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DYNAMIC SPECIFICATION AND
COINTEGRATION*

Peter Boswijk and Philip Hans Franses

I. INTRODUCTION

Since the publication of Granger’s (1981) seminal paper on cointegration,
this topic has received considerable attention both in empirical and in
theoretical research. Although initial results suggested that short-run
dynamics may be neglected for estimating cointegrating relations, subsequent
research has indicated that reliable inference necessitates a proper dynamic
specification. The effect of dynamic model selection on the size and power of
tests for cointegration and unit roots is investigated by e.g. Molinas (1986),
Schwert (1989), Kunst (1989), and Franses (1990). In particular, Molinas
showed that two independent autoregressive integrated moving average
(ARIMA) processes with a strongly negative moving average (MA) para-
meter can appear to' be cointegrated quite often if Engle and Granger’s
(1987) residual Dickey-Fuller test is used. Franses (1990) reports similar
evidence for the Wald test (Boswijk, 1989),

In this paper we use some Monte Carlo experiments to investigate the
effects of dynamic specification on the size and power of three cointegration
tests. The first test, proposed by Engle and Granger (1987), is the residual
augmented Dickey-Fuller unit root test (ADF ). The second is a Wald test for
the significance of the error correction mechanism in an autoregressive-
distributed lag (ADL) model, suggested by Boswijk (1989) and further
developed in Boswijk (1991). The third test is a likelihood ratio (LR) test in a
vector autoregressive (VAR) model, proposed by Johansen (1988) and
extended in Johansen and Juselius (1990). Two prototypical data generating
processes (DGPs) for a bivariate time series {( y,, z,)} are considered. In both
cases z, is exogenously generated by a random walk; in the first DGP y ; is
determined by an ADL model, and in the second case by an autoregressive
moving average model with explanatory variables (ARMAX). Hence for the
first DGP standard regression equations can be expected to capture the
dynamics completely, whereas in the second case they can merely provide an
approximation. For both DGPs a cointegrated and a non-cointegrated

*Suggestions from Niels Haldrup, David Hendry and Jan Kiviet are gratefully acknowledged.
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version is considered in order to evaluate both the size and the power of the
tests. The same simulations are used to investigate whether model selection
procedures based on the Lagrange-multiplier first-order serial correlation
test (LMF) and the Schwarz criterion (SC) lead to a lag length selection which
is optimal in terms of both size and power properties.

The plan of the paper is as follows. In Section 11, we review the cointegra-
tion tests. In the next section, the Monte Carlo design is described, and some
results are given. In the fourth section these results are interpreted, and their
practical implications are discussed.

iI. TESTING FOR COINTEGRATION

Consider the vector autoregressive model of order p, or VAR(p), foran nx 1
vector time series {x,, t=1,..., T}:

x=p+Mx_ +. . +1x_,t+e, (2.1)

where u is an nX 1 vector of intercepts, where Il,, i=1,...,p, are nXn
parameter matrices, and {€,} and white noise errors with covariance matrix X,
Using the first-difference operator A, defined by Ax,=x,— x,_,, the model
can be rewritten as

Ax=p+0x_ +TAx,_ +..T,_Ax,_ ., +¢&, (2.2)
where _
O=-(I-1,—..—10,),
=M, +..+0, i=1,.,p-L

If the rank r of II satisfies 0 <r<n, this matrix can be decomposed as

IN=af', where a and B are n Xr matrices. The Granger Representation
Theorem, see Engle and Granger (1987), implies that in that case the
components of x, are non-stationary and integrated of order 1, whereas the
linear combinations f'x, are stationary. The process is then said to be co-
integrated, the columns of 8 are the cointegrating vectors, and @ contains the
error correction coefficients.

In this paper we examine the behaviour of three procedures to test for
cointegration. The methods differ mainly with respect to the choice of the
model in which the cointegration properties are analysed, but also with
respect to the additional assumptions that are required. Firstly, Engle and
Granger (1987) suggest to estimate B in a static regression equation.
Consider the case where r=1, so that 8 is an nx 1 vector, normalized as
B'=(1, ~ ). Correspondingly, the vector x, partitioned as x,=(y,, z}), where
y, is taken as the dependent variable, and the remaining variables in z, are
used as explanatory variables. This leads to the static regression equation:

y=a+8'z,+u, (2.3)
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The least-squares residuals from this cointegrating regression, .1, are
checked for the presence of a unit root by the augmented Dickey-Fuller
(ADF ) test, which is the r-ratio of p in the auxiliary regression

Ad,=m+pi,_+yAd,_ +..ty, Ad,_,, te,. (2.4)

The asymptotic properties of the test are analysed in Phillips and Ouliaris
(1990), where asymptotic critical values for the hypothesis o=0 are
tabulated (tables Ila-Ilc).

The conditional dynamic regression procedure developed in Boswijk
(1989) starts from the assumption that  is either 1 or 0, and that the vector z,
is weakly exogenous for the cointegration parameters. Under the assumption
that {¢,} are normally distributed, a conditional error correction model for y,
given z, may be derived from (2.2) and reads as

p=1 .
Ay,=C+¢5(I)AZI+/1<y,_l— olzl—l)+ Z (q)jA})r—j-i_a}Azl—j)_*—”l

=1

p-=1
=ct 66Azl+ ‘”lxl- I + Z ((ijyl—j+ d}AZ,,_]-)‘i‘ Mo (25)

j=1

where &'=A(1,—@'). If 1#0, then (2.5) may be seen as a reparametrized
ADL(p; p,.., p) model with y, and z, cointegrated. If 2 =0, then the model is
unstable, so that the error correction mechanism is absent, and there is no
cointegration. Thus if 6 is known, the hypothesis of no cointegration (or
instability) can be tested with a r-statistic, as discussed by Kremers et al.
(1992). However, in general this will not be the case. From the definition of #,
it is easily seen that A =0 implies «=0. Hence the null hypothesis may be
tested by a Wald-type test, eventually corrected for the number of estimated
parameters:

RSS. —RSS,

Wald=#/(V[#))~'#=(T—n(p+1)) RSS

(2.6)

where # is the ordinary least-squares (OLS) estimator of 7 in (2.5), V[#] is
the corresponding OLS covariance matrix estimator, and RSS, and RSS,
denote the unrestricted and restricted (7#=0) residual sum of squares,
respectively. When the null hypothesis is rejected one has found a stable
cointegrating relationship. The parameter estimates of 4 and 6 can then be
found from the estimate of # after suitable transformation. In Boswijk (1991)
it is shown that the asymptotic distribution of the Wald statistic under the null
hypothesis is a generalization of the distribution of the squared Dickey-Fuller
t-statistic. Asymptotic critical values are obtained via simulation and
tabulated in Boswijk (1991, tables A1~A3). Furthermore, a generalization for
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the case where r> 1 is presented, based on a system of simultaneous error
correction equations in structural form.

In contrast with the above procedures, the maximum likelihood approach
developed in Johansen (1988) and extended in Johansen and Juselius (1990)
starts off from the statistical model that generates cointegration, viz. the VAR
model in error correction form

Ax=p+ap'x_ +TAx_\+..+T,_ |Ax,_,. +e, (2.7)

where the disturbances are assumed to be normally distributed. The
procedure does not necessitate any exogeneity assumptions nor a restriction
on the value of . It can be shown that, for fixed r, the maximum likelihood
estimator for B in model (2.7) defines the linear combinations of x,_, that
correspond to the r largest squared canonical correlations of x,_; with Ax,,
corrected for lagged differences and deterministic variables. The test
procedure of r—1 versus r is given by testing the significance of the r-th
canonical correlation with an LR test (the 4, test, see Johansen and Juselius,
1990). Asymptotic critical values are presented in Johansen and Juselius
(1990, tables A1-A3). In related simulation studies, see e.g. Reimers (1991),
it emerges that the LR statistic should be corrected for the number of
estimated parameters to obtain satisfactory size properties in finite samples.
This is accomplished by multiplying the test statistic by a factor (T—np)/T.

. A MONTE CARLO EXPERIMENT

3.1. The Monte Carlo Design

We consider a bivariate time series {x,=(y, z,)'}, which may be cointegrated
via a single cointegrating relationship, so r=1 or 0. We assume that {z,} is
exogenously generated by a random walk:

Az,=e¢, (3.1)

with {¢,} iid. N(0,1). For y, conditional on z,, we use two different data
generating processes: -

(D) Ay, =My, —2,.,)+05A2,+0.6Ay,_, +7,
(1) Ay, =iy~ ~2,-1)+n,~0.67,_,,

with {7} iid. N(0,1), independently of {¢,}, and AE€{0, — 0.2}. The dynamics
of DGP I is of the autoregressive type, whereas DGP II is an ARMAX
model. If 4 =0, then y, and z, are not cointegrated, and even independent in
case IL If A=~-0.2, the series are cointegrated with cointegrating vector
(1, — 1). The values of the parameters in (3.2) are chosen in order to generate
reasonably apparent dynamic properties. The signal-to-noise ratio is
somewhat arbitrary, and corresponds to a range of (0.25,0.55) for the coef-
ficient of determination in (3.2).

(3.2)
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For I and II (and A =0, —0.2) we generate 1,000 samples of 58 observa-
tions on { y,, z,}; each sample is constructed from 59 observations on {¢, 7},
using the initialization methods described in Kiviet (1986, pp. 258~59). The
first 8 observations are used only to create the necessary lags, leaving a
sample size of 50 observations for estimation and testing purposes. Drawings
from the standard normal distribution are performed by the function RNDN
of the GAUSS statistical package, with a seed of 1590507862.

For each sample we calculate the ADF -test statistics in a residual AR(p)
model, the Wald statistic in an ADL{p; p,.., p) model, and the likelihood
ratio statistic in a VAR(p) model, with p ranging from 1 to 8. A lag length of,
e.g., 8 is not often considered in samples as small as 50 observations, but we
use this range for p to illustrate the influence of dynamic specification more
clearly. In all regressions a constant term is included to avoid starting value
dependencies. With these results, rejection frequencies of the tests at nominal
5 percent and 10 percent significance levels are computed. These yield
empirical size estimates for A = 0. For 4 = — 0.2, they provide an indication of
the power of the tests. In order to keep as close as possible to the empirical
practice, we do not estimate the empirical power by the rejection rates at the
actual size. Although one could use repeated sampling methods to obtain
approximate critical values, this does not correspond to the current practice.

For the cases where 1= —0.2 we also compute the Lagrange-multipler F-
test (LMF, see Kiviet, 1986) for first-order serial correlation and the Schwarz
criterion (SC). In case of the VAR model a variable addition F-test for the
vector of residuals lagged one period is used to test for first-order VAR or
VMA (vector moving average) disturbances. For each sample we choose a
value of p by the following three distinct criteria. Firstly, we choose the most
parsimonious mdel that has an insignificant LMF statistic at the 5 percent
level. Secondly, the model with the lowest SC is selected, and thirdly, we
choose only from the models with insignificant LMF statistic the model with
the lowest SC. With these results we compute the model selection frequencies
for each lag. We only investigate the performance of these model selection
procedures for A= —0.2, because the cointegrated models are of primary
concern in practice.

3.2, Simulation Results

The results are reported in Tables 1 and 2. To facilitate the evaluation and
comparison of the test performances, we have represented the size and power
results at the 5 percent nominal level and also the model selection results
graphically in Figures 1 and 2 for DGP I and 11, respectively.

First, we discuss the results for DGP 1. From Figure 1(a) we see that the
empirical size of the ADF test is smaller than five percent, and hence the test
performs quite well in this respect. The rejection frequency under the
alternative (henceforth RFA) is very low at one lag, reaches its maximum at
two lags, and subsequently decreases with larger lag lengths. The results for



TABLE 1
Simulation Results for DGP [
(a) Rejection frequencies under H, (no cointegration) and H, (cointegration) of the
ADF test and AR lag length selection frequencies

5% level 10% level Selection frequency
P H, H, H, H, LMF SC LMF&SC
1 0.021 0.025 0.046 0.062 0.136 0.091 0.090
2 0.034 0.578 0.077 0.739 0.783 0.756 0.748
3 0.034 0.561 0.071 0.715 0.075 0.113 0.121
4 0.037 0.481 0.072 0.622 0.006 0.028 0.029
5 0.033 0.352 0.068 0.501 0.000 0.007 0.007
6 0.029 0.269 0.057 0.408 0.000 0.002 0.002
7 0.031 0.190 0.057 0.318 0.000 0.003 0.003
8 0.029 0.147 0.067 0.277 0.000 0.000 0.000

(b) Rejection frequencies under H, (no cointegration) and H, (cointegration) of the
Wald test and ADL lag length selection frequencies

5% level 10% level Selection frequency
P H, H, H, H, LMF SC LMF&SC
1 0.280 0.195 0.335 0.268 0.008 0.012 0.004
2 0.080 0.716 0.136 0.841 0.935 0.937 0.913
3 0.084 0.528 0.135 0.684 0.056 0.037 0.069
4 0.076 0.408 0.119 0.540 0.001 0.011 0.011
5 0.067 0.290 0.123 0.429 0.000 0.001 0.001
6 0.070 0.239 0.127 0.354 0.000 0.002 0.002
7 0.078 0.169 0.133 0.283 0.000 0.000 0.000
8 0.077 0.142 0.124 0.235 0.000 0.000 0.000

(c) Rejection frequencies under H, (no cointegration) and H, (cointegration) of the
LR test and VAR lag length selection frequencies

5% level 10% level Selection frequency
p H, H, H, H, LMF SC LMF&SC
1 0.259 0.120 0.328 0.177 0.017 0.067 0.016
2 0.069 0.523 0.126 0.667 0.915 0.920 0.914
3 0.067 0.324 0119 0.458 0.057 0.011 0.059
4 0.062 0.212 0.115 0.336 0.006 0.002 0.006
b} 0.053 0.139 0.097 0.250 0.002 0.000 0.002
6 0.046 0.112 0.091 0212 0.001 0.000 0.001
7 0.055 0.085 0.105 0.152  0.002 0.000 0.002
8 0.050 0.071 0.102 0.129 0.000 0.000 0.000

Note: Critical values are from Phillips and Ouliaris {(1990), table IIb, for the ADF test; from
Boswijk (1991), table A2, for the Wald test; and from Johansen and Juselius (1990), table A2,
for the LR test. For the LMF tests a 5 percent significance level is used. The table is based on
1,000 replications and a sample size of 50.



TABLE 2
Simulation Results for DGP 11

(a) Rejection frequencies under H, (no cointegration) and H, (cointegration} of the
ADF test and AR lag length selection frequencies

5% level 10% level Selection frequency
P H, H, H, H, LMF ScC LMF&SC
1 0.780 0.733 0.839 0.843 0.826 0.775 0.759
2 0.341 0.254 0.449 0.395 0.165 0.186 0.201
3 0.149 0.114 0.227 0.203 0.009 0.034 0.033
4 0.098 0.071-  0.167 0.155 0.000 0.005 0.006
5 0.065 0.052 0.117 0.114 0.000 0.000 0.001
6 0.043 0.037 0.086 0.074 0.000 0.000 0.000
7 0.041 0.031 0.074 0.065 0.000 0.000 0.000
8 0.036 0.028 0.073 0.063 0.000 0.000 0.000

{b) Rejection frequencies under H;, (no cointegration) and H,, (cointegration) of the
Wald test and ADL lag length selection frequencies

5% level 10% level Selection frequency
P H, H, H, H, LMF SC LMF&SC
1 0.728 0.977 0.802 0.993 0.368 0.460 0.305
2 0.303 0.894 0.412 0.958 0.454 0.369 0.441
3 0.135 0.782 0.202 0.868 0.145 0.134 0.188
4 0,098 0.649 0.163 0.776 0.029 0.028 0.050
5 0.066 0.532 0.120 0.665 0.003 0.007 0.012
6 0.050 0.407 0.104 0.567 0.001 0.001 0.003
7 0.055 0.309 0.101 0.436 0.000 0.001 0.001
8 0.056 0.205 0.093 0.338 0.000 0.000 0.000

(c) Rejection frequencies under H, (no cointegration) and H, (cointegration) of the
LR test and VAR lag length selection frequencies

5% level 10% level Selection frequency
p  H, H, H, H, LMF  SC LMF&SC
1 0.616 0.884 0.714 0.949 0.545 0.812 0.538
2 0.190 0.694 0.304 0.843 0.361 0.158 0.354
3 0.081 0.550 0.137  0.693 0.079 0.029 0.092
4 0.054 0.420 0.109 0.578 0.015 0.001 0.016
S 0.041 0.310 0.084 0457 0.000 0.000 0.000
6 0.033 0.205 0.075 0.338 0.000 0.000 0.000
7 0.033 0.140 0.070 0.251 0.000 0.000 0.000
8 0.029 0.106 0.072 0.186 0.000 0.000 0.000

Note: See Table 1.



376 BULLETIN

(a) Rejection frequencies of the ADF test (b) AR lag length selection frequencies
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Fig. 1. Simulation results for DGP I (5% nominal significance level)

the 10 percent nominal significance level in Table 1(a) show the same pattern.
Hence we conclude that a lag length of 2 is optimal for this procedure in this
case. To a large extent the three model selection procedures lead to this
optimal choice (see Figure 1(b)): in about 75 percent of the cases a model
with two lags is selected. ’

The size and power characteristics for the Wald test are quite different
from the ADF test. In the underparametrized ADL(1, 1) model, the empirical
size is much too high (even higher than the power). Notice however that with
our specification strategies this model is hardly ever selected. For all models
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(a) Rejection frequencies of the ADF test (b) AR lag length selection frequencies
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(e) Rejection frequencies of the LR test (f) VAR lag lenth selection frequencies
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Fig. 2. Simulation results for DGP 11 (5% nominal significance level)

with p>1, the empirical size is about 7.5 percent, which is still too high.
Similarly, at a 10 percent nominal level the empirical size stabilizes at about
12.5 percent. However, with a sample size of only 50 and up to 18 explana-
tory variables we cannot expect much better results. Just as for the ADF test,
the empirical power of the Wald test rises steeply if the lag length is raised
from 1 to 2, and deteriorates with further lag increases. Again the optimal lag
length is 2, which is quite adequately indicated by the model selection
procedures; in over 90 percent of the cases this model is selected by all three
models (see Table 1(b)). The size and power performance of Johansen’s LR
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test is similar to that of the Wald test. As in the previous cases, all model
selection procedures indicate the optimal lag length of 2 in most of the
replications.

Summarizing the simulation results for DGP I, we note the following
points. Firstly, a lag length of 2 is optimal in terms of size and power for all
tests. For the Wald and LR tests this may be explained because the ADL(2,2)
and VAR(2) models encompass the true DGP; for the ADF test this is not the
case, but a residual AR(2) model seems to mimic the (static residual)
dynamics fairly adequately. A theoretical explanation for this phenomenon
may be based on the analysis of Kremers ez al. (1992). Secondly, the power of
the tests is negatively influenced by both over- and underparametrization.
Thirdly, we find that the three model selection strategies investigated all lead
to the same optimal lag length of 2. We repeated the simulation experiments
for DGP 1 for a sample size of 100. As expected, this yields better size and
power properties for all tests, but other than that, the previous conclusions
continue to hold.

We now turn to the simulation results for the second DGP. In this case, the
MA effects imply that none of the models exactly encompass the true DGP.
However, the dynamic properties of this process may well be approximated
by higher order AR, ADL or VAR models.

From Figure 2(a) we see that up to 5 lags are required in the ADF auxiliary
regression in order to obtain an empirical size reasonably close to the
nominal level; for models with p<S$5, the size is much too large, with a
maximum of 78 percent at one lag. The RFA of the ADF test is uniformly
lower than the size for this DGP. Hence if the empirical significance levels are
used, we may expect a complete loss of power. The same results emerge if a
nominal significance level of 10 percent is used. All model selection criteria
that we consider will prefer the (very inadequate) low-order model; the first-
order model is selected in over 75 percent of the replications.

The size curve of the Wald test in Figure 2(c) closely resembles that of the
ADF test: again, a low lag length leads to extreme overrejection under the
null, and 5 lags are needed to avoid this size distortion. However, the RFA of
the Wald test is substantially better: although it also decreases with the lag
length, the RFA at five lags is still larger than 50 percent. Unfortunately, this
optimal model is not indicated by the LMF serial correlation test or Schwarz
criterion: for all three selection strategies, a lower dimensional model is
selected in over 98 percent of the replications. Thus, although the ARMAX
model may be approximated by a higher order ADL model, the selection of
the appropriate model will be troublesome.

As with DGP I, the results for the LR test in a VAR model resemble those
of the Wald test. Both the empirical size and the RFA decrease more rapidly,
so that a lag length of 4 is now optimal. Although the shape of the model
selection curves is somewhat different from the shapes for the other

approaches, the same conclusion that they do not indicate enough lags
applies here.
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The results for the second DGP may be summarized as follows. For all test
procedures, a lag length of about 5 is optimal, but this is rarely indicated by
the model selection procedures that we have considered. Secondly, the
properties of the ADF test disqualify it for practical use in this type of model.

IV. DISCUSSION

Our Monte Carlo experiment suggests the following conclusions about the
effects on cointegration testing of dynamic (mis-) specification. An insuf-
ficient lag length can lead to substantial size distortions, and in particular to
drastic overrejection of the null hypothesis. On the other hand, overpara-
metrization of the dynamic structure will lead to a loss of power. This implies
that for each DGP and test procedure there is exactly one lag length which is
optimal. Standard model selection procedures do not indicate an appropriate
lag length if the model provides only an approximation to the true dynamics.
Because tests for cointegration are in fact tests for unit roots, these results can
be expected to apply to univariate unit root testing as well, see e.g. Schwert
(1989) and Kunst (1989).

The size distortion may be intuitively explained as follows. The cointegra-

tion approaches investigated consider the significance of correlations
between error correction terms and first differenced variables after correc-
tion for deterministics and dynamics. If the correction is insufficient, there
will be some serial correlation left in the corrected first difference. This may
have a positive effect on the squared correlations, leading to overrejection of
the null hypothesis. Another explanation of the overrejection in the second
DGP is that our choice of the negative MA parameter causes a near-cancella-
tion of the unit root factor if 1 =0, so that y, may appear to be stationary {cf.
Molinas, 1986).
- The overrejection of the null hypothesis of no cointegration suggests the
possibility of spurious cointegration. The effects of dynamic misspecification
in our case in fact do resemble the well-known spurious regressions results of
Granger and Newbold (1974). They found that the hypothesis of no rela-
tionship between two random walks, which are independent in reality, is
rejected much too often. In a way, the notion of cointegration was a reaction
to these findings, and the purpose of error correction models is to safeguard
us against these spurious effects. We have seen that as yet this attempt has
only been partly successful. Even if a proper misspecification strategy is
employed, we still may reject the hypothesis of no long-run relationship too
often in case of underparametrized models. Hence a significant empirical
cointegrating relationship should be interpreted with some caution.

We would expect that the LMF test, which is supposed to test for serial
correlation, should indicate the inappropriateness of models with too few
lags. This is the case for DGP I, where the true dynamic structure is of the
autoregressive type, but LMF clearly fails when the autoregressive models
are used as an approximation of the true ARMAX model. A possible remedy
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for this problem is to start with a model which has both autoregressive and
moving average terms, ie., a (V)ARMA(X) model. However the Monte
Carlo evidence of Schwert (1989) on unit root testing in ARMA models
suggests that this method still suffers from size distortions and may be
inferior to a high order autoregression. The instrumental variable methods of
Hall (1989) may provide an alternative solution to these problems.

Comparing the three tests, it seems that the Wald test in an ADL regres-
sion is superior in this experiment. It has the highest power at two lags with
DGP 1 and satisfactory size and power performance with DGP 11 at five lags.
However, we should note that in both DGPs z, is weakly exogenous; this
property is exploited in the Wald procedure and not in the other two
approaches. On the other hand, the exogenous process that we have chosen
fits neatly in a VAR model. Because the Wald test does not require modelling
of the exogenous process, it can be expected to be less sensitive to departures
from this assumption, such as general ARIMA processes with arbitrary error
distributions. For the residual ADF test we note that its results for the second
DGP seem to limit its practical usefulness.

Depariment of Actuarial Science and Econometrics, University of Amsterdam
Econometric Institute, Erasmus University Rotterdam
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