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INTRODUCTION 

The growing complexity of electrical circuits increases the 

computational effort to simulate them. Often it is a task to keep the 

simulation time within acceptable bounds. The application of different 

levels of simulation can be considered as one approach to cope with 

this problem. While the simulation at system level is very. global, 

the simulation becomes more and more detailed going via register 

transfer level, logic level and gate level to circuit level. 

On the other hand successful attempts have been made in various 

ways to obtain efficient methods for the detailed simulation at 

circuit level. Many approaches exploit the sparsity of the circuit 

equations [I.l]. All such methods have the common property that a 

reduction of the computation time is achieved while preserving the 

accuracy of the simulation results. 

Another method is the exploitation of the latency in electrical 

circuits [I. 2 ] . Then we avoid computing new values for the response 

variables of a subcircuit if all excitating variables of that sub

circuit do not change during the preceding time step . 

Finally we mention macromodeling as a method to decrease the 

simulation time. A "model" of a c ircuit in the most gener al s ens e is 

an algorithm to compute the response of an eiec trical c ircuit given 

certain excitations. In the literature of electrical engineering a 

model is often specified by a circuit diagram comprising standard 

symbols for circuit elements. It is then implicitly understood that 

a standard algorithm is applied to compute the response given 

certain excitations. Given a model of an electrical c ircuit a 

"macromodel" of that same circuit i s obtained by de l e ting 

instructions and internal variables from the model. Again in the 

literature roodels are often specified by simplifying the associated 

c ircuit diagrams in a certain way. Obviously mac romodeling imp lies a 

decreas e of the a ccuracy. 

The extens ive literature on macromodeling is mainly concerned with 

macroroodels f or p a rticular circuits (operational amplifie r s , l ogic 

gates) and with indications how to design macroroodels [I.3]. A 

different approach is the interactive method proposed by Spenee [I.4]. 

In this approach a model is simplified by de l e ting e l eme nts in the 

model subj ect t o some constraints . Al l these me thods are dominantly 

"ad hoc" 



The macromodeling approach we study in· this thesis differs in two 

points from previous approaches. Firstly with this approach a macro

model · can be obtained completely automatically by a computer. Secondly 

the simplifications concerning the computation of the response 

variables are dynamica! and are made dependent on the values of 

appropriate variables. Thus we are able to keeptheimpact of . any 

possible simplification on the response under controL We may admit 

simplifications only to the extend that the loss of accuracy is 

guaranteed to stay within specified limits. 

The approach starts from a common description of some subcircuit as 

used in the transient analysis of nonlinear circuits. We assume that 

Newton iteration is applied and exploit the fact that the Jacobian of 

the circuit equations contains constant and variabie coefficients. 

The latter arise for instanee from nonlinear equations. The signifi

canee of the computations involving some coefficient depends strongly 

on the value of that coefficient. For the variabie coefficients 

thresholds are computed such that it can be determined whether 

computations involving such a coefficient are significant. If these 

computations are not significant then they can be skipped by a novel 

method called "pivotstep skipping". The threshglds together with the 

partitioning of the computation for a particular circuit constitute a 

macromodel of that circuit. 

Roughly the thesis consists of two parts. One part, chapters 2 and 

3, is concerned with appropriate orderings of the variables and the 

equations descrihing the circuit. The second part, chapters 4 to 7, 

describes the actual method of macromodeling by the skipping of 

operations. 

We use the aspects of circuit simulation discussed in chapter 1 as 

a reference in the remainder of the thesis. In chapter 2 we present 

the theoretica! basis for an algorithm to determine a :"bordered lower 

triangular form" of a matrix.In chapter 3 we describe the algorithm and 

give an analysis of its time complexity.We illustrate some properties 

of the algorithm by examples · and present some results. 

In chapter 4 we develop the theoretica! basis for pivotstep 

skipping. We indicate how the thresholds can be computed and derive 

upper bounds for the error of the compute:d solution under the 

application of pivotstep skipping. 
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In chapter 5 we discuss briefly three different implementations of 

the L\U decomposition of a sparse matrix. The two most diverging 

methods, the "compiled code approach" and a "linked list approach", 

are taken to indicate an implementation of pivotstep skipping . The 

speed up obtained by pivotstep skipping is analysed. 

In chapter 6 we analyse four possible ways to organize the fore

and backsubsti.tution in the case pivotstep skipping is appl;i.ed. We 

show how function evaluations can be avoided while detecting the 

pivotsteps to be skipped. Attention is paid to the relation between 

the conve rgence achieved with the method, the obtained accuracy and 

the number of pivotsteps being skipped. 

In chapter 7 we show how pivotstep skipping can be applied if 

special nonstandard elements are present in the circuit. 

[I.1] I. s . Duff, "A survey of sparse matrix research", Proceedings of 

the IEEE, Vol. 65, pp. 500-535 (1977). 

[I.2] N.B. Rabbat, H.Y. Hsieh, "A latent macromodular approach to 

large-scale sparse networks", IEEE Trans. Circ. Systems, Vol. 

CAS-2 3 , pp. 745-752 (1976). 

[I.3] A.E. Ruehli, R.B. Rabbat, H.Y. Hsieh, "Macromodelling - an 

approach f or analys ing large-scale circuits ", Compute r-Aided 

Design, Vol. 10, pp. 121-129 (1978). 

[I.4] R. Spence, T. Neumann, "On model simplification", IEEE Proc. 

Int. Symp. Circ. Systems, 1978, pp. 350-353 . 
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1. SOME ASPECTS OF CIRCUIT SH~ULATION 

1.1. Transient analysis of nonlinear circuits 

A time dependent nonlinear circuit can be described by a set of 

nonlinear differential equations. Transient analysis implies the 

solution of the equations fora set of time-points t
0

, t
1

, t
2

, ••. , tN. 

Integration methods can be applied to cope w.ith the differential 

equations. Then integration formulas replace the time derivatives, 

and a set of nonlinear equations for each time-point remains. With 

the vector of variables x (x
1

, x
2

, xn)T and the differentiable 

vector functions s.(x), i 
l. 

1, 2, ... , n, a set of nonlinear equations 

is described by: 

s (x) = (s
1 

(x), s
2 

(x), s (x) ) T 
n 

0 ( 1.1) 

Newton iteration can be applied to determine a solution of the 

equations. Let xl denote the 1th iterate for 1 ~ 1 while x0 is some 

estimate of the solution. The Jacobian of s(x) for x= xl is denoted 

by the matrix Al A A(x 1): 

as . (x) 
l. 

ax. 
J 

.(1. 2) 

using x0 as initial value and assuming that the Jacobian is nonsingular 

Newton iteration computes the l+lth iterate (l ~ 0) according to: 

l+1 
x 

\ 
x 

l -1 . \ 
(A ) ·s(x ) (1. 3) 

Actually the Jacobian is not inverted, but the vector z 1 is solved 

f rom t he matrix equation: 

(1.4) 

by the application of L\U-de;omposition to A 1. Then the Jacobian A 1 

is decomposed into a lower triangular matrix Ll and an upper 

triangular matrix Ul such that L1U1 A1 holds. Because L1 is 

triangular, the intermediate vector yl can be solved easily from: 

by a p rocess called " f oresubstitution". Next zl is computed in 

e ssentially the same way from 
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1 1 1 
u z y 

by a process called "backsubstitution". With the introduetion of the 

residual vector r
1 

defined by: 

one Newton iteration can be summarized as fellows: 

1) evaluate A
1 = A(x 1) 

2) compute L
1 

and u1 

3) solve 
1 

from L1y1 1 
y r 

4) solve 
1 

from U1z 
1 1 

z y 
1+1 1+1 1 1 

5) compute x according to x x + z 

6) evaluate r 1+1 = -s(x1+1 ) 

The L\U-decomposition of a matrix A can be obtained by means of 

Gaussian elimination. Initially the coefficients of L and u are set 

equal to the corresponding coefficients of A: 

Z. . + a. . for 1 s j s i s n and u. . + a. . for 1 s i < j s n. 
1] 1] 1] 1] 

The subsequent Gaussian eliminatien is composed of n-1 steps, called 

"pivotsteps". The kthpivotstep involves the operations: 

ukj + uk/zkk for k < j s n (1.6) 

u .. + u .. 
1] 

- zik).lkj for k < i < j s; n ( 1. 7) 
1] 

zij + z . . zikukj for k < j s; i s n (1.8) 
1] 

Zkk is called the kth pivot. The execution of (1.7) or (1.8) for 

particular values of k, i and j will be called the "updating" of u .. 
1] 

or Z. . respect i vely. The product Z. kuk. is called an "update" of u .. 
1] 1 J 1] 

or Z . .. Finally the diagonal coefficients of U, which are still zero, 
1] 

are set equal to one: uii + for 1 s i s n. 

A possibility to speed up the transient analysis exists in the 

deletien of operations in the computation of the L\U-decomposition 

if they have little influence on the result, i.e. the computed 

solution. For instanee if the update Zikukj is small compared with 

zij or uij we may omit the updating of zij or uij" An important 

factor is the value of the pivot. Generally if IZkkl is large then 

ukj becomes small and the update Zikukj can be expected to be small 

as well. The size of all updates in a pivotstep depends highly on the 

size of the pivot. If the absolute value of the pivot is large enough 

we can consider the skipping of the complete pivotstep in order to 
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compute an approximate solution in a faster way. This approach will 

be called "pivotstep skipping". 

Since oe analysis is essentially identical to the transient 

analys±s for one time-point, much of the foregoing covers the oe 

analysis case as well. 

1.2. Variability type 

A very general way to describe an electrical circuit is the 

tableau approach [1.1]. The approac h is basedon "a tableau which 

includes all network information in a nonreduced form". The equations 

arising from the Kirchhoff current and voltage laws are directly put 

into the tableau. Further the tableau contains branch constitutive 

relations which may be nonlinear or time dependent. If the derivative 

operator d/dt is discretized a set of equations as in eq.(1.1) is 

obtained. The Jacobian of the set is said to be the "tableau matrix". 

The authors of [1.1] distinguish several types of coefficients in 

the Jacobian, see table 1.1 .· For instanee the coefficients in the 

Kirchhoff equations are of topological type. The branch constitutive 

relation of a linear resistor yields a c or p type coefficient, and 

a capacitor a t type coefficient. Nonlinear equations g ive x tyPe 

coefficients. Equivalently types of operations and types of pivot

steps can be distinguished. The type of an operation is equal to the 

highest (in terms of the numbering) of the types of the operands. 

The type of a pivotstep is the · highest of the types of operations it 

includes. 

Hachtel et al. [1.1] exploit the types of operations todetermine 

an optima! pivot order. The algorithm OPTORD which they propose, 

TABLE 1.1. 

type coefficients which are +1 

} called t opol ogical type 
type 2 coefficients which are - 1 

type 3 coefficients which never change, called c type 

type 4 coefficients which change with design parameters: p type 

type 5 coefficients which change with time, called t type 

type 6 coefficients which change with the unknown, called x type 

6 



tends to order pivots associated with low type of pivotsteps befere 

pivots associated with high type of pivotsteps. During a transient 

analysis not all types of pivotsteps need he executed for each L\U

decomposition. Pivotsteps with a type not exceeding four must be 

executed at most once for the complete transient analysis. t type 

pivotsteps are repeated for each time-point and x type pivotsteps 

in each Newton iteration. OPTORD tries particularly to minimize the 

operations concerned with x and t type pivotsteps. 

As pivotstep skipping aims at speeding up the transient analysis 

it is attractive to skip x and t type pivotsteps because these are 

executed very often. Hence we will consider the case that all type 

to 4 pivotsteps are already executed and that pivotstep skipping is 

applied to a Jacobian inducing mere x and t type pivotsteps. 

Consequently pivotstep skipping has to take into account the variation 

of the matrix coefficients. 

1.3. The Bordered Lower Triangular form 

Jacobian matrices .derived from circuit equations ·are mostly very 

sparse. For the tableau matrix Hachtel et al. [1.1] mention an 

average number of about three nonzero coefficients per row in .general. 

The zero-nonzero structure of a matrix can have special forms. One of 

these is the Bordered Lower Triangular form (BLT form). Let a matrix 

A be partitioned as follows: 

A (1.9) 

where A
11 

and A
22 

are square submatrices. If A
11 

is a lower 

triangular matrix with nonzero diagonal coefficients then A is said 

to have a BLT form. The border is constituted by A
12 

and A
22

. The 

border width, i.e. the number of columns in A
12 

and A
22

, is denoted 

by b while the dimension of the triangular matrix A
11 

is denoted by t. 

Generally a small border is attractive, 

The L\U-decomposition of a BLT matrix has a conspicuous property. 

Most coefficients of the L and U factors are identical to the 

corresponding original matrix coefficients. Only the coefficients 

associated with the border may differ from the coefficients in A21 
and A

22
• The property appears from the equations (1.6) to (1.8). 

Originally the coefficient Zij or uij is identical to aij' so 

7 



initially u .. is zero for all j ~ t. If u .. is zero then it. becomes 
~) ~) 

nonzero only by a nonzero update. This requires a nonzero coefficient 

ukj in the same column with k < i. Clearly all coefficients u
1

j with 

j ~ t remain zero and by induction it follows that all coefficients 

u .. with j ~ t remain zero. Consequently the execution of (1.8) for 
~J 

j ~ t leaves l . . unaffected, and l . . stays equal to ai .. Mere u .. 
~) ~) J ~~ 

with i ~ t, which are set equal to one, are the trivial exceptions to 

the above rule. A consequence is that only the coefficients l .. and 
. ~) 

u . . with t < j ~ n need be computed and stored. Moreover only in the 
~) 

border fill-in coefficients can arise. 

Particular attention deserves the fact that the pivots l .. = a . . 
~~ ~~ 

for i ~ t are not subject to updating. During the computation of the 

L and U factor these pivots do not become smaller or even zero. The 

value of the pivot L . = a .. in a Jacobian matrix is solely 
n ~~ as · (x) 

determined by the derivative ~x~ . If a .. is not constant 
0"-i ~~ 

then 

usually a range of values can be determined which a .. can assume. If 
~~ 

x is a vector of circuit variables then the values of the elements of 

x are finite and moreover for each element a range of values can 

be determined. So the value of x lies in some bounded domain and this 
as i (x) 

may imply that ~---- is bounded as well. A possible lower bound of 

I 
as i (x) I. oxi 
~ i s of particular importance, for it is unattractive·fram 

the nume rical point of view if laiil b ecomes very small. 

In pivotstep skipping the values of the pivots determine whether 

the associated pivotsteps are executed or not. Because .the pivots aii 

for i ~ t are not updated, . the ·pivotsteps to be skipped c an be 

established prior to the actual numerical computation of the L and U 

factor. 

The variables x. with t < j ~ n, associated with the border, can 
J 

be considered as control variables. If the values of these variables 

are known, the remaining variables, x. with 1 ~ j ~ t, can be computed 
J 

by a relatively simple, foresubstitution-like process, using the 

original set of equations (1.1). Hence we may require that pivotstep 

skipping is applied such that the control va~iabl es are computed 

accurately enough. This can be achieved if no pivotsteps associated 

with pivots in the border, are skipped but only pivotsteps 

associated with pivots aii with 1 ~ i ~ t, if aii is so large that 

the ith pivotstep has only little influe nce on the rest of the L\U

decomposition. 
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1.4. Bipolar circuits 

Willson [1.2] studies the nonlinear equations descrihing bipolar 

circuits. He uses the Ebers-Moll transistor model, see figure 1.1. 

Let v and i be the vector of t diode voltages or currents respectively. 

The vector f(v) represents 'the diode functions: 

i= f(v) = [fi (v
1
), f

2
(v

2
) , .•. , ft(vt)]T. The description of a 

bipolar circuit given in [1.2] uses two matrices, A
21 

and A
22

, and a 

souree vector c, all of dimension t: 

f(v) - i = 0 

A
21

v + A
22

i = c 
(1.10) 

Clearly the Jacobian A of the set of equations has a BLT form with 

border width t. ForA can be partitioned as indicated in eq.(1.9) 

such that all submatrices have dimension t. Thus A
11

, the Jacobian of 
df(vj) _ 

f(v), is a diagonal matrix: a .. = 
JJ 

k ~ t, and surely the requirement 

dvj , ajk- 0 for k ~ j, j ~ t, 

that A
11 

is lower triangular is 

fulfilled. By the way A
12 

is the negative of the identity matrix. 

A feature of this Jacobian is that all coefficients are constants 

except the diagonal coefficients (pivots!) 'of A
11

. The latter 

coefficients are the derivatives of the nonlinear functions and 

depend on the values of circuit variables. With respect to pivotstep 

skipping this Jacobian is attractive as the pivots in the lower 

triangular submatrix are variable coefficients. So the values of the 

pivots are appropriate to control the execution of pivotsteps. 

The range of 

function. If we 

where r
5 

and VT 

Fig.l.l. 

the 

u se 

are 

pivot val u es can be determined with the diode 

the relation ik = f(vk) 
Vk 

1) 1 = Is(exp(vT> -
parameters, then the value of the pivot is: 

base 

;Q i 
c c 

a i 
e e 

The Ebers-Moll model for a NPN-transistor. 
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dvk 

Although the derivative cannot become exaètly zero for finite values 

of the·voltage, it is .very small for negative values of the voltage. 

With I = 10-
14

A and V = 25mV it appears that la. I is less than 
-12 S T kK 

10 mho for vk S OV. On the other hand the maximum value of lakkl is 

relatively small: if ik does not exceed the value of 2 .• SmA then I akk I 

satisfies lakk l S O.lmho. 

It is more attractive to use the inverse relation ~k = 
If the veetors v and i are interchanged in ( 1.10) and the 

ik+Is 
V ln ---

T Is 
inverse 

relations are applied, a set of equations similar ~ to (1.10) arises. 

However the new variable pivots ·are the inverses of the original ones. 

Hence the domains of the new pivots are given by: 

I akk I = [ i:~IJ ~ lOS'l: , for ik s 2. SmA, 1 S k\ S t (1.11) 

In this way a reasonable lower bound to the absolute value of the 

pivot is achieved. 

The border width of the Jacobian of (1.10) is large: the 

dimensions of A
12 

and A
22 

are equal to t. Whereas usually. a border 

width which is an order smaller than the dimension of the matrix, can 

be achieved for circuit equations. However the border width of· the 

Jacobian of ( 1 .1 0) ·cannot be expected to be minimal. For instanee 

by reordering of the equati9ns and the variables a set of equations 

may be obtained such that the Jacobian has a BLT form with a border 

smaller than t. The reordering may be such that the feature that all 

coefficients supplied by f(v) are on the diagonal of the triangular 

matrix, is retained (the property that A
11 

is diagonal need not be 

retained). Hence one may try to put the equations in a form such 

that the Jacobian has a BLT form with a minimum border but with the 

restrietion that all variable coefficients are on the diagonal of the 

triangular submatrix. 

l.S. The computation of the residual 

Consider a set of nonlinear eqtiations s(x) described by: 

s(x) f(x) + .Äx = 0 ( 1.12) 

where A is a matrix with constant coefficients and with a 'ii = 0 for 
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1 ~i~ t. f(x) is the vector [f
1 

(x
1
), f 2 <x 2), ... ,fn(xn)]T with 

~ t and f i (x i) :::::: 0 for f, (x.) a real function of x. for 1 ~ i 
1 1 1 

t < i ~ n. Such a set of equations is compatible with a bipolar 
. dfi(Xi) 

circuit. Let the matrix D be the Jacobian of f(x): d,. ~ --~~~ 
11 dxi 

for 

~ i ~ t, d,. is zero otherwise. Then the Jacobian A of s(x) is 
1] 

A D + A. 

The residual fora set of equations of the form (1.12) can be 

computed relatively fast during Newton iteration. The definition of 

the residual rt ~ -s(xt), suggests that O(n2 ) mathematica! 

operations are required to evaluate rt. Forsets of equations of the 

form (1.12) the residual can be evaluated in O(n) operations. Suppose 

that À is some real number and that xt+1 is computed according to: 

t+1 
x X t + ÀZ t 

where zt is the salution of eq.(1.4). À may represent a damping 

factor. Then the residual rt+1 is: 

t+1 
r 

Using Ä At- Dt and eq.(1.4) we derive: 

t+1 - t - t 
-f(x ) - Ax - ÀAz 

t+1 
r 

t 
r (1.13) 

If we choose À 

t+1 
r 

the equation simplifies to: 

Alternatively the value of À can be determined such that rt+1 is 

"Iilinimized" in some sense [ 1 . 3]. For instanee the norm of r t + 1 can 

be mirümized. The computation of r t +1 according to ( 1.13) for a given 

value of À requires t function evaluations (f(xt) is already 

computed during the preceding iteration), t+n multiplications and 

n+3t additions/subtractions. 

If pivotstep skipping is applied then insteadof ~t, the exact 

salution of eq. (1.4), an approximation zt is computed. zt can be 

considered as the salution of a perturbed set of equations, i.e. 

perturbations ÖAt and ört exist such that zt satisfies: 

(At + ÖA t) z t = (r t + ör t) 

With the introduetion of rt, defined by: 
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-1 
r 

we write 

1 -1 
r - r 

( 1.14) 

( 1.15) 

The consequence is that equation (1.13) needs a modification. If in 

the derivation of an equation for the residual eq.(1.15) is used 

insteadof (1.4) we obtain: 

1+1 
r 

1 
r 

and for À 1: 

1+1 
r ( 1.16) 

In addition to the common evaluation of the residual the vector r 1 

has to be determined. In chapter 6 we will show that r 1 
can be 

determined in O(n) operations for each skipped pivotstep. 

[1.1] G.O. Hachtel, R.K. Brayton, F.G. Gustavson, "The sparse 

tableau approach to netwerk analysis and design", IEEE Trans. 

Circuit Theory, Vol. CT-18, pp. 101-113, (1971). 

[1 . 2] A.N. Willson, "New theorems on the equations of nönlinear 

DC transistor networks", Bell Syst . Techn. J., Vol. , 49, 

pp. 1713-1738, (1970) . 

[1.3] E. Isaacson, ·H.B. Keller, "Analysis of numerical methods", 

Wiley & Sons, New York, 1966. 
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2. THE DETERMINATION OF A BLT FORM 

In this chapter we give the theoretica! basis for a method to 

obtain a BLT form. The main objective of such a method i$ to supply a 

border which is as smal! as possible, i.e. it contains a minimum 

number of columns. 

We will refer to graph representations of the zero-nonzero. 

structure of a matrix A. The (undirected) bipartite graph 

B(A) = (S, T, E> associated with A [2.1] consistsof two sets of n 

vertices, S and T, and a set of edges E defined by 

E = {(s.,t . ) I a . . cl 0}. A set of edges is a "matching" if each 
~ J ~J 

vertex in S and T is incident to at most one edge of the matching. 

A matching is "complete" if it contains n edges. Without ambiguity 

the associated set of coefficients in A is called a matching too. 

With appropriate row and column permutations applied to A the 

coefficients in a matching appear on the main diagonal. Any . non

singular matrix has a complete matching. If B(A) has a complete 

matching then also a directed graph (digraph) G(A) can be associated 

with A. The digraph G(A) can be obtained from B(A) by 

1) directing all edges (s . ,t.) from s. to t .; 
~ J ~ J 

2) coalescing any vertices s i and t j if (si,~j) is in tbe matching, 

while (s., t. ) is de leted. 
~ J 

After appropriate row and column permutations applied to A, the 

diagonal coefficients of A cor.respond to vertices in G(A) while the 

edges in G(A) are associated with off-diagonal coefficients. 

2.1. Background 

The origines of the problem of how to obtain a minimum border lie 

in the field of graph theory. In 1961 Seshu and Reed [2.2] formulated 

a problem suggested by Runyan: how to determine in an arbitrary 

digraph a minimum set of edges which, if removed, leave the resultant 

graph without any directed cycles. The problem is usually referred to 

as the "minimum feedback are set" problem [2.3]. The problem arose from 

the analysis of systems with feedbacks, for instanee switching circuits. 

A related problem is the determination of "minimum feedback vertex 

set" (which, if removed together with their incident edges, leave 

the resultant graph without any directed cycles). Nathan exploits a 
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feedback vertex set, called by him "principal set of nodesn, for the 

reduction of signa! flow graphs [2.4, 2.5]. Recently however it is 

the notion "essential set" [2.6] that has become very popular. Both 

problems, the edge and the vertex version, are nonpolynomial complete 

(NP-complete) [2.7]. 

The relation between an essential set and a BLT form is indicated 

by Kevorkian [2.8] and Cheung and Kuh [2.9]. If a set of vertices V 

in G(A) is an essential set then A can be given a BLT form with 

border width lVI by appropriate symmetrie row and column permutations 

such that the ith column is intheborder if and only if the vertex 

associated with aii is in V. Henceforth a set of columns constituting 

the border of some BLT form of A is called an essential set as well. 

The cardinality of a minimum essential set of a graph G is called 

the index of G. In [2.6, 2.8, 2.9] rules are given for simplifying 

a graph without changing its index and for the detection of vertices 

contained in some minimum essential set. Generally these "index 

preserving" rules do not reduce the graph completely, but a graph may 

remain to which none of the rules can be applied. The rules can be 

implemented using O(n2 ) operations [2.10]. Hence the application of 

these rules prior to the use of a non-polynomial algorithm to 

determine a minimum essential set is advantageous. 

An important algorithm is proposèd by Smith and Walford [2.11]. 

They attempt to split some subgraphs from the digraph G such that a 

minimum essential set for any subgraph is a subset of a minimum 

essential set for the digraph G. According to the nature of the 

problem this algorithm and the other algorithms which supply a 

minimum essential set [2.12, 2.6, 2.8, 2.9] require a number of 

operations which is not bounded by a polynomial in n. 

As the problem is NP-complete heuristic algorithms are proposed 

which supply a small essential set, hopefully with a cardinality 

close to minimum, e.g. in [2.13]. The application of breadth-first 

search to determine an essential set [2.14] is interesting, but much 

has to be investigated yet. The algorithm proposed in [2.15] works on 

the bipartite graph B(A) rather than on the digraph G(A). It 

assumes that B(A) contains a complete matching. However during 

execution of the algorithm the matching is changed if necessary in 

order to obtain a minimal essential set. (Whereas an essential set V 

is called minimum if no smaller essential set exists, V is called 
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minimal if no proper subset of V is essential.) Also the algorithm P
4 

[2.16, 2.17] constructs a matching while determining an essential set. 

In these papers an essential set of matrix columns is called a set of 
4 

"spikes".However the matching supplied by P may not be complete,even 

if a complete one exists.This is not required either, as a matching 

sufficies such that the diagonal of A
11 

in eq.(1.9) is nonzero. Apart 

from the algorithm in [2.15] the heuristic algorithms supply an 

essential set whiçh may be not minimal. Then a minimal essential set 

can be obtained by a method like the one suggested by corollary 2.7 

(see sectien 2.3) and implemented in line 15 of the procedure MES 

(see sectien 3.3.1). 

The algorithm to be proposed in chapter 3 has in common with the 

above ones that a matching, not necessarily complete, is constructed 

during the identification of an essential set. Althouah the 

heuristic; rule to select essential variables ("take the variable 

implying the largest train", see sectien 3.1) differs from previous 

ones, the main difference with ether algorithms is that we exploit 

the possibility to transferm the linear equations in order to obtain 

a smaller essential set. Consequently we are independent of the way 

the linear equations are formulated. The equations descrihing an 

electrical circuit, particularly the Kirchhoff current and voltage 

laws, can be written in several equivalent manners. Examples are the 

tableau approach [2.18] and the módified nodal approach [2.19]. Also 

the Krichhoff laws can be formulated with respect to some tree. The 

way of formulating the equations has éi.n impact on the zero-nonzero 

structure of the coefficient matrix of the circuit and consequently 

on the size of the minimum essential set for that matrix. 

In view of the time complexity of the fore-mentioned algorithms, 

the exploitation of the "lower block triangular" form (LBT form) of 

a matrix can be recommended. Let a matrix A consist of submatrices 

Aij, 1 5 i 5 m, 1 5 j 5 m. Let Aii be square for 1 5 i 5 m and let Aij 

be a zero matrix for j > i. Then A is said to have a lower block 

triangular form. The submatrices Aii, i = 1, ... ,m, are called "bleeks". 

The form may be obtained by row and column permutations. If for any 

permutation matrices P and Q the matrix PAQ has no LBT form, i.e. 

PAQ consistsof exactly one block, then A is called "irreducible". 

Dulmage and Mendelsohn [2.20] discuss the "canonical decomposition" 

of a bipartite graph B(A). This decomposition induces a LBT form of A 

such that the bleeks are irreducible. 
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If a minimum essential set is determined with the restrietion that 

the matching is kept fixed then each minimum essential set is a union 

of subsets, each being a minimum essential set for an (irreducible) 

block in the LBT farm of the matrix. 

Ta establish an LBT farm a complete matching is used [2 . 21]. The 

algorithm in [2.22] for constructing a complete .matching requires 

O(n
5

/
2

) operations. Depth-first search [2.23] can be applied to 

identify in the digraph associated with the matrix the strongly 

connected components corresponding to the irreducible blocks. Depth

first search requires O(n
2

) operations. Since the algorithms to 

identify an essential set usually require asymptotically more 

operations than the algorithms to establish an LBT farm, the 

exploitation of the latter may yield less operations in all (according 

to the "divide and conquer" principle [2.7], provided smaller blocks 

are actually found). More for curiosity, however, we remark that the 

canonical decomposition prior to the identification of an essential 

set may have an impact on the size of the border. The straightforward 

application of the algorithm MES, given in chapter 3, may yield a 

border which is smaller than the union of the minimum borders of the 

irreducible blocks (e . g . the example in figure 7 in [2.1 7] has three 

blocks with ·four border columns in all, while without decomposit1on 

a borde r o f three columns, the coluinns "2", "1" and "3", can be 

found). 

It should be noted that sticking to a fixed matching means a 

substantial restrietion if we are really looking for the smallest 

borde r. Experiments on electrical circuits indicate that a reduction 

of the bord e r by about 5 0% can be obtained if we are satisfied with 

any matching such that t he diagonal of A
11 

in eq.(1.9) is nonze r o and 

apply transformations to the linear equations,instead of exploiting 

the digraph representation of the matrix (see table 3.1). 

2.2. Definitio ns 

We consider thesetof equations described in eq.(l.l). Let N 

denote thesetof integers {1,2, ... ,n}, let S denote thesetof 

functions S {s . (x) 
l. 

I i E N}, and let X be the set of variables 

X = {x . 
l. 

i E N}. The s t ructure matrix S of s(x) cons i s ts o f the 

coefficie nts s 
ij' 
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i E N, j E N, defined by: 



. asi (x) 
si. = 1 J.f -a;- :j. 0, otherwise s .. = 0 , 

J x. l.J 
Thesetof variablesJon which si(x) dependsis denoted by 

X. ~X(s. (x))~ {x . I si . = 1}. Equivalently thesetof functions 
l. l. J J 

dependent on xj is denoted by S. ~ S(x.) ~ {s. (x) I s .. = 1}. 
. J J l. l.J 

A function s . (x) is called "linear" if the coefficients in the 
th l. . as i (x) 

i row of the Jacobian, a .. = ~x · l.J OAj 
for all j with x. EX., have 

J l. 
a typenumber not exceeding 4. Such a function can 

s. (x) 
l. 

be noted. by. 

Let L be a subset of N consisting of all indices i such that si(x) 

is linear. The vector function of dimension ILI associated with the 

linear functions is denoted by sL(x). The remaining functions are 

associated with the vector function sï(x), where Ï is the complement 

of L in N. Two vector functions s(xl and s(x) are called "equivalent" 

if 1) sz(x) = sï(x) 

2) sL(x) := ~sL(x) 
are satisfied, where ~ is a ILI by ILI nonsingular matrix, called a 

"transformation" matrix. 

If V is a set of variables and forsome vector function s(x), 

equivalent to s(x), we haveforsome i X(s . (x))\V =x. then x. is 
l. J J 

called a "novice" of V induced by s(x). s. (x) is called a "novice . l. . 
function" of x . . Wedefine the notion "partial train" recursively: 

J 
1) any set VcX is a partial train of itself, 2) if RV is a partial 

train of V and xj is a novice of RV then RV u {xj} is a partial train 

of V. The set V is called the "kernel" of the partial train RV. If a 

partial train TV is maximal, i.e. TV is no proper subset of some 

ether partial train RV of V, then TV is called a "train" of V. If TV 

is identical to X we say that the kernel V is an "essential set". 

Given some partial train RV a variable xj E RV is called a 

"follower", while a variable xj E Ïl V is called a "nonfollower". 

A function dependent on fellowers only is called a "follower function", 

the remaining functions are called "nonfollower functions" . A partial 

train RV induces a partitioning of x and sL(x). sL(x) can be 

partitioned into sLF(x), the follower linear functions, and sLN(x), 

the nonfollower linear functions. x consists of xF, the followers, 

and ~· the nonfollowers. According to this partitioning we write: 
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(2 .1) 

The zer-o submatrix is implied by the definition of the follower 

functions. 

2.3. Theory 

The statements in this sectien are the basis of the algorithms to 

be developed. Most of the statements are nat fundamentally different 

from those that could be obtained from graphs. However since we deal 

with transformatlans of the linear functions· it is no langer adequate 

to exploit a graph representation of the functions. First we 

establish the uniqueness of the train of a given kernel and the 

relation between the train and partial trains of the same kernel. 

Lemma 2.1: ---------

Proof: 

Lemma 2.2: 

Proof: 

18 

Let Rv 
V c RW 

and 

and 

RW be partial trains of V and W respectively. 

RV ~ RW imply that RV contains a novice of 

RW. 

consider the series of sets V = R0 , R1
, R2, ... , Ifl = RV 

such that Ef- = Jt--1 
u {xjk) and xjk is a novice of 

..Jc-1 
K- for k = 1,2, ... ,m. By the definition of a par'tial 

train such a series exists. R0 
c RW and Ifl ~ RW 

imply that Jt--1 
c RW and Jt- ~ RW is satisfied for 

some k. Then forsome i and j we have ~ \ Rk- 1 = {xj) 

= X(s. (x)J\Ef-- 1 = X(s.(x))\RW' showing that x. is a 
l. l. J 

novice of RW" 

If RV and QV are partial trains of V then RV u QV is 

a partial train of V, 

If RV is a subset of QV then the lemma is correct. In 

the case RV ~ QV the relation V c QV implies by lemma 

2.1 that RV contains a novice xj of QV. By definition 

Q~ = QV u {x . ) is a partial train of V. Using the same 
J 1 1 

arguments for RV and Qv it fellows that Rv: c QV or RV 
1 

QV. Thus partial trains contains a novice of 
1 2 

QV' QV' ... , can be constructed until forsome m we 

obtain RV c ~· Then ~ = RV u QV is a partial train 

of V. 



Theorem 2.3: 

Proof: 

Each partial train of V is a subset of the unique 

train of V. 

The uniqueness of the train follows from the 

application of lemma 2.2 to two trains T~ and Tt. Now 

the theorem follows if lemma 2.2 is applied to the 

train and a partial train. 

Two properties of trains are formulated in the following 

corollaries. 

~~~~~~~~~-~~~: TV is a train of V if and only if TV has no novice. 

Proof: Lemma 2.1 and theorem 2.3 prove the "if" partand the 

"only if" follows by definition. 

~~~~~~~~~-~~~: If TV and TW are trains of V and W respectively then 

w c Tv implies Tw c Tv. 

Proof : By contradiction: TW ~TV implies by lemma 2.1 that TW 

contains a novice of TV, contradicting that TV is a 

train. 

The following corollaries give sO!Iie properties of an essential set. 

~~~~~!~~~-~~§: V is an essential set if it contains an essential set 

as a subset. 

Proof: Let W c V be an essential set. By corollary 2. 5 the 

train TW of Wis a subset of the train TV of V. 

Since Wis essential we have X= TW = TV proving that 

V is essential. 

~~~~~~~~~-~~~: If V is an essential set and V\{x.} is not essential 
J 

Proof: 

for any x. E V then V is a minimal essential set. 
J 

If V is not minimal it contains a proper subset W 

being essential. Then V contains at least one variable 

x. such that Wc V\ {x . }. By corollary 2. 6 V\ {x . } is 
J J J 

essential contrary to the supposition. 

Next we show how two trains can be joined to one new train. 

Theorem 2.8: 

Proof: 

Theorem 2.9: 

Let TV be the train of V and let W be a subset of 

X\TV. Then the train Ty of Y W u TV is identical to 

TVuW' the train of V u W. 

We exploit corollary 2.5. V u Wc Y implies TVuW c Ty. 

on the other hand Y = W u TV c TVuW implies TY c Tvuw· 

Hence we have TVuW = Ty. 

If V is an essential set then a structure matrix S, 

associated with a vector function s(x) equivalent to 
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Proof: 

20 

s(x), exists and permutation matricesPand Q exist, 

such that PSQ has a BLT form with border width lVI and 

the variables in V are associated with the border 

columns. 

The train of V is identical to X as V is an essential 

set. So we have the series of sets V = R
0

, R
1

, ... , Ffl = 

TV= X such that ~ = ~- 1 
u {xjk} and xjk is a novice 

of ~- 1 
for k = 1,2, ... ,m. If the novice functions 

sik(x) of Xjk for k = 1,2, ... ,m all are in s(x) then 

we see immediately that permutation matrices exist 

such that PSQ, with S the structure matrix of s(x), 

has the required BLT form. (Q fellows from the 

permutation j
1

, j
2

, ... , jm completed with an 

arbitrary ordering of the remaining indices (of the 

variables in V), P fellows from the permutation 

i
1

, i
2

, ... , im completed with an arbitrary ordering 

of the remaining indices). 

If not all novice functions are in s(x) we will 

show that some equivalent vector function includes all 

novice functions. We will proof that each partial train 

Rk, k = 1,2, ... ,m,is associated with some sk(x), 

equivalent to s(x), such that all novice equations 

Si
1 

(x), si
2

(x), ... , Sik(x) are in sk(x). 

By the definition of a novice R
1 

is associated with 

some s
1

(x) containing si
1 

(x). For the induction step 

we assume that ~ is associated with sk(x) containing . 

si
1

(x), ... , Sik(x). If sk(x) contains sik+
1 

(x), the 

induction step is trivial . Otherwise, as Xjk+
1 

is a 

novice of~. some s(x), equivalent to sk(x), contains 

a novice function Si(x) of Xjk+
1

. Consider the 

partitioning of s~(x) and x induced by the partial 

train~ of V. Then with eq.(2.1) we have: 

where the partitioning of ~ is induced by that of 
k . 

SL(x). Hence for the novice function si(x) we write: 

si (x) (~iFAFF + ~iNANF)xF + ~i~~N 



where [~iF' ~iN) is the ith row of~. As si (x) is a 

novice function the vector ~iNANN contains ~nly one 

nonzero coefficient. Apparently the function 

is a novice function too. ~.(x) ~ 0 implies that ~ . 
1 · 1N 

contains some nonzero coefficient. Arbitrarily let the 

ordering of the functions be such that this is the 

coefficient ~ . . . Then the transformation matrix~ 
11 

being equal to the unit matrix except for the ith row 

which consists of [0, ~iN], is nonsingular. The 
k transformation ~ applied to sL(x) leaves all follower 

functions unaffected while only one nonfollower linear 

function is replaced by s . (x). In this way sk+l(x) is 
1 

constructed containing Sik+1 (x) 

s(x) = sm(x) associated with ~ 

novice functions. 

s. (x). By induction 
1 

TV contains all 

The proef is constructive in that it gives a detailed description 

of how to obtain an appropriate equivalent vector function and the 

appropriate permutation matrices. Another important result is that a 

novice function, provided i t exists, · always can be found as a linear 

combination of the nonfollower (linear) functions. How a novice 

function can be constructed is suggested by the following theorem. 

Theerem 2.10: 

Proef: 

Let RV be a partial train of V with respect to s(x) 

and let the partitioning of sL(x) induced by RV be as 

given in eq.(2.1). If ANN has rankmand contains a 

m by m unit matrix then RV has a novice if and only if 

s(x) includes a novice function. 

The "if" part is trivial. To prove the "only if" part, 

assume s(x) includes no novice function while some 

equivalent vector function s(x) includes the novice 

function s. (x). Apparently s . (x) is a linear 
1 1 

combination of at least two linear functions of s(x), 

both depending on some nonfollowers. The unit matrix 

assures that s. (x) depends on at least two nonfellowers 
1 

contrary to the supposition. 

If s(x) does not satisfy the conditions of the above theerem then 

we may apply an appropriate transformation to establish an unit matrix 
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in ANN. If a novice equation exists then it will be obtained by this 

transformation. The transformation matrix. can be determined easily 

if Gauss-Jordan eliminatien is applied. 
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3 . THE MINIMAL ESSENTIAL SET ALGORITHM 

3.1. Outline of the algorithm 

The algorithm MES establishes an essential set in steps. In each 
th 

step one variable is added to the kernel V. In the k step the 

kernel contains k-1 variables and the kth variable is selected from 

the variables in X\TV. For each variable xj E X\TV the train Ty of 

Y =TV u {xj} is determined. Then the variable xj associated with 

the train Ty having the largest cardinality, is selected and added 

to the kernel. Here we exploit theorem 2.8 which assures that Ty is 

identical to TVu{x · }· By the way it is very easy to apply a more 
J 

sophisticated criterion to select variables. In one or anöther way 

we may compute some figure of merit of Ty and select the variable xj 

on the basis of this figure of merit. For instanee the "qU.ality factor" 

of so called "elementary blocks" as proposed in [3.1] may be used. 

(An elementary block is a train having a special form.) 

The above procedure terminates if X\TV is the empty set, showing 

that the kernel V is an essential set. Next corollary 2.7 is exploited 

to obtain a minimal essential set. For each variable x . E V we 
J 

determine the train of V\{x.} in ordertotest whether V remains 
J 

essential if x. is removed. If so then a smaller essential set is 
J 

obtained, else x. has apparently to be retained in the set. Thus MES 
J 

ends up with a set V satisfying the condition of corollary 2.7 so 

that V is minimal. 

We introduce the procedure TRAIN to determine the train of a given 

kernel. It starts .with the partial train RV consisting merely of 

the kernel·V. Any novices are detected and added to RV. If no novice 

exists then by corollary 2.4 RV is the train of V. It is easy to 

determine whether a novice exists as the additional procedure 

TRANSFORM yields a vector function s(x), equivalent to s(x) I including 

a novice function or satisfying the condition of theorem 2.10. 

TRANSFORM applies Gauss-Jordan eliminatien in order to establish a 

unit matrix witharank equal to that of ANN (see eq.2.1). TRANSFORM 

is called only if the current vector function includes no novice 

function. 
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3.2. The datastructure 

In the description of the algorithm we assume that a linked list 

datastructure represents s(x). The linked list structure·contains 

the nonzero coefficients of the structure matrix s. The coefficients 

in some column j of S are connected by pointers, forming a single 

linked list, such that the set S(x.) is easily accessible .. The 
J 

coefficients in some row i are connected by pointers, establishing 

a double linked list, in view of having an easy access to X(si(x)). 

The latter linked list is doubled because aften subsets of X(s. (x)) 
l 

have to be entered. If Y is a subset of X then Y(s. (x))~ Y n X(s. (x)) 
l l 

is indicated by omitting, for all j with x. E Y, the coefficients s .. 
th J lJ 

from the list associated with the i row of S. Further we assume a 

pointer from each coefficient s .. to the function s. and one to the 
lJ l 

variable x .. For the linear functions the nonzero coefficients of the 
J 

Jacobian are included in the datastructure such that a .. is stared 
lJ 

next tos ... Pointers from each s. and x. to the first coefficient in 
l] th l J th 

the list associated with the i row and the j column respectively 

complete the datastructure. 

3.3. The description of the algorithm 

3.3.1. The procedure MES 

The procedure MES is given in Pidgin Algol on p. 26. It determines 

a minimal essential set (MES) of variables V for a set of functions S 

depending on the variables in the set X. 

In lines 2 and 3 the train of the empty kernel is determined. The 

novices of the empty kernel, detected by IX(si) I = 1 for the novice 

functions concerned, are gathered in the set W. Next TRAIN (X,W) 

determines the train TW of X u W = W. Because the variables in W 

are novices of ~ we have W = R~ c T~ and consequently TW c T~ by 

corollary 2.5. The identity TW = T~ fellows from corollary 2.4 as 

TW = R~ has no novice. The detection of novices described above is a 

feature in many algorithms, e.g. P
4 

[3.2] and EL [3.3]. Also a 

novice can be eeropared with a so called "compact vertex" [3.4]. The 

train of the empty kernel is determined for the sake of completeness. 

In the case that all matrices S, associated with any equivalent 
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procedure MES(X,S,V) 

begin 

W + .p; V+ .p; 

2 for each s ES do if IX(s) I = 1 then W + W u X(s); 

3 T + TRAIN(X,W); i+ X\T; y +X; 
4 for each s E S do Y(s) + X(s) n Y; 

5 while Y f . <P do 

begin 

6 Z + Y; max + 0; T + <jl; 

7 while Z f <P do 

begin 

8 

9 

choose x € Z; T + TRAIN(Y,x); 

if I Tl > max then 

begin 

10 max + I TI ; T + T; x + x 

end 

11 Z + Z\T 

end 

12 V+ V u {x}; Y + Y\T; 

13 for each x ET do for each s E S(x) do Y(s) + Y(s)\{x} 

end 
~ 

14 for each s E S do X ( s) + X ( s) n X ; 

15 for each x E V do if TRAIN(X,V\{x}) =X then V+ V\{x} 

end MES 

vector function of s(x), are irreducible, we have T<P =<Pand may 

delete lines 2 and 3. Then line 4 can be deleted as well. In the 

latter liné the datastructure is updated such that the sets of 

nonfellowers Y(s. (x)) associated with each function s. (x) are 
1 1 

indicated. 

In lines 5 to 13 an essential set V is established variable by 

variable. The train TV is represented by its complement Y : i = TV. 

In lines 8 to 10 a variable x is selected. Line 8 determines the 

train of the kernel i u {x} 

of V u {x} by theorem 2.8. 

TV u {x}, which is i den ti cal to the train 

Actually TRAIN returns the set TVu{x} n Y = TVu{x}\TV i.e. only 

the extension of the train TV is determined. The set Z is used to 

restriet the variables which have to be considered in line 8. By 
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corollary 2.5 any variable xj E T does not yield an extension of TV 

larger than T, so x . can be leftout of consideration. Hence line 11 
J 

removes the complete set T from Z. Line 12 adds the selected variable 

x to the kernel V and removes the associated extension T· of the train 

from Y such that the property Y =TV is retained. Consequently, if Y 

is the empty set in line 5, an essential set V is obtained. Line 15 

deletes possibly superfluous variables in the kernel to obtain a 

minimal essential set. 

3.3.2. The procedure TRAIN 

The procedure TRAIN is given below. TRAIN(Y,V) determines the 

extension of some train TW = Y if V is added to the kernel. 

The set NOV contains variables which can be added to the train: 

procedure TRAIN(Y,V) 

begin 

R + cp; NOV+ V; 

2 while NOV i cp do 

3 

4 

5 

6 

7 

8 

9 

begin 

choose x E NOV; NOV+ NOV\{x}; 

if x E Y then 

begin 

Y + Y\{x}; R +Ru {x}; 

for each s E S do 

begin 

Y(s) + Y(s)\{x}; 

if IY(s) I = 1 then NOV+ NOV u Y(s) 

end 

end 

if NOV cp then TRANSFORM(Y,NOV) 

end 

10 TRAIN + R; Y + Y u R; 

11 for each x ER do 

12 for each s E S(x) do Y(s) + Y(s) u {x} 

end TRAIN 
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mostly novices but also new variables of the kernel. Such a variable 

is chosen in line 3 while line 4 tests Whether the variable is still 

in Y. The test is required because the variable may have been a 

novice by virtue of two or ~e . equations. Line 7 updates the data

structure and line 8 detects possibly new novices. 

During the determination of a train each function si(x) supplies 

notmore than one novice. Fora novice x. arises only if some 
J 

variable is removed from Y(si(x)). As long as si(x) is a novice 

function we have NOV i ~ and the current vector function s(x) is not 

transformed to an equivalent one in line 9. Consequently the novice 

function s. (x)) is retained until 
~ 

the novice itself is removed from 

Y(s.(x)). Then we have 
~ 

IY(s . (x)) I 0 in line 8. Frcm then s. (x) is 
~ ~ 

left unaffected in any execution of TRANSFORM as we will see. Hence 

the number of variables put into NOV during the determination of a 

train is bounded by the number of functions plus the number of 

variables in the kernel. Because in each execution of the while

loop in lines 2 to 9 one variable is removed from NOV, we conclude 

that after a finite number of executions NOV is exhausted and the 

while-loop is terminated. 

Before the terminatien of the while-loop at least once procedure 

TRANSFORM is. called. TRANSFORM may create a novice which is put into 

NOV such that the execution of the while-loop is continued. Note 

that the novices supplied by TRANSFORM do not invalidate the above 

argumentation for the terminatien of the while-loop. If TRANSFORM 

creates no novice it ends up with a vector function satisfying the 

condition of theerem 2.10 showing that no novice exists and the 

train has been determined. The extension of the train, 

R = TYuV n.Y = T.Y·uV\.Y' is assigned to TRAIN in line 10. Next the 

datastructure is restored such that the situation before calling 

TRAIN is recovered. 

3.3.3. The procedure TRANSFORM 

We will confine ourselves with an informal description of the 

procedure TRANSFORM as the procedure is almost straightforward. Only 

some crucial points will be elucidated. TRANSFORM applies Gauss

Jordan eliminatien to the linear functions sL(x) in order to establish 

a unit matrix of maximal rank in ANN (see eq.2.1). The creation of 
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one column of theunitmatrix is called an "elimination step". In each 

elimination step we check whether a novice function arises. The check 

is constrained to the rows updated in the elimination step. The 

detection of a novice equation causes interruption of the- elimination 

process after the current elimination step. The novice(s) are put 

into NOV and TRANSFORM is terminated. Otherwise the elimination 

process is coQtinued until the unit matrix has maximal rank, i.e. the 

rank of ANN. Obviously the Gauss-Jordan elimination implies a non

singular transformation matrix ~ assuring that an equivalent vector 

function is obtained. If still no novice function is created theorem 

2.10 assures that no novice .exists. Then TRANSFORM is terminated with 

an empty set NOV. 

The pivots of the elimination steps are obtained from ANN and thus 

associated with nonfollowers in columns. Consequently the linear 

functions dependent on followers only are unaffected by the 

transformation. 

The equivalent vector function s(x) formed by TRANSFORM is saved, 

for it is much more efficient to proceed with s(x) than with the 

original vector function s(x). For example during the determination 

of T~ in line 3 of MES a vector function sL(x) is obtained inducing 

a unit matrix in ANN (where the partition in ~q.2.1 is induced by T~ 

which is assumed to differ from X). In a next execution of TRANSFORM 

we have an other partition as the current partial train differs from 

T~. Some columns of the unit matrix may be removed from ANN but a 

number of those columns may still be present. The latter columns can 

be exploited again if they are combined with appropriate other 

columns, to be established by elimination steps. If we neglect this 

point and always start from the original vector function s(x), or if 

we do not exploit the columns of the unit matrix still present, we 

will perform many elimination steps repeatedly. 

3.4. Operationscount 

The number of operations required by TRANSFORM is mainly 

determined by the Gauss-Jordan elimination. If TRANSFORM executes e 

elimination steps, it requires O(e niLJ) operations. 

Let IRI denote the cardinality of R at the termination of the 

procedure TRAIN. Lines 3 to 8 and lines 11 and 12 require O(nJRil 
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operations. Line 9 requires O(n1LI
2

> operations if T~ is determined. 

In any subsequent execution of TRANSFORM only for the columns 

disappeared from the unit matrix new columns have to be established. 

The number of new columns required in one execution of TRAIN does not 

exceed the cardinality of R. Hence line 9 requires O(niRIIL!l 

operations, except for the first execution of TRAIN. 

Line 3 of procedure MES requires O(n(ILI+IT~Il !Lil operations. The 

selection of one new variable for the kernel in lines 7 to 11 . . 
requires O(niTI IZI + niTI ILI IZil operations. Because the cardinalities 

of all largest extensions of the train sum to lXI, lines 5 to 13 require 
2 A A 

O(n lXI ( ILI+1)) operations. Line 15 requires O(niXI lVI <ILI+1)) operations. 

Hence the determ.ination of a minimal essential set by MES requires O(n
4) 

operations, or,if no transformations are applied,O(n
3

) operations.(Compare 

the O(n
3

) algorithm in [3.5] and the O(n
4

) algorithm in [3.6]). 

3.5. Some examples and results 

The first example concerns a structure matrix obtained from [3.7]. 

Kevorkian achieves a BLT form with border width 5. In figure 3.1 a 

BLT form with two border columns is given. The example shows that 

indeed sametimes a smaller border can be obtained if the condition of 

a complete matching is dropped. (No transformations are applied as 

the types and values of the Jacobian coefficients are unknown.) 

The next example is an illustration to line 15 of MES in particular 

where the minimality of the essential set is established. See figure 

3.2. The first variable selected for the kernel is x
1 

or x
5

. Assume 

x
1 

is taken (x
5 

would give the same result) . The kernel is completed 

with two arbitrary variables from the set {x
2

, x
3

, x
4

} tö an 

essential set. Figure 3.2 shows the BLT form corresponding to the 

essential set {x
1

, x
2

, x
3

}. Line 15 tests whether the subsets 

{x
1

, x
2

}, {x
1

, x
3

} and {x
2

, x
3

} are essential. As only x
1 

can be 

dropped, the last set is minimal essential. 

Figure 3. 3 shows a circuit which may be de-rived from a Darlington 

stage with the (bipolar) transistors in active mode. Assume we 

describe the current souree in the transistor models by ie h i 
FE B 

i
4 

= hFEi
3 

and i
8 

= hFEi
7

. Without transformations we find a minimum 

essential set of two variables, while with the application of 

transformations we find such a set of one variable. In the latter 
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0 1 1 0.1 1 1 1 1.1 2 1 2 2.1 2 2 0 2.2 0 J 2·0 
6 1 0 ~ ... 2 J 6 ?.~ ~ 8 ? 0 •. 9 8 1 J 6.2 2 0 9.1 

01 1 .1 
21 1 1 

03 1 1 
02 1 1 1. .1 
06 1 • 1 .1 
04 1 1 .1 
0!5 1 1 
oe • 1 1 • 
29 • 1 1 • 
07 1. 1 .1 
24 1.1 1 

23 1. .1 1 
27 1 • 1 1 • 
12 1 • . 1 1. 
11 1. 1 ·1 
28 1. 1 • 1 
15 1. 1 1. 1 

13 1 ·1 1 1 
16 • 1 1 1. 
14 • 1 1 .1 
10 1 1 1 
2 6 1 1 
20 1 1 1 • 
19 1 1 1 . • 
2:5 1 1.1 

Fig. 3. 1. Example obtained from [3 . 7] ~ fig.10b ~ P· 503 . 

~ * * * 

* ~ ~ ~ * * 

* * * * * ~ 

~ ~ * ~ ~ * * ~ * 

* ~ * * * ~ * * * 

Fig. 3. 2 Procedure MES establishes first the essential 

set {x1, x
2
, x

3
} (left) and sub s equentl y~ in Zine 

15, the minimal essential set {x 2 ~x 3 } (right) . 

0 

4 

1 

1 

1 

~ 

* 

* 
* 
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Fig. 3 . 3. DarZington stage. 

case any of the variables v
1

, i
1

, v
2

, i
2

, v
3

, i
3

, i
4 

may be the 

essential variable. E.g. these variables form a partial train of i 

which can be extended with v
5

, i
5

, i
6

, v
6

. Then we have to apply a 

transformation to the pair of linear functions i
8 

- hFEi? = 0 and ' 

4 

i
8 

+ i
7 

- i
6 

= 0. We may obta in the ·novice function ( 1 + hFE) i
7 

- i
6 

= 0 

and extend the partial train with i
7

, i
8

, v
7

, v
11

, i
12 

(observe 

i
11 

ET~), v
12

, v
8

, v
4

, i
9

, v
9 

en i
10

. Of course the above 

transformation could have been avoided with a transistor model 

imposing the equation ie = aEiE, i.e. i
8 

= aEi
6

. Obviously the 

transformation feature of the algorithm relieves the use r from having 

to b e t oo smart in c hoosing transistor models . The same applies to 

the choice of the representation of the Kirchhoff current and voltage 

equations. 

Finally figure 3.4 shows the structure matrix assoc i ated with a 

TTL NAND gate where an Ebers-Moll model i s u sed for the trans istors. 

The essential set obtained by t h e algorithm MES has appeared to be 

minimum. The columns of the unit matrix obtained by TRANSFORM are 

easily recognizable. 

The algorithm has been applied to test data concerning vector 

functions with and without linear functions. In almost all cases the 

essential set found i s e ven minimum. The execution time o f a Fortran 
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* ** 07 I , 
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* * I* * ** 13 * * * * *' 

I 
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* ** 35 I * *' 32 * * * 
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, 
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I 
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Fig. 3.4. , Str>uc-ture matrix of a TTL NAND gate. 
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implementation of the algorithm on the minicomputer PDP 11 / 60 ranges 

from 60ms. for n=6 to 30.7s. for n=57. As could be expected the 

execution time depends strongly on the cardinality of the essential 

set being found. 

In the above cases the structure matrix was sparse. An interesting 

test is the application of the algorithm to vector functions 

associated with a completely filled structure matrix and including 

no linear functions. Then the execution time exhibits the O( n
3

) 

property of the algorithm holding for the case that no 

transformations can be applied. The execution time ranges from 1.2s. 

for n=10 to 102s. for n=50, what i s s lightly less than an O(n
3

) 

increase. 

The transformation option is applied when dealing with the 

equations descrihing electrical circuits. Examples are the TTL NAND 

gate and the vA 741, an operational amplifier. Interesting is the 

decrease of the cardinality of t he minimal essential set · when the 

restrictions on the applied method are reli·eved (see table 3.1). 
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10 

VA 741 
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4. PIVOTSTEP SKIPPING 

In this and in the following chapters we consider a BLT matrix A. 

Unless·indicated otherwise we assume that A is the Jacobian of a set 

of equations as given in eq.(l.l2) and that A can be partitioned as 

indicated in eq.(l.9) such that A
11 

is a lower triangular submatrix 

of dimension t with nonzero diagonal coefficients. It ·is important to 

realize that the BLT form implies notonly a character istical pattern 

of nonzeros but also a pivot order.Many of the definitions introduced 

here have their counterparts in a general matrix once a pivot scheme 

is accepted. E.g. a chain satisfying the condition of lemma 4 in 

[4.1] can be compared to what is called a path in this chapter. 

The theory deals with Gauss eliminatien which is considered as the 

basic means to compute the Schur complement [4.2] of a BLT matrix. 

To be more specific the Schur complement is computed by p i votsteps 

as defined in equations (1. 6 )-(1.8) . Crout eliminatien does not 

yield the Schur complement explicitly. However only minor adaptations 

are necessary to obtain a modification of the Crout scheme such that 

it generates the Schur complement as well. 

4.1. Definitions 

We reeall that the kth pivotstep involves the operations 

( campare eq. s. ( 1. 6)- (1. 8)) : 

ukj +uk ./Z.kk for k < j !> n 
J . 

u .. + U , . - z.ikuk j for k < i < j ~ n 
1] 1] 

Z. .. z. .. - z.ik ~j j 1] + 1] for k < ~ i ~ n 

(4 .1) 

(4. 2) 

(4. 3) 

where Z. kk is the kth pivot. A subset of the operations in (4.2) and 

(4. 3 ) is obtained if i is kept fixed. Su ch a subset is called a 

"pivotsubstep". A p ivots ubstep concerns operations on coefficients 

in one row. 

The execution of a pivotstep (or a p ivotsubstep) will be skipped 

if a condition of the form I Z.kkl ~ ek is satisfied. The right hand 

side ek is called a "threshol d ". 

An ordered set of nonzero coeff i c ients of the BLT matr ix A: 
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with ~ ~ 0, ik-l F ik F ik+
1 

and ik ~ t for 1 ~ k ~ ~. is called a 

"path" P of length L A path is characterized by the 
ioi~+l 

pivots it c ontains: given the pivots (and i
0 

and i~+l) only one 

choice for the path P , . remains (see figure 4.1). A different set 
l.ol.~+1 

of pivots may imply a different path. However not each set of pivots 

determines a path. Only if the appropriate off-diagonal coefficients 

are nonzero a path exists. The order of the pivots in a path is 

always reversed to the pivot order induced by the BLT form. 

With a path P. . a "term" ljli . is associated, defined by 
l.ol.~+1 ol.~+1 

A term is the product of all off-diagonal coefficients in the path 

divided by the product of the negatives of all pivots in the path. 

Note that a term is always nonzero for finite pivot values. The set 

of all terms ljl .. forsome i and j is denoted by ~ . .. If two termsin 
l.J l.J 

Fig.4.1. A Bordered Lower Triangu Zar matrix eontaining 

a path (- - - ) and a eyele (- ·- .J • 

37 



~ij' w~j and wfj' are related by lw}j I s 
we say that w~ . is "dominated" by w2 . 

called a ,;dom~~ator" of w~ i. ~) 

lll w ~ . I for some ll, o < ll s 1, 
~) 2 

for this value of ll. wij is 

If the length of the path P . . is one or more and a. . is 
~) ~) 

nonzero then Cij =Pij u {aij} is called a "cycle". The lengthof 

a cycle is the lengthof its generating path. Figure 4.1 illustrates 

the definitions. 

4.2. The demination principle 

Let A
22 

be the Schur complement of A
11 

in A, i.e. 
-1 ~ 

A
22 

= A
22 

- A
21

A
11

A
12 

[4. 2 ]. If avw is a coefficient of A22 and if a 

path P exists then ~ is nonzero excèpt for special values of the 
vw vw 

coefficients of A [4.1]. The following theerem deals with the value 

of the coefficients of the Schur complement. 

!~~~~~~-~~: Let A22 be the Schur complement of the lower triangular 

submatrix A
11 

in A. Any coefficient avw of A22 satisfies: 

a E W (4.4) 
vw ~ vw 

vw 

r q p w 

Fi g.4. 2. Two paths di ffer i ng in one pivot. 
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Proof: The proof is by induction on t1 the dimension of A
11

. 

For t = 0 the theorem is trivia!. Now let t m and let 
m-1 

A
11 

denote the submatrix of 

m-1 rows and columns of A
11

. 

A
11 

consisting of the first 

Let ~-l be the set of terros 
vw 

~vw associated with avw or with paths passing through 
m-1 

pivots of A
11 

exclusively. If Gausseliminationis applied 

to A then after m-1 pivot steps the Schur complement of 
m-1 -m-1 

A
11 

1 denoted by A
22 

1 is computed. The induction 
~m-1 ~m-1 

hypothesis applies to any coefficient avw of A
22 

: 

~m-1 
a 

vw 

With the 

~-1 ~vw 
vw 

. f h th . s h execut1on o t e m p1vot step the c ur 
. ~m 

complement A
22 

= A
22 

can now be computed. Any coefficient 
~m ~m 

avw of A
22 

satisfies: 

"'111 "'111-1 ~m-1 ~m-1 -1 ~m-1 
a a - a (a ) a 

vw vw vm .mm mw 

We have ~m-l = a and ~m-l a because the mth column 
VIJi vm mm mm 

is not in the border and thus not subjected to updating. 

By the induction hypothesis follows: 

~m 

a 
vw 

-1 
~-1 ~vw + ~-1 (-avmamm~mw 1 (4. 5) 

vw mw _
1 

For each term l)Jmw the product -avmamm~mw is a term ~vw· 

Such a term is associated with a path passing through 

amm and possibly some of the first m-1 pivots. Both 

sums in (4.5) together yield all terms associated with 

avw or with paths passing through pivots of A~ 1 
exclusively. Hence we have 

~m 

a 
vw E ~vw 

'!'m 
vw 

~m ~ Because avw equals avw and vw equals '!'vw (4.6) is 

identical to (4.4). 

(4. 6) 

From theorem 4.1 we see that any coefficient avw of the Schur 

complement is equal to a sum of terms. We may expect that if small 

terms are omitted1 the remaining terms constitute a good 

approximation of avw. In order to delete small terms we study what 

we call the "domination principle". The domination principle i mplies 

that only dominated terms are deleted: if 1 ~ 1 I $ 61~ 2 I holds the n 
vw vw 
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ljl
1 

can be deleted. In sectien 4.6 the implications of the principle 
vw 

for the error of the solution are discussed. 

4.3. The thresholds 

Let the 
1 2 

paths P vw and P vw' associated with ljl
1 

and ljl
2 

differ in 
~ vw 

Arbitrarily let a E P
1 

and 
2 qq vw 

for all akk E P vw· The the 

a ~ P and let 
qq vw • 1 2 

symmetrie difference Pvw $ Pvw 

one pivot. 

~k E p!w 
appears to be the cycle cpr = {apq,aqq'aqr'apr} 

(see figure 4.2). The ratio of the term is: 

-1 
a a · a 

pq qq qr 
a 
pr 

of length one 

ljl
2 

dominates ljl
1 

if the ratio does not exceed ~ or, equivalently, if 
vw vw 

(4. 7) 

is satisfied. The condition is important not only for the comparison 

of ljl
1 

and ljl
2 

. Many pairs of paths P~ ., P~. may exist such that 
1 vw 2 vw lJ lJ 

P .. ffi P .. = C • Thus if inequality (4. 7) holds all terros ljl 1 ~j lJ lJ pr 
associated with paths P~. can be deleted. 

lJ 
The common characteristic of the pairs P~ · ' P~. is the cycle C 

lJ lJ pr 
There may be more such cycles of length one conta ining a . Exactly, 

qq 
any nonzero apq in the pivot column combined with any nonzero aqr in 

the pivot row defines such a cycle if a 
pr 

is nonzero as well. (For 

the moment suppose that the case (a ~ 0 A a ~ 0 A a = 0) does 
pq qr pr 

not occur). Each such cycle defines a class of pairs of terms. The 

possible deletien of one of the terros of every pair is controlled by 

the condition of the defining cycle. All conditions arising from 

cycles passing through a contain the pivot a and are of the form 
qq qq 

(4.7). Hence it is possible that all conditions are satisfied. Then 

all terros depending on a are dominated and can be deleted. This is 
qq 

formally stated in the following l emma . 

Lemma 4.2: 
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Let q be give n and l et for all p .such that a ~ 0 and 
pq 

all r such that a ~ 0 the coefficient a be nonzero 
qr pr 

1 
and inequality (4.7) be satisfied. Then each term ljlij 

containing a-
1 

has a dominator ljl
2 

individually 
qq ij 

associated with it. 



Proof: We introduce the notation ljli to denote the product 
-1 pp 

-ljl. a for i -1 p, while ljl, .. =: 1. In the same way 1jJ . 
l.p pp -1 l.l.l. 1 -1 rr) 

denotes -a 1jJ • for r -1 j. If ljl .. contains a then for 
rr rJ 

1 
l.J _

1 
qq 

some pand r we have ljli. ~ -ljl . a a a 1jJ . • 
J 1.pp pq qq qr rr) 

The supposition a -1 0 assures the existence of the 
pr -1 

a a a . 
2 · 1 pq qq qr ,,,2 

term ljlij ~ ljlippaprljlrrj" Hence ljlij ~- ~r . ~ij 

and from inequality (4. 7) follows Iw~. I "; ll l ljlfJ· I . 
3 l.J 4 

Any other term ljl .. depending on a has a dominator ljliJ' 
1.)2 qq 

different from . ljl . . by the construction of the dominator. 
l.J 

The foregoing analysis has a meaning for both Gauss and Crout 

eliminatien as the deletion of all terms depending on a is 
qq 

identical to the skipping of the qth pivotstep in Gauss elimination. 

Thus the pivotstep is skipped if all conditions of the form (4.7) 

for fixed q and different p and r are satisfied.Clearly it suffices 

to test the condition with the largest right-hand side. This 

condition defines the threshold e of the pivot l =a (BLT form:J: 
q qq qq 

e 
q 

A -1 -1 
u max [ apqapraqr] 

p,r 
(4.8) 

d th th · · · if I I an e q p1.votstep l.S sk1.pped a 
qq 

;>: 9 holds. 
q 

The effect of skipping a pivotstep is identical to perturbations 

of appropriate matrix coefficients. For some q let a and a be 
pq qr 

nonzero and let a be perturbed i.e. a ~ a + óa . Any set of 
pr pr pr A p~ _ 

terms ~vw can be partitioned into three subsets ~vw' ~vw and ~vw 

all terms ljlvw containing the factor a are in ~ , all terms 1jJ 
. . _ 1 0 

pr vw vw 
conta1.n1.ng a a a are in ~ and the remaining terms 1jJ are in 

pq qq qr vw vw 
~vw· The expression for a coefficient in the Schur complement i n 

terms of these subsets is: 

a 
vw 

l: 1jJ + l: 
iji vw ~ 

vw vw 

,,, + l: ,,, 
"'vw ~ . ~'V(N 

,vw 

Each term in ~ is related to a unique term in 
0 

~ : if 
vw y:w - 1 0 

1jJ a 1jJ E ~ then -ljl a a a 1jJ E ~ and vice versa. 
vpp pr rrw vw _

1 
vpp pq qq qr rrw vw 

If óapr equals ~aqqaqr' the s um of two relate d terms is 

1jJ (a - a a-la )ljl ~ 1jJ a 1jJ • Apparently óa 
vpp pr pq qq qr rrw vpp 

0
pr rrw pr 

causes 

the cancellation of all terms in ~vw· Because the foregoing holds 

for any coefficient of the Schur complement we conclude that the 

deletion of all terms containing a a-
1

a is equivalent to the 
-1 pq qq qr 

perturbation óa a a a added to a The d e letion of other 
p r pq qq qr pr 

41 



terms depending on a is equivalent to perturbations of other 
qq 

coefficients of A. We see that skipping of the qth pivotstep implies 

that the Schur complement of the pertur bed matrix (A + oA) is 
-1 

computed where oA has coefficients oa a a a for p ~ q and 
pr pq qq qr 

r ~ q. The definition of the threshold 9 (equation (4.8)) assures 
q 

that for la I ~ 9 the perturbations satisfy: 
qq q 

loa I 5 D. l a I 
pr pr 

Dependent on the accuracy factor D. the perturbations are small 

relative to the original matrix coefficients. 

(4.9) 

The case a = 0 given nonzero a and a is no t yet discussed. 
pr pq qr 

Then the cycle C does not exist and no condition is obtained. 
pr 

But a longer cycle passing through another pivot as well, can be 

searched. Such a cycle, if present, y ields a condition for the 

product of the concerned pivots. Though this approach is executable, 

it has seve re drawbacks. Firstly the computational complexit y to 

find the cycles increases from O(n3 ) to O(n4 ) or more, depending 

on the length of the cycles. Secondly more and more complex 

conditions control the execution of pivotsteps in this approach. 

Another approach is possible if we exploit inequality (4 .17) given 

in secti on 4.6. The inequality constitutes an upper bound to the 

error of the s olution. (4.17) can be applied if skipping o f a 

pivotstep induces a perturbation matrix oA satisfying 

11 oAII 5 D.IIAII • The condition admits perturbations oa in spite of 
pr 

that a is zero. E.g. all coefficients of oA may be equal to 
pr 

~ 11 A 11 . Henc e we may require that oa satisfies: 
n pr 

l oa I = la a-
1

a I 5 ~ IIAII 
pr pq qq qr n 

(4.10) 

The same condition for pivot a would be obtained if the value of 
1 qq 

a was replaced by - IIAII regardless whether a is zero or not 
pr n pr 

(c ompare (4.7)). 

The perturbation oa s atisfy ing (4.10) h a s no relat i o n to the 
p r 

size o f t h e coefficient a . In order to explo i t a possi bly large 
p r 

value of a we may use a value like ~ IIAII only if a is zero or 
pr n pr 

very small. E.g. for any À with 0 5 À 5 1 the right-hand side 

/).{~ IIAII + (1-À) l a l} can be used in inequality (4.10). The property 
n pr 

IIA + Bil 5 IIA II + IIBII implies tha t the associate d pert).lrbation 

matrix oA satisfi e s: 
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11 liAII ~ /::, >..IIAII + /::,(1-À) I! All= öiiA II 

In the latter approach the domination .principle is abandoned. 

The approach is based on the condition 11 óAII ~ öiiAII which is 

connected with inequality (4.17). However inequality (4.18), which 

constitutes a tighter bound to the error of the solution, cannot be 

applied. The following sectien discusses an approach maintaining the 

demination pr~nciple. The thresholds computed with this approach 

are such that the skipping of a pivotstep induces a matrix ÓA with 

the property that inequality (4.18) can be applied. 

4.4. Dependable references 

If the absolute values of the pivots are bounded from below the 

dominatien principle can be applied without increasing the 

computational complexity and the disadvantage of more, and more 

complex, conditions. For that purpose we introduce the notion of a 

"dependable reference". A nonnegative constante: .. is a dependable 
~J 

reference if each term ~ 1 
with v >tand w > t containing a term~ .. , 

vw ~J 

not identical to a .. and satisfying I~ . . I ~ öe:;J·, is dominated by a 
2 ~J _2 ~J • 2 

term ~vw associated with a path p-vw with the property Pvw n Pij = ~. 

where P1 . is associated with ~ . .. Dependable references can be used 
J ~J -1 

to compute thresholds. For instanee if ~ is the term -a a a 
. . -1 pr -1 pq qq qr 

then I~ I ~ öe: implies I a I ~ /::, I a I . e: . I a . The inequali ty pr pr qq pq pr qr · 
has the same form as (4.7); e: plays the role of a . Clearly for 

pr pr 
e: = la I > 0 the inequality becomes indenticalto (4.7). Hence pr pr 
we state without proof: 

Corollary 4.3: For each i and j 

reference. 

e: . . 
~J 

laijl is a dependable 

If a . . is zero the dependable · reference obtained from the corollary 
~J 

is useless. The following theerem gives a method to compute positive 

dependable references from other positive dependable references in 

an iterative way. First two functions are defined. Let n for q ~ t 
q 

denote the lower bound to the absolute value of pivot a 
qq 

laqql ~ nq > O. The functions are: 
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Rij ~ min 
k# 

aki!O 

c .. ~ min 
l.J R-Ij 

aj/0 

[ Ekj 1 lQ ni 

[ EH ] 
lajR-1 

nj 

for i 5: t, 

for j 5: t, 

R .. ~ 0 for i > t 
l.J 

cij ~ 0 for j > t 

If for i ":;; t ~i is zero for all k then we define Rij ~ In the 

same way we define Cij ~ oo if for j 5: t ajR, is zero for all 9-. 

However practical matrices are usually irreducible and then the 

cases R .. = oo and C .. = oo do not occur. Figure 4.3 illustrates which 
l.J l.J 

matrix coefficients and dependable references occur in the functions. 
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Fig.4.3. 

w 

.,_--t--l!!lv 

I 

I 
I 

' ' 
R vw 

' ' " " " 

-Ii--I---f 
I 

i 

' ' Rij ' 

' 
c ' pq -I-'tq 

p 

The computation of dependabl e references according 

to eq. ( 4. 11 ) . 

The border columns are indicated left to the other columns to 

make. the iUustration more clear. A o denotes a dependable 

r efer ence . The dependable r efer ences denoted by • are 

computed using the coefficients and dependable references 

connected t o each other by solid lines. Not e that R and 
pq 

cvw are zero (p > tand w > t). 



Theorem 4.4: 

Proof: 

Fig.4.4. 

Let la I ~ nq > 0 hold for all q ~ t. Let for given 
qq 

i and j all e:kj and e:iR. occurring in Rij and Cij be 

dependable references. Then 

e:. . = max [R .. 1 C. j 1 I a .. I ] 
~J ~J ~ ~J 

(4 .11) 

is a dependable reference. 

We show that both R .. and C . . are dependable references. 
. ~J ~J 

la
1
jl is a dependable reference according to coröllary 

4.3. If i > t then R . . is zero and e:.j = R . . = 0 is a 
. ~J ~ . ~J 

dependable reference. For i ~ j ~ t no path P .. exists. 
~J 

Hence regardless its value e: .. = R .. is a dependable 
~J ~J 

reference. In the cases j < i ~ t and i ~ 

P
1 be some path with v > t and w > t and 
vw 

t < j let 

let P1 
vw 

contain some path P . . not inden ti cal 
~J 

to {a . . } . Then 
~J 

we have forsome k (see figure 4.4): 

= {~i 1 aii} u pij c p~ 

The inequality Iw .. I ~ öR .. implies: 
~J ~J 

-1 -1 
lwkjl = !akiaiiwijl ~ !akilni öRij ~ öe:kj 

w 

' ' ' 
V 

1 . Determination of a dominator of wvw us~ng 

dependabZe references . 
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Ekj is a dependable reference for it occurs in Rij" 

Therefore w1 
is dominated by a term w2 

associated 
vw vw 

with a path P~ having the property P~ n Pkj ~-

Consequently P2 n P . . = ~ holds too and E. . R. . is 
vw ~J ~J 1) 

a dependable refe rence . The proof that Eij = c
1

j is a 

dependable reference proceeds in the same way . 

The dependable references can be computed in an iterative way by. 

the procedure DEPREF, which we describe here. The proc e dure EPS(i,j), 

used in DEPREF, c omputes E . . according to (4.11). 
1) 

procedure DEPREF 

begin 

for t < i ~ n, t < j~n do EPS(i,j); 

2 for m=1 step 1 until t-1 do 

begin 

3 for i =t-m+1, t <j 5n do EPS (i,j); 

4 for t < i ~ n, j =m do EPS(i,j); 

5 for i=t-m+j, 1 ~ j ~ m do EPS(i,j) 

end 

end 

Figure 4. 5 shows the order in wh i ch the dependable references are 

computed by DEPREF. 

Theerem 4.5: 

Proof: 
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The computation of a dependable reference in DEPREF 

requires only dependable references computed befere 

in DEPREF. 

In line 1 we have R . . = 0 and C . . = 0 because i > t 
1) 1) 

a nd j > t. Thus no d ependable re f ere nces a re required . 

Consider the execution of lines 3, 4 and 5 f or m = ~-

In line 3 j > t implies C .. = 0. R . . uses Ek. with 
1) 1) J 

i < k ~ n as aki is zero for k < i (BLT form).Ekj 

with t < k ~ n is computed in line 1 (j > t:' ) ~ Ekj 

with i < k ~ t i s computed in . line 3 for m = m, where 

m f ellows from k = t- m + 1. Becau se of 

t - fit + 1 i < k t - m + 1 ~ t we have 1 ~ m < ~-

So Ekj with i < k ~ t is obtained by a previous 

e x ecutio n of line 3 . In line 4 we have R .. = 0, while 
1 ) 

Ci j use s E i ~ with ~ ~ < j or t < ~ ~ n. E i ~ with 



m=t-1 

m=m 

m=1 

Fig. 4. 5. DEPREF computes the dependabZe reierences in the 

order indicated by m. 

t < ~ :<> n is computed in line 1 (i > t!), while Ei~ 

with 1 ~ ~ < j is obtained by a previous execution of 

line 4, namely for m = ~ < j = m. 
In line 5 we have < i :<> t and 1 :<> j :<> m < t. R .. 

~J 

uses Ekj with i < k :<> n. Ekj with t < k :<> n is 

computed in line 4 for m = j :<> m. Ekj with i < k $ t 

is computed in line 5 for m = m (j :<;; m holds because 

of k = t- m + j :<> t). Because 

t - Dl + j i < k = t - m + j :<> t implies 

:<> j :<> m < m, it is assured that Ekj with i < k :<> t 

is obtained by a previous execution of line 5. 

c .. uses EH with 1 :<;; ~ < j or t < ~ :<;; n. EH with 
~J -t < ~ :<;; n is computed in line 3 for m = m. Fr om 

i t m + t nl + j :<;; t we obtain 

:<> m Dl - j + 1 :<> m. So Ei~ with t < ~ :<> n is 

computed during the latest or a previous execution of 

line 3. Ei~ with :<> ~ < j is computed in line 5 for 

m = m (for i = t - m + ~ :<> t implies ~ :<;; m). Because of 
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i t-m+j t - m + ~ S t we have 

m + ~ - j < m. Sa ei~ with s ~ < j is 

obtained by a previous execution of line 5. 

Line. 1 of DEPREF computes e ij for t < i s n and t < j S: n. 

Because bath Rij and Cij are zero the result is eij = lai jl . If aij 

is zero na positive eij is computed. Theorem 4.4 does nat assure 

that na positive dependable reference exists in this case. For e .. 
l.J 

computed according to equation (4.11) need nat be maximal, i.e. some 

we will Ê .. with Ê .. > e . . may exist which is dependable toa . However 
l.J l.J l.J 

show that ei. = la . . I is maximalfort <is n and t < j s n. 
J l.J 

Lemma 4.6: Let p1 with t < v s n and t < w s n contain a path 
--------- vw 

Proof: 

Lemma 4. 7 : 

Proof : 

p: ., nat identical to {ai.}, and let Iw .. I s: 
l.J J l.J 

satisfied. Then the term w1 has a dominator 
vw 

that all pivots in P
2 

are contained in P
1 

as 
vw vw 

öe . . be 
l.J 

w2 such 
vw 
well. 

p1 Let the values of all pivots nat contained in 
vw 

grow very large while the value s of the pivots in P
1 

1 vw 
are constant. Then the value of wvw is const ant and 

moreover Iw . . .I s öe. . still holds. On the other hand 
l.J l.J 

the value of each term depending on a pivot nat 

contained in P
1 

approaches zero. Hence pivo t values 
vw1 

exist such that Iw I > t>lw I for each t e rm 1jJ · 
vw vw 1 vw 

depending on a p ivot ·nat contained in P vw' . Howe v e r 

Iw . . I s öe .. assures that w
1 

has a dominator w
2 

l.J l.J vw vw 
Apparently w2 does nat depend on a pivot. which is nat 

vw 
contained in p1 . 

vw 

The dependable referenc e evw 

case t < v s n and t < w s n. 

la I is ·maximal in the 
vw 

Any t e rm w
1 

s a tisfying lw
1 

I s öe , has a dominat or 
vw vw vw 

w
2 

which by the definition of e does nat depend on 
vw vw 

any pivot in P1 
and which by lemma 4 . 6 does nat 

vw 
depe nd on any p ivot nat contained in P

1 
• Then the 

2 vw 
only possibility i s wvw = a vw. Cons eque n t l y any 

cons t a nt larger t han lavwl cannot b e a dependable 

reference. 

From the latter lemma we conclude that na positive dependable 

referenc e e exists if a is zero in the case t < v s n and 
vw vw 

t < w s n. 

On the o t h e r hand c onside r the case tha t a ll e l ements in A
22 

are 
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nonzero. Then all E . . computed in line 1 of DEPREF are positive. The 
~J 

other dependable references, computed in lines 3, 4 and 5 use the 

functions R .. and C .. for i ~ t or j ~ t. At least one of the 
~J ~J ' 

functions gives a positive result if all dependable references 

occurring in them are positive. Because after the execution of line 

all dependable references are positive it fellows by induction, in 

view of theerem 4.5, that all dependable references computed by 

DEPREF are positive. 

Although the case that A
22 

has no zero coefficient occurs very 

rarely, the foregoing is not unimportant. Let A be a matrix with zero 

coefficients in A
22 

and let matrix A be identical to A except for A
22 

which contains no zero coefficient. A can be considered as a 

perturbation of A. Although A may have zero dependable references, 

from the preceding paragraph it appears that for the perturbed 

matrix A a·ll dependable references are positive. 

By the way a computed dependable reference Eij may be larger than 

laijl sometimes. Then in the computation of the thresholds a, 

probably, small a . . is replaced by the more appropriate value of E ..• 
~) · ~J 

In appendix A some general statements are made concerning the size 

of dependable references. 

In the following sectien we will pay attention to th~ relation 

between a dominated term and its dominator. If no dependable 

references need be used then lemma 4.2 .shows that there is a one-to-

one correspondence between dominated terms and . dominators. We will 

show that this property is lost if dependable references are 

exploited and we will deal with the consequences of that. 

4.5. The determination of a dominator· 

If the threshold a is computed exploiting dependable references 
q 

then the terms depending on a are dominated for la I ~ a . The 
qq 1 qq q 

construction of a dominator of the term ~ vw containing the term 

~ -
1 

is easy if a is nonzero (see the proof of pr = -apqaqqaqr pr 
lemma 4.2). However if a is zero and the dependable reference E 

pr pr 
is exploited~ a dominator is not found immediately. A way to 

determine a dominator is suggested if we combine the definition of a 

dependable reference and lemma 4.6. The lemma s tates that the 

dominator ~ 2 of ~ 1 
depends only on pivots in P1 . On the other hand 

vw vw vw 
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we have P
2 

n P 
vw pr 

pivots in P2 are 
vw 

= ~ by the definition of E . Consequently all 
pr 

in P
1 \P . If we succeed in extending P 
vw pr 

1 
p r 

the restrictions P c P .. c P and longer pa th P. . wi th 
~J 

P . . n P
2 

= ~, then the 
~J vw 

1 
pr ~J vw 

set P \ P .. is smaller than P 1 \ P 
vw ~J vw pr 

to a 

Therefore we may try to make P .. as long as possible, subjec t to the 
~J 

above restrictions. It will appear that in this way a dominator P
2 
vw 

can be determined such that all pivots in P
1 

\P . . are in P
2 

as well. 
vw ~J vw 

We say that the path Pkj is the "forward extension" of Pij 

following P if P . satisfies P. = {a . ,a .. } uP .. c P 
vw kJ k] k~ ~~ ~J vw 

Equivalently the path PH= Pij u {ajj'aj.\!_} c Pvw is called the 

"backward extension" of P . . following P . Let P. , with t < v ~ n 
~J vw vw 

and t < w ~ n, contain the path P Consider the series of paths 
0 1 2 · pr 

Ppr = P ,P ,P , ... ,J!l = Pfg with w ~ 0. For w ~ 1 and 0 ~a~ w-1 

let Po+l be the forward extension of P0 = P .. following P in the 
~J vw 

case E . . = R. . > I a . . I and let P
0

+
1 

be the backward extension of 
~J ~J ~J 

P . . following P in the case ( ( EiJ. = CiJ" > laiJ. 1) "(CiJ" > RiJ.)). 
~J w+l vw . 

If no next path P can be obta~ned in this way, e.g. if 

Pw = Pfg and Efg iafgl' or. if Pw Pvw' the series is terminated. 

Clearly the series consists always of a finite number of paths. 

The last path in the series, Pw = Pfg' is called the "final extension" 

of P following P 
pr vw 

~~~-~~~: Let Pfg be the final extension o f Ppr following Pvw' 

Proof: 

with t < v ~ n and t < w ~ n. Then Efg = lafgl. 

Suppose Efg > lafgl holds. Then we have . either 

Efg Rfg ~ Cfg or Efg = Cfg > Rfg" In the first case 

Rfg > 0 implies by the definition of Rfg that 

f ~ t < v holds . Consequently for some k the path Pkg 

i s the forward extens ion of P fg following Pvw. This 

contradiets that Pfg is the last path of the series. 

In the secend case we have g ~ t < w bec ause of 

c f g > 0 and the definitionof cfg" Then the path p f R. ' 

the backward e xte nsi on of Pf following P , 
g vw 

contradiets as we ll that Pfg is the last path of the 

series. The contradictions imply that the case 

Efg > lafgl cannot occ ur and so Efg = lafg l . 

Note that the final extension P fg is always the first path in the 

series such that Efg equals lafgl. 
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Lemma 4.9: If 1~ .. I ~ ÖE .. holds in the case E .. = R .. > la;J· I 
~] ~] ~] ~] . 

then the term ~ . associated with the forward 
k] 

extension of P . . following P , satisfies I~ . I ~ ÖEkJ. 
~] vw k] 

Proof: ~ E;J· =RiJ. implies E .. ~ I I n. by the definition of 
• ~J aki ~ 

Lemma4.10: 

R ... Hence 
1-] 

l~kjl 

the term ~kj 

-1 
lakiaii~ij l ~ 

satisfies: 

If l~ijl ~ ÖEij holds in the case Eij Cij > 

then the term ~i~ associated with the backward 

extension of P .. following P , satisfies 
~] vw 

~~Hl ~ ÖEH. 

The proof proceeds in the same wa"y as the proof of lemma 4.9. 

l a .. I 
~] 

Theorem 4. 11: Let ~ .. "$. a .. satisfy I ~i. I ~ ÖE .. and let Pf be the 
~] ~] J ~] g 

final extension of P . . following P~ with t < v ~ n 
~] 1 
~ 1 ~ ff~f ~ 1 is dominated 

VW V g ggw 

Proof: The construction of the final extension and the lemmas 

4.9 and 4.10assure that 0 < l~fgl ~ ÖEfg is satisfied. 

Lemma 4.8 yields Ef =laf lwhich completes the proof. 
1 g g 

If 1~ . . I ~ ÖE . . assures that ~ has a dominator then the theorem 
~] ~] 2 vw 1 

shows how a dominator w can be determined. We say that w is 
vw 2 vw 

"assigned" to the dominator Wvw· Figure 4.4 illustrates the 

determination of a dominator. The series P~ ., . P~. , P~ , P~ yields 
1 1 1 ~] . J g g 

the final extension Pfg of P . . . So for Iw .. I ~ ÖEij the term 
2 1 1 ~] ~] 1 1 1 1 

~ = ~ ffaf ~ is a dominator of ~vw = wvffwfg~ggw 
vw v g ggw 1 1 1 1 

The series of paths P .. , Pk., Pk , Pf can be associated with the 
~] J g g 

series of depe nda"ble references E . . , Ek.' Ek , Ef . We say that 
1 1 ~] J g g 

w is "assigned" to E ~ to E etc ij ij' kj kj' 1. 
If 1~ .. I ~ ÖE . . holds then the term~ is assigned to the 

~] 2 ~] vw 
dominator wvw which is determined without ambiguity by the final 

extension of P . . . Alternatively we may find Iw I ~ ÖE and 
~J pr pr 

1 
determine the final extension of P . This may imply that ~ is 

3 . pr 2 vw 
assigned to a dominator ~vw not identical to ~vw· For example in 

figure 4.4 the final extension of P is the path P 1 . and 
1 1 1 1 . pr 3 1 PJ 1 

~vw = ~vppwpj~jjw ~s assigned to wvw = lj!vppapj~jjw" 

If a pivotstep is skipped a deleted term is assigned to only one 

dominator. Consider again figure 4.4 and assume la I ~ a holds. 
qq q 
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In order to find the dominator to which Wl is assigned we take the 
vw 

h . pl . d . s ortest path 1n vw conta1ning the concerne p1vot a The path is 
qq 

P = {a ,a ,a }. Because of la I ~ 9 we have Iw I = la a-
1

a I 
pr pq qq qr qq q pr. pq qq qr 

~ !J.r; .- Hence the final extension of P yields the dominator. 
pr pr 

In the case of lemma 4.2 we have a one-to-one correspondence 

between deleted terms and dominators. But if dependable references 

are exploited two or more terms may be assigned to the same 

dominator. See figure 4.4 : if the ith pivot exceeds its threshold 

both Wl and w
3 

are deleted. If the terms associated with the final 
vw vw 

extension of Pkp = {~i,aii'aip} in respectively P
1 

and P
3 

are 
vw vw . 1 

assigned to the same dependable reference r;f 
3 . 2 g 

laf I then w and 
g vw 

wvw are assigned to the same dominator Wvw· 

In sectien 4.3 we have demonstrated that the deletien of terms 

is equivalent to perturbations of appropriate matrix coefficients. 

It is attractive .to perturb only nonzero coefficients. This is 

possible if it is known to which dominator 

figure 4.4 w
1 

be assigned to w
2 

because 

a term is assigned. Let in 
1 

wfg is assigned to 
vw 1 vw 

r;fl = I afll . The de letion of. wvw induces a perturbation of afg' 

óaf = - wf • 
g 3 g . ~2 11 . If w is ass1gned to ~vw as we , a second perturbat1on on af 

vw 3 3 3 g 
is required to account for the deletion of w : óaf = -wf . 

1 3 vw g g 
Although both lóafgl ~ !J.Iafgl and lóaf I ~ tJ.Iaf I are satisfied 

3 g g 
the inequality lóafgl = lóai

9 
+ óafg l ~ !J.Iaf

9
1need not hold. No 

upperbound on the perturbation óafg is obtained because the 

computation of the dependable reierences according to (4.:11) did not 

account for the possibility that two terms could be assigned to one 

döminator. In the following a computation of dependable reierences 

is studied such that any perturbation óafg accounting for the deleted 

terms, satisfies lóafgl ~ tJ.Iaf
9

1. 

The alternate computation of dependable reierences uses the number 

v. . . v . . is the number of all nonzero coefficients a ik in the i th row 
1J 1J th 

and akj in the j column with the restrietion j < k <min [i, t+l] 

in the case j ~ t and the restrietion k < min [i, t+l] in the case 

j > t. Figure 4.6 illustrates the definition. If vij is nonzero r;ij 

is computed according to: 

E: •. = 
1J 

v~~ max [R .. ,C .. , la .. I] 
1J 1J 1J 1J 

(4. 12) 

The entities E: • . computed by (4.12) are dependable reierences because 
1J 
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Fig.4.6. Definition of vij' 

Blaak squares denote eoeffieients. aij for whieh the eorresponding 

vij is illustrated. v 1 j is the number of nonzeros in the shaded 

parts of the eoneerned row and column. 

vij ~ 1 if vij is nonzero. If v1 j is zero then no term wij ~ aij 

exists and consequently no dependable reference E .. is required. 
2 ~J 

The determination of the dominator wvw to which a deleted term w1 
vw 

is assigned, proceeds in much the same way. Only the construction of 

the series of paths P
0

, P
1

, •.. , Pw yielding the final extension Pw 

of P
0 

requires a modification. Whether P
0+ 1 is the forward or the 

backward extension of P0 
now depends on the value of E .. v .. and no 

~J ~J 

longer on the value of E ... Analogous to lemma 4.8 we have 
~J 

Efgvfg = lafgl for 

Theorem 4.12: Let 

the final extension pW = Pfg 

the threshold 8 be computed exploiting the 
q 

dependable references obtained by equation (4.12). 

Let the q th pivotstep be skipped because of I a I ~ 8 
qq q 

Let~ .. , for all i and j, denote thesetof (deleted) 
~J 

terms assigned to Eij" Then the deleted terms satisfy 

ÓE . . V .• 
~J ~J 

(4 .13) 
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Proef: 

Fig . 4 . 7 . 

54 

First we prove (4.13 ) for the case i s tand j s t. 

The proef is by induction on m = .i-j . For m S 0 

no term 1jJ. . with i-m S t exists (BLT ferm) . For 
~~~-m 

m = 1 the term wi,i-1 = ai,i-1 is not assigned to 

Ei,i-1 and ~i,i- 1 is empty. 

For the induction step suppose (4.13 ) holds for 

i-j < m. Consider a term ljlij E ~ij" Three cases are 

possible: 
-1 

1) ljlij = -aiqaqqaqj 

2) Pij is the forward extension of some path Pkj with 

k ~ q: pij = {aik'akk} u pkj 

3) Pij is the backward extension of some path PH, with 

~ ~ q: Pij =Pi~ u {a~~,a~j} 

Case 2) "is depicted in figure 4.7. The case occurs 

if Ekjvkj = ~j > l~jl ~~lds. L~t \j de~ote the 

{ ljlkj I ljlkj E ~kj A -aikakkljlkj E ~ij}. As ~kj is a 

subset of ~k ' ' and k - j < m holds because of k < i, 
- J 

set 

the set · iji kj. satisfies the induction hypothesis : 

ijikj 

With 

E 

~kj 

lwkjl s öEkjvkj ö~j 

the definition of ~j fellows: 

- 1 -1 
ia1kakkljlkjl s laikl nk ö~j _ s öEij 

I 
I 
I 
~~kj_ 
I 
IE 

O-ii -- -

I llustration of t heorem 4.1 2. 



Equivalently the set 
- -1 
'i2 A -•i2a22a2j 

-1 
l'lci2 n2 I a~) s 

E iji .. } satisfies 
l.J 

-1 
Finally the possible term -a. a a . satisfies 

-1 J.q qq q] 
I aiqaqqaqj I S l'IE:ij. - Each set ijikj is related 

toa nonzero coefficient aik ~ aiq in the ith row, 

each set ijiil toa nonzero coefficient a 2j ~ aqj in the 

jth column and the possible term -a. a-1 a . implies 
J.q qq q] 

two nonzero çoefficients, a. and a .. The number of 
J.q q] 

these nonzero coefficients is at most equal to v . .. 
l.J 

Hence 

-1 
+ E ~ l•i2a22a2jl s l'IEijvij 

2'i2 

This completes the proof for the case i s t and j s t. 

For the cases i > t and j s t, i S t and j > t, 

i > t and j > t the proof proceeds in the same way. 

In the case laijl = Eijvij alltermsin 'ij are associated with 

final extensions P ..• Theerem 4.12 implies that the perturbations 
l.J 

êa .. accounting for the terms deleted by the skipping of a pivotstep 
l.J 

satisfy: 

IE •ijl S ~ l•ijl S l'IEijvij = l'llaijl (4.14) 

ijiij ij 

The inequality is similar to inequality (4.9) which is obtained if 

no dependable references are required. 

4.6. Global error analysis 

In this sectien the influence of pivotstep skipping on the 

solution vector is studied. First the skipping of one, say the qth 

pivotstep is considered. In sectien 4.3 (p. 42 ) it is shown that 

skipping of the qth pivotstep implies that the Schur complement of a 

perturbed matrix (A + êA) is computed. The coefficients of êA are: 

êa 
pr 

-1 
= a a a 

pq qq qr 
for p f- q and r f- q. 

The consequence is that the solution vector z has a perturbation êz, 

such that (A+ êA) ( z + êz) = Az. If the coefficients of êA are small, then 
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usually the elements of oz are small too. Often bounds for the norm 

of the error êz are used. If 11 OA\1· \IA -lil is less than one, a well

known bound can be applied [4.3] 

~ < \\A-
1

\\·\\ OA\\ 

llzll - 1-\\A-11\·IIêA\1 

A tighter bound is given in [4.4]. Let \Al denote the matrix 

consisting of the absolute values of the coefficients of A. If 

11\A-
1

\IêA\\1 is less than one, then we have: 

~ < I\ IA -
1 

I. I OA 11 z lil 

llzll - (1-\\I A-1 \·IMIIIlllz ll 

These inequalities require bounds for 1\ oA\ \ respectively \M I . 

( 4.15) 

(4.16) 

First consider the case a 
pr 

is nonzero if both a and a 
qr 

are 
pq 

nonzero. Then laqql <: eq implies (canpare 

I oa I = \a a-1a I s Lila I 
pr pq qq qr pr 

equation (4.9)) 

So \óA\ is bounded by: \oA\ s li \A\ , where " ~ "is appliedcoefficientwise. 

Clearly 1\öA\\ ~ li\\A\1 is satisfied as well. If these bounds for 1\<SA II 

and \oA\ are used in (4.15) arid (4.16) the inequalities (4.17) and 

(4.18) can be obtained: 

~ < li\ \A-
1

\\·\\A\\ 

\\z\\ - 1-li \\A- 1 \\·\\A\\ 

~ < li\\\A-
1

\\A\\z\\1 ~ 
\\z\\ - (1-li\\ \A-1 \\A\\1) \\z\1 

li\\\A -l\\A\1\ 

1-li 11 \A - 1 I I A lil 

(4 .17) 

(4.18) 

The product \\ A- 1 \1 -1\A\1 is often called the condition number of 

the matrix A. 

In the case that a is zero although both a and a are 
pr .pq qr 

nonzero, dependable references which are computed according to (4.12) 

may be applied. In the preceding section it is shown that the 

perturbations oa . . accounting for the deleted terms satisfy (4.14): 
l.J 

loaijl s Lilaijl 

Clearly I MI s li \A I and 11 Mil ~ li\ \A\ 1 follow and the inequalities 

(4.17) and (4.18) apply to this case as well; 

If more than one pivotstep, say m pivotsteps, are skipped the same 

bo~ds (4.17) and (4.18) can be used if li is replaced by (1+li)m -1. 

For skipping of one pivotstep implies that the Schur complement of 

the matrix A + M 1 is computed, while \A + M 1 1 ~ (t+li) \A \ hóld.s. 

Skipping of a second pivotstep implies that the Schur complement of 

56 



A+ êA
1 

+ êA2 is obtained, with lêA2 1 ~ L'liA + êA1 1 ~ L'l(1+L'lliAI. 

Hence IA+ êA1 +"êA2 1 ~ (1+L'll 2 1AI holds, Finally if m pivotsteps are 

skipped we have 

lêAml ~ L'liA + êA1 + ... + ÖAm-1 1 ~ L'l(l+L'l)m-1 1AI 

and the sum of all perturbations satisfy: 

I~ êAil ~ ~ 1öAil S ~ L'l(1+L'l)i- 1 lAl = {(1+L'l)m- 1}IAI 
i=1 i=1 i=1 

The factor {(1+L'l)m- 1} is for small L'l almest equal to ml'l. 

The meaning of the bounds (4.17) and (4.18) is not primarily that 

the error êz can be estimated. To compute such an estimate requires 

usually relatively much time because the inverse of A occurs in these 
-1 

formulas. Genearlly A is not explicitly available, e.g. it is not 

available if L\U-decomposition is applied. Also estimating the 
-1 

condition number without explicitly using A as is suggested in 

[4.5], may require too much time. The point is that (4.17) and (4.18) 

show that the error êz can be made arbitrarily small if L'l becomes 

small enough. Pivotstep skipping is in principle a good method to 

compute an approximate solution; only the value of L'l has to be 

chosen appropriately. 

4.7. Pivotsubstep skipping 

In the foregoing we supposed continually that pivotsteps are 

skipped as a whole. But pivotsubsteps can be skipped as well. If the 

conditions induced by cycles.of length öne passing through a pivot, 

say a , and a special coefficient in the pivot column, say a , are 
qq pq 

collected, a subset of conditions of the form (4.7) is obtained. If 

all conditions 
-1 

of this subset are satisfied all terms containing the 

product a a can be deleted. For Gauss eliminatien this implies 
pq qq 

that in the qth pivotstep the pivotsubstep associated with a 
pq 

can be skipped. Let 8 be the threshold of this pivotsubstep. From 
pq 

(4. 7) and (4.8) 

8 L'l-1 
pq 

Apparently the 

we obtain: 

la I max[la-
1

a IJs 8 
pq r pr qr q 

threshold of a pivotsubstep can be smaller than the 

threshold of the pivotstep. Thus pivotsubsteps can be skipped 

sametimes if not the whole pivotstep can be skipped. Pivotsubsteps 

with approximately the same thresholds may be joined to be controlled 

by one threshold. Note that this partition of a pivotstep in smaller 

57 



steps is a simple byprodu_ct of the computation of the thresholds for 

the pivotsteps. However, the experience is that this refinement only 

incidentally pays. 

Another approach to the control of pivotsubstep skipping gives 

better results. Consider the eperation u .. + ui)" - likukJ" in the 
th th ~) 

k pivotstep. Assume that the k pivotstep has to be executed 

(akk <Bk), while the ith pivotstep can be skipped (aii ~Si). Then 

the execution of the above operatien is useless because the result 

will never be used in the process to compute the Schur complement. 

r1oreover the execution of • the whole pivotsubstep assoc•iated with a ik 

is superfluous. If beforè the execution of the pivotsubstep pivot aii 

is tested and \aii \ ~ Si holds, the pivotsubstep can be skipped. 

In what fellows the name "pivotsubstep skipping", abbreviated to PSSS, 

refers to the latter approach. The approach which skips only pivot

steps as a whole, will be called "pivotstep skipping", abbreviated 

to PSS. Note that PSSS does not introduce extra errors compared with 

PSS. 
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5. IMPLEMENTATION .OF PIVOTSTEP SKIPPING 

5.1. Co~parison of different methods 

Mainly there are three methods of computing the solution of Az = r 
They are called compiled code, interpretablé code and looping 

indexed. approach reapectively. In [5.1] and [5.2] · these approaches 

are discussed. Moreover [5.1] gives many references to .these methods. 

In the compiled code (or machine code) approach the structure of 

the initial matrix A and its L and U factor are analysed. Then a 

loop-free list of (machine) instructions is generated concerning all 

nontrivial operations in the .computation of the L\U-decomposition. 

Gustavson et al.[5.3] report a program GNSO which generatea a linear 

list of FORTRAN statements. The· main advantage of this approach is 

that it is extremely fast because it does no testing or branching and 

every variable is addressed directly. Secondly with this approach it 

is very easy to handle different variability types [5.4] or ovel"Write 

parts of data which are rio longer needed. The main disadvantage is 

that the compiled code can be very long. 

The interpretable (or interpretative) code approach generates 

instead of a list of instructions, a list of operation codes with 

addresses of the corresponding operands. In the execution stage an 

interpreter executes the operations coded in this list and uses the 

addresses to retrieve the operands and to store the result. This 

approach is slower than the co~iled code (according to [5.5] it can 

be 5 times slower) but the generated code is shorter. 

The looping indexed approach (or derived indexing, or row ordered 

elimination) gené.tates alonq .with the. numerical values of. the matrix 

coefficients some pointer arrays which repreilent the structure of the 

matrix. These pointers are used during the numeric factorization to 

avoid operations with zeros. This approach is the slowest of the 

three because of the indirect addressing involved. But it requires 

much less storage than the other two. 

For the implementation o~ pivotstep skipping (PSS) or pivotsubstep 

skipping (PSSS) it is desired to have a more flexible datastructure 

than is used by the looping indexed approach. The linked list 

datastructure which will be described in this chapter offers this 

flexibility. ·Although some more pointer arrays are used by the linked 
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list approach, it is closely related to the looping indexed àpproach. 

Therefore the latter approach will not be considered here. 

It can be shown that Crout eliminatien is less time consuming than 

Gauss eliminatien because the number of data store operations is 

different. Yet we will only deal with the implementation of Gauss 

elimination. This is because the implementation of Crout eliminatien 

is less simple, mainly because Crout eliminatien uses two kinds of 

eliminatien steps to compute the Schur complement. Whereas the · 

coefficients of u
12 

(Corresponding to A
12

> can be computed along the 

usual Crout scheme, the updates added to the coefficients of the 

Schur complement A
2
2 have to be assembled along slightly different 

lines. However no fundamentally new difficulties arise in the 

implementation of PSS or PSSS in Crout elimination. Qualitatively 

the executión time of these implementations· depends in ··the same way 

on the number of skipped pivot steps for both Gauss and Crout 

elimination. Therefore it suffices to deal with Gauss elimination. 

Appendix B contains implementations of Gauss eliminatien for 

each of the three. approaches. A comparison is made of the approaches, 

both for time costs and storage requirements. The results öf the 

comparison fit in with the description of the approàches, however 

the differences appear not to be so p ronounced. In the followihg .. · 

no attention will be paid to the interpretable code approach. The 

adaptation of this approach to account for PSS or PSSS is the same 

as for the compiled code approach. The obtained results . lie between 

both other approaches and depend in the same way on the number of 

skipped pivotsteps. 

Thus in this chapter implementations of PSS. and PSSS are given 

using the compiled code a nd the linked list approach. To adapt 

these approaches such that pivot(sub)step skipping can be applied 

some extra work need be done. E.q. in the compiled code approach 

test- and branch-instructions are introduced. These instructions 

have the intention to avoid the execution of other instructions. 

The overall result depends on the relative costs (in time) of the 

instructions. Therefore the imp1ementations are analysed in some 

detail. it is not the aim to give the best possible implementation 

or to guarantee some execution time but to show that ·such .an analysis 

is possible and useful. 

The implementations are in MÀCR0-11. The execution times of the 
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instructions :are given in units of 170 nsec. The time specifications 

are obtainedfrom [5.6]. The storage requirements of the instructions 

are given in bytes. In the implementations R~ - R3 denote registers 

of the CPU, and F~ - F2 denote registers of the floating point 

processor. 

5.2. Definitions of parameters 

In this paragraph the parameters are defined which characterize a 

given BLT matrix and which will be used in this chapter. 

n, tandbare already defined in chapter 1. 

p denotes the mean value of the nUmber of coefficients in a row. 

K denotes the same for a column. The indices of p and K indicate to 

which part of the matrix A they are related. E.g. p
12 

is the mean 

value of the number ·of coefficients in the rows of A
12

. K*l is the 
T T T 

mean value of th~ 1number of coefficiénts in the :columns of [A
11

A
21

J , 

K 
1 

= K11 + K
21

• (The pivots are not included in p and K ). * . 11 ·11 

A pivot is called active ïf its pivotstep has to be executed, 

otherwise it is called passive. 

rr is the pivot activity i.e. the number of pivotsteps to be 

executed relative to the total number of pivotsteps. 

IJ is the pivot variability i.e. the number of pivots passing their 

thresholds going from one Newton iteration to the next, 

relative to the total number of pivots. IJ = !Ja + JJP where !Ja 

corresponds to the pivots becoming active and IJ corresponds to the 
p 

pivots becoming passive. 

5.3. Compiled code approach 

In the PSSS method the same pivot may be tested several times because 

it may be ·also tested during pivotsteps .corresponding to other 

pivots. Then it is better to execute the relative expensive floating 

point tests in a preprocessing phase and store the results of these 

tests for later reference. A typical part of the instructions 

of the preprocessing phase, called PREPRO, is given on page 62, 
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"' "' PREPRO 
instructian 

1 LDF PIVOT1,F<f> 

lt 2 ABSF F<f> 
3 CMPF # thrshd 1 , F<f> 
4 CFCC 
5 SXT PIVTST1 

COMSUBS 
instructian 
PIVOT1: 

1 TST PIVTST1 

1:(1-n) 
2 BGE EXECUTE 
3 JMP PIVOT2 

EXECUTE: 
4 LOF PIVOT1,F<f> 
5 LOF COEF1,!"1 
6 DIVF F<f> ,F1 
7 STF F1,COEF1 
8 NEGF F1 

tn 
9 TST PIVTSTk rll 10 BGE NEXT p12 

11 LDF F1,F2 
12 MULF COEF2,F2 :lln 
13 ADDF COEF3,F2 
14 STF F2,COEF3 K21 

NEXT: 

time starage 
13 4 

4 2 
9 4 

12 2 
7(?) 4 

time starage 

9 4 
5 4 
8 4 

13 4 
13 4 
38 2 
23 4 

4 2 
9 4 
5 4 

" 4 2 
13 4 
13 4 
23 4 

camment 
load F<f> with pivot value; 
take absolute value of F<f>; 
compare threshold with pivot; 
transfer result of comparison to CPU; 
store result of comparison into PIVTST1; 

camment 

test whether pivotstep 1 can be skipped; 
go eventually to line 4 to execute pivotstep; 
jump to pivotstep 2; 

load F<f> with pivot value; 
load F1 with border coefficient; 
divide border coefficient by pivot; 
store quotient; 
negate quotient; 
test whether pivotstep k need be executed; 
skip eventually pivotsubstep and go to line 15; 
copy ( -quotient) into F2; 
multiply_ F_2_ by ~ coefficieJ:J. _ t from pivot column; 
add value of coefficient in border to product; 
store sum; 



The test of one pivot is described. The total code for the 

preprocessing phase is obtained by repeating these instructions t 

times, once for each pivot. This is indicated by the arrow with 

label t. 

A typical part of the instructions for the actual L\U

decomposition is given in the list COMSUBS. Lines 1-3 contain the 

test concerning the pivotstep in lines 4-14. In lines 5-7 one border 

coefficient is divided by the pivot (implementing equation (4.1)). 

Lines 9 and 10 contain the test for the pivotsubstep in lines 11-14. 

In lines 11-14 one coefficient in the border is updated (according 

to equation (4.2) or (4.3)). 

To obtain the total code, parts of the code in list COMSUBS need 

be repeated. Lines 9-14 need be repeated for each nonzero coefficient 

in the columnofA
11 

(Kll times). Lines 11-14 need be repeated K
21 

times 

for each nonzero in the column of A
21 

(no test is applied because 

no row of A
21 

corresponds to a skipped pivotstep). The code thus 

obtained together with lines 5-8 is repeated p
12 

times for each 

nonzero in the row of A
12

. Note the nested structure of the 

repetition. 

Going on in this way with repeating t times the parts indicated 

by t, once for each pivot, the total code is obtained. The factors 

TI and 1-TI are unimportant as far as the repetition of parts of the 

codes is concerned. They indica te how many of such repea ted parts 

actually are executed when PSSS is applied. 

Using the time specifications of the- preprocessing phase and of 

COMSUBS the total execution time can be computed. The execution time 

of the preprocessing phase is 

TPREPRO = 45t 

The execution time of the actual code is: 

The total time used by PSSS is the sum of both: 

TPREPRO + TCOMSUBS 

If COMSUBS is simplified an implementation of PSS, COMSKIP, can be 
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obtained. Because the test of a pivot is used only once these tests 

are included in eOMSKIP. For the execution time we obtain: 

TeeP == TeOMSKIP = 47t + 8t(l-1T) + 1Ttp12 (78+53K*1) 

To evaluate these execution times they are compared with the 

execution time of an implementation without tests and skipping no 

pi vot(sub)steps. In appendix B · this time, Tee, is computed. Figure 5. 1 

shows plots of Tees/Tee and TeeP/Tee as a function of 1T for an 

EeL OR/NOR gate and the operational amplifier ~A 709. 

eOMSKIP 

instr>uction time storage 

PIVOT1 

LDF PIVOT1,F<j> 13 4 

2 LDF F<j>,F1 4 2 

3 ABSF F1 
t 

4 2 

4 eMPF #thrshd,F1 9 4 

5 eFee 12 2 

6 BGT EXEeUTE 5 4 

7 JMP PIVOT2 t (1-1T) 8 4 

EXEeUTE: 

8 LDF eOEF1 ,F1 13 4 

9 DIVF F<j>,F1 38 2 

10 STF F1 ,eOEF1 23 4 

11 NEGF F1 
t1T 4 2 

I"·· 

p12 
12 LDF F1 ,F2 4 2 

13 MULF eOEF2,F2 13 4 

14 ADDF eOEF3,F2 13 4 

15 STF F2 ,eOEF3 23 4 
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Fig.5.1. 
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/ 

/ 
/ 

/ 

.5 

Exeeution times of pivot(sub)step skipping applying 

the compiZed code approach. The soZid Zines 

correspond to TeeP (PSS) , the dashed Zines to 

Tees (PSSS). 

5.4. Linked list approach 

The drawback of the compiled code approach i s the size of the 

generated code which varies from several kilobytes for a digital gate 

to decades of kilobytes for larger circuits (operational amplifier, 

flip-flop etc.). If this is unacceptable, the linked list a pproac h 

may be attractive. Then the quantity of stored data apart from the 

numerical values, is determined by the pointer arrays and the 
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the little program to execute the L\U-decomposition. 

Pivot(sub)step skipping can be implemented in the linked list 

approach in two ways. The first way is roughly the same as in the 

compiled code approach. During the actual L\U-decomposition the 

pivots are tested and pivot(sub)steps are skipped according to the 

outcome of the test. In the case PSSS is applied the pivots can be 

tested in a preprocessing phase and the results of the tests can be 

stored for use in the actual L\U-decomposition. 

The second way is to modify the linked lists duringa preprocessing 

phase (the "adjustment" phase) such that during the execution of the 

L\U-decomposition the insignificant pivot(sub)steps are not executed. 

Then it is important how often the lists have to be adjusted. If in 

successive Newton iterations the datastructure has to 

be modified considerably, the adjustment phase will constitute a 

significant load. Therefore the pivot variability is important. 

From experiments it appears that the mean value of the pivot 

variability during an iteration process is very low. By the 

transition from the estimate to the first iteration ~ is about 

.5 and decreases in a few steps to the low value of about .1 . As it 

will appear this means that the adjustment phase does not waste the 

time t o be gained by applying PSS or PSSS in the exec utio n , phase: 

With the implementation given insection 5.3 in mind, i t is 

straightforward to adapt the program LINKLIST for implementing PSS 

or PSSS in the first way. This program executes the actual L\U

decomposition and will be described a t the end of this sectio n. 

In this section only the second way of i mplementing PSS and PSSS 

is discus sed. 

First the datastructure for the case that no pivot(sub)step 

skipping is applied, will be given. Then it is discussed which 

pointer arrays have to be modified to account for PSS or PSSS, and 

which arrays have t o be added to do the adjustments convenie ntly. It 

i s s upposed that a fast execution of the L\U-deco mpos ition is the 

main ob j e c tive. Al though no storage shou ld be wast e d, an e xtension 

of the datastructure will be allowed here if execution time can be 

saved substantially. For instanee searching should be avoided unless 

this requires a disproportionate amount o f storage. Further it is 

assume d that the datastruc ture includes the fill-ins, and that a c opy 

of the border of· A is s aved s o that the c oefficie nts · of Land U c an 
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be stored in the same locations as the coefficients of A. 

During the execution of a pivotstep coefficients in the pivot row 

("border ·coefficients") and column ("pivotsubstep coefficients") are 

used. The arrays RWNEXT and CLNEXT make these coefficients easily 

accessible (see table 5.1 for the definitions, figure 5.2 

illustrates the datastructure) . 

CN 

CN 

CN 

CN 

Fig. 5. 2. 

RP 

border 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L 

RN 

o..,..:---RN-"11• 
I 
IRN RN 

The datastruature for PSS. 

A part of a BLT matrix and the pointers aonneating the 

nonzeros are shown. A • indiaates a nonzero, a o denotes a 

fiatitious pivot . CN = CLNEXT, PN = PVNEXT, RN = RWNEXT, 

RP = ROWPIV. 

TABLE 5.1. 

CLNEXT: points from a coefficient to the next coefficient below 

it in the same column 

COLUMN: contains the column number of the coefficient 

PVNEXT: points from a pivot to the pivot in the next row 

RWNEXT: points from a coefficient to the next coefficient right 

of it in the same row 

ROWPIV: points from a coefficient to the pivot in the same row 
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Now the division of the border coefficients by the pivot is straight

forward. During the execution of a pivotsubstep border coefficients 

in the same row as the pivotstep coefficient have to be accessed. 

Therefore the pointer ROWPIV is convenient. It points from the pivot

substep coefficient to the pivot in the same row. From this pivot the 

border coefficients can be accessed by RWNEXT. Since the last border 

rows, the rows of A
22

, have not pivots assigned to them, a 

"fictitious pivot" is introduced for each row of A
22

. Such a pivot 

does not correspond to an actual matrix coefficient but is only 

starting-point of RWNEXT which connects the coefficients in the 

concerning row of A
22

. 

If the product of a pivotsubstep coefficient and a border 

coefficient in the pivot row has been formed, it has to be subtracted 

from another border coefficient in the row associated with the pivot

substep coefficient. This row may contain more border coefficients 

than the pivot row (the reverse is not possible because fill-ins are 

already included in the datastructure) . Thus in the row of the pivot

substep coefficient sametimes the correct border coefficient has to 

be searched for. The coefficient is in the same column as the border 

coefficient in the pivot row. This asks for an array COLUMN which 

contains the column number of a coefficient. The array PVNEXT 

pointing frcm one pivot to the next, completes the datastruc.ture. 

The terminatien of lists is indicated by a value less than or equal 

to zero. For instance, if x is the last coefficient in.a row then 

RWNEXT(x)~O.The program LINKLIST can be applied to this datastructure 

if .the narnes of the arrays CLNEXT and PVNEXT are changed into CNXTAC. 

and PNXTAC respectively. 

For the implementation of pivotstep skippi ng only an array 

connecting the pivots need be modified. Because in the adjustment all 

pivots need be accessed for testing a new "variable" array is 

introduced, PNXTAC, which points from a pivot to the next active 

pivot (see table 5.2 and figure 5.3). To prevent that PNXTAC 

eventually becomes empty a fictitious "zeroth" pivot is assumed which 

is always active. The program ADSKIP forms PNXTAC such that PSS will 

be executed. ADSKIP tests the pivots in the order recorded in PVNEXT. 

In register R6 the address of the last preceding active pivot is 

saved. This address is used to adjust PNXTAC of that pivot if a new 

active pivot i s detected. 
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Fig. 5. 3 . 

CN 

I border 

I 
I 
I 
I 

RN 

0 ,.;._I __ ..;.;RN;;.;.,.._•• 

I 
IRN RN 

0 ... .. 
I 

The datastructure f or PSSS. 

A straight line denotes. a fixed pointer, a eurved line deno t es 

a variable pointer (eventually adjusted). A • indicates a 

nonzero in a row and a column of an active pivot. A 0 indi cates 

a nonzero in a row or a column of a passive pivot. A o denotes 

a fictitious pivot. CN = CNXTAC, CP = CPRCAC, PA = PNXTAC, 

PN = PVNEXT, PV = COLPIV, RN = RWNEXT. (Not al l point er s COLFIV 

are shown). 

TABLE 5.2. 

(Contains only arrays not yet defined · in table 5 .1 . ) 

CNXTAC: points from a coefficient associated with an a c tive 

pivotsubstep to another coefficie nt in the same column 

being as well ass ociated with an a ctive pivotsubste p 

CPRCAC: same definition as CNXTAC but points in the reversed 

direction 

COLPIV: points from a coefficient to the pivot in the same 

column 

PIVACT : contains a c tivity status of pivot (0 

-1 = passive) 

active, 

PNXTAC : points from an active pivot to the next active pivot 

RWPREC: points from a coefficient to the first nonzero 

coefficient left of it in the same r ow 
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AD SKIP 
time 

NEXT PIVOT: 
MOV PVNEXT(Rcj>),Rcj> 8 

2 BLE . END 5 

3 LDF COEF(Rcj>),Fcj> 13 
4 ABSF Fcj> 4 
5 CMPF THRESH(Rcj>) ,Fcj> t 13 
6 CFCC 12 
7 BLT NEXT PIVOT 5 

8 MOV Rcj>, PNXTAC ( R6) 

[· 

7 

9 MOV Rcj>,R6 2 

10 BR NEXT PIVOT 5 

END: 
1 i MOV #cj>;PNXTAC (R6) 11 

The execution time of ADSKIP is 

T = t(60+14u) + 11 
AP 

starage comment 

4 
2 

4 
2 
4 
2 
2 if pivot is passive go on with 

next one; 

4 active pivot: connnect it to 
preceding active pivot; 

2 put address of active pivot 
into R6; 

2 go on with next pivot; 

4 zero value in PNXTAC of last 
active pivot indicates 
terminatien of list; 

The implementation of pivotsubstep skipping requires the 

adjustment of C~~XT as well. Because from now on this .array 

contains only coefficients associated to active pivotsubsteps 

the. name CNXTAC will be used instead of CLNEXT. If a pivot 

becomes passive the pivotsubsteps corresponding to coefficients 

in the pivot row can be skipped. These coefficients can be 

accessed by RWPREC (see table 5.2 and figure 5.3). Such a 

coefficient has to be thrown out of the list CNXTAC so that the 

coefficient pointing to it has to be accessed. Therefore array 

CPRCAC is introduced, which tagether with CNXTAC forms a double 

linked list. 

If a pivot becomes active then RWPREe is used to access the 

coefficients in the pivotrow which have to be inserted in 

the arrays CNXTAC and CPRCAC. Because pivotsubsteps can be 

executed in any order within their pivotstep, a pivotsubstep 

coefficient can be inserted at any arbitrary position 
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in the list. Here the choice is made to insert such a coefficient 

just after the pivot in its column, because the pivot is always 

present in the list. To access the pivot easily the pointer 

COLPIV is used which points from a coefficient to the pivot in 

the same column. This datastructure is shown in figure 5.3; the 

definitions of the ~rays are listed in tables 5.1 and 5.2. 

The program ADSóBS executes the adjustment of this datastructure. 

Like in ADSKIP the pivots are tested in the order recorded in PVNEXT 

and the address of the last preceding active pivot is saved in 

register R6~ Unlike ADSKIP the program ADSUBS executes only real 

modifications of the datastructure. Therefore an array PIVACT is used 

which contains the activity status of the pivots. Only if the 

activity status of a pivot is changed the datastructure is adjusted. 

In lines 1-7 of ADSUBS a pivot value is loaded and tested. In 

lines 8-14 the new pivot activity is compared with the old one. Lines 

15-28 are executed if a pivot has .become active. In lines 1~-19 the 

pivot itself is inserted into the list PNXTAC. In lines 20-27 a. 

coefficient of the pivot row is inserted into CNXTAC and CPRCAC 

of the right column. Lines 29-38 are executed of a pivot has become 

passive. In lines 29-31 the ;Pivot itself is omitted. In lines 

32-37 a coefficient of the pivot row is omitted. 

The parameters pll, )Ja' lJp' t etc. indicate how often the 

corresponding parts are executed if the datastructure is adjusted 

once. The execution time of ADSUBS is: 

TAS= t{73 + 5(1-JJP) + 7(1-)J) + 7(1-JJ)n + 1Ja(42+57p 11 ) + 

)Jp(3 3+43pll) } 

= t{85 + 7(1-)J)n + 1Ja(35+57p11 > + JJP(21+43p 11 >} 

Over a large number of iteration steps the mean value of lJa must be 

almest equal to the mean value of lJ • Supposing 
1 p 

)Ja = lJP = :ZIJ the formula for TAS simplifies to 

TAS= t{85 + 7(1-)J)n + )J(28+50pll} 

4 
For n = 7 we get 

( 

24+50 pll \ 
TAS = 89t 1 + 89 IJ} 

(5.1) 
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ADSUBS 

NEXT PIVOT: 
1 MOV PVNEXT(R~),R~ 

2BLE END 

3 LDF COEF(R~),F~ 

4 ABSF F~ 
5 CMPF THRESH(F~),F~ 
6 CFCC 
7 SXT R1 

8 CMP 
9 BLT 

R1 ,PIVACT(R~) 
DELETE PIVOT 

10 BGT INSERT PIVOT 
11 TST Rl 
12 BLT 
13 MOV 
14 BR 

NEXT PIVOT 
R~,R6 

NEXT PIVOT 

time storage oomment 

8 
5 

13 
4 

13 
12 
2(?) 

11 
5 
5 
2 
5 
2 
5 

4 
2 

4 
2 
4 
2 
2 

put address of next pivot into R~; 
if address not positive then jump to END; 

put pivot value into F~; 
take absolute value of F~; 
compare threshold with pivot; 
transfer result of comparison to CPU; 
store result of comparison into R1; 

4 compare R1 with old pivot activity; 
2 R1< : delete pivotstep; 
2 R1> : insert pivotstep; 
2 · -·· pivot activity is same as before: test Rl..; .. 

2 inactive pivot: jump to line 1; 
2 active pivot: update R6; 
2 jump to line 1; 



_, 
w 

INSERT PIVOT: 
15 MOV R1,PIVACT(R~) 

16 MOV PNXTAC(R6),PNXTAC(R~) 

17 MOV R~,PNXTAC(R6) 

18 MOV R~,R6 

19 MOV RWPREC(R~),R1 

NEXT 
20 MOV 
21 MOV 
22 MOV 
23 MOV 
24 MOV 
25 MOV 
26 MOV 
27 BGT 

28 BR 

INSERTION; 
COLPIV(R1),R2 
CNXTAC(R2),R3 
R1 , CNXTAC ( R2) 
R1 ,CPRCAC (R3) 
R2 ,CPRCAC (R1) 
R3 ,CNXTAC (R1) 
RWPREC(R1),R1 
NEXT INSERTION 

NEXT PIVOT 

DELETE PIVOT: 
29 MOV R1,PIVACT(R~) 

30 MOV PNXTAC(R~),PNXTAC(R6) 

31 MOV RWPREC(R~),R1 

NEXT 
32 MOV 
33 MOV 
34 MOV 
35 MOV 
36 MOV 
37 BGT 

38 BR 

END: 

DELETION : 
CPRCAC(R1),R2 
CNXTAC(R1),R3 
R3 ,CNXTAC (R2) 
R2 ,CPRCAC (R3) 
RWPREC(R1),R1 
NEXT DELETION 

NEXT PIVOT 

t 

\la 

7 
13 

7 
2 
8 

8 
8 
7 
7 
7 
7 
8 
5 

5 

7 
13 

8 

8 
8 
7 
7 
8 
5 

5 

4 
6 
4 
2 
4 

4 
4 
4 
4· 
4 
4 
4 
2 

2 

4 
6 
4 

4 
4 
4 
4 
4 
2 

2 
. 126 

update pivot activity; 
conneet pivot 'R~' with successar of 'R6'; 
conneet 'R6' with 'R~'; 

update R6; 
put address of coefficient of pivot row into R1; 

put address of pivot in column coefficient into. R2; 
put address of successor of this pivot into R3; 
conneet pivot with coefficient; 
conneet successar with coefficient; 
conneet coefficient with pivot; 
conneet coefficient with successqr; 
put address of next coefficient of row into R1; 
jump to line 20 if address is positive; 

jump to line 1; 

update pivot activity; 
conneet 'R6' with successar of 'R~'; 
put address of coefficient of pivot row into R1; 

put address of predecessor into R2; 
put address of successar into R3; 
conneet predecessor with successor; 
conneet successar with predecessor; 
put address of next coefficient of row into 
jump to line 32 if address is positive; 

jump to line 1; 

R1; 



-..I· 
LINKLIST 

""' time starage comnent 
NEXT PIVOT: 

1 MOV PNXTAC(R~l,M 8 4 put address of next pivot into R~; 
2 BLE END 5 2 if address not positive then jump to END; 
3 LDF COEF (R~) ,F~ 13 4 put pivot value into F~; 
4 MOV RWNEXT(R~) ,R1 8 4 put address of first border coefficient into R1; 
5 MOV R1,R2 2 2 copy address into R2; 

NEXT DIVISION: 
6 LDF COEF (R2) ,F1 13 4 put value of border coefficient into F1; 
7 DIVF F~,F1 38 2 divide border coefficient by pivot; 
8 STF F1,COEF (R2) p12 23 4 store quotient; 
9 MOV RWNEXT(R2),R2 8 4 put address of next border coefficient into R1; 

10 BGT NEXT DIVISION 5 2 if address positive jump to line 6; 
11 MOV CNXTAC ( R~) , R2 8 4 put address of coefficient in pivot column into R2; 

NEXT ROW: 
12 LiiF COEF(R2),N 13 4 put value of coefficient in pivot column into F~; 
13 NEGF F~ ~ 4 2 take negative value; 
14 MOV ROWPIV (R2) ,R3 

t 
8 4 put address of pivot in coefficient ra.w into R3; 

15 MOV R1,R4 2 2 copy border coefficient address into R4; 
NEXT BORDERCOEF : 

16 MOV RWNE'T(R3),R3 I 8 4 put address of border coefficient in coefficient row 
into R3; 

17 CMP COLUMN(R3),COLUMN(R4) ~ 16 6 compare column numbers of both border coefficients; 
18 BNE NEXT BORDEReOEF K 5 2 if not in same column jump to line 16; 
19 LDF F~,F1 

*1 4 2 copy value of coefficient into F1; 
20 MULF COEF(R4) ,F1 p12 13 4 rnultiply Fl by border coefficient in pivot row; 

21 ADDF COEF(R3),F1 13 4 add border coefficient in coefficient row; 
22 STF F1,COEF(R3) 23 4 store result; 
23 MOV RWNEXT(R4) ,R4 8 4 put address of next border coefficient in pivot row 

into R4; 
24 BGT NEXT BORDERCOEF 5 2 i f address positive jump to line 16; 
25 MOV CNXTAC(R2) ,R2 8 4 put address of next coefficient in pivot ·column into R2; 
26 BGT NEXT ROW 5 2 if address positive jump to line 12; 
27 BR NEXT PIVOT 5 2 jump to line 1; 

END: 



The factor C = 
24+50p11 

89 determining the influence of ~ is 

listed for a few circuits in table 5. 3. 

The table contains also the execution time TAS for ~ = 0.1 (the mean 

value of ~) and TAS in percents of the execution time TLL of LINKLIST 

for 11 = 1. Finally the execution times of ADSKIP, TAP and TAP/TLL 

(both for 11 = 1) are given. From this table we see that the 

preprocessing phase uses only a small amount of time compared with 

the time to compute the .L\U-decomposition (compare with table B.3 

of the appendix). 

The program LINKLIST executes the actual L\U-decomposition using 

the datastructure, eventually adjusted by ADSKIP or ADSUBS. 

Parameters ~. p
12

, K*
1 

and t indicate how often the corresponding 

parts are executed. t 11t for both PSS and PSSS. K* 1 = K*1 for 

PSS and K = 11K
11 

+ K
21 

for PSSS. 

In lines 1-5 the pivot value is loaded and some initializations 

are executed. The coefficients in the border part of the pivot row 

are divided by the pivot in lines 6-10. In line 12 a coefficient in 

the pivot column is loaded. The row determined by this coefficient 

is referred to as "coefficient row". In lines 16-18 a border 

coefficient in the coefficient . row, occurring in the same column as 

the border coefficient in the pivot row is determined • . This search 

and so the number of times ~ these lines are executed depend on the 

sparsity structure. In lines 19 to 22 the new value of the border 

coefficient in the coefficient row is computed. Lines 23-24 and 

25-26 respectively cause that the whole border row and the whole 

pivot column are passed through. 

TABLE 5.3. 

c TAS TAS/TLL T 
AP TAP/TLL 

TTL NAND 1.48 1330 5.6 973 4. 1 

ECL NOR 1. 25 1200 10.0 899 7.5 

ECL Flip-flop 2.39 3310 2.5 2230 1.7 

~A 709 2.90 3330 2.6 2160 1.7 

~A 741 2.50 3890 3.0 2600 2.0 
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The execution time of LINKLIST is : 

For PSSS we get 

and for Pss · 

These e xe c ution times are compared with the referenc e time TLL(n=1). 

Using equa tion (5.1) for TAS and sett i n g ~= 0.1 the values 

TLLS/TLL(n=1) and TLLP/TLL(n=1) are plottedinfigure 5.4 for an 

ECL OR/ NOR gate and . the operational amplifier ~A 709. The plo ts of the 

76 

.5 

/ 

~ A 709 
+0 --~-- -r--~ --~-- -.--~~ ----~-- ~--.-

Fig . 5.4. 

-TI 

Exeeution t i mes of pivot(sub)st ep skipping applying 

thè linked list approach. The solid lines corr espond 

to TLLP (PSS) , the dashed lines to TLLS (PSSS). 
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Fig.5.5. 

0 .5 

Comparison of PSS and PSSS in the camplied code 

approach and in the linked list approach f or an 

ECL OR/NOR gate. 

linked list approach show much resemblance to those of the compiled 

code approach (figure 5.1). The dependenee of the execution times on 

rr is basically the same for both approache s . If the linked list 

approach is applied PSSS is obvi ously more efficient than PSS , while 

for the compiled code approach it depends on rr whether PSS or PSSS 

is better. This is the most striking difference between the both 

approaches as can be seen in fig.5.5. Two reasons for this difference 

can be given. Firstly the linked list approach is about two t imes 

slower than the compiled code approach. Therefor e the extra overhead 

cost (in time ) for PSSS compared with PSS i s r e latively smaller for 
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the linked list approach. Secondly in the linked list approach only 

for pivots for which the activity is changed, the linked lists are 

modified. In this way the low pivot variability is exploited by 

limiting the overhead operations. 

5.5. Results 

In usual bipolar circuits pivot activities from .34 to .76 are 

observed during oe analysis (this range is indicated in the figures 

5.1, 5.4 and 5.5 by an arrow). In table 5.4 some results are listed. 

The first line of this table contains the relative number of 

operations remaining after executing low type pivotsteps (type 1 to 4, 

see table 1.1). The second line contains the smallestand the largest 

value of pivot activity observed for the circuits. Lines 3 to 6 

concern the comparison of two cases. In the first case PSS or PSSS is 

applied in one Newton iteration to the remaining pivotsteps 

(of type 6; type 5 pivotsteps are not present: oe analysis). In the 

second case all types of pivotsteps are executed in a Newton 

iteration and neither PSS nor PSSS is applied. The time spent in the 

first case relative to the time spent in the second case is listed 

in lines 3 to 6. It is accounted for that the computation of a 

salution to the Schur complement remains the same. 

type 6 operations 

nsmall' nlarge 

compiled code PSS 

PSSS 

linked list PSS 

PSSS 
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NAND 

.465 

.415 .692 

.311 .390 

.304 .394 

.305 .387 

.285 .369 

TABLE 5.4. 

NOR 

.450 

.344 .722 

.305 .399 

.301 .410 

.294 .380 

.279 .396 

flip flop ~A 709 ~A 741 

.570 .517 .667 

.520 .657 .519 .760 .607 .736 

.444 .483 .378 .450 .547 .590 

.435 .480 .368 .454 .539 .593 

.441 . 480 .376 .450 .546 .590 

.414 .455 .345 .427 .510 .563 



Several suppositions are made concerning the operations which are 

not analysed in detail in the preceding (fore- and backsubstitution, 

handling of the Schur complement) . It is supposed that the Schur 

complement is a full matrix. Actually this is not the case. The 

largest train method determining a BLT-form tends to given the Schur 

complement a BLT-form as well. So a solution to the Schur complement 

can be computed faster than is supposed here. This means that the 

values in the table are slightly pessimistic. The second supposition 

is that a multiplication and a division use equal time. Other 

operations (data-handling, additions) are neglected . This will cause 

no severe error because the numbers of these operations are 

proportional to numbers of multiplications and divisions. (E.g. in 

the L\U-decomposition the number of additions is equal to the number 

of multiplications). 

From the table it can be concluded that a speed-up of a factor 

1.7 always can be achieved. The largest speed-up is 3.6. 

The time spent on the evaluation of nonlinear functions is not 

comprised in the preceding analysis. It will be shown in section 6 .6 

that the function evàluation corresponding to a skipped pivot can 

be avoided. Then the number offunction evaluations is proportional 

to the pivot activity. The values listed in table 5.4 become closer 

to the pivot activity if the funct ion evaluations are take n into 

account. Usually the function evaluations consume most of the 

analysis time of a circuit: a typical value is 80% of the analysis 

time. Thus the pivot activity is the most important value in 

table 5.4. 
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6. THE FORESUBSTITUTION AND BACKSUBSTITUTION 

In the forego ing the skipping of pivo tsteps was studied. In this 

section attention will be paid to the s kipping o f parts o f the fore

and backsubstitution. Like the L\U-decomposition the fore- and 

backsubstitution can be decomposed into steps. The qth fore~ 

substitution ·step consists of the operatio ns: 

yq .+ yq I z 
qq 

yi .... yi - ziqyq q < i ~ n 

The qth backsubstitution step consists of: 

z + z -u .z. 
q q q] J 

max [t,q] < j ~ n 

(Because of the BLT form u . i s zero f o r q < j ~ t). 
q] 

The skipping o f steps in the L\U-de compos ition and the fore- and 

backsubstitution can be done in several ways. E.g . the qth pivotstep · 

may be skipped while the qth foresubstitution step is executed. 

Four useful options, c alled SKIP I, SKIP II etc., will be c onsidered 

in the following sec tions. Final1y, in c onneetion with SKIP I -IV , 

some refinement s to the c omput a t i o ri o f x\ , the \th Newton iterate , 

and the c o n t r o l o f the p ivot a c tivity are disc ussed. 

In this chapter we will find it convenient to use the value y 
q 

defined by: 

yq = yq(x) - l: 
j~q 

a .x . 
q] J 

th 
Now the q e quàtion of eq. ( 1.1 2) i s written as : 

f (x ) 
q q 

= y 
q 

With use of y \ 
q 
~ y (x\) two other equal ities can 
- q 

be written: 

a .z 1 

q] J 

1+1 l \ \+1 
l: aqj(xj xj) yq yq (6. 1) 

\ 
r 
q 

j~q 

l 
a .x. 
q] J 

f (x\) 
q q 

f ( x\) 
q q 

For brevity the index \ will be deleted in the following if no 

ambiguity is possible . 

(6 . 2) 

hi h f th 0 d h th In t s c apte r we ocus only to the q p1votstep ah t e q 

f o r e - a nd backs ubstitutio n step , with q ~ t. We u s e A+ t o d enote t he 
t h th 

matrix obta ined from A by d e l etinq the q row a nd q c o lumn. In t h e 
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same way z and r denote the veetors obtained from z and r by 
+ + 

deleting the 
th 

Finally oA defined by q element. we u se 

oa .. 
-1 

for i j i q a. a a > q, 
_J.] J.q qq qj 

(6.3) 
oa .. 0 otherwise 

l.J 

6.1. SKIP I 

th 
First we consider the case that the q pivotstep, fore-· and 

backsubstitution step all are skipped. The case corresponds to the 
th 

deletion of both the q row and column of A and the deletion of the 
th 

q element of both z and r. So we may formulate SKIP I as follows: 

SKIP I: compute z according to: 

(6.4) 

z 0 
q 

The solution z of these equations satisfies al~o Az = r + or, with 

or. = 0 for i i q, and or = ( L a .z.) - r . Apparently only the 
J. - q jiq q] J q 

qth element of r, defined by (1.14), is nonzero. The computation of 

r or can be compared with a backsubstitution step. 
q q 

The consequences of SKIP I become most obvious if Newton 

iteration is applied to a set of linear equations. Then the common 

Newton iteration computes the solution in one iteration: 

1 
x 

1 
r 

0 
r 

0 0 x + z 

0 0 1 
r A x 

0 
z 

0 

If SKIP I ïs taken then the residual r
1 

after the first iteration is 

nonzero: 

0 
z 

q 

1 
r 

0 

with or? = 0 for i i·q, and or
0 = (.La .z?J-r0 

J. q jiq q] J q 

A second iteration may be applied to obtain a better approximation: 

AOz1 1 -or 0 
0 r = 

+ + + + 

1 
0 z 

q 
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The solution z
1 

= 0 implies that no impravement is obtained. For 

nonlinear equations one may expect that, if the Newton iterati on 

converges1 an approximate solution is obtained such that the 
th 

residual is arbitrarily small except for the q element·. 

Although no decrease of the qth r e sidual element can be expected1 

with some prudence 1 it is still possible to apply SKIP I and have 

some advantage. Consider the approximate solution x
1 

of the set of 

nonlinear equations s(x) f(x) + Äx = 0 . Assume that the residual 
l l ~ t+1 

elements r. are z e ro for i~ q and that l a I is large. Let x 
~ l th qq 

differ from x only for the q element : 
-t+1 ~t + 1 ~\+1 -t+1 
x is suc h that r = -s (x )equals zero.Probably x is close 

q q q q 
to x

1 
because of 

qla 1 
(;

1 +1 - x 1
) I :::: is (;:;1+1r - s (x 1

) I = lr~l 
l qq q q q q ~t+1 

as la I is large. The elements of the residual r 
qq 

are likely to .be small: 

;~+l =-a. (;t+l- x 1
) for i~ q 

~ ~q q q 
The residual achieved at any instant can be seen as a measure of 

the accuracy of the approximate solution obtained. Therefore one may 

formulate the desired accuracy in terros o f upper bounds on the 

elements of the residual. Let ÖEi represent these upper bound s1 where 

Ei is some positive numbe r. Ei plays the s~e role as a dependable 

r e ference . However E. is not 
~ 

the r e sult of the application of the 

demination principle. Hence we call Ei a "pseudo" dependable 

reference. Thus a solution x is accepted if !ril = 

holds for all i. The elements of the res idual r 1
+

1 

inequalities Î.f 
~t+1 

(x 
q 

-t+1 
x is such that 

q l 
- x ) I ~ ÖE . 

q ~ 
for i ~ q 

i s.(;) l ~ ÖE . 
~ ~ 

satisfy the se 

l aiq 

Apparently 

l;t+1 - xtl 
q q 

has to be smaller than some threshold x 1 defined by: 
q 

The foregoing implies that SKIP I c an be applied as l ong as 

l ~ t+1 ll . . f ' d . d' . . h x - x ~ x ~s sat~s ~e . For ~nterme ~ate ~terat~ons t e 
q q q ~t+1 +1 

computed values of x are used to verify whether ;t is close 
q q 

enough to x
1

• However 1 there is 
q 

no need t o accept such an 
t+1 . 

t he n ew value o f x 1 d e noted by x . The v a r~ a bl e x may 
q q q 

constant up t o the las t i terat i o n . Only then x ha s to be 
q 

ent i t y as 

be kept 

update d to 
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satisfy the qth equation and to obtain an acceptable small residual. 

This procedure saves much of the work to compute r (according to 

(1.14)) because r. is zero, for i# q, after intermediate iterations 
l. 

while after the last iteration ri, for i# q, need not be computed 

at all. 

Actually the Newton iteration will not obtain a final solution x\ 
\ 

such that r~ is exactly zero, for i # q. This is no difficulty if r. l. 
~\+1 

and xq (bounding I x - x\ I) are such that the induced residual 

(r~ 
~\+1 

q q 
element + r. ) is small enough for all i # q. l. l. 

6. 2. SKIP II 

In order to obtain a decrease of the qth element of the residual 
th too, zq may be computed such that the q equation is satisfied: 

SKIP II: compute z according to: 

l. 

A z 
+ + 

r 
+ 

(6.4) 

z 
q 

-1 
a (r 

qq q 
\+1 \ \ 

E a . z.) = (y - f (x ))/a (6.5) 
j#q q) J q q q qq 

(The latter equality fellows if equations (6.1) and (6.2) ~re 

exploi ted. ) 

An equivalent set of equations uses cSA defined in (6.3) and a 

vector or defined by 

or. 
l. 

-1 
a. a r 

l.q qq q 
for i > q, or. l. 

0 for i ~ q 

The equations (6.4) and (6.5) together are equivalent to: 

(A+ oA)z = (r + or) 

(6.6) 

(6.7) 

(The qth equation in (6.7) is identical to (6.5). If (6.5) is used 

to eliminate z in the ith equation in (6.7) the ith equation in 
q 

(6.4) results.) 

If SKIP II is taken to solve a set of linear equations then the 

norm of the residual decreases in each iteration if oA and or are 

small enough. This appears from the following- lemma. 

Lemma 6.1: 

84 

Let Newton iteration according to SKIP II be applied 

to solve Az = r 0 . 

If 1:::. is .such that !:::.IIIAI -IA-
1

111 < 1 and if 

I oA I ~ !:::.IA I and 11 or 11 ~ !:::.I I ril are satisfied for this 

value of 1:::. then: 



(6.8) 

Proof: Because Az = rO is a set of linear equations, the 

expression for the residual r
1

+
1 given in (1.16), 

1+1 
reduces to: r r 1 Exploiting (1.14) we obtain: 

(6.9) 

Equation (6.7) gives an expression for z 1
: 

If this expression is substituted in (6.9) we obtain: 

Hence: 

IJ r 
1 

+ 
1 

IJ ::; IJ I Ö r 
1 

I + I ÖA I I A - 1 I I r 1 I 11 + 

lllöAIIA-
1

ll l · llr
1
+

1
11 

::; L1llr
1

ll + L1II IAI·IA-
1

111. ll r
1

11 + 

L1IIIAI·IA-
1

il l · ll r
1
+1 11 

Now inequality (6 . 8 ) fellows because of 

LI IIIA I·IA-1 111 < 1 

The residual decreases if the right-hand side in (6.8) is less than 

one, that is if Ll is such that 

Ll(1 + 2IIIAI·IA-
1

illl < 1 

is satisfied. If SKIP II is taken for nonlinear equations and the 

iteration converges, an arbitrarily accurate salution can be obtained. 

The computation of z according to (6.5) is almast identical to 
q 

the computation of ör 
q 

in SKIP I. Yet SKIP II implies more 

operations than SKIP I because the vector r = ÖAz - ör has to be 
th -

determined. Note that the i element of r can be computed easily 

with z : 
q 

-1 
r; = -ör . + Eöa .. z . =-a. a (r 

• ~ j ~J J ~q qq q 
a .z.) = -a . z 

qJ J ~q q 

The computation of r is almast identical to the qth foresubstitution 

step. 

A condition of lemma 6. 1 is that Ilori l ~ Llllrll holds. However the 
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Fig.6.1. The ayaZes oaaurring in the aomputation of e . 
q 

threshold e , proposed in chapter 4, only assures that 
q 

lóAI ,.; lliAI and llóAII ,.; lliiAII are satisfied if the absolute value 

of a exceeds e 
qq q 

The computation of a threshold ê such that the induced 
q 

perturbation ór is small enough for la I ~ ê , proceeds in much the 
qq q 

same way as the computation of e . The residual r can be consider.ed 
th q . 

as the n+1 column of the matrix A, see figure 6.1. Beside the 

common cycles within A, the cycles passing through the residual also 

supply conditions for the value of the pivot. For instanee the cycle 

{a . ,a ,r ,r.} yields the condition 
l.q qq q l. 

la. a-
1

r I S ll l r . I 
l.q qq q l. 

(6.10) 

Consequentiy ê is: 

ê = max q[e ,ll-
1

ir I 
q q q ~ax [lari.ql]] 

l.;iq l. 
(6.11) 

if all elements r. of the residual are nonzero. If an element of the 
l. 

residual is zero then a dependable reference may be used. A vector E 

of dependable references may be computed according to: 

E. = max [Ri, lriiJ l. 

R. min 
[ laE:il] Di 

for i $ t, R . ~ 0 for i > t . 
l. kli l. 

akiiO 
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(Consider the residual as the n+1th column of A and compare the 

formulas above with the computation of E .. according to eq.(4.11).) 
l.J 

In the foregoing no attention is paid to the fact that the values 

of the residual vector will Pe different in each iteration. This 

would imply that the thresholds ê and the dependable references E. 
q l. 

have to be computed for each iteration again. However the time spent 

on this computation may outdo the time gained by skipping some 

pivotsteps. It is desired to compute the values 8 and E. once and 
q l. 

for all. 

Consider the computation of Bq for a residual r with rq = 1 and 

ri = 0 for i f. q, using a vector 'E of pseudo dependable references 

all being equal to one. By eq,(6.11) we have for ê : 

ê ~ t.- 1 1r I max [
1
:iql] = t.-1 max [Ja. IJ q 

q q if.<i Ei if.q 1.q 

Now let r be an arbitrary residual and let SKIP II be applied for 

la I ~ 8 • The induced perturbation or has elements orl.. satisfying: 
qq q 

lor.l =la. a-1r I~ la. l.ê-1 .1r I~ t>lr I 
l. l.q qq q l.q q q q 

Consequently we have ·for Iloril the inequality: 

Iloril ~ t.lr I ~ t>llrll 
q 

The threshold 8 computed in this way is independent of the residual 
q 

and can be used in eélch iteration.: 

6.3. SKIP III 

A third possibility is to skip the qth pivotstep and back
th substitution stepbutto execute the q foresubstitution step. 

SKIP III: compute z according to: 

-1 
z a r 

q qq q 

r. r. - a. z for i f. q l. l. l.q q 

A z + + r 
+ 

th The first two equations represent the q foresubstitution step. The 

three equations are equivalent to the set of equations 

Az = r + or with or 
q 

[ 

jf.q 
a .z. 
q) J 

and or. 
l. 

= 0 for i f. q. 
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This appears if the substitution z 
q 

-1 
a r is performed in. the 

qq q 
latter set of equations. 

Suppose SKIP III is taken to solve Az = r. The following lemma 

supplies a sufficient condition for convergence. It is noteworthy 

that this condition is formulated in terms of ÖA instead of ör. 

Lenuna 6.2: 

Proef: 

The iteration 

Let Newton iteration according to SKIP III be applied 

to solve Az = r
0

. Let ÖA be defined by (6.3). Then 

we have for nonsingular A+ 

11 z t+ 1 11 
+ 

11<11 

Consider the residual rt+1 after the t+1th iteration: 

t+1 -t 
r = r 

with ört = [ a . z~ and ör~ = 0 for i i q. In the 
q jiq q] ) l. 

th ~t+1 
t+2 iteration r is computed according to: 

t+1 
a. z 

l.q q 
-1 t+1 

-a a r 
iq qq q 

t 
a .z. 
q] ) 

for i i q 

Using ÖA+ we may write: 

;:=-t+t=ÖAzt 
+ + + 

Now the lenuna fellows from the observation 

zt+1 = (A ,-1 ;t+1 (A ,-1 ÖA zt 
+ + + + + + 

according to. SKIP III converges if 11 (A ) -
1 

ÖA 11 
+ + 

< 1, 

for then the norm of z decreases. Consequently lz I decreases 

because of lzt+1
1 '> ~- 1 

IIA 11-llztll. For instan~e convergence is 
q q + + -1 

achieved if 6. has a value such that ó.ll (A+) II·IIA+II < 1 holds, and 

at the sametime llöA+II '> ó.IIA+II for this value of 6. is satisfied. 

SKIP III requires the same number of operations as SKIP II. For 

the computation of ört is comparable with the evaluation of the sum 
q ~t+1 

in (6.5) and the determination of r+ is comparable with the 

determination of the residual rt if SKIP II is applied. 

6.4. SKIP IV 

The last option . considered hereis almest the same as SKIP III. 

The difference is that z is solved such that the qth equation is 
q 

satisfied: 

88 



SKIP IV: compute z according to 

r. 
l. 

A z r 
+ + + 

for i -1 q 

z 
q 

-1 
a (r 
qq q 

a z ) (y
1
+1 - f (x 1))/a

1 
(6.5) qj j ~ q q q qq 

These equations are equivalent to (A+ oA)z r with oA defined by 

(6.3). 

The following lemma supplies a sufficient condition for 

convergence if SKIP IV is applied to solve a linear set of 

equations. 

Lemma 6.3: Let Newton iteration according to SKIP IV be applied 

to solve Az ~ r
0

. tet oA be defined by 6.3. If fi is 

. such that 1'1\\\A \·\A - 1 \ 1\ < 1 holds and if OA 

satisfies I OA I 

11 r 
1
+1 11 

!> 

!> l'IIA\ for this value of fi then: 

1'11\IA I · IA- 1 111 

1'-1'11\IAI· IA-
1

111 
(6.12) 

11 r 
1 

11 

Proof: The .residual after the 1 + 1 th iteration is: 

rl+1 = r 1 = oAz1 . From (A+ oA)z ~i fellows that 
l -1 l l -1 l 1+1 

z A (r - oAz) =A (r - r ). Hence 

r 1+1 oA·A-1 (r1 - r 1+1) and consequently: 

llr
1
+1 !1 !> l'I\IIAI·IA-1 I II .IIr1 ll + l'IIIIAI·IA-

1
\I I . IIr 1+

1
11. 

Because 1'11\IA I· IA - 1 111 is less than ohe, inequality 

(6.12) follows. 

The right-hand side of (6 .12) is less than one if 1'1 satisfies 

2l'IIIIAI·IA-
1

111 < 1. 

The difference between SKIP IV and SKIP II is that SKIP IV implies 

the execution of the qth foresubstitution step. Yet SKIP IV can be 

executed with practically the same number of operations as SKIP II 

because the computation of r1 and the qth foresubstitution step in 

the t+2thiteration can be combined. The ith element of r1 = oA 1z 1 

-\ l -1 l l 
is r. = a. (a ) E a .z. for i -1 q. Using equation (6.5) for z 

l. J.q qq j-lq q) J -\ l -1 l l q 
we may write r. = a . {(a ) rq- z }. If we take 

·· l+1 l. J.q qq~l+1 . q th 
eq.(1.16) for r then for the residual r after the q 

foresubstitution step in the 1+ 2th iteration we obtain 

;1+1 r~+1 a . (a\+1)-1 r\+1 -1 + 1 1 f ( 1) f ( \+1) 
1 l. J.q qq q ~ ri aiizi + i xi - i xi 

_ a. (a t+1) -1 rt+1 
J.q qq q 
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1+1 
r 

q 

l l 
a .. z. -
~~ ~ 

The first term in the right-hand side is the combination of the 

-l th f ub . . computation of r and the q ores st~tut~on step. 

The latter three possibilities, SKIP II, II'l and IV, all save 

practically the same number of operations. The most important 

difference is the sufficient condition for convergence. The loosest 

condition is obtained for SKIP III, the hardest for SKIP II. Moreover 

the condition llêrll,;; llllrll has to be satisfied forSKIP II. 

6.5. An alternative to the backsubstitution 

In the foregoing sections we saw already some alternative 
. 1+1 

computat~ons of x in the case that the qth pivo·tstep could be 
q 

skipped. SKIP II and IV are two examples which compute z
1 

not by 
q 

backsubstitution but directly from the qth linearized equation. In 

conneetion with SKIP I we discussed the computation of 
~l+1 
x such that 

q 
h th 1" . . . f " t e q non ~near equat~on ~s sat~s ~ed: 

;;-1+1 = f-1 (y (x l+1)) 
q q q 

(6 .13) 

~1+1 . 
The latter computation of x ~s móre adventageous than the 

q 
computation by common backsubstitution in the case that the value of 

a
1 

is large. Generally a large 
qq 

value of a
1 

implies that u
1 

., 

t + 1 ,;; j ,;; n, and y
1 

are 
q 

qq l qJ 
small and consequently zq is small. Then 

x
1 

gets only a 
q l 

small update and the new value x
1
+1 is only slightly 

q 
better than x . It may take a lot of iterations before a sufficiently 

q 
accurate sólution is obtained, see appendix C. The application of 

(6.13) may save most of those iterations. 

Important is that equation (6.13) implies that ;
1
+

1 
is computed 

~ +1 1+1 q 
from the 
-1 

f . The 
q 

way is to 

1+1 
x 

q 

function value f (x 1 ) - y applying the inverse function q q - q 
computation is executed if the pivot is passive. The common 

l+1 
compute xq according to 

l l 
x + z 

q q 
(6 .14) 

and to determine the function value by 

latter computation is performed if the 

evaluating f (x 1+1). The 
q q 

pivot is active. Then we can 

consider x as the "controlling variable": the iteration computes 
q 
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x\+1 first 
q 

y (xt+1} 

( 
t+1 . 

and fq Xq. } ~s 

f (x 1
+ 1 } is the 

q q 

derived thereafter. If we apply (6.13} then 

centrolling variabie which is computed first 
q t+1 

and x is computed afterwards. Note that both x and f (x } are 
q q q q 

'circuit variables: usually x is the current of a circuit element and 
q 

f (x } is the voltage of the same element or the ether way round. 
q q 

A centrolling variabie is computed with the intention to satisfy all . 

equations in the set. The ether variabie associated with it is 

computed to satisfy only the equation descrihing the relation of two 

variables (voltage and current} of a circuit element. 

The general experience is. that it depends on the value of the 

derivative of f (x } which of the variables x or f (x } should be 
q q 1 q t q q 

used as centrolling variable. If f (x
1
+ } - f (x } is small relative 

t+1 t q q q q 
to x - x then x should be the centrolling variable. For then 

q q q 
the residual r

1
, which mainly arises because of the nonlinearity of 

the equations, is expected to be small. This case is likely to 

happen if a (x} = f'(x} is small. 
qq q q q 

Because active pivots are small (anyhow they are smaller than their 

thresholds} the fact that normally x is the centrolling variable, is 
q 

favourable for active pivots. For passive pivots we want f (x } as 
q q 

centrolling variabie because a ·passive pivot is relatively large 
~t 

(larger than its threshold}. ForSKIP I the computation of f (x} 
. q q 

already proposed. SKIP II 
~t 

subsequently x according to (6.13} was 
q 

SKIP IV can be adapted easily of equation (6.5} is replaced by 

and 

and 

equation (6.13}. If SKIP III is adapted in the same way it looses its 

typical character and becomes equal to SKIP IV. 

6.6. Some refinements of the con.trol of the pivot activity 

~t+1 

If equation (6.13} is taken to compute x a problem arises 
q 

concerning the control of the pivot activity. For the difference 
~t ~t+1 t 
z ~·x -x may be so large that the perturbations ÖA and Ör 

q q q th . 
induced by the skipping of the q p~votstep and fore- and back-

substitution step become too large. 
t+1 

Firstly consider the computation of x according to (6.14} while 
q 

z
1 

is computed according to (6.5}: 
q 

t z 
q 

(6.5} 

Note that z
1

· and the elementsof the perturbations ÖA and ör, defined 
q 
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by (6.3) and (6.6), which are induced by SKIP II and SKIP IV, all 
l -1 

are proportional to (a ) . 
qq 

~l+1 
Secondly consider the computation of x according to (6.13). 

~l+1 l q 
Arbitrarily let x be larger than x . From the mean value theerem 

q l ~l+1 q 
it fellows that the domain [x ,x ] contains a value ~ such that 

q q 
~l 

z 
q 

satisfies : 

~l 

z 
q 

~l+1 

x 
l 

- x 
q 

(6.15) 
q 

l+1 
If we campare equations (6.15) and (6.5) and consider that y is 

~l+1 ~l l q 
_equal to fq(Xq ) we see that z would be equal to z if a (~) would 

q q qq 
be equal to al . Consequently the replacement of equation (6.5) by 

qq 
(6.13) is identièal tothereplacement of al by a (~). The point 

qq qq 
is whether la (~)I ~ ê holds or not. If it does not hold we may 

try to determ{~e a valu~ ~ contained in [xl,~l+ 1 J, such that 

""l+1 
x 

q 
l 

- x 
q 

q+1' q q 

An al ternative way is to take the value x l+1 being as close to ~l +1 
q q 

as possible with the restrietion that la (x ) I ~ ê holds for all x 

. h d" . [ l -l + 1 J h 1 tt ';lbqi 1';1 . q f b h q 1n t e oma1n x ,x . T e a er poss1 1ty 1s sa er ecause t e 
q q l -l+1 

value of aqq is bounded in the domain [xq,xq ] while it may achieve 

any arbitrary value in the domain [xl ,~l+1 ]. 
q q 

To obtain the value xl+
1 

it is convenient to exploit the domain 
q ~ 

defined by: 

"' {x E R I la (x ) I ~ ê } 
-q q qq q q 

If is not connected it consists of a set of connected components -q 
=i u ~i. The determination of xl+1 proceeds as fellows. -q . -q i q . q 
Determine ·the domain ~~ containing xl (such a domain exists for the 

~l+1 . .q . _i 
pivot is passive). If Xq 1s conta1ned 1n ~ as well we take 

l+1 ~l+ 1 · _l+ 1 · d q 1 of =i being x = x . Otherw1se x 1s· the boun ary va ue _q 
q q l ~t+1 . q l+1 -l+1 

between x and x , and we take x = Xq . Note that, if the test 
1 q q q l 1 

"xl+ E-" supersedes the test "la (x+) I ~ ê ", the evaluation of 
q -q qq q q 

the value of the pivot can be saved in SKIP I. and SKIP II. Often -q 

consists of only one connected component and has only one finite 

boundary value (e.g. if f is the exponential diode characteristic). 
q 

Then the test "xl+1 
E ~"is as simpleas the test "la (xl+1 ) I ~ ê ". 

q q l+1 qq q q 
If we apply SKIP I even the evaluation of x can be saved if we 

l+1 l+1 q l+l 
inspeet the value f (x ) instead of x or a . Let r be defined by: 

q q q qq q 
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r = {f (x ) é R I x é ~q}. 
q q q q 

A requirement for the application of SKIP I is that l ~t+ 1 - xtl ~x. 
q q q 

Therefore we may partition ~ and r in connected components 
q q 

=i and ri with two constraints. Firstly the size of ~i, j ~il, is not 
q q . q q 

larger than x for each i and secondly each ~~ is related to a unique 
i q . . q 

rq such that xq E ~~ implies fq(Xq) é r~ and vice versa. The 

constraints imply that if fq(x~) and fq(~~+ 1 ) = y ~+ 1 
are .in .the 

same domain ri then the pivot stays passive and SKIP I can be chosen. 
q 

If f (xt) and f (~t+ 1 ) are in different but adjacent domains then 
q q q q 

SKIP II (with or without the modification proposed in the preceding 

section) can be chosen. Note that we easily may transfer from SKIP I 

1 b . t+1 ( d ' . (6 14) to SKIP II on y y comput~ng x accor ~ng to e~ther . or 
~t+1 q . 

(6.13)). If fq(Xq ) is not contained in any domain r~ then we may 
q 

determine x t+1 in almost the same way as before. The difference is 
t+1 q 

that x may be the boundary value of a 
q 

identical to the domain =k containing xt, 
q q 

connected by a series of adjacent domains 

domain ~i which is not 
q i ",k 

then = and - are -q -q but 

:::J 
-q· 

The advantage of the test of the value of f (xt+
1

) is 
q q 

need not be computed if f (xt+
1

) is in the same domain as 
q q . 

Even if x is small a domain r~ may be very large. If 
q q 

a = f'(x) is very large for all x in the small domain =i then the 
qq q q q - q 

corre sponding domain ri is comparatively muc h larger. This i s f or 
q 

instanee the case if .f is the inverse of the exponential diode 
q 

characteristic. Then a may become extremely large. Yet t he 
qq 

constraint l ~ il ~ x may imply that the p artitioning of ~ yields 
q q . q 

series o f many adjacent domains ~~. Then it is laborious to 
i q ~t+1 i 

determine the domain ~ containing f (x ) . Because a domain - in 
q q q q 

generally is small, it is unlikely that f (x ) and such a series 
~t+1 

f (x ) are q q 

. . q q 
in that same domain ~~. Mostly, if f (xt) is in a small 

q ~t+1 q q 
domain, SKIP I cannot be applied because f (x ) is in anöther 

q q 
domain. Therefore, without a large drawback, a series of ajacent 

doma ins ~ i can b e united to one domain ~j. If f (xt) and f ( ~ t + 1 ) are 
q q q q q q 

in the same domain ~j SKIP I is not taken but for inst ane e SKI P II. 
q 

In this way the number of domains can be reduced considerably. Again 

consider the 'logarithmic function being the inverse of the 

characteristic of a bipolar 
Xq+Is 

diode: f(xq) = VT ln ( Is l and 

a 
qq 

f' (x l 
q q 

VT 
~ while xq + IS is a l ways posi tive. The domain ~ q is xq+.Ls 
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- q 

The 

{x I -I s 
VT 

Is} - = < x .,........ -
q q s q e q 

VT 
can be partitioned in ,::1 and ;:;2 in the case Xq < .,........ 

q q e q 

"'1 {x -I < x s x - Is} q q s q q 

"'2 {x I Is s 
VT 

Is} x - < x 
êq -q q q q 

corresponding r1 and r2 are 
q q x 

r1 {f (x ) I -00 < f (x ) s VT ln (_g_)} 
q q q q q Is 

{f (x ) 
q q 

X VT 
VT ln (_5!.) < fq(x) ~V ln (~I)} 

Is q T eq s 

6.7. Convergence, accuracy and pivot activity 

Although the convergence of the Newton iteration has not been 

investigated exhaustive·ly if . pivotstep skipping is applied, some 

experiments have been done. PSS and PSSS have been used in the 

computation of the DC solution of some bipolar circuits. This is one 

of the hardest tasks in circuit analysis.The exponential 

characteristic of a bipolar transistor is highly nonlinear, i.e. 
di 

the derivative d has a large range. It varies from almost zero 
V di 12 

(theoretically dv is less than 10- mho for v < O.Volt) to the 

order of 10-
1 

mho. Such a derivative may become much larger or much 

smaller than the mean conductivity in these circuits which is of the 

order of 10-S to 10-
3 

mho. The variatien of these derivatives is 

mostly harmful to the convergence of the iteration. Therefore a good 

estimate of the solution such that the derivatives do not differ too 

much from the values they achieve for the real solution, is 

advantageous. But in DC analysis mostly no good estimate is available, 

in contrast to transient analysis where the solution for some 

timepoint constitutes a good estimate for the solution for the next 

timepoint. 

In the experiments pseudo dependable references were ap~lied 

instead of real dependable references. For the Jacobian 
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For with a simple sealing (i.e. express the currents in mA) most 

matrix coefficients become of the order of one. Note that the chóice 

of E . . is not so critical because a too large value of E,. can always 
~J . ~J 

be corrected by choosing the accuracy factor 8 smaller. The pseudo 

dependable references associated with the residual were chosen equal 

to one also (compare sectien 6.1). From the options discussed in this 

chapter, SKIP · I was selected, which is the only option which does not 

assure that the residual will ' decrease continuously. The conclusion 

is that the conditions for convergence were unfavourable in t he 

experiments. Table 6.1 shows the number of iterations observed in 

the experiments. 

The rate of convergence appeared to vary a great deal. Firstly 

the rate depended on the circuit, with the tendency that larger 

circuits had a slower rate of convergence. Secondly the rate depended 

on the input signals or, equivalently, on the solution to be computed. 

Finally it depended on the accuracy of the computation, i.e. on the 

factor 8. 

The dependenee on 8 was obscure . With a low accuracy the 

convergence was sametimes better than for a high accuracy. An 

explanation may be that with alow accuracy an approximate solution 

is acceptable. (No te that simply cont inuing the i teration may not 

yield a better s olution i f SKIP I i s applied.) A more a ccurate 

solution may require more iterations. 

In ether cases the convergence was sometimes better for a high 

accuracy than for a low accuracy. Anyhow if the factor Ä became too 

large the Newton iteration did not converge. Mostly no convergence 

was obtained for 8 = 1. Some circuits (ECL OR/NOR gate , TTL NAND gate) 

still exhibited convergence if 8 was slightly larger than one, 

although this value of 8 is not justified theoretically. 

number of 

iterations 

TABLE 6.1. 

Typical numbe r of iterat ions 

(20) and (45) . are incidentally observed 

.TTL NAND 

5-10 

ECL OR/NOR 

6-9 

ECL flip-flop 

5-10 

(20) 

\lA 709 

20 

(45 ) 

\lA 741 

35-50 
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For two circuits showing convergence for all values of à not 

exceeding 2, the ECL OR/NOR gate and the TTL NAND gate, the mean 

pivot activity during the iteration process is depicted as a function 

of the accuracy factor à in figure 6.3. The circuits are shown in 

figure 6.2. As it could be expected, the pivot activity increases 

with decreasing ~- It is noteworthy that the pivot activity TI exhibits 

some saturation far before TI achieves one, its maximum value. 

Apparently during the iteration a number of diodes is strongly reverse 

biased. The consequence is that the range of the pivot activity is 

restricted for à > 10-
18

. 

However if à becomes small enough then the value of TI becomes one. 

In the experiments the value of à such that TI became one depended 

96 

Fig. 6. 2.a. An ECL OR/ NOR gate . 

The voltage sourees represent the exaitations used in the 

experiments. 

1kr2 

Fig.6.2.b. A TTL NAND gate. 
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The pivot aativity as a funation of the aaauraay 

for an ECL OR/NOR gate (top) and the TTL NAND gate 

(bottom). 
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on properties of the software and the machine used. Hence this 

phenomenon is not indicated in figure 6.3. 

For usual analysis of these circuits a value of 6 not smaller 

than 10-
2 or 10-3 yields a sufficiently accurate solution. The 

norm of the error vector of the solution and the norm of the 

residual are then in the same order of magnitude as 6. For 
-3 values of 6 larger than 10 the dependenee of the pivot activity 

on the accuracy factor 6 is the largest. Although the variatien of 

the execution time achieved by varying 6 is not so large, it is 
-2 clearly perceptible. If 6 varies from 2 to 10 then for the 

ECL OR/NOR gate the relative execution time of th·e linked list 

method using PSSS varies from .34 to .57. This can be concluded 

from figures 6.3 and 5.4. For the TTL NAND gate this variatien 

appears to be smaller. The relative execution time varies from .38 

to .49. 
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7. SOME SPECIAL CIRCUIT ELEMENTS 

In this chapter we will camment the application of pivotstep 

skipping in some particular cases which differ from the ~eneral case 

considered in the preceding chapters.· Firstly we focus to reactive 

elements by considering the equations descrihing a capacitor. Next 

we show how field effect transistors can be modelled such that a set 

of equations of the farm ( 1·. 1 0) arises. Finally we pay attention to 

the application of pivotstep skipping to a set of nonlinear 

equations which cannot be c&st into the farm (1.10). 

7.1. Capacitors 

When reactive elements like capacitors and inductors are present 

in the circuit, differential equations arise; For the numerical 

salution of these equations integration formulas are introduced in 

order to eliminate differential terms. The ordering of such 

equations in a BLT matrix and the application of pivotstep skipping 

deserves some attention. This section is restricted to the application 

of linear multistep formulas, a class of integration formulas 

commonly used for the transient analysis of electronic circuits 

[7.1, 7.2]. The Runge-Kutta methad for instance, seems to be less 

attractive. Generally the application of a k stage Runge-Kutta process 

[7.3] toa set of n differential equations requires the salution of a 

set of kn equations for each time-point. Moreover it is likely that 

the number of essential variables increases considerably for implicit 

Runge-Kutta methods. 

Here we consider capacitors exclusively. Inductors can be dealt 

with in much the same way. Let q denote the charge on. a capacitor, 

v denote its voltage, i its current and t the time. We suppose that a 

nonlinear capacitor can bedescribed by the equations: 

q f(v) 

dq 
dt 

(7 .1) 

i 

dq 
The latter equation is used to eliminate the time derivative dt" Let 

hT denote the Tth time-step, i.e. hT = tT- tT-1 , and let 

qT, vT, iT denote the values of q, v and i respectively fort= tT. 

We write a linear multistep formula : 

99 



T 
q + 

If 6
0 

equals zero the formula is called explicit, otherwise implicit. 

We introduce ÇT which is identical to the part of the formula 

concerning only values of q and i at preceding time-points 
tT-1

1 
tT-k: 

i;T = et1qT-1 + ••• + etkqT-k + hT(61iT-1 + ••• + 6kiT-k) 

Hence: 

T 
q (7.2) 

ÇT can be considered as a souree value for the circuit at t tT. 

If the linear multistep formula is explicit the Jacobian becomes 

singular if the differential capacitance ~~ = f'(v) becomes zero. 

For dq = 0 implies that the row of the Jacobian associated with 
dv 

equation (7.1) contains only one nonzero coefficient. In the same way 

8
0 

= 0 implies that the row associated with (7.2) has only one 

nonzero coefficient. Both coefficients are in the column associated 

with qT and consequently the Jacobian is singular. Therefore an 

implic it formula has to be applied if ~~ may become zero or very 

small. By the way implicit methods are preferabie even if ~; is 

large [7.1]. 

If ~ is excluded to be pivot because its value may become too 

small, the ordering of (7.1) and (7.2) depicted in figure 7.1 is 

obtained. The pivot dv will never become zero, for this would mean 
dq 

V q i 

' ' 
' ' ' 

(7 .1) - 1 
dv 
dq 

(7 .2) -h B T 0 
' ' ' ' 

Fig . 7. 1. 
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that the capacitance becomes infinitely large. Realistic values for the 

parasitic nonlihear capacitances of usual semiconductor devices are 

of the order of pikofahrads. For these capacitances the value 10
11

F -
1 

dv 
often suffices as a lower bound to dq . For this size of the 

capacitance it is better to scale q down to for instanee pikocoulombs. 
-1 -1 

Then the lower bound becomes 10 pF . If this is followed by a 

rowscaling of· (7. 2) the size of the very small coefficients in this 

row (hT may be of the order of nanoseconds) becomes closer to one 

as well. The condition 8
0 

F 0 assures that the pivot -hTSO does not 

become too small because extreme small values of the time-step are 

avoided with a good integration method. 

7.2. Field effect transistors 

A set of equations .of the form given in (i.lO) is attractive 

because its Jacobian only has the pivots of the triangular submatrix 

as variable coefficients. It is straightforward to obtain such a 

set if in bipolar circuits the Ebers-Moll transistor model is 

chosen (see section i.4). Such a set can be obtained also for 

circuits with field effecttransistorsbut some explanation may be 

useful. 

First a MOS transistor [7 . 4] is considered. Its circuit model i s 

given in figure 7.2. The usual form of the equations using a 

parameter KG and the threshold voltage VT, is: 

.G 

l 1 
5 o~--][~-r----~~~i----.--=c~--~o D 

(s ource ) ~ ~ =r= (drain) 

I (gate) 

T T 

IB 
(substrate) 

Fig. ? . 2. Mode Z of MOS t ransistor (n-channeZ). 
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KG[2(vGS - VT)vDS 
2 

i VDSJ 0 :<; 
VDS <V -V (7.3) 

GS T 

i KG(vGS 
V )2 

T 
0 < v'GS VT :<; 

VDS (7 .4) 

i 0 VGS - VT :<; 0 :<; 
VDS (7 .5) 

Equation (7.3) yields two variable coefficients in one row of the 

Jacobian. With the help of the substitution vDS = VGS - vGD in 

equation (7.3) the equations (7.3) to (7.5) can be castinto the form: 

i i - i 
s D 

is KG(vGS 
V )2 

T VGS > V 
T' 

otherwise i 
s 

0 (7 .6) 

i = KG(v'GD - V )2 
D T VGD > VT, otherwise i = 

D 
0 

The equations supply at most one variable coefficient per row of the 

Jacobian, justas in the bipolar case. Moreover with eq.(7.6) an 

Ebers-Moll-like model can be drawn, see figure 7.3. To satisfy 

eq.(7.6) aD and as both have tobechosen equal to one. Willson [7.5] 

excludes this case, although it does not prevent to derive a set of 

equations simular to the one given in eq.(1.10).(Note that as~ 1 

and aD ~ 1 imply that the current through the gate conneetion is zero 

as it ought to be.) 

The disadvantage of (7.6) is that the current i is the difference 

of two terms. If both are equal, i.e. vDS = 0, then i should be zero. 

However, because of numerical inaccuracy the result may .differ from 

zero. An estimate of this error can be made if the ranges of is and 

iD are oonsidered. The range of is is equal to the range of i for 

s D 

Fig. 7. 3. Ebers-MoU-Uke model for a MOS transistor (n-channeV. 
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vGO = VT. For usual gate voltages i never becomes larger than a few 

milli-amperes. Anyhow it is far less than lOOmA. Such a value may 

easily be computed with an accuracy of lOnA, even·with single 

precision on a smal! computer. If both is and i
0 

have this inaccuracy 

then the error in i is less than 20nA. Such án error is usually quite 

acceptable. Note th~t such an error in i appears only for 

vGS ~ vGO > VT, i.e. when the transistor is conducting. For 

vGS ~ VT and vGO ~ VT the current i = 0 has no inaccuracy because 

both is and i
0 

are exactly zero. 

Another important point is the 

(7.6) it appears that the derivative 
dvGS . 

lts inverse, the derivative dis , lS 

range of the derivatives. From 
dis 

dvGS becomes zero for vGS = VT. 

bounded from below for usual 

values of the variables. 

dvGS 

diS = 2KG(vGS - VT) 
2 IKGiS 

2 
For KG = 2mA/V and is = SOmA (both are large values) the derivative 

is O.OSV/mA. Often this value can be used as a lower bound to the 
dvGs dvc;0 value of dls . The same holds for the derivative --aiO . Whereas 

these derivatives recommend themselves as pivots, the derivatives 
dis di0 
~ and ---- should be excluded to be pivot. 
uVGS dvGO 

The following formula, which may supersede equation (7.3), takes 

into account the influence of the substrate ("B"). It contains a 

parameter ~ and the fermivoltage VF: 

. 2 
i = KG[2(vGS - VT)vOS- VOS] 

- ~[(vOS + vSB + 2VF) 3/2 - (vSB + 2VF) 3/2] (7.7) 

The equation holds for 0 :s;; v0 S $ vGS - VT, "os + vSB + VF ;:., 0 and 

vSB + 2VF ;:., 0. In the associated row of the Jacobian it supplies 

three variable coefficients. However, like equation (7.3), equation 

(7.7) can be cast into a form which is more attractive for pivotstep 

skipping. The appropriate substitutions are v
0

S = vGS - vGO and 

VOS + VSB = VOB: 
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i 

is 

i 
D 

i SB 

i DB 

KG(vGS V )2 
T 

KG(vGD 
V )2 

T 

- i 
DB 

KB(vSB + 2V ) 3/2 
F 

KB(vDB + 2V )3/2 
F 

vGS 

VGD 

VSB 

VDB 

> V 
T' otherwise is 0 

> V 
T' otherwise i 

D 
0 (7 .8) 

> -2V 
F' 

otherwise i SB 0 

> -2VF, otherwise i DB 0 

Equations (7.8) induce two Ebers-Moll models in parallel, as given 

in figure 7.4. Thus according to [7.5] a circuit ·can be obtained 

which can bedescribed by an equation set of the form (1.10). 

Equations (7.8) suggest that the inaccuracy of i for vDS = 0 is 

doubled because i consists of four terms now. In fact the inaccuracy 

is hardly increased because the terms iSB and iDB are small compared 

to is and iD. The parameter KG is two orders or more larger than KB. 
dvsB dvDB 

The derivatives ----d. and ----d. are bounded from below for usual 
1 SB 1 DB 

values of the substrate voltage. For instance: 

dvSB 
~= 

SB 3KB 

s 

Fig. 7. 4. 
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/v + 2VF 
.SB 

B 

2 

D 

Ebers-MoZZ modeZs for a MOS transistor if the 

infZuence of the substrate is taken into account. 



With the cOQlparatively large values KB= ~10- 2 mA/V 2 
and VSB + 2VF=25V 

this .derivative becomes 20V/mA. Often this lower bound suffices. 

For junction gate field.effect transistors (junction FET) equations.of 

the same form asthelast two . equations of (7.8) can be ·derïved. In 

fact the substrate of a MOS transistor can _be considered as a 

junction gate. The parameter KB is larger for a junction FET because 

of the construction of the transistor. Therefore the lower . bound to 
dvGs . dvsB 

the derivative --;rr; of the FET is smaller than ;r- of the MOS 
S l.SB dvGS 

transistor but it is comparable with the lower bound of -aiS of the 

MOS transistor. 

7.3. General nonlinear functions 

Pivotstep skipping is applied if extreme high accuracy is not 

required. In that case simple transistor models are mostly sufficient. 

If in special cases an accurate transistor model is required then 

nonlinear equations depending on more than two variables cannot 

always be avoided. An example is the case that channel length 

shortening and mobility reduction for a MOS transistor have to be 

taken into account [ 7. 4]. Th is section will show how pivotstep 

skipping can be applied to such equations. 

Let the kth equation, sk(x), be nonlinearand bedependant on 

three or more variables. One of the coefficients in the associated 

row of the Jacobian can be chosen equal to one, let this be the pivot: 

~ := 1. Then the . other coefficients are ( compare eq. ( 1. 2) ) : 

-1 
= ask (x) * i ( ask (x) ) 

aki axi axk 
for i F k 

Thus the kth row of the Jacobian implies the equation: 

(7.9) 

Assume the variables zi ~izi, i= 1, .•. ,k-1,t+1, ..• ,n, are 

introduced. Then equation (7.9) is equivalent to the following set of 

equations: 
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-z. + -- z. = 0 
l. aki l. 

i 1, ... ,k-l,t+1, •.. ,n 

(7 .10) 
k-1 n 

1: z . + zk + 1: z. rk 
i""1 

l. 
i=t+1 l. 

The BLT ferm of the Jacobian can be retained if (7.9) is replaced by 

(7.10) and the new variables zi are inserted between zk_
1 

and zk 

(see figure 7. 5 for an example). It appears .that all variable 

coefficients in (7.10) are put on the diagonal and the ferm· 

attractive for pivotst~p skipping is achieved. 

The drawback is that the Jacobian is extended; However a further 

consideration shows that most of the new pivotsteps correspond to 

pivotsubsteps induced by the original Jacobian. For instanee the 

skipping of the pivotstep associated with the new pivot ~ in 
42 

figure 7 . 5 is identical to the skipping of the pivotsubstep 

a s sociated with the original coefficient a
42

: in both cases all terms 

containing the factor a
42 

are deleted. A similar statement applies 

th . 1 th . . d "th 1 
to e new pl.vet a

43 
. However e pl.vetstep assoc1.ate Wl. a

47 
does net correspond to a pivotsubstep for the original matrix. 

Skipping of this pivotstep is identical to the deletien of a
47 

in the 

original case. 

The conclusion is that it is net· required to use the exte nded 

Jacobian in the actual computation .of the solution. The original 

matrix can be used and pivotsubsteps associated to variable off

diagonal coefficients can be controlled by thresholds. The thresholds 

Fig.7 . 5. The trans f ormation of a nonZinear equation . 
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may be computed using the extended Jacobian. Equivalently the 

original matrix can be used as well. This will be illustrated by the 

following examples. 

The examples concern the case depicted in figure 7. 6 .· The first 

example is the computation of c c determines the threshol d e 
qr qr qr 

apj_:>lying to the pivot 
r 

a qr 
c is ëomputed from R arid 
qr qr 

R 
qr 

c qr 

min [ l:prl] 
pFq pq 

a '10 pq 

n 
r 

e qr 

c . .. 
qr 

ll-lc-1. 
qr 

c = max[R ,c ] 
qr qr qr 

In the case c 
qr c .the conditi? n l---a

1 
1 ~ e is identical to: 

qr qr qr 

la I s e-1 
qr qr 

z z z 
w v r 

llc 
·qr 

z . z z z z 
w v r v r 

r 

q 

p 

Fig. 7. 6. A part of an o ri gina~ Jacobian rlef t) and t he 

corresponding part of the extended Jacobian (r ight ). 
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This condition corresponds to the requirement . that the terms 

w =-a a-
1

a in the original matrix for all w satisfy 
qw qr rr rw 

lwqwl ~ óEqw. Apparently the variable pivot arr is replaced by its 

lower bound n and the variable coefficient a is replaced 
r qw 

by the associated dependable reference E 
qw 

The case Eqr = Rqr implies that laqr l ~ e~~ is satisfied if the 

terms w = -a a-1a = -a a satisfy Iw I 
pr pq qq qr pq qr pr 

~ ÓE for all p. 
pr 

Another example is the computation of er. The difference with the 

cases discussed in chapter 4 is that the cycles in the original 

matrix which are used in. the computation of the threshold may contain 

more than one variable coefficient. An example is the cycle 

C = {a 1 a 1 a 1 a . }. Let in the extended Jacobian the columns 
qv qr rr rv qv 

associated with zv and zr have the numbers v and f respectively. In 

the same way the row numbers v and r are introduced (see figure 7 .6). 

Let er be determined by the condition l-l·a-
1

-a I < ÓE emanating . rr rv - rv 

from the extended matrix. We have e:- max[IL 1 C- ] and 
rv rv rv 

and with n 1 the upper bound of a 
qr qr 

R- = e: n -l 
rv qv qr 

In the case e;_ 
rv 

R- the threshold e is 
rv r 

e 
r 

la I rv ---n 
Eqv qr 

-1 I ar) 
The condition larr ~ er ó e;qv 

condition obtained from the cycle 

nqr corresponds to the 

C {a 1 a 1 a 1 a } in 
qv qr rr rv qv 

the original matrix. For the variable coefficients the value such 

that the condition becomes the strengest is assumed: a = 0 (so e: 
qv qv 

is used) and aqr nqr 

In the case e;_ =·c_ we have C-
rv rv rv 

for some w. On its 

turn e:fw may be equal to Cfw and so be computed from some e;ri in row 

r. Because all ari are zero (except for the trivia! values i=r and 

i=r) sooner or later we will find some E_j = R_ . . Anyhow e:~. = IL · 
r rJ rJ rj 

for all j 1 t+l ~ j · ~ n. Consequently some i ~ 1 exists such that 
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E-. 
rJ 

lL. 
r) 

( 7. 11) 

holds for s j < i and t+1 s s n. Then for c_. fellows: 
r~ 

c_ . min [,:~~~]ni min [ Eqj 1 -1 -1 
---nn = c qinqr r~ 

j# j# l aij I i qr 

a 1/o a 1/o 

Because the definition of E . implies 
q~ . 

R- = E n-1 ~ c .n-1 = c 
ri qi qr q~ qr ri 

it appears that E-. = R_ . and (7 .11) holds for j =i too. By induction 
r~ r~ 

-1 
on i fellows E- =R_ = E qvnqr and this case has already been 

rv rv 
discussed previously. 

If for the variable off-diagonal coefficients the associated 

upper bounds and dependable references are appropriately e xploited, 

thresholds for these variable coefficients can be derived. Dependable 

references must be computed for each of these coefficients (eventual 

lower bounds suffice as well). If such a variable coefficient occurs 

in a function c
1

j or Rij the associated upper bound has to be used 

(it occurs in the function "min" in the dertominator). Like the 

thresholds for the pivots the thre.sholds for the off-diagonal 

coefficients are computed from a set of cycles. 9 is computed from 
qr 

all cycles of length one passing through a and a <= 1!) or 
qr qq 

all cycles of length one passing through a and a If in a cycle 
qr rr 

which is used in the computation of the· threshold of some coefficient 

another variable coefficie.nt occurs, then for the latter coefficient 

the dependable reference or the upper bound has to be used in the 

condition associated with the cycle, such that this condition 

becomes the strongest. 

[7.1] L.W. Nagel, "SPICE2: a computer program to simulate s e mi

conductor circuits", Electronles Res. Lab., Univ. California, 

Berkeley, Memo ERL-M520, 1975. 

[7.2] R.K. Brayton, F.G. Gustavson, G.D. Hachtel, "A new efficient 

algorithm for solving differential-algebraic systems using 

implicit backward differentlation formulas " , Proc. IEEE , 

Vol. 60, pp . 98-108, (1972). 
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[7.3] J.C. Butcher, "Implicit Runge-Kutta processes", Math. Comp., 

Vol. 18, pp. 50-64, (1964). 

[7.4] R.S.c. Cobbold, "Theory and applications of field-effect 

transistors", Wiley & Sons, New York, 1970. 

[7.5] A.N. Willson, "New theorems on the equations of nonlinear 

DC transistor networks", Bell Syst. Techn. J., Vol. 49, 

pp. 1713-,1738, (1970). 
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CONCLUSlONS 

Methods are given for the analysis of an electrical circuit in 

order to obtain a macromodel. The macromodel permits a transient 

simulation which is faster than the simulation based on the original 

circuit description. 

The methods comptise an algorithm to order the variables and 

equations of the circuit such that the Jacobian of the equation set 

assumes a BLT form. The application of linear transformations to the 

set of linear equations has a substantial significanee if we want to 

obtain a smal! border. 

Pivotstep skipping exploits the BLT form in a natura! way. The 

computation of the thresholds can easily be executed by a computer. 

The dependable references, used instead of zero matrix coefficients, 

fit exactly into this computation. An algorithm to obtain dependable 

references is presented. Hence a macromodel of a circuit can be 

obtained completely automatically. 

The accuracy achieved with pivotstep skipping can be controlled 

with the value of the factor 6. As the thresholds all areproportional 
-1 

to 6 the accuracy can be adapted rather easily during the actual 

simulation. The upper bounds to the error of the solution show that 

this error can be made arbitrarily small by choosing an ·appropriate 

value of 6. 

The speed up obtained by two strongly differing implementations of 

pivotstep skipping is studied. The speed. up of around a factor 2 is 

slightly disappointing. If only type 6 pivotsteps are left in the 

macromodel the speed up lies between 1.7 and 3.6 for the circuits 

studied. 

The harmful influence of pivotstep skipping on the convergence of 

the Newton iteration process, which can be expected·, seeins to be 

relevant only if 6 becomes of the order of 0.1 to 1. Forsmaller 

values of 6 the convergence is sametimes worse and sametimes better 

than for a computation without pivotstep skipping. 

Pivotstep s kipping is most appropriate fox ~ircuits _ with bipolar 

transistors and field effect transistors. As also variable off

diagonal coefficients in the Jacobian can be dealt with, pivotstep 

skipping is generally applicable. 
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APPENDIX A 

The size of dependable raferences 

The object of this appendix is to get a general idea of the size 

of the dependable references. Therefore some general suppositions are 

made concerning the size of matrix coefficients and the size of the 

lower bounds of the pivot-values. It is supposed that: 

i) all matrix coefficients have value ~. 

ii) all lower bounds to the pivot values have value n. 

If ~ and n are appropriately chosen, at will a lower bound, upper 

bound or mean value of the dependable raferences is obtained. 

Now if Eij is a dependable reference then Eij = ~ if Eij = laijl 

or Eij = Ekj (n/~l or Eij: Ei~(n/~l. The same holds for Ekj and Ei~· 

Hence we have E .. = ~(n/~l forsome m. Let the exponent m be called 
~J 

the level of the dependable reference. Dependable raferences of level 

m are (n/~lm times as small (or large) as original matrix coefficients. 

The factor (n/~l and the maximum level of the dependable raferences are 

important. 

In usual electrical circuits ~ is of the order 10
3 

to 10
4n. 

The order of the lower bounds n depends on the range of the valuês of 

the circuit variables. In section 1. 4 we computed a lower bound 
-2 

n = 10Q (eq. (1.11)) for bipolar circuits. Then we haven/~= 10 to 

10-
3

. If the current through a diode does not exceed the value of 

25 ~A then it appears thatn = 103n. So if ~ = 10
3n holds as well we 

obtain n/~ = 1. In this case allE ..• independent of their level, 
~J 

are of the same order as the matrix coefficients. In operational 

amplifiers the (DC) currents in the input stage are very low. Then it 

is attractive to make use of this fact to obtain lower bounds to the 

pivot values which are as high as possible. 

The level of the dependabi"e raferences does not exceed one for 

small circuits (logical gates) and does not exceed three for larger 

circuits (operational amplifiers, flip-flops}. 

If the dependable raferences are computed according to eq.(4.12) 

the dependable raferences are smaller. The numbers v .. are of the 
1 ~J 

order 10 (some extreme values of v .. are 36 for the VA 709 and 35 
~J 

for the ~A 741). This means that allE .. are at least one order 
~J 

smaller compared with the case that E .. is computed according to 
~J 
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eq.(4.11). However if .the level of c .. is m then c .. is (m+1) orders 
1.) 1.) 

smaller. 

APPENDIX B 

Comparison of the compiled code, the interpretable code and the 

linked list approach 

For each method an implemimtation is given in MACR0-11 for a PDP 11/60 

computer with a fast floating point processor. The expected execution 

time and the storage requirements are computed and listed in a table. 

Compiled code 

A typical part of the list of instructions is COMCODE: 

COMCODE 

inst:ruotion time stoPage comment 

LDF PIVOT,F~ 13 4 load F~ with pivot value; 

2 LDF COEF1 ,F1 13 4 put border coefficient into F1; 

3 DIVF F~,F1 38 2 divide coefficient by pivot; 

4 STF F1 ,COEF1 23 4 store. quotient; 

5 NEGF F1 t 4 2 negate quotient; 

6 LDF F1 ,F2 
p12 

4 2 ( -quotient) into F2; copy 

7 MULF COEF2,F2 
K*1 

13 4 multiply F2 bycoefficient from 

pivot column; 

8 ADDF COEF3,F2 13 4 add value of coefficient 

border to product; 

9 STF F2,COEF3 23 4 store sum; 

(F~,F1,F2 are registers of the floating point processor 

and t are defined in sectien 5.2). 

in 

COMCODE contains the loading of the floating point processor with the 

pivot value (line t), the division of one border coefficient by the 

pivot value (lines 2 to 5) ·and the multiplication of this quotient 

with one coefficient from the pivot column ( lines 6 to 9). To obtain the 

total code the part indicated by K*l need be repeated K*
1 

times (for 

each coefficient in the pivot column). Further the part indicated by p
12 

need be repeated p
12 

times (for each coeffiéient in the border part 
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of the pivot row) and finally the total must be repeated t times (for 

each pivot outside the border). Note the nested structure of the 

repetition. The column "time" contains the execution times of the 

instructions. The times are in units of 170 nsec. The time 

specifications are obtained from [B.l]. The column "storage" contains 

the storage requirements of the instructions, these are given in bytes. 

From the listinga formula for the total time to execute· the 

pivotsteps can be obtained: 

The formula for the total storage requirement of the code is 

Besides the numerical values of the matrix coefficients require 

storage. If one coefficient uses·8 bytes, then the formula for this 

storage requirement is: 

The total storage requirement is 

M = M + M 
CC COMCODE NUM 

Interp'retabl·e code 

In this approach the operations are coded in a very .uniform way. 

Each instructien consists of one operatien code and a fixed number of 

addresses. In this appendix three different instructions are used. 

They are listed in table B.l. Note that two instructions use only 

one address. The last two instructions use registers of the floating 

point processor; the contents of such a register must be determined 

by preceding operations. The instructions can be interpreted by the 

program INTERPRET. 

instruction 

LOAD ARG1 ARG2 

DIVIDE ARG1 ARG2 

MULTIPLY ARG1 ARG2 
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TABLE B.l. 

interpretation 

COEF(ARG1) is put into F~ 

COEF(ARG1) + COEF(ARG1)/F~ 

COEF(ARG2) + COEF(ARG2) - COEF(ARG1)*F1 



INTERPRET 

instruction 

LOOP: 

INC R<jl 

2 MOV ARG1 (R<jl) ,Rl 

3 JMP OPCODE ( R<jl) 

LOAD: 

4 LDF COEF(R1) ,F<jl l t 
5 BR LOOP 

DI VIDE: 

6 LDF COEF(R1),F1 

7 DIVF F<jl,F1 

8 STF F1,COEF(R1) 

9 BR LOOP 

MULTIPLY: 

10 LDF F1 ,F2 

11 MULF COEF(R1),F2 

12 NEGF F2 

13 MOV ARG2(R<jl) ,R1 tp12K*1 

14 ADDF COEF(R1) ,F2 

15 STF F2,COEF(R1) 

16 BR LOOP 

time starage corrvnent 

2 

8 

8 

13 

5 

13 

38 

23 

5 

4 

13 

4 

8 

13 

23 

5 

4 

4 

4 

4 

4 

4 

2 

4 

4 

2 

4 

2 

4 

4 

4 

4 

R<jl points to·an 

instructien in the list; 

put ARG1 (alway used) into 

R1; 

jump to line 4, 6 or 10 

dependent on the operatien 

code; 

put value of pivot into F<jl; 

go back to line 1; 

put border coefficient 

into F1; 

divide border coefficient 

by pivot; 

store quotient; 

go back to line 1; 

copy quotient into F2; 

multiply quotient by coef

ficient from pivot column; 

negative product; 

put ARG2 into R1; 

add border coefficient· 

to (-product) ; 

store sum; 

go back to line 1. 

(R<jl,R1 are registers of the CPU; F<j>,F1,F2 are registers of the 

floating point processor) 

The coefficients K*
1

, p12 and t indicate how often partsof the 

program are executed. (Unlike before they do not indicate that 

instructions of the program are repeated. The whole program INTERPRET 

consistsof the 16 given lines). Lines 1-3, the decodinq of the 

operatien code, are executed for each instruction. 
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The total execution time is 

Each instructien consists of 5 bytes, one byte for the operatien code 

and two bytes for each argument. The starage requirement of the 

instructions is therefore: 

(For each pivotstep the pivot value is loaded, p
12 

oivisions and 

K*
1

P
12 

multiplications are executed.) The interpreting program 

requires only 56 bytes. The starage requirement for the numerical 

values is the same as for the compiled code approach, so the total 

starage requirement is 

Linked list approach 

The irnplementation of this approach is given in sectien 5.4 

(program LINKLIST). The execution time is : 

The starage requirement for the pointer arrays is: 

PNXTAC: 2 (t+1) 

RWNEXT: 2t(p
12

+1) 

CNXTAC : 2 t ( K * 
1 

+ 1 ) 

COLUMN: 2tp
12 

+ 2bp
22 

total: 

M 
POINT 

The program requires 88 bytes and the numerical values require the 

sarne amount of starage as before, so in all we have: 

Table B.3 shows the amount of time and starage required by these 

rnethods for a few circuits. The parameters of these circuits are 

shown in table B.2. 
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TTL NAND 

ECL OR/NOR 

ECL flip-flop 

~A 709 

~A .741 

TTL NAND 

ECL OR/NOR 

ECL flip-flop 

~A 709 

~A 741 

TABLE B.2 

n t b p12 p22 K*1 K12 4> 

18 13 5 2.54 4.40 4.92 6.6o· 1.45 

16 12 4 1.92 3.00 3.08 5.75 1.58 

41 30 11 3.77 7.91 7.27 10.27 2.54 

38 29 9 3.69 6.78 9.03 11.89 1.56 

47 35 12 3.43 6 .92 7.66 10.00 1.77 

TABLE B.3 

compiled interpretable linked 

code code list 

Tee Mee TIC MIC TLL MLL 

11350 3780 17970 2150 23635 1660 

5710 1990 8900 1260 11990 1010 

.52700 16600 84300 8460 134 720 5350 

60000 18600 96500 9240 128800 5530 

58500 18500 93800 9470 . 130800 6070 

From table B.3 it appears that the ratio TIC/Tee hardly depe nds on the 

sort of circuit and is not so large as :r;eported in [B.2]. The ratios 

MIC/MCC and MLL/Mcc are smaller for larger circuits. 

[B.1] PDP 11/60 processor handboek, Digital Equipment Corporatien 

(1977). 

[B.2] H.B. Lee, "An implementation of Gaussian e liminatien for sparse 

systems of linear equations", in Sparse Matrix Proceedings 

(R.A. Willoughby, Ed.), Yorktown Heights, N.Y., IBM report 

RAl (#11707), pp. 75-83 ( 1969) . 
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i 

0. 75 V 

Fig. C.l. SimpZe circuit t o iZZustrat e sZow convergence . 

TABLE C.l. 

l!teP i t h V 

0 0.42483543E-29 -1.00000000 
1 0.30163313E-27 -0.89343297 
2 0.20130186E-25 -0.78841388 
3 0.12588725E-23 -0.68502009 
4 0.73519167E- 22 -0.58333689 
5 0.39945521E-20 -0.48345834 
6 0.20107912E-18 -0.38548917 
7 0.93340061E-17 -0.28954616 
8 0,39745920E...,15 -0.19576046 

' 0.15433508E-13 -0.10428035 
10 0, 5428H520E-12 -o .15274659E-01' 
11 0.17H58924E-10 o.71062960E-o1 
i2 0.48315207E-09 0.15450829 
13 0 .11991674E-07 0.23479919 
14 0.2S911649E-06 0. 31162584 
15 0.48027159E-05 0,38461733 
16 o.74995885E-04 0.45332360 
17 0.96497627E-03 0.51719034 
18 0,99512078E-02 0.57552397 
19 0.79401098E-01 0.62744445 
20 0.46864292 0.67182767 
21 1.9340392 0 . 70726'579 
22 5.2400246 0.73218369 
23 8.9743395 0.74563473 
24 10.541354 0.74965823 
25 10.685464 0.74999762 
26 10.686483 0.75000006 
27 10.686458 0.74999994 
28 . 10.686483 0.75000006 
29 10.686458 0.74999994 
30 10.686483 0.75000006 
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APPENDIX C 

Newton iteration applied to an exponential function 

Let the diode in figure C.l bedescribed by the equation: 

i = I { exp ( ; ) ~ 1 } 
s . T 

v is the diode voltage, i is the diode current; VT and Is are 
1 -12 

parameters. With VT = 
40 

V and Is = 10 nA we obtain the equation 

0.75 V= V= 4 ~ ln(l+l0
12

i) 

Let the salution i be determined by Newton iteration starting with 

the value i
0 

corresponding with a reversed biased diode voltage v
0 

of 

- lV. After one iteration only a minor impravement is obtained. Only 

after more than 20 iterations the approximation may be accurate 

eno.ugh, see table Cl. Apparently the use of i as centrolling variable 

has two disadvantages. Firstly the convergence is very slow, secondly 

accuracy problems arise if i is stored insteadof (i+Is). 
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NOTATIONS 

A Jacobian matrix 

Cij .function to compute a dependable reference 

D diagonal matrix 

L lower matrix of L\U decomposition 

Rij function to compute a dependable reference 

T transpose indicator 

U upper matrix of L\U .decomposition 

a coefficient of A 

b border width 

d coefficient of D 

h time step 

i 

z 
sections 1.4, 6.3, 7.1, 7.2 

coefficient of L 

vector of currents 

n number of variables, number of equations 

q section 7.1 : charge 

r sections 1.1, 1.5, 4.6, chapter 6 

s vector of vectorfunctions 

t dimension of A11 
section 1.1 : time 

u coefficient ·of U 

residual vector 

V sections 1.5, 6.7, 7.1, 7.2 vector of voltages 

x n-vector of variables 

y n-vector, result of foresubstitution 

z n-vector, result of backsubstitution 

B bipartite graph 

C cycle 

G (directed) graph 

L set of indices associated with linear functions 

N set of indices: {1,2, ••• , n} 

P path 

Q partial train 

R partial train 

S set of vector functions 

T train 

V kernel 

W kernel 

120 



X set of variables 

Y set of variables 

Z set of variables 

~ accuracy factor 

~ transformation matrix 

~ set of terms 

a parameter in integration formula 

a parameter in integration formula 

y - E 
iiq 

a .x. : 
ql. l. 

linear part of nonlinear function 

ó perturbation indicator 

E dependable reference 

n lower bound pivot value 

9 threshold 

iteration number 

K mean number of .coefficients in a column 

u pivot variability 

v number of nonzero coefficients 

~ pivot activity 

p mean number of coefficients in a row 

Ijl term 

11 xll 11 xll.., 

n 

11 A 11 = max[ E I a .. 1 J 
... i j=l l.J 

the matrix obtained from A by taking the absolute value of each 

coefficient of A. 

X\Y difference of sets : { x I x E X A x i Y } 

Xq)Y symmetrie difference of sets X\Y u Y\X 

121 



9 juni 1981 

STELLINGEN 

bij het proefschrift van 

P.M. Trouborst 

Technische Hogeschool Eindhoven 



1. Is het terecht om de mogelijkheid te onderzoeken om de "blokdecom

positie" van een matrix te bepalen zonder een 11 transversal" te ge

bruiken, de karakterisering van een irreducible matrix die 

Kevorkian voorstelt is op zich onvoldoende voor een dergelijke me

thode. 

A.K. Kevorkian, "Graph-theoretic characterization of the 

matrix property of full irreducibility without using a 

transversal", J. of Graph Theory, Vol. 3, pp.151-174 (1979). 

2. De matrix die Hsieh en Ghausi gebruiken bij het vergelijken van 

verschillende methoden voor het verkrijgen van een pivot volgorde, 

is niet representatief. Een structuuranalyse van deze matrix (die 

sneller is dan de genoemde methoden) kan de optimale pivot volgorde 

vrijwel geheel leveren. In de twijfelgevallen die de structuur

analyse overlaat, wordt door alle beschouwde methoden de optimale 

pivot volgorde bepaald. 

H.Y. Shieh, M.S. Ghausi, "On optimal-pivoting algorithms in 

sparse matrices", IEEE Trans. Circuit Theory (Corresp.), 

Vol. CT-19, pp. 93-96 (1972). 

3. Bij het ontwerpen van een grote elektronische schakeling dl~ni ' nlet 

alleen de testbaarheid van de schakeling bevorderd te worden, maar 

ook de mogelijkheid de schakeling binnen acceptabele tijd te simu

leren. Voor beide oogmerken is het van belang de schakeling volgens 

een hi~rarchische structuur uit kleinere onderdelen op te bouwen. 

4. Het absoluut optimaliseren van kwaliteltsfaktoren van complexe 

elektronische systemen zoals snelheid, betrouwbaarheid, nauwkeurig

heid, dissipatie en produktiekosten, is ondoenlijk. 

R.K. Brayton, R. Spence, "Sensitivity and optimization", 

Elsevier, Amsterdam, 1980, p. 195. 

5. Voor vereenzaming en vervreemding kan een belangrijke oorzaak ge

zocht worden in de toenemende fysieke onafhankelijkheid van de 

mensen, welke mogelijk is geworden door de ontwikkeling van de 

techniek. 

J. Reese, e.a., "Gefahren der informationstechnologischen 

Entwicklung", Campusverlag, Frankfurt 1979, p. 62 vvj 



6. Zij die de gezegden "Abraham zien" of "Van Pontius naar Pilatus 

sturen" bezigen, geven daarmee niet te kennen te weten waar de 

k 1 epe 1 hangt. 


