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Abstract—We present a computational model of musical instru-
ment sounds that focuses on capturing the dynamic behavior of the
spectral envelope. A set of spectro—temporal envelopes belonging
to different notes of each instrument are extracted by means of si-
nusoidal modeling and subsequent frequency interpolation, before
being subjected to principal component analysis. The prototyp-
ical evolution of the envelopes in the obtained reduced-dimensional
space is modeled as a nonstationary Gaussian Process. This results
in a compact representation in the form of a set of prototype curves
in feature space, or equivalently of prototype spectro—temporal en-
velopes in the time-frequency domain. Finally, the obtained models
are successfully evaluated in the context of two music content anal-
ysis tasks: classification of instrument samples and detection of in-
struments in monaural polyphonic mixtures.

Index Terms—Gaussian processes, music information retrieval
(MIR), sinusoidal modeling, spectral envelope, timbre model.

I. INTRODUCTION

E ADDRESS the development of a novel computational

modeling approach for musical instrument sounds fo-
cused on capturing the temporal evolution of the spectral enve-
lope. We intend the models to be used not only as a mid-level
feature in classification tasks, but also as source of a priori
knowledge in applications requiring not only model discrimina-
tion, but also a reasonable degree of model accuracy, such as de-
tection of instruments in a mixture, source separation, and syn-
thesis applications. In this contribution, we present in detail the
design guidelines and evaluation procedures used during the de-
velopment of such a modeling approach, as well as performance
evaluations of its application to the classification of individual
instrumental samples and to the recognition of instruments in
monaural (single-channel) polyphonic mixtures.

The temporal and spectral envelopes are two of the most im-
portant factors contributing to the perception of timbre [1]. The
temporal envelope, usually divided into Attack, Decay, Sustain,
and Release (ADSR) phases, is a valuable feature to distinguish,
for instance, between sustained (bowed strings, winds) and con-
stantly decaying instruments (plucked or struck strings). The
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spectral envelope can be defined as a smooth function of fre-
quency that approximately matches the individual partial peaks
of each spectral frame. The global shape of the frame-wise evo-
lution of the individual partial amplitudes (and consequently of
the spectral envelope) corresponds approximately to the global
shape of the temporal envelope. Thus, considering the spectral
envelope and its temporal evolution makes it unnecessary to
consider the temporal envelope as a separate entity. We will use
the term “spectro—temporal envelope” to globally denote both
the frame-wise spectral envelope and its evolution in time. We
emphasize that the present method considers timbre (a percep-
tual sensation) to be mainly affected by the spectro—temporal
envelope (a physical aspect). It should be noted, however, that
there are other factors that can have an important influence on
timbre, such as harmonicity, noise content, transients, masking
effects, and auditory and neural processes.

An early work thoroughly and systematically assessing the
factors that contribute to timbre was the 1977 work by Grey
[2]. He conducted listening tests to judge perceptual similarity
between pairs of instrumental sounds, and applied multidimen-
sional scaling (MDS) to the results for reducing the dimension-
ality. In the cited work, MDS was used to produce a three-di-
mensional timbre space where the individual instruments clus-
tered according to the evaluated similarity.

In later works, similar results were obtained by substituting
the listening tests by objectively measured sound parameters.
Hourdin, Charbonneau, and Moussa [3] applied MDS to ob-
tain a similar timbral characterization from the parameters ob-
tained from sinusoidal modeling. They represented trajectories
in timbre space corresponding to individual notes, and resyn-
thesized them to evaluate the sound quality. Similarly, Sandell,
and Martens [4] used principal component analysis (PCA) as a
method for data reduction of sinusoidal modeling parameters.

De Poli and Prandoni [5] proposed their sonological models
for timbre characterization, which were based on applying ei-
ther PCA or self organizing maps (SOM) to a description of the
spectral envelope based on Mel frequency cepstral coefficients
(MFCCs). A similar procedure by Loureiro, de Paula, and Yehia
[6] has recently been used to perform clustering based on timbre
similarity.

Jensen [7] developed a sophisticated framework for the per-
ceptually meaningful parametrization of sinusoidal modeling
parameters. Different sets of parameters were intended to de-
scribe in detail the spectral envelope, the mean frequencies, the
ADSR envelopes with an additional “End” segment, and ampli-
tude and frequency irregularities.
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In Leveau et al. [8], timbre analysis is addressed from the
perspective of sparse signal decomposition. A musical sound
is approximated as a linear combination of harmonic atoms,
where each atom is a sum of harmonic partials whose ampli-
tudes are learned a priori on a per-instrument basis. A modified
version of the Matching Pursuit (MP) algorithm is then used
in the detection stage to select the atoms that best describe the
observed signal, which allows single-voice and polyphonic in-
strument recognition.

A great variety of spectral features have been proposed in
the context of audio content analysis, first in fields such as
automatic speech recognition (ASR) or sound analysis and
synthesis, later in music information retrieval (MIR). Most
of them are basic measures of the spectral shape (centroid,
flatness, rolloff, etc.), and are too simple to be considered full
models of timbre. More sophisticated measures make use of
psychoacoustical knowledge to produce a compact description
of spectral shape. This is the case of the very popular MFCCs
[9], which are based on a Mel-warped filter bank and a cep-
stral smoothing and energy compaction stage achieved by a
discrete cosine transform (DCT). However, MFCCs provide a
rough description of spectral shape and are thus unsuitable for
applications requiring a high level of accuracy.

The MPEG-7 standard includes spectral basis decomposition
as feature extraction [10]. The extraction is based on an estima-
tion of arough overall spectral shape, defined as a set of energies
in fixed frequency bands. Although this shape feature is called
Audio Spectrum Envelope, it is not a spectral envelope in the
stricter sense of matching the partial peaks.

Our approach aims at combining an accurate spectral feature
extraction front-end with a statistical learning procedure that
faithfully captures dynamic behavior. To that end, we first dis-
cuss the general criteria that guided the design of the modeling
approach (Section II). The main part of this paper (Sections III
and IV) is a detailed description of the proposed sound mod-
eling method, which is divided into two main blocks: the rep-
resentation stage and the prototyping stage. The representation
stage (Section III) corresponds to what, in the pattern recog-
nition community, is called the feature extraction stage. It de-
scribes how the spectro—temporal envelopes are estimated from
the training samples by means of sinusoidal modeling and sub-
sequent frequency interpolation and dimensionality reduction
via PCA, and places special emphasis on discussing the formant
alignment issues that arise when using notes of different pitches
for the training. This section includes the description of a set of
experiments (Section III-D) aimed at evaluating the appropri-
ateness of the chosen spectral front-end. The prototyping stage
(Section IV) aims at learning statistical models (one model per
instrument) out of the dimension-reduced coefficients generated
in the representation stage. In order to reflect the temporal evo-
lution in detail, the projected coefficient trajectories are mod-
eled as a set of Gaussian processes (GP) with changing means
and variances. This offers possibilities for visualization and ob-
jective timbre characterization, as will be discussed in detail.
Finally, the application of the trained models in two MIR tasks
will be presented: Section V addresses the classification of iso-
lated musical instrument samples and Section VI the more de-
manding task of detecting which instruments are present on a

single-channel mixture of up to four instruments. Conclusions
are summarized in Section VII, together with several possible
directions for future research.

The modeling method presented here was first introduced in
[11]. That work addressed the evaluation of the representation
stage, but it lacked detail about the sinusoidal modeling and
basis decomposition procedures and, most importantly, it only
provided a very brief mention of the prototyping stage (i.e., the
temporal modeling as Gaussian processes), without any formal-
ized presentation. The present contribution provides all missing
details and contains a full presentation and discussion of the pro-
totyping stage, together with new experiments and observations
concerning the interpretation of the obtained prototypical spec-
tral shapes. More specifically, it addresses the influence of the
extracted timbre axes (introduced later) on the spectral shape,
the observation of formants (Section IV), and the influence of
the frequency alignment procedure on the inter-instrument clas-
sification confusion (Section V). The application of the models
for polyphonic instrument recognition has been presented more
extensively in [12]. Since the main focus here was the design
of the modeling approach, we only provide a brief presenta-
tion thereof in Section VI, and we refer the reader to that work
for further details concerning that particular application. Finally,
another related article is [13], where the models were used for
source separation purposes. In particular, source separation is
based on extending the polyphonic recognition procedure of
Section VI to recover missing or overlapping partials by inter-
polating the prototypical time—frequency templates. However,
since the emphasis here was on sound analysis, such a topic is
not covered here.

II. DESIGN CRITERIA

In benefit of the desired multipurpose nature of the models,
the following three design criteria were followed and evalu-
ated during the development process: representativeness, con-
pactness, and accuracy. The above mentioned methods fulfill
some of the criteria, but do not meet the three conditions at the
same time. The present work was motivated by the goal of com-
bining all three advantages into a single algorithm. Each cri-
terion has an associated objective measure that will be defined
later (Section III-D). It should be noted that these measures were
selected according to their appropriateness within the context
of the signal processing methods used here, and they should
be considered only an approximation to the sometimes fairly
abstract criteria (e.g., representativeness) they are intended to
quantify. Another simplification of this approach worth men-
tioning is that the criteria are considered independent from each
other, while dependencies do certainly exist. What follows is a
detailed discussion of how the approaches from the literature
reviewed above meet or fail to meet the criteria, and how those
limitations are proposed to be overcome.

A. Representativeness

An instrument model should be able to reflect the essential
timbral characteristics of any exemplar of that instrument (e.g.,
the piano model should approximate the timbre of any model
and type of piano), and be valid for notes of different pitches,
lengths, dynamics and playing styles. We will refer to this
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requirement as the representativeness criterion. This requires
using a training database containing samples with a variety of
those factors, and a consequent extraction of prototypes.

Many of the above-mentioned methods focus on the auto-
matic generation of timbre spaces for the subsequent timbral
characterization of individual notes, rather than on training
representative instrument models valid for a certain range of
pitches, dynamics, etc. For instance in [3], [4], and [6], several
notes are concatenated to obtain common bases for generating
the timbre spaces; there is however no statistical learning of
the notes’ projections from each instrument into a parametric
model. In [5], a static Gaussian modeling approach is proposed
for the clusters formed by the projected coefficients. MFCCs
and the MPEG-7 approach are indeed intended for large-scale
training with common pattern recognition methods, but as
mentioned they do not meet the requirement of accuracy of
the envelope description. In this paper, we propose a training
procedure consisting of extracting common spectral bases from
a set of notes of different pitches and dynamics, followed by
the description of each instrument’s training set as a Gaussian
process. Only one playing style per instrument has been con-
sidered (i.e., no pizzicati, stacatti, or other articulations). It can
be strongly assumed that such special playing styles would
require additional specific models, since they heavily change
the spectro—temporal behavior.

It should be noted that, while there have been several works
dealing with an explicit modeling of the dependency of timbre
on the fundamental frequency (fo) or on the dynamics (see e.g.,
the work by Kitahara et al. [14] and Jensen’s Instrument Def-
inition Attributes model in [15]), that was not our goal here.
Specifically, we address fo-dependency from a different per-
spective: instead of seeking an fy-dependent model, we accom-
modate the representation stage such that the modeling error
produced by considering notes of different pitches is minimized.
In other words, we seek prototypical spectro—temporal shapes
that remain reasonably valid for a range of pitches. This allows
avoiding a preliminary multipitch extraction stage in applica-
tions involving polyphonic mixtures, such as polyphonic instru-
ment detection (Section VI) or source separation [13]. This im-
portant characteristic of the model will be discussed in detail in
the next section.

In our experiments, we measure representativeness by the av-
eraged distance in feature space between all samples belonging
to the training database and all samples belonging to the test
database. A high similarity between both data clouds (both in
distance and in shape) indicates that the model has managed
to capture essential and representative features of the instru-
ment. The significance of such a measure, like in many other
pattern recognition tasks, will benefit from a good-quality and
well-populated database.

B. Compactness

Compactness refers to the ability to include as much infor-
mation (variance, entropy) in models as simple as possible. It
does not only result in more efficient computation, storage and
retrieval but, together with representativeness, implies that the
model has captured the essential characteristics of the source.
In [4], compactness was considered one of the goals, but no

training was performed. MFCCs are highly compact but, again,
inaccurate. This work will use PCA spectral basis decomposi-
tion to attain compactness. In such a context, the natural mea-
sure of compactness is the variance explained by the retained
PCA eigenvalues.

C. Accuracy

Some applications require a high representation accuracy. As
an example, in a polyphonic detection task, the purpose of the
models is to serve as a template guiding the separate detection
of the individual overlapping partials. The same is valid if
the templates are used to generate a set of partial tracks for
synthesis. Model accuracy is a demanding requirement that is
not always necessary in classification or retrieval by similarity,
where the goal is to extract global, discriminative features.
Many approaches relying on sinusoidal modeling [3]-[6] are
based on highly accurate spectral descriptions, but fail to fulfill
either compactness or representativeness. The model used
here relies on an accurate description of the spectral envelope
by means of sinusoidal-modeling-based interpolation. In the
present context, accuracy is measured by the averaged am-
plitude error between the original spectro—temporal envelope
and the spectro—temporal envelope retrieved and reconstructed
from the models.

III. REPRESENTATION STAGE

The aim of the representation stage is to produce a set of coef-
ficients describing the individual training samples. The process
of summarizing all the coefficients belonging to an instrument
into a prototype subset representative of that particular instru-
ment will be the goal of the prototyping stage.

A. Envelope Estimation Through Sinusoidal Modeling

The first step of the training consists in extracting the
spectro—temporal envelope of each individual sound sample
of the training database. For its effectiveness, simplicity, and
flexibility, we chose the interpolation approach to envelope
estimation. It consists in frame-wise selecting the prominent si-
nusoidal peaks extracted with sinusoidal modeling and defining
a function between them by interpolation. Linear interpolation
results in a piecewise linear envelope containing edges. In spite
of its simplicity, it has proven adequate for several applications
[16]. Cubic interpolation results in smoother curves, but is more
computationally expensive.

Sinusoidal modeling [16], also called additive analysis, per-
forms a frame-wise approximation of amplitude, frequency, and
phase parameter triplets §,, = (flpr, fpr./ HAPT). Here, p is the
partial index and r is the frame (time) index. Throughout this
paper, logarithmic amplitudes will be used. The set of frequency
points fp, for all partials during a given number of frames is
called frequency support. In this paper, the phases épr will be
ignored.

To perform the frame-wise approximations 5, sinusoidal
modeling implements the consecutive stages of peak picking
and partial tracking. A sinusoidal track is the trajectory de-
scribed by the amplitudes and frequencies of a sinusoidal peak
across consecutive frames. To denote a track t,, the following
notation will be used: t; = {3,,,|RY < r < RL}, where p; is
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the partial index associated with the track and RY and R are,
respectively, its first and last frames. These stages have two
possible modes of operation: harmonic and inharmonic. The
harmonic mode is used whenever the fo is known beforehand.
It is more robust since the algorithm can guess that the partials
will be positioned close to integer multiples of fj, and also
because the analysis parameters can be adapted accordingly. In
this paper, harmonic sinusoidal modeling is used for the repre-
sentation stage experiments (Section III-D) and for training the
models for the classification and polyphonic detection applica-
tions (Sections V and VI). Inharmonic mode will be used when
analyzing the mixtures for polyphonic instrument detection
(Section VI). In harmonic mode, a Blackmann window of size
W = 5f; and a hop size of W /4 were used, with a sampling
rate of f; = 44.1 kHz. In inharmonic mode, a Blackmann
window of fixed size W = 8192 samples was used, with a hop
size of 2048 samples and the same f.

Given a set of additive analysis parameters, the spectral en-
velope can finally be estimated by frame-wise interpolating the
amplitudes flp,« at frequencies fpr forp=1,...,P,.

B. Spectral Basis Decomposition

Spectral basis decomposition [10] consists of performing a
factorization of the form X = PY, where X is the data matrix
containing a time—frequency (t-f) representation with K spec-
tral bands and R time frames (usually R > K), P is the trans-
formation basis whose columns p; are the basis vectors, and Y
is the projected coefficient matrix. If the data matrix is in tem-
poral orientation (i.e., itis a R x K matrix X(r, k)), a temporal
R x R basis matrix P is obtained. If it is in spectral orientation
(K x R matrix X(k,r)), the result is a spectral basis of size
K x K. Having as goal the extraction of spectral features, the
latter case is of interest here.

PCA realizes such a factorization under the constraint that the
variance is concentrated as compactly as possible in a few of the
transformed dimensions. It meets our need for compactness and
was thus chosen for the basis decomposition stage. After cen-
tering (i.e., removing the mean) and whitening (i.e., normalizing
the dimensions by their respective variances), the final projec-
tion of reduced dimensionality D < K is given by

Y, = A,'°P) (X - E{X}) (M)

where A = diag(\1,...,Ap) and A4 are the D largest eigen-
values of the covariance matrix X, whose corresponding eigen-
vectors are the columns of P,. The p subscript denotes di-
mensionality reduction and indicates the mentioned eigenvalue
and eigenvector selection. The truncated model reconstruction
would then yield the approximation

X =P,APY, + B{X}. 2)

C. Frequency Alignment

To approach the design criterion of representativeness we
need to consider notes of different instrument exemplars, dy-
namics and pitches into the training set. More specifically, we

concatenate in time the spectro—temporal envelopes of different
exemplars, dynamics and pitches into a single input data ma-
trix, and extract the common PCA bases. However, since the
spectro—temporal envelope can greatly vary between pitches,
concatenating the whole pitch range of a given instrument can
produce excessively flat common bases, thus resulting in a poor
timbral characterization. On the other hand, it can be expected
that the changes in envelope shape will be minor for notes that
are consecutive in the chromatic scale. It was thus necessary to
find an appropriate trade-off and choose a moderate range of
consecutive semitones for the training. After preliminary tests,
a range between one and two octaves was deemed appropriate
for our purposes.

In Casey’s original proposal [10] and related works, basis
decomposition is performed upon the short-time Fourier
transform (STFT) spectrogram, with fixed frequency posi-
tions given by the regular frequency-domain sampling of the
DFT. In contrast, here the decomposition is performed on the
spectro—temporal envelope, which we defined as a set of partials
with varying frequencies plus an interpolation function. Thus,
when concatenating notes of different pitches, the arrangement
into the data matrix is less straightforward.

The simplest solution is to ignore interpolation and use di-
rectly the sinusoidal amplitude parameters as the elements of
the data matrix. In this case, the number of partials to be ex-
tracted for each note is fixed and the partial index p is used as
frequency index, obtaining X (p, ) with elements z,, = flpr.
We will refer to this as Partial Indexing (P]).

The PI approach is simple and appropriate in some contexts
([31, [4]), but when concatenating notes of different pitches,
several additional considerations have to be taken into account.
These concern the formant- or resonance-like spectral features,
that can either lie at the same frequency, irrespective of the pitch,
or be correlated with the fundamental frequency. In this paper,
the former will be referred to as fy-invariant features, and the
latter as fo-correlated features. When concatenating notes of
different pitches for the training, their frequency support will
change logarithmically. If the PI arrangement is used, this has
the effect of misaligning the fjy-invariant features in the data
matrix. On the contrary, possible features that follow the loga-
rithmic evolution of f will become aligned.

An alternative to PI is to interpolate between partial ampli-
tudes to approximate the spectral envelope, and to sample the
resulting function at a regular grid of G points uniformly spaced
within a given frequency range f, = (fmax/G)g. The spectral
matrix is now defined by X(g,7), where g = 1,...,G is the
grid index and r the frame index. Its elements will be denoted
by x4 = Ag,. This approach shall be referred to as Envelope
Interpolation (EI). This strategy does not change formant align-
ments, but introduces an interpolation error.

In general, frequency alignment is desirable for the present
modeling approach because, if subsequent training samples
share more common characteristics, prototype spectral shapes
will be learned more effectively. In other words, the data
matrix will be more correlated and thus PCA will be able to
obtain a better compression. In this context, the question arises
of which one of the alternative preprocessing methods—PI
(aligning fo-correlated features) or EI (aligning fy-invariant
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features)—is more appropriate. In order to answer that question,
the experiments outlined in the next section were performed.

D. Evaluation of the Representation Stage

A cross-validated experimental framework was implemented
to test the validity of the representation stage and to evaluate
the influence of the PI, linear EI, and cubic EI methods. Here,
some experimental results will be presented. Further results and
evaluation details can be found in [11].

The used samples are part of the RWC database [17]. One
octave (C4 to B4) of two exemplars from each instrument type
was trained. As test set, the same octave from a third exemplar
from the database was used. All sound samples belonging to
each set were subjected to sinusoidal modeling, concatenated in
time and arranged into a data matrix using either the PI or the EI
method. For the PI method, P = 20 partials were extracted. For
the EI method, fi,.x Was set as the frequency of the 20th partial
of the highest note present in the database, so that both methods
span the same maximum frequency range, and a frequency grid
of G = 40 points was defined.

As mentioned earlier, representativeness was measured in
terms of the global distance between the training and testing
coefficients. We avoid probabilistic distances that rely on the
assumption of a certain probability distribution, which would
yield inaccurate results for data not matching that distribution.
Instead, average point-to-point distances were used. In partic-
ular, the averaged minimum distance between point clouds,
normalized by the number of dimensions, was computed:

Ap(wi,ws)

{nl Z er[1€le {d y“yj)}
LS i vy} b ®)
— min Y
n2 i=1 yi€wl Yirdj

where w; and wy denote the two clusters, n; and ny are the
number of points in each cluster, y; are the PCA coefficients,
and d(-) denotes the Mahalanobis distance

d(yo,y1) = \/(yO - y1) Sy (yo — y1) 4)

where Yy is the global covariance matrix.
Compactness was measured by the explained variance (EV)
of the PCA eigenvalues \;

> i

ZK A
Accuracy was defined in terms of the reconstruction error be-

tween the truncated t-f reconstruction of (2) and the original data

matrix. To that end, the relative spectral error (RSE) [18] was
measured

EV(D) = 100

)

pr)?

4 Zfl(A —A
M v

RSE = (6)

where /ipr is the reconstructed amplitude at support point (p, r)
and R is the total number of frames. In order to measure the
RSE, the envelopes must be compared at the points of the orig-
inal frequency support. This means that, in the case of the EI
method, the back-projected envelopes must be reinterpolated
using the original frequency information. As a consequence, the
RSE accounts not only for the errors introduced by the dimen-
sion reduction, but also for the interpolation error itself, inherent
to EI.

Fig. 1 shows the results for the particular cases of the piano
(as an example of a non-sustained instrument) and of the vi-
olin (as an example of a sustained instrument). Fig. 1(a) and
(d) demonstrates that EI has managed to reduce the distance
between training and test sets in comparison to PI. Fig. 1(b)
and (e) shows that EI achieves a higher compression than PI
for low dimensionalities. A 95% of variance is achieved already
for D = 7 in the case of the piano and of D = 8 in the case of
the violin. Finally, Fig. 1(c) and (f) demonstrates that EI also re-
duces the reconstruction error in the low-dimensionality range.
The RSE curves for PI and EI must always cross because of the
zero reconstruction error of PI with D = K and of the reinter-
polation error of EI. In general, cubic and linear interpolation
performed very similarly.

IV. PROTOTYPING STAGE

In model space, the projected coefficients must be reduced
into a set of generic models representing the classes. Common
MIR methods include Gaussian mixture models (GMMs) and
hidden Markov models (HMMs). Both are based on clustering
the transformed coefficients into a set of densities, either static
(GMM) or linked by transition probabilities (HMM). The evo-
lution of the envelope in time is either completely ignored in the
former case, or approximated as a sequence of states in the latter.
For a higher degree of accuracy, however, the time variation of
the envelope should be modeled in a more faithful manner, since
it plays an important role when characterizing timbre. There-
fore, the choice here was to always keep the sequence ordering
of the coefficients, and to represent each class as a trajectory
rather than as a cluster. For each class, all training trajectories
are to be collapsed into a single prototype curve representing
that instrument.

To that end, the following steps are taken. Let ), de-
note the coefficient trajectory in model space corresponding
to training sample s (with s = .,S;) belonging to
instrument ¢ (with ¢ = ., I), of length R,; frames:
Vsi = (¥si1,Ysi2,- -+ YsiR., )- First, all trajectories are inter-
polated in time using the underlying time scales in order to
obtain the same number of points. In particular, the longest
trajectory, of length R,,.x is selected and all the other ones are
interpolated so that they have that length. In the following, the
sign”will denote interpolation

Vi = interpp  {Vsi} = (Fsits ¥sits - YsiRmax) - (1)

Then, each point in the resulting prototype curve
for instrument i, of length R,.., denoted by C; =
(Pi1sPi2, - -+, PiR,., ), is considered to be a D-dimensional
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Fig. 1. Evaluation of the representation stage: results for the piano [Fig. 1(a)—(c)] and the violin [Fig. 1(d)—(f)]. Note that the y-axes of the explained variance graphs
have been inverted so that for all measures, “better” means downwards. (a) Piano: train/test cluster distance (representativeness criterion). (b) Piano: explained
variance (compactness criterion). (¢) Piano: RSE (accuracy criterion). (d) Violin: train/test cluster distance (representativeness criterion). (e) Violin: explained

variance (compactness criterion). (f) Violin: RSE (accuracy criterion).

Gaussian random variable p;. ~ N(u,,., X;) with empirical
mean

n

1

ir — o vcir 8
ll'L’r‘ SZ 4 yk ( )

1

and empirical covariance matrix X;,., which for simplicity will
be assumed diagonal, where o2, = diag(X;,) is given by

S;

Z(}v’sir - ll'ir)z'

s=1

1
ol =5

9

The obtained prototype curve is thus a discrete-temporal se-
quence of Gaussian distributions in which means and covari-
ances change over time. This can be interpreted as a D-dimen-
sional, nonstationary GP parametrized by r (in other words, a
collection of Gaussian distributions indexed by )

Ci~ GP (i (r), Si(r)).

?

(10)

Fig. 2 shows an example set of mean prototype curves corre-
sponding to a training set of five classes: piano, clarinet, oboe,
violin, and trumpet, in the first three dimensions of the PCA
space. The database consists of three dynamic levels (piano,
mezzoforte and forte) of two to three exemplars of each instru-
ment type, covering a range of one octave between C4 and B4.
This makes a total of 423 sound files. Here, only the mean curves
formed by the values p,,. are plotted. It must be noted, however,

. ...é,CIarinfet. o

Fig. 2. Prototype curves in the first three dimensions of model space corre-
sponding to a five-class training database of 423 sound samples, preprocessed
using linear envelope interpolation. The starting points are denoted by squares.

that each curve has an “influence area” around it as determined
by their time-varying covariances.

Note that the time normalization defined by (7) implies that
all sections of the ADSR temporal envelope are interpolated
with the same density. This might be disadvantageous for sus-
tained sounds, in which the length of the sustained part is arbi-
trary. For example, comparing a short violin note with a long
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Fig. 3. Frequency profile of the prototype envelopes corresponding to two of
the curves in Fig. 2. (a) Clarinet. (b) Violin.

violin note will result in the attack part of the first being exces-
sively stretched and matched with the beginning of the sustained
part of the second. The experiments in the next section will help
to assess the influence of this simplification.

When projected back to the t-f domain, each prototype
trajectory will correspond to a prototype envelope con-
sisting of a mean surface and a variance surface, which will
be denoted by M;(g,r) and V;(g,r), respectively, where
g = 1,...,G denotes the sample points of the frequency grid
and r = 1,... Ryax for all the models. Each D-dimensional
mean point g, in model space will correspond to a G-dimen-
sional vector of mean amplitudes constituting a time frame
of the reconstructed spectro—temporal envelope. Undoing the
effects of whitening and centering, the reconstructed means are

foi = P,A iy, + E{X} (1D
and the corresponding variance vector
T
62 = diag <PPA}/ 2%, (PPA}/ 2) ) (12)

both of G dimensions, which form the columns of M, (g, ) and
V.(g,r), respectively.

Analogously as in model space, a prototype envelope can be
interpreted as a GP, but in a slightly different sense. Instead
of being multidimensional, the GP is unidimensional (in am-
plitude), but parametrized with means and variances varying in
the two-dimensional t-f plane. Such prototype envelopes are in-
tended to be used as t-f templates that can be interpolated at any
desired t-f point. Thus, the probabilistic parametrization can be
considered continuous, and therefore the indices ¢ and f will be
used, instead of their discrete counterparts 7 and k. The proto-
type envelopes can then be denoted by

Ei ~ GP (uilt, ), 02(t, f)) .

Fig. 3 shows the frequency-amplitude projection of the mean
prototype envelopes corresponding to the clarinet and violin
prototype curves of Fig. 2. The shades or colors denote the
different time frames. Note the different formant-like features
in the mid-low frequency areas. On the figures, several promi-
nent formants are visible, constituting the characteristic aver-
aged spectral shapes of the respective instruments. Again, only
the mean surfaces are represented, but variance influence areas
are also contained in the model.

(13)
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Fig. 4. Envelope evaluation points and traces for Fig. 5.

The average resonances found with the modeling procedure
presented here are consistent with previous acoustical studies.
As an example, the frequency profile of the clarinet [Fig. 3(a)]
shows a spectral hill that corresponds to the first measured for-
mant, which has its maximum between 1500 and 1700 Hz [19].
Also, the bump around 2000 Hz on the violin profile [Fig. 3(b)]
can be identified as the “bridge hill” observed by several authors
[20], produced by renonances of the bridge.

Depending on the application, it can be more convenient to
perform further processing on the reduced-dimensional PCA
space or back in the t-f domain. When classifying individual
notes, such as introduced in the next section, a distance mea-
sure between unknown trajectories and the prototype curves
in PCA space has proven a successful approach. However, in
applications where the signals to be analyzed are mixtures of
notes, such as polyphonic instrument recognition (Section VI),
the envelopes to be compared to the models can contain re-
gions of unresolved overlapping partials or outliers, which can
introduce important interpolation errors when adapted to the fre-
quency grid needed for projection onto the bases. In those cases,
working in the t-f domain will be more convenient.

To gain further insight into the meaning of the timbre axes, the
spectral envelope was evaluated and plotted at different points of
the space. In benefit of clarity, a two-dimensional projection of
the space onto the first two dimensions was performed, and sev-
eral evaluation “traces” were chosen as indicated by the num-
bered straight lines on Fig. 4. Fig. 5 represents the evolution
of the spectral envelope alongside the traces defined in Fig. 4,
sampled uniformly at ten different points. The thicker envelopes
correspond to the starting points on the traces, which are then
followed in the direction marked by the arrows. Each envelope
representation in Fig. 5 corresponds to a sample point as indi-
cated by the dots on the traces of Fig. 4. Traces 1 to 4 are parallel
to the axes, thus illustrating the latter’s individual influence.
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Fig. 5. Evolution of the spectral envelope alongside the traces in Fig. 4. (a)
Trace 1. (b) Trace 2. (¢) Trace 3. (d) Trace 4. (e) Trace 5. (f) Trace 6.

From traces 1 and 3 it can be asserted that the first dimension
(axis y1) mostly affects the overall energy and slope of the spec-
tral envelope. Such slope can be approximated as the slope of
the straight line one would obtain performing linear regression
on the spectral envelope. Along traces 2 and 4 (axis y»), the en-
velope has the clear behavior of changing the ratio between low-
frequency and high-frequency spectral content. For decreasing
values of yo, high-frequency contents decreases and low-fre-
quency contents increases, producing a rotation of the spectral
shape around a pivoting point at approximately 4000 Hz. Traces
5 and 6 travel alongside the diagonals and represent thus a com-
bination of both behaviors.

V. APPLICATION TO SAMPLE CLASSIFICATION

In the previous sections, it has been shown that the proposed
modeling approach is successful in capturing timbral features of
individual instruments. For many applications, however, dissim-
ilarity between different models is also desired. Therefore, we
evaluate the performance of the model in a classification context
involving solo instrumental samples. Such a classification task
is a popular application [21], aimed at the efficient managing
and searching of sample databases.

We perform such a classification task extracting a common
basis from the whole training set, computing one prototype
curve for each class and measuring the distance between an
input curve and each prototype curve. Like for prototyping, the
curves must have the same number of points, and thus the input
curve must be interpolated with the number of points of the
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g. 6. Isolated sample classification results: Averaged classification accuracy.

TABLE I
ISOLATED SAMPLE CLASSIFICATION: MAXIMUM AVERAGED
ACCURACY AND STANDARD DEVIATION (STD)

[ Representation | Accuracy |  STD |
P1 74.9% + 2.8%
Linear EI 94.9% + 2.1%
Cubic EI 94.6% +2.7%
MFCC 60.4% + 4.1%

densest prototype curve, of length R,... The distance between
an interpolated unknown curve U and the ith prototype curve
C; is defined here as the average Euclidean distance between
their mean points

Rmax D

Z(ark - ,u/irk)2~

k=1

(14)

For the experiments, another subset of the same five classes
(piano, clarinet, oboe, violin, and trumpet) was defined, again
from the RWC database [17], each containing all notes present
in the database for a range of two octaves (C4 to BS), in all
different dynamics (forte, mezzoforte, and piano) and normal
playing style, played by two to three instrument exemplars of
each instrument type. This makes a total of 1098 individual
note files, all sampled at 44.1 kHz. For each method and each
number of dimensions, the experiments were iterated using ten-
fold random cross-validation. The same parameters as in the
representation stage evaluations were used: P = 20 partials for
PI, and a frequency grid of G = 40 points for EI.

The obtained classification accuracy curves are shown in
Fig. 6. Note that each data point is the result of averaging the ten
folds of cross-validation. The experiments were iterated up to a
dimensionality of D = 20, which is the full dimensionality in
the PI case. The best classification results are given in Table I.
With PI, a maximal accuracy of 74.9% was obtained. This was
outperformed by around 20 percent units when using the EI
approach, obtaining 94.9% for linear interpolation and 94.6%
for cubic interpolation.
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TABLE II
CONFUSION MATRIX FOR THE MAXIMUM ACCURACY
OBTAINED WITH PI (D = 19)

found
real p [ 0 v t
P 81.40 0.47 2.79 419 11.16
c 6.07  86.45 5.14 1.40 0.93
0 1.40 420 5594 1259 2587
v 1.87 080 11.50 77.54 8.29
t 4.86 0.69 1875 1597 59.72
TABLE III

CONFUSION MATRIX FOR THE MAXIMUM ACCURACY
OBTAINED WITH LINEAR EI (D = 20)

found
real p c 0 v t
p 95.81 1.40 0.47 0 2.33
c 140 92,52 5.14 0.93 0
0 0 210  95.10 2.10 0.70
v 1.07 0.53 0 9545 2.94
t 0 0 0 3.47  96.53

To assess instrument-wise performances, two confusion ma-
trices are shown in Table II (for the best performance achieved
with PI) and in Table III (for the best performance achieved with
linear EI). The initials on the matrices denote: piano (p), clar-
inet (c), oboe (o), violin (v), and trumpet (t). All individual
performances are better with EI than with PI, but the difference
in performances between instruments show a completely dif-
ferent behavior. In particular, note that the clarinet obtained both
the best performance of all instruments with PI (86.45%) and
the worst performance with EI (92.52%). Recall that PI aligns
fo-correlated features and EI aligns fy-invariant features. The
spectrum of the clarinet has the particularity that the odd partials
are predominant. When estimating the spectral envelope, this
produces important inter-peak valleys that are, in effect, fo-cor-
related features, which are thus kept aligned by PI. It follows that
for the clarinet, fy-correlated features predominate over static
formants, and the contrary is valid for the other four considered
instruments.

Another conclusion that can be drawn from the confusion ma-
trices is that the piano, the only non-sustained instrument con-
sidered, did not perform significantly better than the sustained
instruments. This suggests that the simplicity of the time nor-
malization process (which, as mentioned above, is uniform in
all phases of the ADSR envelope) has a relatively small effect
on the performance, at least for this application scenario.

For comparison, the representation stage was replaced with a
standard implementation of MFCCs. Note that MFCCs follow
a similar succession of stages than our approach (envelope es-
timation followed by compression), but they are expected to
perform worse because the estimation stage delivers a rougher
envelope (based on fixed frequency bands), and the DCT pro-
duces only a suboptimal decorrelation. The MFCC coefficients
were subjected to GP prototyping, and a set of MFCC prototype
curves was thus created. The results are again shown in Fig. 6
and Table I. The highest achieved classification rate was only of
60.4% (with D = 13).

The obtained accuracies are comparable to those of other sys-
tems from the literature. A review of approaches can be found in

[21]. As examples of methods with a similar number of classes,
we can cite the work by Brown et al. [22], based on a Naive
Bayes Classifier and attaining a classification accuracy of 84%
for four instrument classes, the work by Kaminskyj and Materka
[23], based on a feedforward Neural Network and reaching an
accuracy of 97% with four classes, and the work by Livshin and
Rodet [24], where a k-Nearest Neighbors algorithm attains a
performance of 90.53% for ten classes, interestingly using only
the sinusoidal part of the signals.

VI. APPLICATION TO POLYPHONIC INSTRUMENT RECOGNITION

Isolated sample classification, as presented in the previous
section, is useful for applications involving sound databases
intended for professional musicians or sound engineers. A
broader group of users will potentially be more interested in
analysis methods that can handle more realistic and repre-
sentative musical data, such as full musical tracks containing
mixtures of different instruments. While far from being appli-
cable to a wide range of instrumentations and production styles,
current methods aiming at the detection of instruments in a
polyphonic mixture aim towards that ideal goal of generalized
auditory scene analysis.

Thus, a second, more demanding, analysis application was
selected to test the appropriateness of the models. In partic-
ular, we address the detection of the occurrence of instruments
in single-channel mixtures. The main difficulty of such a task,
compared to the single-voice case, arises from the fact that the
observed partials correspond to overlapping notes of different
timbres, thus not purely following the predicted t-f template ap-
proximations. In such a case, it will be more convenient to work
in the t-f domain. Also, since the notes have to be compared
one-by-one to the templates, they must first be located in the
audio stream by means of an onset detection stage.

Past approaches towards polyphonic timbre detection typi-
cally either consider the mixture as a whole [25] or attempt to
separate the constituent sources with prior knowledge related to
pitch [26]. The method proposed here is based on the grouping
and partial separation of sinusoidal components, but has the par-
ticularity that no harmonicity is assumed, since classification is
solely based on the amplitude of the partials and their evolu-
tion in time. As a result, no pitch-related a priori information
or preliminary multipitch detection step are needed. Also, it has
the potential to detect highly inharmonic instruments, as well as
single-instrument chords.

The mixture is first subjected to inharmonic sinusoidal extrac-
tion, followed by a simple onset detection, based on counting the
tracks born at a particular frame. Then, all tracks t; having its
first frame close to a given onset location LJ™ are grouped into
the set 7,. A track belonging to this set can be either non-over-
lapping (if it corresponds to a new partial not present in the
previous track group 7,_1) or overlapping with a partial of the
previous track (if its mean frequency is close, within a narrow
margin, to the mean frequency of a partial from 7,_1). Due to
the fact that no harmonicity is assumed, it cannot be decided
from the temporal information alone if a partial overlaps with
a partial belonging to a note or chord having the onset within
the same analysis window or not. This is the origin of the cur-
rent onset separability constraint on the mixture, which hinders
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two notes of being individually detected if their onsets are syn-
chronous. For each track set 7, a reduced set 7, was created
by eliminating all the overlapping tracks in order to facilitate
the matching with the t-f templates.

Then, the classification module matches each one of the track
groups 7. with each one of the prototype envelopes, and selects
the instrument corresponding to the highest match. To that end,
envelope similarity was first defined as the following optimiza-
tion problem, based on the total Euclidean distance between am-
plitudes:

Ry
(T2 Mo ) = min ¢ 30 3 |43+ 0 = M (1)
’ teT! r=1
15)
where R; is the number of frames in track t; € 7., « is an
amplitude scaling parameter, and A2, and f}¥ denote the ampli-
tude and frequency values for a track belonging to a group that
has been stretched so that its last frame is /V. The optimization
based on amplitude scaling and track stretching is necessary to
avoid the overall gain and note length having an effect on the
measure. In order to perform the evaluation M;, = M;(F,) at
the frequency support F,, for each data point the model frames
closest in time to the input frames are chosen, and the corre-
sponding values for the mean surface are linearly interpolated
from neighboring data points.
To also take into account the variance of the models, a corre-
sponding likelihood-based problem was defined as

Ry

L(7)8:)=maxq [T [T e (AN+aMi (1) Vi (1))

’ teT) r=1

where p(z) denotes a unidimensional Gaussian distribution.

The single-channel mixtures used for the experiments were
generated by linearly mixing samples of isolated notes from the
RWC database [17] with separated onsets. Two different types
of mixtures were generated: simple mixtures consisting of one
single note per instrument and sequences of more than one note
per instrument. A total of 100 mixtures were generated. The
training database consists of the five instruments mentioned be-
fore, covering two octaves (C4-B5), and contains 1098 samples
in total. For the evaluation, the database was partitioned into
separate training (66% of the database) and test sets (33% of
the database). The training set contains samples from one or two
exemplars, and the test set contains samples from a further in-
strument exemplar. More precisely, this means that 66% of the
samples were used to train the models, and the remaining 33%
were used to generate the 100 mixtures.

The classification measure chosen was the note-by-note ac-
curacy, i.e., the percentage of individual notes with correctly
detected onsets that were correctly classified. Table IV shows
the results. The likelihood approach worked better than the Eu-
clidean distance in all cases, showing the advantage of taking
into account the model variances. Note that these experiments
had the goal of testing the performance of the spectral matching
module alone, and do not take into account the performance of
the onset detection stage.

TABLE IV
POLYPHONIC INSTRUMENT RECOGNITION ACCURACY (%)
Simple mixtures Sequences
Polyphony 2 3 4 2 3
Euclidean distance 68.48 52.25 41.28 64.66 50.64
Likelihood 73.15 55.56 54.18 63.68  56.40

While a fully significant performance comparison with other
systems is difficult due to the lack of a common database and
evaluation procedure, we can cite the previous work [27], which
used the same timbre modeling procedure and a similar database
(linear mixtures from the RWC samples, albeit six instruments
are considered, instead of five). The onset detection stage and
subsequent track grouping heuristics, used here, are replaced in
that work by a graph partitioning algorithm. The note-by-note
classification accuracy was of 65% with two voices, 50% with
three voices, and 33% with four voices.

VII. CONCLUSION AND FUTURE WORK

The task of developing a computational model representing
the dynamic spectral characteristics of musical instruments has
been addressed. The development criteria were chosen and com-
bined so that such models can be used in a wide range of MIR
applications. To that end, techniques aiming at compactness
(PCA), accuracy of the envelope description (sinusoidal mod-
eling and spectral interpolation) and statistical learning (training
and prototyping via Gaussian Processes) were combined into a
single framework. The obtained features were modeled as proto-
type curves in a reduced-dimensional space, which can be pro-
jected back into the t-f domain to yield a set of t-f templates
called prototype envelopes.

We placed emphasis on the evaluation of the frequency mis-
alignment effects that occur when notes of different pitches are
used in the same training database. To that end, data prepro-
cessing methods based on PI and EI were compared in terms of
explained variance, reconstruction error and training/test cluster
similarity, with EI being better in most cases for low and mod-
erate dimensionalities of up to around 1/4 of the full dimension-
ality. It follows that the interpolation error introduced by EI was
compensated by the gain in correlation in the training data.

The developed timbre modeling approach was first evaluated
for the task of classification of isolated instrument samples, con-
sisting in projecting the spectro—temporal envelope of unknown
samples into the PCA space and comparing an average dis-
tance between the resulting trajectory and each one of the proto-
type curves. This approach reached a classification accuracy of
94.9% with a database of five classes, and outperformed using
MFCC:s for the representation stage by 34 percent units.

As a second, more demanding application, detection of in-
struments in monaural polyphonic mixtures was tested. Such a
task focused on the analysis of the amplitude evolution of the
partials, matching it with the pre-trained t-f templates. The ob-
tained results show the viability of such a method without re-
quiring multipitch estimation. Accuracies of 73.15% for two
voices, 55.56% for three voices, and 54.18% for four voices
were obtained. To overcome the current constraint on the separa-
bility of the onsets, the design of more robust spectro—temporal
similarity measures will be needed.
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A possibility for further research is to separate prototype
curves into segments of the ADSR envelope. This can allow
three enhancements: first, different statistical models can be
more appropriate to describe different segments of the temporal
envelope. Second, such a multi-model description can allow a
more abstract parametrization at a morphological level, turning
timbre description into the description of geometrical relation-
ships between objects, and finally, it would allow treating the
segments differently when performing time interpolation for the
curve averaging, and time stretching for maximum-likelihood
timbre matching, thus avoiding stretching the attack time in the
same degree than the sustained part.

It is also possible to envision sound-transformation or syn-
thesis applications involving the generation of dynamic spec-
tral envelope shapes by navigating through the timbre space,
either by a given set of deterministic functions or by user in-
teraction. If combined with multi-model extensions of the pro-
totyping stage, like the ones mentioned above, this could allow
approaches to morphological or object-based sound synthesis.
It can be strongly assumed that for such possible future appli-
cations involving sound resynthesis, perceptual aspects (such as
auditory frequency warpings or masking effects) will have to be
explicitly considered as part of the models in order to obtain a
satisfactory sound quality.

The presented modeling approach is valid for sounds with
predominant partials, both harmonic or inharmonic, and in poly-
phonic scenarios it can handle linear mixtures. Thus, a final ev-
ident research goal would be to extend the applicability of the
models to perform with more realistic signals of higher poly-
phonies, different mixing model assumptions (e.g., delayed or
convolutive models due to reverberation) and real recordings
that can contain, e.g., different levels of between-note articula-
tions (transients), playing modes, or noisy or percussive sounds.
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