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ABSTRACT In cognitive networks, efficient spectrum sensing is of great importance for communication of

unlicensed secondary users (SU) without interfering with the communication of licensed primary users (PU).

Such spectrum sensing requires robust and reliable communication between the SUs to sense the spectrum

efficiently under different network circumstances and to make a quick decision for the data transmission.

In this paper, we are proposing a decentralized cooperative algorithm for efficient sensing of spectrum in

the networked cognitive radios. The proposed algorithm is investigated under crash and Byzantine failure

environments to study their behavior and efficiency for consensus. Energy detector module is modeled for

each cooperating SU in cognitive radio network for sensing the presence of PU in a dedicated spectrum.

Moreover, SU is modeled as agents connected through undirected graphs to simulate communication among

them related to the spectrum availability. Multiple simulation scenarios, based on autonomous SU using

the proposed distributed consensus algorithm are presented to demonstrate the theoretical development of

proposed algorithm to be visualized in real scenarios. The simulation results reveal that the proposed method

provides a significant improvement in convergence rate, reliability, and in terms of various key performance

indicators.

INDEX TERMS Multi-agent systems, energy model, distributed estimation, unreliable communication,

distributed consensus control, crash and Byzantine failure, cognitive radios, spectrum sensing.

I. INTRODUCTION

With the emergence of wireless communication, radio spec-

trum has emerged as one of the most valuable resource,

but unfortunately in the history of wireless communication,

this resource is not fully utilized as it should be. In order

to efficiently utilize the radio spectrum with limited radio

resources, a new concept of cognitive radio was introduced

with enhanced capabilities of spectrum sensing and spectrum

sharing to overcome the issue of lack of spectrum availabil-

ity [1]. Cognitive Radio (CR) is defined as a wireless technol-

ogy that enables unlicensed user to work in a licensed band

of frequency spectrum efficiently to overcome the shortage of

availability of wireless spectrum [2]–[4] without disturbing

the licensed user. In cognitive radios unlicensed users are
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active in the licensed spectrum, so such users are referred

as SU and are on lower priority as compared to licensed

users. The licensed users are referred as PU allocated for the

frequency spectrum. The primary goal in cognitive radios is

to minimize the interference ratio between the two classes

of users in an efficient way [5], [6] to better utilize the

available spectrum. It is important to mention here that there

is no need for additional infrastructure and resources for the

licence PU while working with unlicensed secondary users

simultaneously. However, SU has some limitations in terms

of power, energy, hardware, and in capabilities for signal

processing for coordination in a network.

In cognitive radio networks, SU must be able to detect the

active SU in the frequency spectrum to avoid interference in

their communication continuously, and this concept is known

as spectrum sensing. In other words, we can say that due to

the lower priority of the SU, they must need to get the status
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of the available spectrum before starting any communication

in a network [7]. Inaccurate sensing in frequency spectrum

results in wastage of limited resources and causes interrupted

interference amongst the PU. Spectrum sensing can be done

in two possible ways, cooperative spectrum sensing or indi-

vidual spectrum sensing. Cooperative spectrum sensing can

be referred as a sensing of a spectrum by a group of SU

and similarly, in individual or non-cooperative scenarios it

is being done by the single individual SU. Spectrum sensing

by a single SU can’t be accurate and should be unreliable

because of fading effect and shadowing, these factors can be

reduced by the usage of spectrum sensing cooperatively for

better results [8]. Cooperative sensing has several advantages

over non-cooperative sensing [9]. For example, if an indi-

vidual SU experienced a fading in a communication chan-

nel, chances are there that it cannot manage to distinguish

between fading and white space from the effect of shadow-

ing. But cooperative sensing works well for this scenario.

Furthermore, another challenge for non-cooperative spectrum

sensing is the issue of hidden terminal problem, it can be well

dealt with cooperatively. Based on the last statement similar

studies have been carried out by the authors in [10] by evalu-

ating the performance of spectrum sensing cooperatively and

proved the great results in their findings. Moreover different

researchers [11] has produced better results for cooperative

spectrum sensing considering different parameters based on

the same problem.

Similarly, Probabilistic spectrum access (PSA) in the cog-

nitive radio network is another solution to overcome the

shortcomings in spectrum energy detection and studied by

various researchers [12]–[16]. With this method, the chan-

nel detection determines the busy or empty status and fre-

quentist inference is rummage-sale to predict channel status.

However, the probabilities and uncertainties of false alarm

cannot be addressed by common inferences when predicting

channel status. In this research, we are proposing a solution

for efficient spectrum sensing using consensus algorithm,

which focuses on determining the existence of PU jointly

by secondary users without using a common receiver in a

communication channel and based on energy detection. The

energy detection can better account for uncertainties and false

alarm probabilities by taking into account the limitations of

the spectrum detection results. The proposed algorithm is

distributed in nature, final results for spectrum sensing is

not depending on a common receiver in the communication

channel. Moreover proposed consensus model is designed in

such a way that SU collectively involve in decision-making

and is inspired by bio-inspired consensus. The important

characteristic of such an algorithm is the distributed coordi-

nation between the agents in a network with no central control

for information exchange [17]. This research utilizes the basic

concepts from graph and matrix theories and also a network

topology is deployed with fixed and random connectivity.

The rest of the paper is organized as follows. Literature

review is described in section II. In section III, we formulate

the problem of the energy sensing model and present the

proposed consensus algorithm. Simulation results are pre-

sented in section IV and section V concludes the paper.

II. LITERATURE REVIEW

Many researchers proposed multiple solutions for spectrum

analysis in a cognitive radio network. The authors in [8]

explored the problem of sensing throughput using a multi-

mini-slot energy detection scheme to maximize SU through-

put under the constraint that PU are adequately secured.

In various researches, two important techniques are used

worldwide for spectrum sensing, one is with a common

receiver which is known as a fusion center and the second is

without a common receiver, mobile Ad hoc networks can be

one of its examples. Various studies have adopted a central-

ized cooperative approach, utilizing the concept of a central

fusion center for information sharing in spectrum sensing.

In such scenarios cognitive radio in the network, shares the

information of the PU and transmits this information to the

cognitive radios to make a final decision [10]. A more alike

solution for non-centralized spectrum sensing based on dif-

fusion is studied by the researcher in [18] along with the con-

sideration of the link failure in the cognitive radio network.

Similarly, in a few proposed models for spectrum sensing,

individual sensor collects the information of the other sensors

in the network through a fusion center via feedback system

[19]. Reporting of channel condition under deep fading envi-

ronment between the cognitive SU and the common receiver

is explored by [20]. A study is proposed to sense the spectrum

in cognitive radios by exploiting the statistical old sensing

information to enhance the efficiency of the spectrum sensing

using noncooperative way in [21]. Zaeemzadeh et al in [22]

introduced an approach for sensing the shared spectrum using

the approach of Bayesian data-mining for heterogeneous

cognitive radio networks.

One of the decentralized schemes for spectrum sensing

is based on consensus algorithms, where information is

exchanged between the SU to make decision [23], [24].

A similar approach is adopted by the authors in [25], where

cognitive users reach a consensus value for spectrum sens-

ing using their local values exchange without using a com-

mon fusion center. Another approach in cognitive radio is

introduced by dividing the time slot of resource block into

sensing and prediction of spectrum in a cooperative way for

transmission of data [26]. Similarly, research is presented

in a [27] by using an NCSS algorithm for non-cooperative

spectrum sensing in cognitive radios. In this proposed scheme

a node with the highest energy level is isolated from the

prediction for the future computation.Moreover, many differ-

ent approaches, based on cooperative spectrum sensing using

consensus algorithms are proposed in [28], [29]. One of the

major concerns faced by the distributed spectrum sensing is

the security issues. Any malicious user can cause a wrong

entry in spectrum sensing that leads to a critical threat in a

network. Another approach is adopted by the author in [30],

where a consensus base algorithm is used for energy compu-

tation, which later on communicated between the cognitive

23154 VOLUME 9, 2021



A. Mustafa et al.: Dynamic Spectrum Sensing Under Crash and Byzantine Failure Environments

TABLE 1. Comparision of sensing techniques in CRN.

radios to achieve final value. Another approach for sensing

the spectrum sensing by the energy and first-order correlation

of the signal received is studied and evaluated based on the

detection of false alarms by the authors in [30]. Peng Hu

et al in [31] proposed two schemes for achieving fairness in

spectrum sharing based on local information in the cognitive

radios. Similarly, last but not least author in [25] proposed a

scheme, where SU in a channel coordinate with each other

based on their local information without a centralized control

using consensus to make the end decision. Also, it is proven

in results, a significant decline in the probabilities of false

alarms and wrong detection probabilities in a radio spectrum.

Moreover, multiple schemes for the spectrum sensing in cog-

nitive radios are proposed by many researcher [32]–[35].

There are two types of classes used for spectrum sensing,

one is based on sensing and the other is based on monitoring

[36]. As in this research, we are proposing an energy-sensing

model so we focused on sensing rather than monitoring.

A detailed comparison of various methods for spectrum sens-

ing comprising of energy detector method, eigenvalues detec-

tor, matched filter method, and feature recognition methods

are provided for deep insight in Table. 1.

SU achieve continuous spectrum detection in cogni-

tive radio networks using one of the techniques described

in Table 1. Cooperative spectrum recognition increases

spectrum recognition performance by utilizing the three-

dimensional diversity of SU. Most collaborative spectrum

detection solutions are not distributed and share a mutual

fusion centre, where it gathers verdicts from SU to finalize

a conclusion on frequency tenancy. Now, distributed solu-

tions have emerged due to their problem solving skills and

robust nature to the worst channel conditions in achieving

the desired goals. It is never be recommended to collect or

gathered data on a common receiver, it causes a restriction

in communication and this Fusion Centre can be the cause

of single point of failure and becomes a bottleneck for the

large data networks, where SU do not want to share their

information with a single remote device. For this reason, this

study focuses on a distributed solution for spectrum detection,

as well as the implementation of the energy detection tech-

niques in CRN. It is selected due to its minor complexity, it’s

easy-to-design approach, and because of no prior knowledge

of the PU existence. A proposed design for SU communi-

cations to reach global agreement on the presence/absence

of PU in a spectrum is based on a consensus algorithm. The

proposed algorithm can work well in low SNR environments

and more resistant to noise in an energy sensing.

A. WEIGHTS IN CONSENSUS ALGORITHMS

In literature, multiple weights are available to achieve the

consensus agreement under diverse network topologies. Few

of the weights extensively used for the dynamic topologies

are the local degree and the metropolis hasting. In both

techniques, they do not have a uniform weight for the agents

associated with the networks. Both weights just depend on

the availability of the local information of their neighborhood

and that is one of the reasons that they are considered the best

fit for the real-time applications.

1) LOCAL DEGREE WEIGHTS

One of the techniques in practice for designing weight matrix

W is a local degree weight. The designing procedure involves

the assignment of the weights on an edges based on the

pair of vertices, depending on the largest out-degree of two

connected agents for both transmitting and receiving edges

[56]–[61]. In local degree weights, each agent must possess

the knowledge of external degrees of all nearby agents. Math-

ematically, we can express local degree weights as:

Wij(k) =







1
((

max(di(k), dj(k))
)) i 6= j

0 otherwise

(1)

where di(k) and dj(k) are the out degree of agent i and agent

j respectively. Local degree weights are much similar to the

max degree weights and adopted from the metropolis hasting

algorithm based on Markov chain Monte Carlo distribution

[62]–[64]. These weights are intended for taking the random

sequence to converge them on particular common value and

they also provide the surety of convergence in a graph where

it is not bipartite. A bipartite graph can be defined as a graph

which does not have any diverse size of sequences and undi-

rected. Another important aspect for quick convergence by

the local degree are the less complexity in computation of the
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FIGURE 1. State diagram of a proposed Sensing model in order to Compute Energy utilization at each stage.

optimal value without prior knowledge of global information

and the network topology [65].

2) METROPOLIS HASTING WEIGHTS

Well-known approach adopted by various researchers to

design weight matrix W , addressing various applications is

metropolis hasting weights [66]. Metropolis hasting weights

have the ability to reserve the consensus on an average value,

secondly they do not involves any complexity to compute,

and finally metropolis hasting weights works well for the

distributed sequence of the dynamic undirected graphs and

guarantee to converge on an asymptotic average value with

minimum convergence conditions. [61], [67]–[72].

Metropolis hasting weights is especially considerable for

the networks experiencing unreliable communication within

the network topology caused by dynamic or switching sce-

narios and even unreliability caused by a communication

delay. In this weight, every agent determines the weight of its

directly connected edges by only knowing the degree of their

connected neighbors. The computation process of weights

consists of two steps of communication between the pairs of

the vertices in the connected neighborhood. Step one deals

with the calculation of the degree of each agent by the initial

count of the immediate neighbor. Likewise, in the second step

already calculated degree of each agent is shared with all

the instantaneous neighbors. In all this process, there is no

requirement for the agents to have any information about the

number of agents participating and similarly it is not required

to have global knowledge of the complete communication

network. In such weighting matrices, every agent knows

out-degrees of all of its connecting neighbors that might be

changing with every instant of time. Mathematically, it can

be written as [73], [74]:

Wij(k) =







1
((

max(di(k), dj(k))
))

+ 1
i 6= j

0 otherwise

(2)

Metropolis hastings weights are taken from the Metropolis

algorithm [75], [76] based on Markov chain Monte Carlo

[62]–[64]. This algorithm is specially designed for taking

the random sequence of the distributed samples to compute

the prediction or expected value. This algorithms performs

well for the systems where the distribution of the samples are

multi-dimensional and random.

III. PROBLEM FORMULATION OF ENERGY SENSING

MODEL

Implementing the proposed consensus algorithm for the spec-

trum sensing in the cognitive radio networks required two

basic steps. The first step is to identify the presence of the

PU and the second step is to pass this information to the SU

in the cognitive network to decide for further communication

in the particular spectrum. Based on the information received

in the first step, multiple agents in the cognitive radios will

start exchanging the information with their neighborhood to

make a local decision to achieve their global goal, if and

only if the spectrum is sensed free. Here we denote the

local measurement value of agent i as xi. As in the previous

sections, it is made clear that the consensus algorithm is based

on the iterative process and the values of the state of all agents

will update at all time iterations k = 0, 1, 2, . . ., this process

will continue until the entire agents in the network converge

to a common value. So here in subsections, spectrum sensing

energy and network model along with the consensus algo-

rithm is presented to attain the desired goals.

In Fig. 1, we have provided detailed information about the

design of the different steps involved in the proposed scheme.

In the start we have divided the time into slots t0, t1, t2, . . .,

we intentionally assigned the first part of the slot for channel

sensing and, the next part of a time slot is occupied for the

idle state, similarly, this will continue for the entire spectrum.

The slots time cycle is 60% for sensing and 40% for idle con-

sidering the channel status. In the channel sensing time slot,
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FIGURE 2. Block diagram of sensing model.

three important tasks will be carried out, first: channel status

or prediction of PU presence, second: link establishment for

the existing PU, and third: data transmission by the SU. In the

first node prediction task, the spectrum will be checked for

the existence of the PU by the energy detector installed in

each secondary user as a primary task. If the users are traced

then the spectrum is considered busy and SU cannot initiate

their communication, so the available energy level is sent to

the next stage of link establishment for various parameters

checks such as the energy of transmission and reception,

available throughput between the users and reliability of the

energy level. So here in subsections, spectrum sensing energy

and network model along with the consensus algorithm is

presented to attain the desired goals. On the other hand, if no

PU is detected then the spectrum is considered free and SU

can initiate to establish a link to achieve their convergence

goals.

A. PREDICTION OF PU IN COGNITIVE SPECTRUM

In Fig. 2 the energy-sensing model for the proposed system

is provided. It mainly consists of two modules, the energy

detector, and the consensus module.

Where At is the actual signal which is entering the system,

while υt is the white Gaussian noise and Xt is the convolved

signal. Mathematically, we can express Xt as in Eq.3:

Xt = At + υt (3)

In the energy detector module, we have defined convolution,

sampling, energies of the signal, and the level of energy

threshold. The output It after convolution and sampling of

the received signal is given in Eq.4

It = Xt ∗ Ht (4)

Similarly, sum of all the energy of the received signal samples

are presented by Yt and mathematically expressed as Yt =
∑

I2t . And finally, the output of the energy detection module

is denoted by Zt . It can algebraically be written as in Eq. 5

Zt =

{

Yt ≤ Zt H0

Yt > Zt H1

}

(5)

Here, we have introduced a threshold for energy levels

H0&H1 for taking the decision based on piece-wise linear

transformation function for prediction of primary user signal

energy level. If the energy level H1 (energy level is above

noise energy level) is achieved, it means that the spectrum

is busy and primary users exist in the system and vice versa

for energy level H0 (spectrum noise energy level). If the level

H0 is detected, then the system goes directly to the consensus

process.

B. PROPOSED CONSENSUS ALGORITHM FOR SPECTRUM

SENSING

This subsection will explain the proposed average conver-

gence algorithm in this research. We will consider fixed and

switching topologies along with the reliable and unreliable

communication in the cognitive network. Moreover, conver-

gence conditions of proposed distributed consensus algorithm

is mathematically analyzed on the concepts of graph and

matrix theories.

Proposed algorithm can be expressed mathematically as in

Eq.6 & weighting factor as in Eq.7:

αi(t + 1) = αi(t) +
∑

jǫNi

ωij(t)
(

αj(t) − αi(t)
)

(6)

weighting factor ω can be computed as under, where degreei
and degreej are the degree of agent i and agent j.

ωij(t) =







degreei(t) + degreej(t))

2degreei(t)degreej(t)
i 6= j

0 otherwise

(7)

1) PROOF OF A PROPOSED CONSENSUS ALGORITHM FOR

SPECTRUM SENSING

In the section above, a distributed algorithm is proposed with

its weighting factor ω, which ensures the agreement of all

the agents on common values. In this subsection, steps of

expressions are provided to prove the said convergence.

Suppose

3 (t) =













α1(t)

α2(t)

. . . ..

. . . ..

αn(t)













, β (t) =













b1(t)

b2(t)

. . . ..

. . . ..

bn(t)
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Moreover

3 (t + 1) =













α1 (t + 1)

α2 (t + 1)

. . . .

. . . .

αn (t + 1)













To attain the convergence condition, we can draft the global

state equation as:

3(t + 1) = 3(t) + β(t) (8)

Universal input vector can be written after computing as:

β(t) = ωij(t)(A− D)3(t) (9)

where A is the adjacency matrix and D is the degree matrix.

Consensus on a common average value is achieved by

computing the right weighting factor ωij(t) and then using

this computed value in β(t) in Eq.(9). Proposed method for

calculating ωij(t) will surely contributes in explaining and

achieving the main research objective that in αi(t + 1) for

Eq.(6). For the agents in the network the same initial value are

set as in the condition applied for convergence in the previous

chapters, i.e. x1(0) = 1 and xi (0) = 0 ∀i = 2, 3, 4 . . .N .

Similarly graph G is considered as a connected graph with

the spanning tree.

It is important to mention here since the network topology

considered in this research is not reliable, so the weight

matrix ω cannot be kept constant. It varies after every change

of communication between agents. For this particular case,

we use the algebraic notation ωij(t) in the equation (9).

If we substitute Eq.(9) in Eq.(8), we get

3 (t + 1) = 3 (t) + ωij(t)(A− D)3(t) (10)

We can further transform the expression by using Laplacian

matrix i.e. L = D− A, in the following form:

3 (t + 1) = 3 (t) − Lωij(t)3(t) (11)

3 (t + 1) = (I − Lωij(t))3(t) (12)

Eq.12 implies for all t = 0, 1, 2 . . .

3(t) = (I − Lωij(t))3(0) (13)

limt→∞3(t) = limt→∞(I − ωij(t)L)3(0) (14)

We know

limt→∞3(t) = limt→∞ω(t)3(0) (15)

Now equate the left sides of Eq.14 & Eq.15

limt→∞ω(t) = limt→∞(I − ωij(t)L) (16)

From the mathematics, it is clear that it is one of the term

which also guarantees the convergence of the agents in a

network to reach consensus.

limt→∞ω(t) =

(

1

n

)

11T (17)

Substitute the value of Eq. 17 in Eq. 16, it gives us:

limt→∞(I − ωij(t)L) =

(

1

n

)

11T (18)

One of the objectives set in this research is the application

of node counting, so here under unreliable communication

topology we also consider grabbing that goal and for that

particular purpose we took an infinite number of agents i.e.

n → ∞ in our communication network. We can mathemati-

cally express it as:

limt→∞(I − ωij(t)L) = 0 (19)

Here, we are assuming the degree of agent i that is degreei
and its connected agent j with degreej. ωij(t) the weighting

factor in Eq. 20 is the key for the convergence, if it is perfectly

computed then the whole system will reach the consensus

under unreliable communication even when the connectivity

of the network is limited or varying with time.

ωij(t) =
degreei(t) + degreej(t)

(2degreei(t)degreej(t))
(20)

IV. SIMULATION RESULTS

This section describes the basic simulation requirements for

the proposed schema in the cognitive radio network. The

energy measurement for the proposed energy model, along

with the implementation of the consensus algorithm with

dynamic and fixed network topologies, is presented among

SU to achieve consensus. It also assigns SNRvalues that users

dynamically change in each scenario tomonitor the impact on

network performance. Comparison results are also presented

based on the most important performance parameters for

different methods.

A. SIMULATION SETUP

In the proposed schema, we are assuming that the PU in the

spectrum are dynamically connected and they can enter or

leave the network at any time. Similarly, we have applied

the same scenario for SU for group coordination and for

achieving consensus. The total duty cycle of the time slot

is divided into two parts. 60% duty cycle is reserved for the

channel sensing and the rest 40% duty cycle is dedicated for

idle mode or for consensus.

In the first stage of simulation, we have considered a

Rayleigh noise added to the original signal for the PU. Later

on, a band pass filter is applied for taking the decision based

on piece-wise linear transformation function for prediction of

PU signal energy levels H0 & H1 as in section 4.1. Every SU

in the cognitive radio is equipped with an energy detector to

calculate the received energy level for a quick decision. In the

proposed energy model if the PU is absent in the spectrum

only the noise level will come up which has assigned a

threshold level and the spectrum is considered free while on

the other hand if the threshold Zt is greater than the noise level

it means that PU are detected in the spectrum.

In the second stage of the simulation, if the energy

levelH1 (energy level is above noise energy level) is achieved,
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it means that the spectrum is busy and PU exist in the system

then this information is passed on to the network module,

where an additional check of two energy levels is created

for redundant check for measuring the signal strength named

L1 & L0 based on logistic function curve. L1 means the

existing PU is available with a sufficient amount of energy

for communication in the spectrum and similarly vice versa

for L0.

In the second stage proposed consensus algorithm is initi-

ated if and only if, energy level H0 (spectrum noise energy

level) is received. In Fig. 3 we have presented the graphical

presentation of an input signal, noise, energy levels of the

convolutional signal, and the energy thresholds, where the

signal is above the set threshold means PU exists in the

spectrum and where this signal level is below the threshold

level means no PU is detected. We do mention here that

all the PU and SU are resource-constrained agents and they

are unaware of their positions and their directional velocities

because of their random network topology.

In our simulations, we have considered different net-

work conditions for SU in the spectrum to attain consensus

value. That includes the fixed and random network topolo-

gies along with the reliable and unreliable communication

links. Furthermore, we have simulated this network model

for pre-existing schemes for cooperative spectrum sensing

based on metropolis [25] and local degrees. In the end,

a detailed comparison is conducted by assuming different

network scenarios and it validates the effectiveness of the

proposed scheme by the results generated.

B. RELIABILITY IN CONVERGENCE ALGORITHMS

A major concern in distributed systems based on consensus

algorithms is to attain complete network reliability in the

existence of several defective or faulty agents. To attain reli-

ability, the control inputs must achieve convergence. Such

implementations allow the network to work in a corporative

fashion despite the failures of the various agents in a network.

In consensus-based networks, agents are supposed to agree on

a single agreed value. During the communication phase, few

of the agents may fail or can act in an unreliable way, so the

control protocol used for the consensus must be fault-tolerant

or robust. Though this failure of agents due to any reason may

result in a skewed or delayed response and the desired con-

sensus may not be achieved or may be computed incorrectly.

When dealing with consensus algorithms, network reliability

in terms of probabilities of failure can be undergone by two

types of failures in a network:

1) Crash failure: This type of failure occurs in a network

when an agent abruptly halts its communication a net-

work and does not resume its communication again.

2) Byzantine failure: This is a type of failure, which

occurs as a result of malicious actions of an agent

in a consensus-based communication network or

the second possibility is that after a long skew a

non-communicating or sleeping agents resume their

communication. Byzantine failures are considered

much disruptive as compared to the crash failure.

Therefore, a consensus protocol that bears Byzantine

failure must support any possible failure that may expe-

rience by the communication network.

We proposed a consensus algorithm whose reliability in

terms of probabilities of failure is adoptive. The proposed

scheme can effectively acquire the convergence in reliable,

unreliable, and asynchronous communication across dis-

tributed agent networks and it outperformed in reaching a

consensus for both cases of failures as discussed above. In this

research following networks configurations are considered to

examine the reliability of the proposed algorithm in terms of

probabilities of failure:

1) Fixed Network: In this configuration, there is no prob-

ability of link failure or agent failure. Communica-

tion links between the agents are all time available

and communication amongst the agents is termed as

reliable.

2) Dynamic Network: In this configuration, we have

addressed the crash and Byzantine failures. All agents

are connected through random directed or undirected

graphs. An agent or communication link can be dis-

connected from the network or maybe it resumes its

communication with the same communication edges.

Furthermore, new agents may enter into the com-

munication network and abruptly changes the topol-

ogy of the network at any instance of time and such

communication amongst the agents is termed unreli-

able communication. We have simulated the following

scenarios:

• Fixed network with random connectivity in an

asynchronous communication network

• Random addition and removal of agents in an asyn-

chronous communication network

• Random link failure and reconnection in an asyn-

chronous communication network

In addition, the efficiency and performance of the proposed

weighting matrix algorithm are compared with the existing

metropolis method and local degree weights. In addition,

four parameters are taken into account for the qualitative

analysis in order to evaluate the productivity of the proposed

method. The parameters considered are the number of iter-

ations required to achieve complete convergence, the CPU

processing time, the asymptotic convergence time, and finally

the asymptotic convergence factor. We also present the com-

parison of different parameters using different methods in

a tabular form. Moreover, consensus graphs and error plots

are sketched for each scenario. All conditions are established

as previously defined in terms of initial values and graph

connectivity. It should be noted that the fault tolerance set

for the network is e = 10−15 in all cases. The sampling rate

is set as one second per iteration.

where ei(t) can be expressed as:

ei(t) =
∑

jǫNi

|xi(t) − xj(t)|, i = 1, 2, . . . .n (21)
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FIGURE 3. Communication spectrum sensing energy levels for predicting PU existence.

In all of the discussed scenario, it is confirmed that the

spectrum of the channel is sensed free for communication by

the SUwithout making any interference in PU intersection by

satisfying the two threshold levels H0 & L0 in the proposed

energy model.

1) CASE 1: FIXED NETWORK TOPOLOGY FOR SU IN

COGNITIVE RADIO NETWORK WITH RANDOM

CONNECTIVITY

In this scenario, we are assuming a fixed network topology

consisting of 10 SU in a cognitive radio network under unre-

liable communication.We labeled SU as i = 1, 2, 3, . . . n−1.

An adjacency matrix is randomly selected, which eventually

results in a change in the laplacian and degree matrix of the

network. Signal to noise ratio (SNR) value for every SU is

dynamically assigned, it variants between 5db to 10db. The

communication spectrum consisting of 10 SU with dynamic

network topology under free channel is presented in Fig. 4.

Total time required for achieving convergence for proposed,

metropolis and local degree for communication spectrum

of 10 SU with dynamic topology under free channel is pro-

vided in Fig. 5. In Fig. 5 it is seen that the proposed method is

consuming less time in achieving the average consensus value

as compared to the metropolis and local degree methods.

Numerical results from the simulation are presented in a

tabular form and presented in Table. 2 reflecting the vari-

ous key indicators. Results indicate the effectiveness of the

proposed consensus-based spectrum sensing algorithm for

attaining convergence in fewer iterations of time as compared

to the other known methods and performed best in other

performance indicators.

FIGURE 4. Communication spectrum consisting of 10 SU with dynamic
network topology under free channel in case 1.

2) CASE 2: RANDOM ADDITION AND REMOVALS OF SU

FROM THE NETWORK TOPOLOGY IN COGNITIVE RADIO

NETWORK UNDER UNRELIABLE COMMUNICATION

In this case, we are considering the network topology between

the SU as in the previous case, consisting of 10 SU. Once the

convergence is achieved by the users in the cognitive radio
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FIGURE 5. Consensus for proposed and existing methods for communication spectrum of 10 SU with dynamic topology under free channel in
case 1.

TABLE 2. Comparison of proposed and existing methods for communication spectrum of 10 SU with dynamic topology under free channel in case 1.

network simultaneously 8 more SU enter randomly in the

communication network after time t = 20ms. Here all the

calculations regarding the matrices, connectivity, and com-

munication between the SUwill change and an algorithmwill

compute the convergence value again between the 18 SU to

achieve the global goal. The proposed algorithm has produced

very interesting and great results under such unreliable and

switching network conditions and further, we have dynami-

cally set the signal to noise ratio (SNR) for every secondary

user, which is between 9db to 15db. Furthermore, when this

consensus is achieved by the 18 SU then after time t =

30ms during the convergence process, 3 SU are eliminated

randomly from the communication topology, which once

again results in the change of adjacency and degree matrix

which eventually affect the whole convergence process. Here,

we can call this whole scenario as one of the most difficult

convergence cases as a forced consensus. This whole cogni-

tive network Scenario for random addition and removals of

SU from the cognitive radio network experiencing unreliable

communication is graphically presented in Fig.6. Initially,
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FIGURE 6. Scenario for random addition and removals of SU from the cognitive radio network experiencing unreliable communication in Case 2.

FIGURE 7. Convergence achieved by the proposed, metropolis and local degree methods for random addition and removals of SU in Case 2.

10 SU represented in green color connected through ran-

dom network topology and reached their average consensus

value. After time t = 20ms, 8 more SU entered into the

communication network and they are presented by the red

color. Now the network size changes from 10 to 18, again

they will communicate through random network connectivity
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FIGURE 8. Communication spectrum of 30 SU with a link failure and
reconnection after few iterations with dynamic topology considered in
Case 3.

and reaches an average consensus value to achieve their local

and global goal. Later on, after time t = 30ms during the

convergence process, 3 SU are eliminated randomly from

the communication topology and shown in red color. Now

the network size is limited to 15 agents, the algorithms will

again compute the average consensus value and converge to

the best optimal solution. As this case deals with the random

addition and removal of the SU from the communication

network so in Fig.7 convergence achieved by the proposed,

metropolis and local degree methods is presented. The first

part of the figure is showing the convergence time of the

proposed system before addition or removal of the SU then

convergence after addition of SU and finally convergence

time after removal of SU from the network. And similarly,

it is presented for metropolis and local degree simultaneously.

It is quite obvious from the Fig.7 that in such a complicated

scenario proposed method is reaching a point of convergence

in a quicker way as compared to the rest of the method.

Finally, the key performance indicators for the convergence

algorithm for this scenario using the proposed and other well

know methods are numerically presented in Table. 3. From

the simulation results, it is clearly shown that the proposed

method is performing best in all available solutions in terms

of achieving convergence in fewer iterations, consuming the

least CPU processing time, and attaining the best values for

asymptotic convergence factor and asymptotic convergence

time.

FIGURE 9. Consensus graphs for proposed and existing methods for disconnection of SU with a link failure and reconnection after few
iterations in Case 3.
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TABLE 3. Comparison of key performance parameters for random addition and removals of SU in Case 2.

FIGURE 10. Error probability of proposed and existing methods for disconnection of SU with link failure and reconnection after few
iterations in Case 3.

3) CASE 3: DISCONNECTION OF SU WITH A LINK FAILURE

AND RECONNECTION AFTER FEW ITERATIONS IN THE

CONSENSUS BASED COGNITIVE RADIO NETWORK UNDER

UNRELIABLE COMMUNICATION WITH DYNAMIC TOPOLOGY

This scenario deals with a case when the spectrum is sensed

free by the 30 SU and it is communicated in the network

that no PU exist, so the SU go for the consensus agreement.

As they achieved the consensus or during the process, few

SU randomly disconnected from the communication network

and it badly affects the link failure ratio, error metrics, neigh-

borhood of the agents, and the degree of connectivity. The

network will again go for the coordination process to achieve

the convergence but during this phase of transition, the same

disconnected SU active again and start communication in

the network with the same linked neighborhood. Here we

have set a condition in the simulation scenario that 2 − 8

communication links for randomly selected agent breaks and

disconnected from the network at any time during the conver-

gence phase. Also, we have assigned a random distribution of

SNR values for different SU that limits from 15db to 20db.

Very good results are generated from the simulations for the

proposed spectrum sensing consensus-based algorithm for

cognitive radio networks as compared to the existing algo-

rithms in terms of the consumed number of iterations, the pro-

cessing time for the algorithms, and convergence factors.

The Communication spectrum of 30 SU with a link failure

and reconnection after few iterations with dynamic topology

considered in this scenario is demonstrated in Fig. 8. Simi-

larly, Consensus graphs for proposed and existing methods

for disconnection of SU with a link failure and reconnec-

tion after few iterations are presented in Fig. 9. The first

part of the figure is showing the convergence time of the

proposed system for disconnection of SU with a link failure

and reconnection after few iterations then finally convergence

to a common value to reach a steady-state value. Similarly,

it is presented for metropolis and local degree simultaneously

in the second and third parts of the said figure. It is quite

obvious from the Fig.9 that in this scenario, the proposed

method is reaching a point of convergence in a hasten way

as compared to the rest of the methods. Also, the plot of the

error graph between the different states of the algorithm for

the proposed and existing method is shown in Fig. 10. The

mean square error for the proposed method is represented

by a blue dotted line, it is reaching a zero error state in
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TABLE 4. Comparison of key performance parameters for disconnection of SU with a link failure and reconnection after few iterations in Case 3.

TABLE 5. Overall average gain of different parameters for proposed method vs other methods in terms of % for the cases considered in this research.

a very less number of iterations. Later on, in the graph,

it is followed by the local degree method and then by the

metropolis method. Finally Table. 4 reflects the results of

the key performance parameters generated by the proposed

and other considered methods during the simulation process.

From the tabular results, the effectiveness and efficiency of

the proposed algorithm are reflected as obvious evidence for

the best performer to achieve the global convergence goal.

V. CONCLUSION

In this research, we modeled a spectrum measurement for

cognitive radio networks as a cooperative control of a

multi-agent system for the crash and byzantine failure envi-

ronments. SU coordinate and exchange information based on

their local measurements to achieve the convergence value.

In this whole scenario, the PU can enter or leave the network

at any time. Therefore, the algorithm proposed in this study

is so efficient that SU can make a decision quickly and

efficiently based on the energymeasurements of the spectrum

for random communication. The simulation results provide

evidence to the claim above to show the effectiveness of the

proposed energy model and the convergence algorithm.

Results in table 5 indicate the significant improvement in

the numerical gain (in percentage) of the proposedmethod for

all performance parameters compared to the other methods.

The numerical values indicate that the proposed algorithm

required less iteration, asymptotic convergence factor, CPU

processing time, and asymptotic convergence time.

For future endorsement, we can extend the scope of the

proposed algorithms in various new directions. This may

include but is not limited to the following: One of the future

enhancements of the current work is by extending the scope

of the proposed protocol by introducing noise and inter-

ference factors to further enhance the performance of the

protocol. Another factor that can be added to expand this work

in the future is to make the system stabilize and converge

as the system suffers jitters and unequal delays. When the

network experiences jitters, the instability in the matrices and

the calculations of the weighting factor increase surprisingly.

This makes this scenario difficult and requires new design

ideas to address this problem. Last but not the least, we can

expand this model for network-aware and energy-efficient

hierarchical routing in distributed convergence in wireless

sensor networks (WSN) in the future by adding adaptive sam-

pling, communication power control, energy consumption

estimation, bandwidth estimation, and computation of link

cost based on network topology.
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