
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Dynamic spectrum allocation for heterogeneous
cognitive radio networks with multiple channels

Zhang, Wenjie; Sun, Yingjuan; Deng, Lei; Yeo, Chai Kiat; Yang, Liwei

2019

Zhang, W., Sun, Y., Deng, L., Yeo, C. K., & Yang, L. (2019). Dynamic spectrum allocation for
heterogeneous cognitive radio networks with multiple channels. IEEE Systems Journal,
13(1), 53‑64. doi:10.1109/JSYST.2018.2822309

https://hdl.handle.net/10356/82507

https://doi.org/10.1109/JSYST.2018.2822309

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
https://doi.org/10.1109/JSYST.2018.2822309

Downloaded on 27 Aug 2022 13:39:23 SGT



1

Dynamic Spectrum Allocation for Heterogeneous
Cognitive Radio Networks with Multiple Channels

Wenjie Zhang, Yingjun Sun, Lei Deng, Yeo Chai Kiat, and Liwei yang

Abstract—The rapid growth of wireless communication tech-
nology has resulted in the increasing demand on spectrum
resources. However, according to a recent study, most of the
allocated frequency experiences significant under-utilization. One
important issue associated with spectrum management in hetero-
geneous cognitive radio networks (CRNs) is: how to appropriately
allocate the spectrum to secondary sender-destination (S-D) pair
for sensing and utilization. In this work, the authors investigate
the spectrum allocation problem under a more practical scenario
where the heterogeneous characteristics of both secondary S-D
and primary channels are taken into consideration. With the
objective to maximize the achievable throughput for secondary S-
D, we formulate the spectrum allocation problem as a linear inte-
ger optimization problem under spectrum availability constraint,
spectrum span constraint and interference free constraint. This
problem is proven to be NP-complete, and a recent result in the-
oretical computer science called randomized rounding algorithm
with polynomial computational complexity is developed to find
the ρ-approximation solution. Evaluation results show that our
proposed algorithm can achieve a close-to-optimal solution at a
low level of computation complexity.

Index Terms—Spectrum allocation, Cognitive radio networks,
NP-complete, Randomized rounding algorithm.

I. INTRODUCTION

MOre and more spectrum resources are required to
support the rapid development of wireless applica-

tions. However, a recent study by Federal Communications
Commission (FCC) has shown that most of the allocated
frequency bands experience significant under-utilization. The
current utilization of a licensed spectrum band varies from
15% to 85% [1]. Cognitive radio (CR) is therefore proposed
as a potential technology to mitigate this spectrum scarcity
problem. The basic idea of CR is to allow secondary users
(SUs) to access licensed spectrum bands so long as they do not
inflict any harmful interference to the primary users (PUs) [2]
[3]. To achieve this goal, the SU must monitor each channel’s
usage by means of spectrum sensing to identify spectrum holes
[4] [5]. Whenever the SU finds a channel that is not occupied
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by the PU, it can utilize this channel to transmit its own
data. Due to the high priority, once the return of PU on a
channel is detected, the SU is required to promptly vacate the
occupied channel in order to avoid interfere to the PU, and
then determine a new idle channel to resume its unfinished
transmission. This process is referred to as spectrum handoff,
which may consume a lot of system resources.

As one of the most challenging problems in cognitive radio
networks, spectrum allocation has been extensively investigat-
ed recently [6]-[11]. However, most prior works on spectrum
allocation have focused on the one to one case (allocate one
channel to one SU for sensing and utilization), which is a
simple network scenario. Moreover, as observed in [12], the
operations of PUs are highly unpredictable, they can become
active at any time without any notification. Thus, due to this
temporal variation of PU channels, the SU needs to promptly
vacate the occupied channel and transfer its connection to an
unused channel if available. On the other hand, the spectrum
availability at SU is different due to different geographical
locations. The measurement of available channels at Harvard
University shows significant variation in channel availability
at different locations [12]. Therefore, different SUs may have
different available channel sets, and one SU may have more
than one available channel to exploit in its location. Thus,
in order to reduce the number of spectrum handoff, more
than one channel can be allocated to each SU for utilization
simultaneously depending on their availability at that instant
(many-to-one case). These channels can be treated as if it were
a single channel whose capacity is equal to the sum of all the
allocated channels [13]. In this way, when the PU becomes
active, the SU should exclude the channel from usage. As
a special case, if the channel to be vacated is the only one
used by the SU, there will be no more channels to utilize,
then spectrum handoff is required. Otherwise, the SU can use
the rest of channels to continue its unfinished communication.
Moreover as been discussed above, the spectrum availability
of SU is heterogeneous, thus if we allocate different available
channels to secondary sender and destination, they cannot con-
duct communication between each other. Therefore, another
advantage of many-to-one case is the ability to increase the
probability for the secondary S-D pair to find common idle
channels to conduct communication.

On one hand, different SUs with different detection thresh-
olds and received SNR will result in different detection
performance. On the other hand, different PU channels may
have different idle probability and channel capacity. Thus
allocating different channels to different secondary S-D pair
may result in different system performance. In [14], the
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authors focus on how to appropriately assign the SUs to sense
the PU channels under a practical scenario where taking the
heterogeneous characteristics of both SUs and PU channels
into consideration. However in [14], the important issue of
interference has not been well investigated, and the spectrum
temporal variation at secondary sender and destination is also
not discussed. Thus, how to handle the spectrum allocation
problem in heterogeneous cognitive radio networks in the
presence of interference and spectrum temporal variation has
not drawn much attention before. In this paper, we mainly
focus on spectrum allocation problem, aiming at deciding how
to appropriately allocate more than one channel to secondary
S-D pair for sensing and utilization, where the heterogeneities
of both PU channels (in terms of channel idle probability and
channel capacity) and that of secondary S-D pair (in terms
of energy detection threshold, received SNR and geographical
location) are taken into consideration. Moreover, the interfer-
ence among different S-D pairs is also studied directly. The
contributions of this paper are as follows:

1) In Section IV, we optimize spectrum sensing and spec-
trum allocation for many to one case, while investigating
the heterogeneous characteristics of both secondary S-D
pairs and PU channels. This paper completes the analysis
of the spectrum allocation problem where the initial part
of this work has been done in [15].

2) With the objective to maximize the achievable through-
put for secondary S-D pairs, we formulate the spec-
trum allocation problem as a linear integer optimiza-
tion problem. We show that our formulated spectrum
allocation problem is NP-complete. This observation
reveals the inherent challenge of determining optimal
spectrum allocation results for heterogeneous CRNs. We
leverage the randomized rounding algorithm to obtain a
ρ-approximation solution.

3) This paper extends one-to-one case in [11] [14] to many-
to-one case, and furthermore it adds the interference con-
straint and span constraint in the problem formulation,
which increases the complexity of this problem.

The rest of this paper is organized as follows. Some related
works are briefly reviewed in Section II. The system model and
spectrum sensing are introduced in Section III. The problem
analysis and spectrum allocation problem for heterogeneous
CRNs are described in Section IV. The randomized rounding
algorithm is proposed in Section V. Simulation results and
evaluations are given in Section VI. Finally, Section VII
concludes the paper.

II. RELATED WORK

Research on spectrum allocation has attracted a lot of at-
tention. In general, prior works on spectrum allocation mainly
focused on allocating one channel to one SU. In [6], Zhao.
et al. propose a sensing and allocation strategy with one SU
and multiple channels, and the optimal policy is obtained
via a linear programming. However, this scheme may not be
optimal when the channel characteristics are heterogeneous
[6]. In [7], by considering the traffic pattern of each channel,
a stochastic multiple-channel sensing scheme is proposed.

Noh. et al. derive the optimal channel allocation probability
by formulating and solving a linear programming problem.
In [8], the spectrum allocation problem is formulated as an
oligopoly market with the assumption that there are several
service providers and one consumer, where multiple service
providers compete with one another to offer the spectrum
access opportunities to the consumer. In [9], with the objective
to minimize the difference between the expected channel
available time and the expected service time, a heuristic
matching algorithm is proposed to allocate spectrum to SU.
In [10], based on game theory, a demand-matching spectrum
sharing for non-cooperative CRNs is proposed. In [11], Hou.
et al. consider the channel allocation problem with multiple
primary channels. With the objective to maximize the total
channel utilization, the channel allocation problem is formu-
lated as a binary integer nonlinear programming. In [16],
Yi et al. considered a framework of spectrum auction by
integrating advanced features such as local trading markets
and spectrum recall. In [17], time-dependent buyer valuation
information is taken into consideration in auction mechanism
design. By joint consideration of flexible spectrum demands
and the satisfaction of SUs’ QoS expectations, a multi-unit
spectrum auction for CR networks with power-constrained is
further studied in [18]. Resource allocation problem has been
further investigated in [19] and [20]. In [19], energy-efficient
(EE) downlink resource allocation in heterogeneous OFDMA
networks is studied, where the EE maximization problem is
formulated as a mixed-integer nonlinear fractional programing.
In [20], a weighted semi-matching algorithm is proposed to
allocate resources, i.e., allocating SUs to base station, where
the distance between SU and a base station is considered as
the weight. More resource allocation techniques for efficient
spectrum access have been investigated by a recent survey
paper [21]. Our work differs from [6]-[11] in three aspects.
• First, in this paper, we mainly focus on the spectrum

allocation problem where more than one channel can
be allocated to each SU for utilization simultaneously
depending on their availability at that instant (many-to-
one case), while [6]-[11] only consider the one to one
case (allocate one channel to one SU for sensing and
utilization).

• Second, we attempt to consider the spectrum allocation
problem under a more practical scenario where the het-
erogenous characteristics in both PU channels and SUs
are investigated. The PU channel is characterized by
channel idle probability and channel capacity, while the
SU is depicted by the energy detection threshold, received
SNR and geographical location.

• To avoid the co-channel interference, we use the in-
terference graph to model the co-channel interference,
which increases the inherent challenge of this spectrum
allocation problem.

III. SYSTEM MODEL

In this paper, we attempt to consider the spectrum allo-
cation problem under a more practical scenario where the
heterogeneous characteristics of both PU channels and SUs



3

S2

PU 3

D2

S3

D3

PU 2

Secondary destination

S1
D4

PU 1

D1

S4

PU 4

S

D

PU 

Secondary sernder

Detection Range of PU

Primary Station

Fig. 1. The cognitive radio networks architecture.

are investigated. In this case, different SUs may have different
available channels. If we allocate different available channels
to secondary sender and destination, they cannot communicate
with each other. Thus how to allocate channel to secondary
S-D pair based on current channel availability is one of the
most important problems in CRNs.

A. System Model

We consider a CRN with N secondary S-D pairs and M
PU channels. Each channel is allocated to one PU. However
the PU may not be active all the time and the secondary S-D
can opportunistically utilize the channel when it is not used
by the PU. Let M be the set of PU channels and N denote
the set of secondary S-D pairs.

In heterogeneous CRNs, different SUs may have different
energy detection thresholds, received SNR and geographical
locations, which results in different detection performance.
Moreover, small-scale signal, such as wireless microphone
always transmits with a weak power at around 10-50mW[22],
where the transmission range is limited to only 150-200m [23].
Thus the PU signal may only cover a part of the network
rather than the whole system. In this case, the detection range
of this kind of signal is relatively small. Some SUs located
far from the PU cannot detect the PU signal. A channel j
is said to be opportunistically accessible by SU i only if
this SU is within the detection range of channel j, then it
can detect the PU’s activity. Otherwise, if SU i is located
outside the detection range of channel j, then the detection
probability is set to 0 [24]-[25]. Therefore, different SUs
may have different set of available channels due to their
different geographical locations and environments. On the
other hand, different PU channels may have different channel
idle probability and channel capacity. Thus allocating different
PU channels to different secondary S-D pairs may result in
different system performance. The CRN model is illustrated
in Fig. 1. It shows that the channel availability varies across
the different secondary senders and destinations.

B. Spectrum Sensing

Spectrum sensing is one of the fundamental functionalities
in cognitive radio communications, it has to be performed

firstly before data transmission. Suppose that the received
signal is sampled with sampling frequency fs, and the sensing
time is denoted by τ , then the sensing performance can be
measured by two parameters: detection probability and false
alarm probability, which are given by [26]

Pf,(i,j) = Q((
εi
σ2
ui,j

− 1)
√
fsτ) (1)

Pd,(i,j) = Q((
εi
σ2
ui,j

− 1− γi,j)

√
fsτ

2γi,j + 1
) (2)

where the received primary signal is complex PSK with zero
mean and variance σ2

si,j , and the noise is the independent
circular symmetric complex Gaussian with zero mean and
variance σ2

ui,j
. The energy detection threshold at SU i is εi,

and γi,j =
σ2
si,j

σ2
ui,j

is the average SNR in channel j received by

SU i, and Q(x) is the tail probability of the standard normal
distribution.

Due to the heterogeneous characteristics of SUs, they may
have different sensing outcomes for the same channel. Thus the
secondary sender and destination may have different available
channel sets. On the other hand, the PUs channels are also
generally heterogeneous. Thus allocating different channels to
different secondary S-D pairs will result in significant different
performance. One of our main contributions is to take all
these heterogeneous characteristics in both PU channels and
SUs into consideration when studying this spectrum allocation
problem.

IV. SPECTRUM ALLOCATION PROBLEM STATEMENT

In order to conduct successful data transmission, it is a must
that both the secondary sender and destination should work
on the same radio frequency channel. However, as discussed
before, secondary sender and destination may have different
sets of available channels. Besides, the available channels at
each secondary sender and destination vary from time slot
to time slot due to the activity of PU. At each time slot,
each sender and destination should select one or more than
one common idle channel as their working channels based
on the available channel information. Therefore how to select
working frequency bands for each S-D pair becomes a key
part of spectrum management in CRN.

TABLE I: Summary of Key Notations

Notation Definition
N Number of SU S-D pairs
M Number of PU channels
T Frame duration
τ Sensing time
fs Sampling frequency
∆s
i Set of available channels at SU sender i

∆d
i Set of available channels at SU destination i

d0 Maximum number of channels allocated to S-D
P (H) Channel idle probability
CN×M Channel capacity
AN×N×M Interference map
Φs Set of channels allocated to SU sender
Φd Set of channels allocated to SU destination
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To represent the spectrum availability at all S-D pairs, we
define N×M binary variables csi,j and cdi,j , ∀ i, j, as follows:

csi,j =

{
1 if channel j is available at SU sender i
0 Otherwise

cdi,j =

{
1 if channel j is available at SU destination i
0 Otherwise

In order to mitigate co-channel interference, we define a
matrix AN×N×M to represent the interference, as follows:

Ai1,i2,j =

{
1 if S-D i1 and S-D i2 conflict on channel j
0 Otherwise

The meaning of Ai1,i2,j = 1 is that S-D pair i1 and S-D pair
i2 interfere with each other on channel j, thus channel j cannot
be allocated to S-D pair i1 and S-D pair i2 simultaneously for
communication.

Let ∆s
i and ∆d

i be the sets of channels that are available at
secondary sender and destination of S-D pair i, respectively,
that is

∆s
i = {j|csi,j = 1,∀j ∈M}

∆d
i = {j|cdi,j = 1,∀j ∈M}

For each S-D pair, spectrum allocation is done by deciding
the following two vectors:

1) Φs represents the set of channels allocated to secondary
sender

Φs = {si,j ,∀i ∈ N , j ∈M}

2) Φd represents the set of channels allocated to secondary
destination

Φd = {di,j ,∀i ∈ N , j ∈M}

where si,j and di,j are the decision variables, which are
defined as

si,j =

{
1 if channel j is allocated to SU sender i
0 Otherwise

di,j =

{
1 if channel j is allocated to SU destination i
0 Otherwise

In other words, the spectrum allocation problem can be
viewed as deciding the two vectors Φs and Φd from the current
feasible region ∆s

i and ∆d
i , for i ∈ N and j ∈M.

A. Analysis of System Throughput

The objective is to maximize the sum of achievable through-
put for all secondary S-D pairs over all the PU channels. Let
T denote the length of a time slot, τ be the total sensing
time allocated to sense each PU channel. Then the achievable
throughput of S-D pair i transmitted over channel j can be
expressed

Ri,j =
T − τ
T

P (Hj)Cij(1− P sf,ijP df,ij) (3)

where P (Hj) denotes the idle probability of channel j, and
Ci,j is the transmission capacity for S-D pair i on channel j.
P sf,ij is the false alarm probability at SU sender i. And P df,ij
is the false alarm probability at SU destination i.

B. Analysis of Valid Allocation

The constraints that spectrum allocation imposes are as
follows:

Availability Constraint: spectrum allocated to any S-D pair
should be limited to the set of channels that are detected to
be idle, that is

si,j = 1⇒ csi,j = 1,∀ i ∈ N , j ∈M (4)

di,j = 1⇒ cdi,j = 1,∀ i ∈ N , j ∈M (5)

Spectrum Span Constraint: In order to guarantee a fair-
ness among the secondary S-D pairs, each one should be
allocated with at least one channel for data transmission (It
is possible that no common channel is available for a S-D
pair, because they might not be covered by one common PU
detection range. In this case the throughput achieved by this S-
D pair is zero and we can just exclude this S-D pair from being
considered.). On the other hand the total number of channels
allocated to each S-D pair should not exceed the maximum
value d0 due to some hardware limitations, that is

1 ≤
M∑
j=1

si,jdi,j ≤ d0,∀i ∈ N (6)

Interference Free Constraint: mutually interfering sec-
ondary S-D pairs should not be allocated with the same chan-
nels. Thus the Interference Free Constraint can be represented
as:

Ai1,i2,j = 1⇒ si1,jdi1,jsi2,jdi2,j = 0, ∀i1, i2 ∈ N , j ∈M (7)

C. Problem Formulation

Finally, with the objective of maximizing the achievable
throughput, the dynamic spectrum allocation problem can be
formulated as the following optimization problem:

max
Φs,Φd

∑
i

∑
j

si,jdi,jRij (8)

s.t. (4)− (7)

si,j , di,j ∈ {0, 1}, ∀ i ∈ N , j ∈M (9)

Due to the nonlinear constraints (4)-(7) and factor si,jdi,j
in the objective function, the formulated problem above is a
nonlinear optimization problem. Let mi,j = si,jdi,j , we can
transfer the Dynamic sPectrum Allocation (DPA) problem into
the following linear 0-1 integer optimization problem.

max
Φs,Φd

∑
i

∑
j

mi,jRij (10)

s.t. si,j ≤ csi,j , ∀ i, j (11)

di,j ≤ cdi,j , ∀ i, j (12)

1 ≤
M∑
j=1

mi,j ≤ d0, ∀ i (13)

si1,j + di1,j + si2,j + di2,j ≤ 3,

if Ai1,i2,j = 1,∀ i1, i2, j (14)
si,j , di,j ,mi,j ∈ {0, 1}, ∀ i, j (15)
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It is obviously that the two formulated problems are equiv-
alent. This DPA problem is NP-complete. The complexity
to find the optimal solution will grow exponentially as the
number of S-D pairs and PU channels increases. In the next
subsection, we prove the NP-complete of this problem.

D. Complexity Analysis of DPA Problem

To prove an optimization problem is NP-complete, it is
equivalent to prove its corresponding decision problem is NP-
complete [27] [11]. Therefore, we start with the definition
of a decision problem corresponding to our formulated DPA
problem as shown below.

Definition 1: DPA decision problem: Given the inputs: the
secondary S-D pairs set N , the PU channels set M, the
interference graph A, the heterogeneous characteristics of both
PU channels and secondary S-D pairs (e.g., the available
channel sets ∆s

i and ∆d
i , the channel idle probability P (H),

the channel capacity C and so on.), and a value of total
achievable throughput α. Does there exist the allocation matrix
(Φs and Φd) that satisfies all the constraints of the DPA
problem, and the total achievable throughput is α?

To prove the DPA decision problem is NP-complete, we
have to

1) Prove the DPA decision problem is an NP problem.
2) Prove the DPA decision problem is an NP-hard problem.

a) Select a well known NP-complete problem, in our
work, say circuit satisfiability (SAT) problem is
used;

b) Find a mapping algorithm, such that the DPA
decision problem can be transformed to the SAT
problem in polynomial time.

Lemma 1: The DPA decision problem is an NP problem.
Proof: To show the DPA decision problem is an NP

problem, we have to prove that the instance of this decision
problem for which the answer is “yes”can be verified in
polynomial time. Suppose we are given the allocation matrix
(Φs and Φd), we can verify if it is a solution of the DPA
decision problem by checking:

(1) whether
∑
i

∑
jmi,jRij =

∑
i

∑
j si,jdi,jRij = α;

(2) whether the availability constraint is satisfied, that is
si,j ≤ csi,j and di,j ≤ cdi,j , for ∀ i, j;

(3) whether the spectrum span constraint is satisfied, that is
1 ≤

∑M
j=1mi,j =

∑M
j=1 si,jdi,j ≤ d0,∀i;

(4) whether the interference free constraint is satisfied, that
is if S-D pair i1 conflicts with S-D pair i2 on channel j, they
cannot be allocated with channel j for communication, by
checking if Ai1,i2,j = 1 then si1,j + di1,j + si2,j + di2,j ≤ 3,
∀i1, i2, j.

Verifying (1), (2) and (3) takes a running time of O(NM).
Furthermore, it takes a running time of O(N2M) to verify
(4). Thus if the allocation matrix (Φs and Φd) is a solution
of the DPA decision problem, it can be verified in polynomial
time. The DPA decision problem is an NP problem.

Lemma 2: The DPA decision problem is NP-hard.
To prove the DPA decision problem is an NP-hard problem,

we use the approach proposed in [11] by restricting the DPA
decision problem to an instance for small values of N , M and

Algorithm 1 The Randomized Rounding Algorithm
1: Step 1. Relaxation of the DPA problem
2: - Calculate the optimal spectrum allocation result (Φ∗s,Φ

∗
d)

for the LPR of DPA problem.
3: Step 2. Convex decomposition
4: - Decompose the fractional solution (Φ∗s,Φ

∗
d) to

a convex combination of mixed integer solutions,
i.e.,
∑
q∈Ψ λ

q(Φqs,Φ
q
d) ≥ (Φ∗s,Φ

∗
d)/ρ. This can be done by

solving a pair of primal-dual LP in (18) and (19) using
ellipsoid method.

5: Step 3. Pick the integer solution (Φqs,Φ
q
d) with λq

6: - Select each feasible integer solution (Φqs,Φ
q
d) of the DPA

problem with probability λq .

d0, and then transforming this restricted DPA decision problem
to a well known NP-hard SAT problem in polynomial time.
The detailed proof of NP-hard is given in the Appendix.

Theorem 1: The DPA problem is an NP-complete problem.
Proof: Combining Lemmas 1 and 2, we make a conclu-

sion that the DPA problem is an NP-complete problem.

V. THE RANDOMIZED ROUNDING ALGORITHM

Since the DPA problem is NP-complete, it is difficult to
solve this problem in polynomial time. We resort to the
randomized rounding algorithm as illustrated in Algorithm 1.
Here, the Linear Programming Relaxation (LPR) of the 0-1
Integer Programming (IP) is defined as follows:

Definition 2: The Linear Programming Relaxation (LPR) of
the 0-1 Integer Programming (IP) is obtained by relaxing the
integrality constraint to 0 ≤ xi ≤ 1 for all the variables.

As stated by Theorem 2.1 in [28] [29], if we have an
approximation heuristic algorithm to the max-IP DPA prob-
lem, let (Φ∗s,Φ

∗
d) be the optimal solution to the LPR of DPA

problem, then (Φ∗s,Φ
∗
d)/ρ dominates a convex combination of

all feasible integer solutions of DPA problem, that is, we have∑
q∈Ψ λ

q(Φqs,Φ
q
d) ≥ (Φ∗s,Φ

∗
d)/ρ

where λq ≥ 0 for all q and
∑
q∈Ψ λ

q = 1. (Φqs,Φ
q
d) is a

feasible integer solution to the DPA problem and Ψ is the
index set for all feasible integer solutions.

A. Detailed Analysis for the Randomized Rounding Algorithm

The randomized rounding algorithm which consists of three
main steps.

Step 1. Relaxation of the DPA problem. The first step
is to solve the LPR of DPA problem by relaxing constraint
(15) to (si,j ≤ 1, di,j ≤ 1,mi,j ≤ 1 ∀ i ∈ N , j ∈ M, are
redundant and hence ignored):

si,j ≥ 0, ∀ i ∈ N , j ∈M

di,j ≥ 0, ∀ i ∈ N , j ∈M

mi,j ≥ 0, ∀ i ∈ N , j ∈M

The LPR of DPA problem is linear programmable, obvious-
ly, it can be optimally solved in polynomial time. Let (Φ∗s,Φ

∗
d)

denote the optimal solution to the LPR of DPA problem.
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Step 2. Convex decomposition. Applying the recent convex
decomposition technique [29] [30], we decompose the optimal
fractional solution (Φ∗s,Φ

∗
d) into a convex combination of

integral solutions each with a fractional weight that sums
up to 1. This step requires an effective polynomial-time
approximation algorithm to DPA problem, that satisfies:∑

i

∑
j

mi,jRij ≥ OPTLPR/ρ (16)

The left side represents the achievable throughput obtained
using the approximation algorithm, and OPTLPR is the value
of the objective function for LPR of DPA problem when the
optimal solution is (Φ∗s,Φ

∗
d).

Thus, the goal of the convex decomposition is to find
combination weights λq ≥ 0, for all q, such that∑

q∈Ψ

λq = 1, and,
∑
q∈Ψ

λq(Φqs,Φ
q
d) ≥ (Φ∗s,Φ

∗
d)/ρ (17)

Next, we will compute each λq , which is the weight required
in the convex decomposition for solution (Φqs,Φ

q
d). In order

to obtain λq that satisfies (17), we wish to solve the following
LP problem:

Primal : min
∑
q∈Ψ

λq (18)

s.t.
∑
q∈Ψ

λq(sqi,j , d
q
i,j) ≥ (s∗i,j , d

∗
i,j)/ρ∑

q∈Ψ

λq ≥ 1, λq ≥ 0,∀q ∈ Ψ

Our goal is to solve this primal LP problem optimally with∑
q∈Ψ λ

q = 1. However, we note that the problem described in
(18) has an exponential number of variables, which is difficult
to solve. We instead resort to its dual problem that has an
exponential number of constraints. The dual problem of (18)
is defined as follows:

Dual: max (
∑
i,j

ωi,js
∗
i,j +

∑
i,j

γi,jd
∗
i,j)/ρ+ δ (19)

s.t.
∑
i,j

ωi,js
q
i,j +

∑
i,j

γi,jd
q
ij + δ ≤ 1,∀q ∈ Ψ

ωi,j ≥ 0, γi,j ≥ 0, δ ≥ 0,∀i, j

In the following, we will first demonstrate that this dual
problem can be solved in polynomial time. Then according
to strong duality, we can solve the primal LP problem (18)
optimally in polynomial time with

∑
q∈Ψ λ

q = 1.
Theorem 2: Both LP problems (18) and (19) can be solved

in polynomial time and the optimal value of objective function
is 1.

Proof: First, suppose that ωi,j = 0,γi,j = 0, for all i, j,
and δ = 1, we note that this is a feasible solution to the dual
problem, because it satisfies the dual constraint and the value
of objective function is 1. Hence the optimal value is at least
1. Next, we will prove that the optimal value of objective
function is 1 by way of contradiction. We assume that

(
∑
i,j

ωi,js
∗
i,j +

∑
i,j

γi,jd
∗
i,j)/ρ+ δ > 1 (20)

Then we have

(
∑
i,j

ωi,js
∗
i,j +

∑
i,j

γi,jd
∗
i,j)/ρ > 1− δ (21)

Since the integrality gap between LPR and DPA is at least
1/ρ, as stated in first primal constraint, there exists a q ∈ Ψ,
such that

(sqi,j , d
q
i,j) ≥ (s∗i,j , d

∗
i,j)/ρ (22)

Combining (21) and (22), resulting in∑
i,j

ωi,js
q
i,j +

∑
i,j

γi,jd
q
i,j > 1− δ (23)

which violates the first dual constraint, and a contradiction
occurs. Hence the optimal objective value of the dual LP is
1. Due to the strong duality, the optimal objective value of
primal LP is 1 as well.

We observe that the primal LP has an exponential number of
variables, which may take exponential time to solve directly.
We instead resort to the dual LP that has an exponential
number of constraints. The ellipsoid method can be used to
solve the problem in polynomial time despite an exponential
number of constraints [31]. In order to make the dual LP
solvable in polynomial time, the ellipsoid method requires an
approximation algorithm to serve as a separation hyperplane
[29]. Each hyperplane corresponds to a constraint in the dual
problem, providing a feasible solution (Φqs,Φ

q
d) corresponding

to each primal variable λq . The primal LP can then be
transformed to an optimization problem with a polynomial
number of variables corresponding to these hyperplanes. We
can hence solve the primal LP in polynomial time, obtaining
the weights of the convex decomposition that sum to 1.

Step 3. Pick the integer solution with λq . Following
the decomposition, each possible integer solution (Φqs,Φ

q
d) is

selected with a probability equal to its corresponding convex
multiplier λq computed in the convex decomposition in the
second step. Then the expected throughput is∑

q

∑
i

∑
j

λqsqi,jd
q
i,jRij ≥

∑
i

∑
j

s∗i,jd
∗
i,jRij/ρ (24)

The above inequality implies that the decomposition algo-
rithm can achieve an approximation ratio of ρ with respect to
the aggregated gain.

B. The Approximation Algorithm for DPA

Next we will present a greedy heuristic algorithm to obtain
the feasible integer solutions of DPA problem, in which we
relate the DPA problem to the Multiple Maximum Bipartite
Matching problem. The proposed algorithm is described in
Algorithm 2, which consists of the following four main steps.

Step 1. Select Available Channel Set for Each S-D
Pair: In the initialization phase, we select the set of common
channels that are available at both sender and destination for
each S-D pair i, we use ∆sd,i to represent this set, that is

∆sd,i = {j|csi,j = cdi,j = 1,∀j}

Step 2. Construct a Bipartite Graph: A bipartite graph
G(V1 ∪ V2, ε) is a graph whose vertices are divided into two
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S-D

PU channel

1 2 3 4

1 2 3 4

Fig. 2. The illustration of bipartite graph.

disjoint sets, such that every edge in ε connects a vertex in V1

to one in V2 [32]. In CRNs, the topology of S-D pairs and PU
channels can be represented as a bipartite graph G(V1∪V2, ε).
Vertex set V1 contains the S-D pairs, and set V2 corresponds
to the PU channels in the network. An edge exists between
(i, j), i ∈ V1 and j ∈ V2, if and only if the channel j is the
common available channel for sender and destination of S-D
pair i, that is j ∈ ∆sd,i. For instance, Fig. 2 shows the bipartite
graph corresponding to the Fig. 1, where the set of common
channels for S-D pairs 1-4 are ∆sd,1 = {2}, ∆sd,2 = {1},
∆sd,3 = {3} and ∆sd,4 = {1, 4}, respectively.

Step 3. Channel Allocation Using Kuhn-Munkres
Matching Algorithm: In graph theory, the maximum match-
ing is a set of independent edges with the largest possible
cardinality. Here, we use Kuhn-Munkres matching algorithm
to match S-D pairs with their common available channels
such that as many as S-D pairs can select different common
channels to achieve a high channel utilization.

Step 4. Update the Bipartite Graph: More than one
channel is available for each S-D pair, and we allow each
S-D pair to transmit over more than one channel if possible.
Therefore we are required to update the bipartite graph. Let
Q(S ∪ B, η) be the maximum matching from the bipartite
graph G(V1∪V2, ε), then we use the following steps to update
the bipartite graph:

1) Remove all the edges in η from ε, that is ε = ε/η;
2) If S-D pair i1 conflicts with S-D pair i2, and if channel

j has been allocated to S-D pair i1, then remove edge
ei2j from ε.

Then go back to step 3 until either one of the following
termination conditions is satisfied: (1) no more available
channel can be allocated to the S-D pair, which means that
all the nodes in V2 have become isolated nodes; (2) all the
S-D pairs have been allocated with the maximum allowable
number of channels, that is

∑M
j=1 si,jdi,j ≥ d0,∀i ∈ N . The

algorithm is described in detailed in Algorithm 2.

VI. SIMULATION RESULTS

In this section, the simulation results are displayed to
evaluate the proposed spectrum allocation method, the system
parameters are taken similarly to [33]. We set fs = 6MHz and
T = 200ms. In order to model the heterogeneous characteristics
of secondary S-D pairs and PU channels, the noise power
and energy detection threshold are randomly generated with
means 1 and 1.03, and the channel capacity and channel idle
probability are randomly generated with means 0.9 and 0.7,

Algorithm 2 Heuristic approximation algorithm for DPA.
1: Input: Available channel sets ∆s

i , ∆d
i , d0 and interference A.

2: Construct ∆sd,i for each S-D pair i, and bipartite graph G(V1∪
V2, ε).

3: Initialization: k = 0, Φs = [0]N×M , Φd = [0]N×M

4: G(V1 ∪ V2, ε
(0)) = G(V1 ∪ V2, ε)

5: while
∑M

j=1 si,jdi,j < d0 and |ε(k)| > 0 do
6: Invoke Kuhn-Munkres algorithm to obtain the maximum

matching Q(S(k) ∪B(k), η(k))
7: for all S-D pair i do
8: if eij ∈ η(k) then
9: sij = 1 and dij = 1;

10: end if
11: end for
12: for all S-D pair i1 and i2 do
13: if Ai1i2j = 1 then
14: if ei1j ∈ η(k) and ei2j ∈ ε(k) then
15: ε(k) = ε(k)/ei2j ;
16: end if
17: end if
18: end for
19: ε(k+1) = ε(k)/η(k);
20: k = k + 1;
21: end while
22: Output: Φs = [sij ]N×M , Φd = [dij ]N×M .

S-D 1

S
-D

 2

S-D 3 S-D 4

S
-D

 5

(a) Setting I

S-D 1

S
-D

 2

S-D 3 S-D 4

S
-D

 5

(b) Setting II

Fig. 3. Two interference graph settings for simulation.

respectively. To provide a better understanding on how our
proposed spectrum allocation algorithm behaves, we compute
the allocation results for the following two interference graph
settings:
• Setting I: As shown in Fig. 3(a), all the S-D pairs interfere

with each other, which means that any two S-D pairs
cannot be allocated with the same channel.

• Setting II: As shown in Fig. 3(b), S-D pair 1 conflicts
with S-D pairs 2 and 5, and S-D pair 2 conflicts with
S-D pairs 1 and 3, and so on. In this case, if one channel
is allocated to S-D pair 1, it cannot be allocated to S-D
pairs 2 and 5 simultaneously. However, this channel is
able to be utilized by S-D pairs 3 and 4.

A. Evaluation of our proposed algorithm

To provide a better understanding of how our proposed al-
gorithm performs, we first implement and evaluate Algorithm
2. Fig. 4(a) and Fig. 4(b) compare the spectrum allocation
results for the proposed algorithm as well as the optimal
solution obtained using exhaustive search for setting I and
setting II. From Fig. 4(a) and Fig. 4(b), we observe that
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Fig. 4. Comparison between optimum and Algorithm 2 for setting I and II.

Algorithm 2 achieves an impressive performance, approaching
the optimum rather closely in most cases with a maximum
performance loss of 6.8% for setting I and 3.5% for setting
II. This result shows that our spectrum allocation problem
based on the proposed algorithm is reasonable and can achieve
a close-to-optimal performance. It can also be observed that
the achievable throughput goes up when the number of PU
channels increases. This is because that as the number of
PU channels increases, more transmission opportunities can
be detected, therefore more channels can be allocated to each
S-D pair, and more throughput can be achieved.

B. Evaluation of maximum number of allocated channels d0

Fig. 5(a) and Fig. 5(b) depict the achievable throughput of
S-D pairs as a function of the number of PU channels for
different values of d0 ∈ {1, 3, 5} under setting I and setting II.
It is easy to observe that the achievable throughput increases
with d0. Physically speaking, if we increase the maximum
number of allocated channels, more than one channel can
be allocated to each S-D pair, leading to an increase in the
achievable throughput. However, Fig. 5(a) and Fig. 5(b) also
show that when the number of PU channels grows larger and
larger, the achievable throughput will increase slowly. Due to
the spectrum span constraint, when the number of allocated
channels reaches the maximum value d0, no more channel
can be allocated to each S-D pair, even though there still exist
idle ones. Thus, for the case of d0 = 1, only one channel
can be allocated to each S-D pair, this is why when the
number of channel grows continuously after 10, the achievable
throughput will hardly change. Moreover, as seen in Fig.
4 and Fig. 5, setting II outperforms setting I in achievable
throughput. The reason is obvious since for setting I, all the
S-D pairs conflict with one another, thus no channel can be
re-utilized by another S-D pair. While for setting II, the same
channel can be allocated to different non-conflicting S-D pairs,
which increases the achievable throughput.

C. Spectrum allocation results

In this subsection, we depict the spectrum allocation results
for the two settings: In Fig. 6(a), the spectrum allocation result
is shown for system setting I. As discussed before, we take
the heterogeneous characteristics of both PU channels and S-D
pairs into consideration so that more detailed result that accu-
rately indicates which S-D pair should utilize which channel
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Fig. 5. Achievable throughput for different d0 under settings I and II.
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Fig. 6. Spectrum allocation results for sensing time τ = 3ms and d0 = 3
under setting I and II.

can be achieved. As shown in Fig. 6(a), channels 1 and 4 are
allocated to S-D pair 1 for sensing and utilization; channels
5 and 7 are allocated to S-D pairs 2 and 3, respectively;
channels 6 and 8 are allocated to S-D pair 4; and channels
2, 3 and 9 are allocated to S-D pair 5. From Fig. 6(a), we
can see that no channel can be allocated to two different S-D
pairs, since in setting I, all the S-D pairs conflict with one
another. Moreover, we note that channel 10 is not allocated to
any S-D pair; this is because that no S-D pair is within the
detection range of channel 10, thus it cannot be detected and
utilized by any S-D pair. Furthermore, Fig. 6(b) illustrates the
spectrum allocation result for setting II. Different from setting
I, in setting II, some S-D pairs can be allocated with the same
channel. For example, channel 6 is allocated to S-D 1 and
S-D 3 simultaneously, since S-D 1 does not conflict with S-
D 3; and channel 7 is also allocated to S-D 2 and S-D 5
simultaneously.

D. Evaluation of number of S-D pairs N

Next we study the performance of the proposed algorithm
for a relatively large-scaled network when the number of S-D
pairs N varies from 5 to 25. Three interference graph settings
are taken into consideration: setting I (any two S-D pairs
conflict with each other, as shown in Fig.3(a)), setting II (the
interference graph of S-D pairs is depicted as Fig.3(b)), and
setting III (the interference graph of S-D pairs is randomly
generated.). As shown in Fig.7, the achievable throughput
increases as the number of S-D pairs increases. In addition,
it can be observed from Fig.7 that setting II has better
performance than setting I and III in achievable throughput.
Furthermore, this improvement becomes larger and larger as
the number of S-D pairs increases. This is because that as the
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number of S-D pairs increases there may not exist extra idle
channel for two conflicted S-D pairs in Setting I and III. While
for setting II, one channel can be allocated to different S-D
pairs simultaneously, if they do not interfere with each other,
which can increase the achievable throughput.
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Fig. 7. Achievable throughput for different number of S-D pairs N .

E. Complexity evaluation

Next, we illustrate the complexity of approximation algo-
rithm for spectrum allocation problem, when the number of S-
D pairs is 5. Since the time complexity of the optimal matching
Kuhn-Munkres algorithm has been known as O(M3), thus
the complexity highly depends on the number of iterations
taken in the approximation algorithm, which has a maximum
value of M . Obviously, this algorithm can be implemented
in a polynomial time. More specifically, Fig. 8 shows the
complexity when the number of channels increases from 5
to 25 for different values of d0 = {1, 3, 5}.
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Fig. 8. Average number of iterations versus the number of PU channels for
different d0 = {1, 3, 5}.

VII. CONCLUSIONS

In this paper, we focus on the spectrum allocation problem:
How to appropriately allocate the available PU channels to
secondary S-D pairs? We take the heterogeneities of both PU
channels and secondary S-D pairs into consideration, which
has not been fully studied in most of the literatures. With the
objective to maximize the achievable throughput for secondary
S-D pairs, the spectrum allocation problem is formulated as

a linear integer problem, where the availability constraint,
spectrum span constraint and interference free constraint are
taken into consideration. This problem has been proved to
be NP-complete. The proposed solution leverages a recent
result in theoretical computer science that can decompose an
optimal fractional solution to NP-hard problem into a convex
combination of internal solutions. Evaluation results show that
the proposed algorithm can achieve a close-to-optimal solution
with far less complexity.

APPENDIX

Proof: To prove the DPA decision problem is an NP-hard
problem, we adopt the approach used in [11] by restricting the
DPA decision problem to an instance for small values of N ,
M , and then transform this restricted DPA decision problem
to a well known NP-hard SAT problem in polynomial time.
The restricted DPA decision problem is defined as follows:

Definition 2: The restricted DPA decision problem is a
special instance of the DPA decision problem in definition
1 with the number of secondary S-D pair N = 2, the
number of PU channels M = 2, the maximum number of
allocated channels d0 = 1. The sets of available channels at
secondary senders and destinations are ∆s

1 = ∆s
2 = {1, 2},

and ∆d
1 = ∆d

2 = {1}. For further simplification, we assume
that the achievable throughput for each PU channel is 1
regardless of which S-D pair utilizes this channel, that is
Rij = 1, ∀ i, j. We further simplify such that these two S-D
pairs conflict with each other and hence they cannot transmit
over the same channel. The total achievable throughput is
α = 1.

Definition 3: The SAT problem is a decision problem of
determining whether a given boolean circuit has an assignment
of its inputs that makes the output true, which has been proven
to be NP-complete. The boolean formula of the SAT problem
used in our work is given as

((x1
s,1 ∧ x1

d,1) ∧ (x1
s,2 ∧ x2

s,2 ∧ x1
d,2))

∨((x1
s,2 ∧ x1

d,2) ∧ (x1
s,1 ∧ x2

s,1 ∧ x1
d,1)) (25)

where xjs,i and xjd,i, i, j ∈ {1, 2} denote boolean variables for

the SAT problem, and xjs,i and xjd,i, are the complements of
xjs,i and xjd,i respectively. The output of the SAT problem is
a boolean value (True or False). Given the boolean expression
defined above, can we assign values to these variables xjs,i and
xjd,i, i, j ∈ {1, 2} such that the expression is True?

To show that the restricted DPA decision problem can, in
polynomial time, be transformed to the SAT problem, we need
to verify that for a given set of inputs, the restricted DPA
decision problem has ”yes” answer if and only if there exists
a set of assignments to each variable so that the SAT problem
defined above can obtain the output of True.

First, given that the spectrum allocation vectors Φs and Φd
are a ”yes” answer instance for the restricted DPA decision
problem. There are two possible selections for the S-D pairs:
1) both sender and destination of S-D pair 1 select channel 1,
and the selection of sender and destination of S-D pair 2 are
channel 1 and channel 2, respectively. In this case S-D pair 1
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can carry out the transmission, all the constraints are satisfied;
2) both sender and destination of S-D pair 2 select channel 1,
and the selection of sender and destination of S-D pair 1 are
channel 1 and channel 2, respectively. In this case S-D pair 2
can carry out the transmission. Without loss of generality, we
assume the first possible spectrum allocation solution where
the elements of the allocation matrices are s1,1 = d1,1 = 1,
s2,1 = 0, d2,1 = s2,2 = 1. That is m1,1 = 1 and mi,j = 0,
for i 6= 1 and j 6= 1. Therefore the SAT problem can make
the output true by setting the input variables xjs,i = si,j and
xjd,i = di,j i, j ∈ {1, 2}. Obviously, this transformation takes
polynomial time. For the other possible spectrum allocation
solution, the transformation can be similarly made.

On the other hand, we also have to show that if there is a
set of input variables that can make the SAT problem output
True, we can get a Yes-instance for the restricted DPA decision
problem. According to the SAT problem defined above, it can
be concluded that if a set of assignments can make the SAT
problem output True, the input variables satisfy x1

s,1 = x1
d,1 =

1, x1
s,2 = 0, x2

s,2 = x1
d,2 = 1, or x1

s,2 = x1
d,2 = 1, x1

s,1 = 0,
x2
s,1 = x1

d,1 = 1. Without loss of generality, we consider the
first setting. In this case, if we set si,j = xjs,i and di,j = xjd,i
i, j ∈ {1, 2}, then we have s1,1 = d1,1 = 1, s2,1 = 0, d2,1 =
s2,2 = 1, in this case both the sender and destination of pair 1
are allocated with channel 1, and the sender and destination of
pair 2 are allocated with channel 2 and channel 1 respectively.
Thus m1,1 = 1 and mi,j = 0, for i 6= 1 and j 6= 1, all the
constraints of the DPA problem can be satisfied and the total
achievable throughput is α =

∑
i

∑
jmi,jRij = m1,1R11 =

1. Of course, this transformation takes polynomial time.
Therefore, we have proved that the restricted DPA problem

can be transformed into the SAT problem in polynomial time.
Thus we conclude that the DPA decision problem is NP-hard.
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