluated and have been demonstrated for the model pile foundations

used in the centrifuge tests. The results of analyses showed that stiffnesses of pile

foundations decrease with the level of shaking. The translational stiffness k,,1, de

creases the most at high strain level; the rotational stiffness k98 decreases the least.

However, the damping of pile foundations increases with the level of shaking.

Suggestions for future work For future research on dynamic response of pile foun

dations, studies should be focused on including the effects of seismic pore water pressures

on the response of pile foundations. This next step is very important because pile foun

dations are often used at potentially liquefiable sites.
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Appendix i

Derivation of Equations for the Proposed Model: Rigid-Wall Problem

The proposed model is an extension of the classic shear beam model to include hori

zontal normal stresses in the direction of shaking.

The shear stress is given by

8u ôv
Ty_G(ã_+_) (.1)

In the shear beam = 0

8u
= (.2)

The normal stress o in the direction of shaking is determined using the assumption

=0

2G ôv u
o.y=
l_2’1”8yth10

Therefore

Ely vElu
Ely 1—vElx

The normal stress o in the direction of shaking is given by

2G Elu Ely

1 2VE(hL)Elx+MElyl (.5)

Substituting for

2 Elu
= (.6)

1—ti O3
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Substituting Eq. .2 and Eq. .6 into the equilibrium equation

(7)ox oy POt2

one finds that

2 02u 82u 02u
1 —

+G = (.8)

Therefore by comparison with Eq. (3.6) and (3.7)

(.9)

Eq. .8 satisfies equilibrium but does not satisfy second order compatibility.


