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We demonstrate dynamic stabilisation of axisymmetric Fourier modes susceptible to the

classical Rayleigh-Plateau (RP) instability on a liquid cylinder by subjecting it to a radial

oscillatory body force. Viscosity is found to play a crucial role in this stabilisation. Linear

stability predictions are obtained via Floquet analysis demonstrating that RP unstable modes

can be stabilised using radial forcing. We also solve the linearised, viscous initial-value

problem for free-surface deformation obtaining an equation governing the amplitude of a

three-dimensional Fourier mode. This equation generalises the Mathieu equation governing

Faraday waves on a cylinder derived earlier in Patankar et al. (2018), is non-local in time and

represents the cylindrical analogue of its Cartesian counterpart (Beyer & Friedrich 1995).

The memory term in this equation is physically interpreted and it is shown that for highly

viscous fluids, its contribution can be sizeable. Predictions from the numerical solution to

this equation demonstrates RP mode stabilisation upto several hundred forcing cycles and

is in excellent agreement with numerical simulations of the incompressible, Navier-Stokes

equations.

MSC Codes (Optional) Please enter your MSC Codes here

1. Introduction

Liquid cylinders, jets or annular liquid films coating rods often deform or fragment into a

series of droplets of unequal sizes via the ubiquitous Rayleigh-Plateau (RP hereafter) capillary

mechanism (Plateau 1873b; Rayleigh 1892b). This may easily be seen, for example, in a jet

issuing out of a faucet (Rutland & Jameson 1971), in a capillary liquid bridge held between

two disks (Plateau 1873b) or in a film coating a rod (Goren 1962), to mention but a few

situations. Depending on the application, droplet formation may be desirable or it might

even be necessary to suppress it. When breakup is intended (e.g. in microfluidic devices

cf. Stone et al. (2004) or drop-on-demand inkjet printing cf. Driessen (2013)), strategies are

sought such that the size distribution of the resultant droplets and their spacing are controllable

e.g. Driessen et al. (2014). Conversely, when breakup is undesirable stabilisation strategies

are necessary and a number of techniques have been proposed towards this. Table 1 provides a

broad summary of known techniques of RP stabilisation and it is apparent that this continues

to be an active area of current research.

The purpose of the present study is to demonstrate dynamic stabilisation of unstable RP
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modes on a liquid cylinder by subjecting the cylinder to a radial, sinusoidal-in-time body

force. It is demonstrated analytically that this is possible and that viscosity plays a crucial

role in this stabilisation. The viscous analysis presented here significantly builds upon the

inviscid analysis presented earlier in Patankar et al. (2018) where dynamic stabilisation of RP

modes was also predicted but was found to be extremely short-lived in inviscid simulations.

In contrast to our earlier inviscid study (Patankar et al. 2018), we demonstrate here that

for a viscous liquid, by carefully tuning the strength and frequency of (radial) forcing, RP

modes accessible to the system maybe rendered stable thus stabilising the cylinder for long

time (many forcing time periods). The theoretically predicted stabilisation is verified using

numerical simulations of the Navier-Stokes equations demonstrating excellent agreement.

The study is organised as follows: in subsection 1.1 a brief literature survey discussing the

gamut of stabilisation strategies for finite and infinitely long liquid cylinders alongwith a brief

background of parametric instabilities and dynamic stabilisation strategies is presented. In

section 2, linear stability analysis of an infinite cylinder of viscous liquid subject to a radial,

oscillatory body force is reported via Floquet analysis. Section 3 reports the derivation of

a novel integro-differential equation governing the linearised amplitude of surface modes.

The theoretically predicted stabilisation in section 4 is verified using numerical simulations

of the incompressible Navier-Stokes equations (DNS) in section 5. The integro-differential

equation is physical interpreted and the significance of the memory term are discussed are

discussed at the end of section 5. Conclusions are discussed in section 6.

1.1. Literature review

Stabilisation of RP modes for liquid cylinders are typically investigated either in the context

of bridges of finite length or in the infinitely long cylinder approximation. We recall that a

cylindrical liquid bridge of length ! and diameter 3 in neutrally buoyant surroundings is

stable for slenderness ratio !/3 6 c also known as the Plateau limit, see Plateau (1873a).

Electric field has long been used to both generate stable cylindrical jets (Taylor 1969) and

to stabilize liquid bridges composed of dielectric fluids (Raco 1968; Sankaran & Saville

1993; Thiessen et al. 2002). Alternatively, application of axial magnetic fields (Nicolás

1992) or flow induced stabilisation techniques (Lowry & Steen 1997, 1994, 1995) have

been utilised for surmounting the Plateau limit, obtaining stabilisation upto !/' = 8.99

for a pinned liquid bridge. Another class of techniques comprise acoustic forcing which

have been used to demonstrate stabilisation of liquid bridges beyond the Plateau limit

(Marr-Lyon et al. 1997, 2001). The nonlinear dynamics of liquid bridges and their stability

subject to axial, oscillatory forcing of the point of support have in fact been studied quite

extensively (Chen & Tsamopoulos 1993; Mollot et al. 1993; Benilov 2016; Haynes et al.

2018). Analogously, the use of axial vibration for stabilising and preventing rupture of a

thin film coating a solid rod by subjecting one end of the rod to ultrasound forcing has

been investigated in detail (Moldavsky et al. 2007; Rohlfs et al. 2014; Binz et al. 2014).

Parametric stabilisation also known as dynamic stabilisation via imposition of vibration has

been demonstrated (Wolf 1970) for the Rayleigh-Taylor instability of a heavier fluid overlying

a lighter one. Here viscosity was found to be crucial for stabilisation of short wavelength

modes. In this study we will find that an identical situation occurs in the dynamic stabilisation

of RP modes also. Here short wavelength modes (i.e those with wavelength smaller than the

cylinder circumference) which are stable in the absence of forcing can however become

unstable in the presence of forcing. These modes even when absent in the initial conditions

can be produced due to nonlinearity (in numerical simulations) and it will be seen that

viscosity is crucial in preventing destabilisation of the cylinder due to these modes.

Parametric stabilisation and destabilisation of otherwise unstable or stable mechanical

equilibria have a long and distinguished history of investigation. The first problems to be
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investigated were mechanical systems, notably by Melde (1860) who studied transverse

oscillations of a taut string whose end was subjected to lengthwise vibrations (see Tyndall

(1901), section 7, figs. 45-49). In a series of studies Rayleigh (1883, 1887), Matthiessen

(1868) and Raman (1909, 1912) studied this problem in detail obtaining the damped

Mathieu equation already in their analysis. Closely related experimental observations for

fluid interfaces (using mercury, egg-white, turpentine oil etc.) had been made nearly thirty

years earlier by Faraday (1837) culminating in the insightful study by Benjamin & Ursell

(1954) of the instability, which in modern parlance has come to be known as the Faraday

instability.

Benjamin & Ursell (1954) derived the Mathieu equation from the inviscid, irrotational fluid

equations opening the way to a rich body of literature on Faraday waves (Kumar & Tuckerman

1994; Cerda & Tirapegui 1997; Fauve 1998; Kumar 2000; Adou & Tuckerman 2016), spatio-

temporal chaos (Kudrolli & Gollub 1996), wave turbulence (Shats et al. 2014; Holt & Trinh

1996) and pattern-formation (Edwards & Fauve 1994; Arbell & Fineberg 2000). Viscosity

constitutes a non-trivial modification to the Mathieu equation. Unlike inviscid predictions

on the forcing-strength versus wavenumber plane, the threshold acceleration for the insta-

bility becomes finite when viscosity is taken into account, as the instability tongues do

not touch the wavenumber axis anymore. This was first systematically demonstrated by

Kumar & Tuckerman (1994) using Floquet analysis further finding that the wavelength at the

onset of the instability varies non-monotonically with increasing viscosity. The predictions of

Kumar & Tuckerman (1994) have been validated in experiments by Bechhoefer et al. (1995)

and for Faraday waves in a cylinder by Batson et al. (2013).

The stability tongues of the Mathieu equation suggest the possibility of dynamical

stabilisation of a statically unstable configuration of heavier fluid on a top of a lighter one

via high-frequency oscillation normal to the unperturbed interface. Since the theoretical

and experimental demonstration of this by Wolf (1969, 1970), this has been studied

extensively not only for the Rayleigh-Taylor instability (Troyon & Gruber 1971; Piriz et al.

2010; Boffetta et al. 2019) but also in the suppresion of long surface-gravity modes in

inclined plane flow (Woods & Lin 1995), the Marangoni instability (Thiele et al. 2006) and

for stabilising a thin film on the underside of a substrate (Sterman-Cohen et al. 2017). In close

analogy to the work of Wolf (1970), our present study demonstrates usage of radial forcing

(i.e. normal to the unperturbed interface) for dynamic stabilisation of RP modes. To the best

of our knowledge, this is the first such demonstration (a condensed version was presented

in Patankar et al. (2019) and Patankar et al. (2020)). We closely follow the Floquet analysis

approach of Kumar & Tuckerman (1994) in order to obtain the threshold forcing where RP

mode stabilisation can be achieved. For viscous liquid cylinders, a recent study by Maity

(2021) has investigated via Floquet analysis, the effect of viscosity on the stability tongues of

the inviscid Mathieu equation proposed in Patankar et al. (2018) and investigated further in

Maity et al. (2020). An interesting observation here is that the < = 1 mode shows a threshold

which decreases with increasing viscosity, in a certain window of viscosity change (Maity

2021). The study by Maity (2021) however did not investigate the possibility of stabilisation

of RP unstable modes, as is the focus of the current study.

For Faraday waves on flat interfaces, prior studies have demonstrated that the viscous ex-

tension of the inviscid Mathieu equation (Benjamin & Ursell 1954) is an integro-differential

equation (Jacqmin & Duval 1988; Beyer & Friedrich 1995; Cerda & Tirapegui 1997, 1998).

In this study, we also derive a novel cylindrical analogue of this integro-differential equation

governing small-amplitude Fourier modes on a liquid cylinder and demonstrate its connection

to the equation derived earlier by Beyer & Friedrich (1995). Numerical solution to this

integro-differential equation enables us to estimate the contribution of viscosity from the

potential part of the flow and from the boundary layer at the free-surface. Additionally,
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Stabilisation technique References Comments

Electric field Raco (1968); Sankaran & Saville (1993) Active control of (2, 0) mode
Thiessen et al. (2002) in Thiessen et al. (2002)

Magnetic field Nicolás (1992) Critical value of magnetic field

Flow induced (Lowry & Steen 1997, 1994, 1995) Axial flow

Acoustic forcing (Marr-Lyon et al. 1997, 2001) Radiation pressure

Axial oscillation Chen & Tsamopoulos (1993); Mollot et al. (1993), Axial oscillation of one disk
Benilov (2016); Haynes et al. (2018)

Radial forcing Patankar et al. (2018) Parametric stabilisation

Electrochemical oxidation Song et al. (2020) Controlling surface-tension

Table 1: Literature on RP mode stabilisation

o

Figure 1: A cartoon of a surface perturbation on a viscous liquid cylinder of radius '0

subject to a radial body force F (A, C) = F (A, C)êA = −ℎ
(
A
'0

)
cos(ΩC)êA . The variable

[(\, I, C) measures the displacement of the free-surface with respect to the unperturbed
cylinder, being zero in the base-state. Surface perturbations

[(\, I, C) = 0< (C; :) cos(<\) cos(:I) are imposed.

the solution to this equation demonstrates the RP stabilisation that is sought, in excellent

agreement with direct numerical simulations.

2. Linear stability analysis

Refer figure 1, the base-state comprises an infinitely long, quiescent liquid cylinder of

density d, surface-tension ) , kinematic viscosity a and radius '0 being subject to a radial,

oscillatory body force F (A, C). This radial body force (per unit mass) has strength ℎ and

a spatial dependence of the form A
'0

in order to ensure single valuedness of the force at

the origin (Adou & Tuckerman 2016; Patankar et al. 2018) and the negative sign in the

expression for F (A, C) is for convenience (see below equation 2.1). Thus in the base state

(variables with subscript 1) there is no flow, the interface is a uniform cylinder of radius '0

and the momentum equation simplifies to a balance between the radial oscillatory body force

Focus on Fluids articles must not exceed this page length
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Figure 2: Inviscid and viscous growth (and decay) rates of RP modes (0 < :'0 < 1) from
numerically solving 2.2a,b (Weber 1931; García & González 2008). At any Ohnesorge

(Oh) and : in the range 0 < : < '−1
0

, there are two capillary modes, one unstable (f > 0)

and another stable (f < 0). We stabilise the exponentially growing mode by forcing at
Ω >> f<0G where f<0G is the growth rate of the fastest growing RP mode, it being

highest for the inviscid case ($ℎ = 0) for (:'0)<0G ≈ 0.69 with fmax ≈ 0.34

√
)

d'3
0

.

and the pressure gradient viz.

u1 = 0, − 1
d
∇?1 + F (A, C)êA = 0, 0 6 A 6 '0 (2.1)

with F (A, C) ≡ −ℎ
(
A
'0

)
cos (ΩC) , and ?1 (A, C) = dℎ

2'0

(
'2

0
− A2

)
cos(ΩC) + )

'0
.

Here êA is the standard unit vector in the radial direction in cylindrical coordinates. Note that

we have assumed stress in the fluid outside the cylinder to be zero, so that ?1 ('0, C) = )
'0

satisfies the pressure jump condition at the interface due to surface tension. We neglect the

density and viscosity of the fluid outside in the present study implying that the free-surface

of the cylinder satisfies stress free conditions. In the following subsection, we briefly discuss

RP modes in the unforced system (ℎ = 0) followed by inviscid and viscous description of RP

stabilisation with radial forcing (ℎ ≠ 0).

2.1. The inviscid and viscous RP modes (ℎ = 0)

The classical RP modes are unstable axisymmetric Fourier modes satisfying 0 < :'0 < 1

for the unforced system (ℎ = 0). These are governed by the following inviscid (equation

2.2a, Rayleigh (1878)) and viscous dispersion relation (Rayleigh (1892a); Weber (1931);

Chandrasekhar (1981); Liu & Liu (2006)) with growth rate f0 (inviscid) and f (viscous)

respectively.

f2
0 =

)

d'3
0

:'0

(
1 − :2'2

0

) I1(:'0)
I0(:'0)

, (2.2a)

f2 + 2E:2

[
I′
1
(:'0)

I0(:'0)
− 2:;

;2 + :2

I1(:'0)
I0(:'0)

I′
1
(;'0)

I1(;'0)

]
f −

(
;2 − :2

;2 + :2

)
f2

0 = 0, (2.2b)

where ;2 ≡ :2 + f

a

where I<(I) is the <th order modified Bessel function of the first kind and I
′
<(I) ≡

3I<

3I
. In
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.

(a) Stability plot (b) : = 4.8, ℎ = 1.8 × 104cm/s2

Figure 3: Grey and white indicate unstable and stable regions respectively. Panel (a)
Inviscid stablity chart for equation 2.3. The forcing frequency 5 = 300 Hz >>

fmax = 0.34

√
)/(d'3

0
) = 17.68 Hz. Parameters are for Case 1 in table 3 with `� = 0.

Panel (b) (Red curve) Time signal from numerical solution to the 3D Euler equation

(Popinet 2014) with an RP mode (:0 = 4.8 cm−1, <0 = 0) excited at C = 0. (Black curve)
Solution to equation 2.3 (Left inset) Zoomed out view of solution to equation 2.3 (Right

inset) Stability chart for < = 4. An unstable non-axisymmetric Fourier mode
(: = 28.8 = 6:0, < = 4 in the grey region) at C̃ ≈ 14 s causes destabilisation of the

cylinder.

figure 2, f0 and f are obtained by numerically solving eqns. 2.2a and 2.2b for the inviscid

and viscous cases respectively. Unlike the inviscid relation 2.2a which is quadratic in f0,

the viscous dispersion relation given by 2.2b is transcendental in f. It admits in addition

to two capillary modes, a countably infinite set of hydrodynamic (or vorticity) modes as its

roots and the latter are purely damped modes (García & González 2008). In figure 2 we only

depict the growth and decay rates corresponding to the two capillary modes in the range

0 < :'0 < 1 for different values of Ohnesorge number Oh =
`√

) d'0
. Our aim in this study

is to stabilise the capillary modes in the range 0 < :'0 < 1 using radial forcing and this is

discussed below.

2.2. Dynamic stabilisation of RP modes - Linear inviscid theory

The inviscid results on RP stabilisation using radial forcing were presented earlier in

Patankar et al. (2018) and are summarised very briefly here, for self-containedness. In the

presence of radial forcing F (A, C) = −ℎ
(
A
'0

)
cos(ΩC) and under the linearised, inviscid,

irrotational approximation, the equation governing the amplitude 0<(C; :) of standing waves

on the free surface of the form [(I, \, C) = 0<(C; :) cos(<\) cos(:I) is the Mathieu equation

2.3

320<

3C2
+ I

′
< (:'0)

I< (:'0)

[
)

d'3
0

:'0

(
:2'2

0 + <2 − 1
)
+ :ℎ cos (ΩC)

]
0<(C; :) = 0, (2.3)

The stability diagram for equation 2.3 maybe obtained using Floquet analysis (Patankar et al.

2018). For ℎ ≠ 0, we have the interesting prediction that axisymmetric unstable RP modes

can be stabilised by chosing ℎ to be sufficiently large. This is readily seen in the stability

chart in figure 3a where the solid curve in black indicates the threshold value of forcing ℎ

above which, a RP mode is stable. The line in blue indicates all unstable RP modes for ℎ = 0.
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Two representative RP unstable modes are chosen viz. :0 = 4.8 cm−1 (wavelength _ ≈ 1.309

cm) and :0 = 3.48 cm−1 (_ ≈ 1.8 cm) . The plot predicts the threshold values of forcing

strength ℎcr = 1.21 × 104 cm/s2 and ℎcr = 4.17 × 104 cm/s2 respectively, beyond which

these modes can be stabilised. For generating figure 3a, we have chosen Ω = 600c rad/s

(f=300 Hz), '0 = 0.2 cm, density d = 0.957 gm/cm3, surface tension ) = 20.7 dynes/cm.

These fluid parameters approximately correspond to silicone oil (Vega & Montanero 2009)

with its viscosity artificially set to zero). Note that at these forcing frequencies, we may

safely ignore compressibility effects as maybe inferred from the order of magnitude of

the two typical velocity scales viz. maximum
[
ℎ2
5
, 5 '0

]
≈ 139 cm/s for 5 = 300Hz and

ℎ2 = 4.17×104cm/s2. This is negligible compared to the typical acoustic speed O(105) cm/s

in the fluid at ambient conditions.

Figure 3b presents the time signal obtained from inviscid numerical simulations (Popinet

2014) for the axisymmetric mode :0 = 4.8, <0 = 0 excited at C = 0. Note that this is a RP

unstable mode and as seen from figure 3a, it is expected to be stabilised beyond a threshold

forcing of ℎ = 1.21×104 cm/s2. In fig. 3b, we see agreement between the solution to equation

2.3 and the numerical simulation for very brief time (about three forcing time periods) after

which the signal from the numerical simulation begins to deviate and grow rapidly (around

C̃ ≈ 14) in contrast to the solution to equation 2.3 which stays bounded (see left inset). A

Fourier analysis of the interface at C̃ ≡ CΩ/2c ≈ 14 indicated by the arrow, reveals the

appearance of a non-axisymmetric mode (: = 28.8, < = 4) in the simulation. This is a stable

mode in the unforced system (ℎ = 0) but is destabilised at the imposed level of forcing, lying

inside a tongue as seen in the right inset of figure 3b. It becomes clear that for obtaining

dynamic stabilisation, we need to ensure that all Fourier modes either present initially in

the system or born via nonlinear effects, both axisymmetric and three-dimensional, should

remain linearly stable at the imposed level of forcing. We will demonstrate in the next section

that by taking viscosity into account and using the forcing frequency as a tuning parameter,

this may be achieved.

2.3. Dynamic stabilisation of RP modes - Linear viscous theory

Having demonstrated the inadequacy of dynamic stabilisation of RP modes in an inviscid

model, we proceed to the viscous case. The motivation for including viscosity is simple

to understand: it is known that inclusion of viscosity leads to displacement of the in-

stability tongues upwards on the ℎ-: plane and these no longer touch the wavenumber

axis (Kumar & Tuckerman 1994). Our expectation is that by suitably choosing viscosity

and the forcing frequency, we will be able to shift the unstable tongues sufficiently above

the wavenumber (:) axis. This generates a sufficiently large stable region where not only

the axisymmetric RP unstable mode (:0) is stablised (with forcing) but all higher modes

accessible to the system are also stable. Note that the upward movement of the tongues

occur not only for axisymmetric modes but also for non-axisymmetric ones. In particular

we will also see that for fixed viscosity, we can move the minima of the tongue upwards by

increasing the forcing frequency. The algebra for the viscous analysis is somewhat lengthy

and details are provided in the supplementary material. We outline the important steps that

follow. Expressing all quantities as sum of base plus perturbation i.e.

?̂ = ?1 + ?, û = 0 + u & perturbed free surface at I = '0 + [, (2.4a,b,c)
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Substituting 2.4a,b into the incompressible Navier-Stokes equations and linearising about

the base state we obtain the equations governing the perturbations viz.(
m

mC
− aΔ

)
u = − 1

d
∇?, ∇ · u = 0 (2.5a,b)

where the vector Laplacian of the incompressible velocity field is Δu ≡ −∇ × ∇ × u.

The linearised boundary conditions are obtained by substituting 2.4a,b,c into the boundary

conditions (supplementary material), employing Taylor expansion and retaining terms linear

in the perturbation variables viz. u, ? and [ (the perturbation velocity u is written in terms

of its components (DA , D\ , DI)), we obtain

m[

mC
= DA (A = '0), (2.6a)

`

(
mDA

mI
+ mDI

mA

)
A='0

= 0, `

(
A
m

mA

(D\

A

)
+ 1

A

mDA

m\

)
A='0

= 0, (2.6b,c)

(
m

mA
+ 1

A

) [
mDA

mC
− a

{
ΔDA −

DA

A2
− 2

A2

(
mD\

m\

)}]
+ F (A, C)Δ$[ − 2aΔ$

(
mDA

mA

)

= − )

d'2
0

Δ$

[
[ +

(
m2[

m\2

)
+ '2

0

(
m2[

mI2

)]
at A = '0, (2.6d)

with Δ$ ≡ 1

A2

m2

m\2
+ m2

mI2
,

u(A → 0, C) → finite. (2.6e)

where Δ is the scalar Laplacian in cylindrical coordinates. Equations 2.6a-e are the linearised

versions of the kinematic boundary condition (equation 2.6a), the zero shear stress condi-

tion(s) at the free surface (eqns. 2.6(b,c)), the normal stress condition at the free-surface

due to surface tension (equation 2.6d) and the finiteness condition at the axis of the cylinder

(equation 2.6e) respectively. Eqn. 2.6d has been obtained by eliminating pressure from the

primitive form of pressure jump boundary condition (see supplementary material). Note the

presence of the forcing term F (A, C) in the normal stress boundary condition in equation 2.6d

indicating the time periodicity of the base state.

We solve eqns. 2.5a,b in the streamfunction-vorticity formulation and for this, the curl and

double curl of equation 2.5a leads to (8 ≡ ∇ × u)

m8

mC
= a�8,

m

mC
�u = a��u. (2.7a,b)

where � is the vector Laplacian. Employing the toroidal-poloidal decomposition (Marqués

1990; Boronski & Tuckerman 2007; Prosperetti 2011), the velocity and vorticity fields are

expressed in terms of two scalar fields k(A, \, I, C) and b (A, \, I, C) using the decomposition

u = ∇ × (kêI) + ∇ × ∇ × (b êI) , 8 ≡ ∇ × ∇ × (kêI) + ∇ × ∇ × ∇ × (b êI) , (2.8a,b)

where êI is unit vector along the axial direction of the cylinder (Boronski & Tuckerman

2007). By construction the velocity field in equation 2.8a is divergence free and it can be

shown (see supplementary material) that the equations governing the toroidal and poloidal

fields k(A, I, \, C) and b (A, I, \, C) respectively, are the fourth and sixth order equations(
m

mC
− aΔ

)
ΔHk = 0 and

(
m

mC
− aΔ

)
ΔΔHb = 0, (2.9a,b)
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where the scalar Laplacian Δ ≡ 1
A

m
mA

(
A m
mA

)
+ 1

A2
m2

m\2 + m2

mI2 = ΔH + m2

mI2 .

As we have raised the order of our governing equations by taking curl and double curl,

we need extra equations to determine the additional constants of integration. It was shown

in Marqués (1990) that this takes the form of an additional equation also known as the

compatibility condition (Boronski & Tuckerman 2007). For the present problem at linear

order, this extra equation is simply the radial component of the vorticity equation 2.7a

(Boronski & Tuckerman 2007) i.e.

mlA

mC
= a

{
ΔlA −

lA

A2
− 2

A2

(
ml\

m\

)}
(2.10)

with lA =
m2k

mAmI
− 1

A

m

m\
(Δb) and l\ =

1

A

m2k

mIm\
+ m

mA
(Δb)

In order to determine the scalar fields k(A, \, I, C), b (A, \, I, C), we need to solve equations

2.9(a,b). Analogous to the inviscid analysis in Patankar et al. (2018) we seek three dimen-

sional standing wave solutions of the form

k(A, \, I, C) = Ψ<(A, C; :) sin(<\) cos(:I), b (A, \, I, C) = Ξ<(A, C; :) cos(<\) sin(:I),
[(\, I, C) = 0<(C; :) cos(<\) cos(:I), (2.11a,b,c)

where : ∈ R+ and < ∈ Z+. Substituting equations 2.11(a,b) into eqns. 2.9 (a,b) we obtain

the equations governing Ψ<(A, C; :) and Ξ<(A, C; :) viz.(
m

mC
− aL

)
LHΨ< = 0,

(
m

mC
− aL

)
LLHΞ< = 0 (2.12a,b)

where LH ≡ m2

mA2
+ 1

A

m

mA
− <2

A2
& L ≡ L� − :2.

Our task now is to determine the linear stability of the (time-dependent) base-state by

identifying unstable and stable regions via Floquet analysis. This is indicated on the strength

of forcing (ℎ) versus wavenumber (: ,<) plane for chosen fluid parameters d, a, ) and forcing

frequency Ω and is done in the next subsection.

2.3.1. Floquet analysis

Using the Floquet ansatz for time periodic base states, we assume the following forms for

Ψ<(A, C; :),Ξ<(A, C; :) and 0<(C; :) in equations 2.11(a-c) (Kumar & Tuckerman 1994)

Ψ<(A, C; :) = exp(_< (:)C)
∞∑

==−∞
k̃
(<)
= (A; :) exp(8=ΩC),

Ξ<(A, C; :) = exp(_< (:)C)
∞∑

==−∞
b̃
(<)
= (A; :) exp(8=ΩC),

0<(C; :) = exp(_<(:)C)
∞∑

==−∞
M= exp(8=ΩC), (2.13a,b,c)

with _<(:) being the Floquet exponent and k̃
(<)
= (A; :) and b̃

(<)
= (A; :) the complex eigenfunc-

tions for each Fourier mode (:, <). The complex eigenfunctions satisfy the reality condition

k̃
(<)
−= =

(
k̃
(<)
=

)∗
and b̃

(<)
−= =

(
b̃
(<)
=

)∗
, the superscript ∗ indicating complex conjugation.

We substitute 2.13(a,b) into 2.12(a,b) respectively yielding fourth and sixth order differ-

ential equations (eigenvalue problems) governing k̃
(<)
= (A; :) and b̃

(<)
= (A; :) for each = in the
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expansion 2.13(a,b)

O(:,<) ·
(
32

3A2
+ 1

A

3

3A
− <2

A2

)
k̃
(<)
= (A; :) = 0, (2.14a)

O(:,<) ·
(
32

3A2
+ 1

A

3

3A
− <2

A2
− :2

) (
32

3A2
+ 1

A

3

3A
− <2

A2

)
b̃
(<)
= (A; :) = 0, (2.14b)

where the linear operator O(:,<) ≡
[
_<(:) + 8=Ω −

(
32

3A2 + 1
A

3
3A

− <2

A2 − :2
)]

. Equations

2.14(a,b) are solved with the finiteness condition at A → 0 in equation 2.6e leading to

k̃
(<)
= (A; :) = A=I<( 9=A) + B=A

<, b̃
(<)
= (A; :) = C=I<( 9=A) + D=I<(:A) + E=A

<.

(2.15a,b)

where A=,B=, C=,D= and E= are constants of integration, I<(·) is the <th order modified

Bessel function of first kind and 92= ≡ :2+ _<(:) + 8=Ω

a
with '4{ 9=} > 0. The compatibility

condition in equation 2.10 may be further simplified using eqns. 2.11(a,b), the Floquet ansatz

2.13(a,b) and the expressions in 2.15. The algebra for this is lengthy but eventually leads to

a very simple relation viz.

B= + :E= = 0 ∀ = ∈ Z. (2.16)

The constants B= and E= appear only in the combination B= + :E= in subsequent algebra and

thus equation 2.16 may be used to eliminate these constants. Consequently the only constants

which survive in further analysis are A=, C=,D= and M= (see equation 2.13c). The Floquet

ansatz in equation 2.13(a,b) implies that the velocity components may be written as

(DA , D\ , DI) =
∞∑

==−∞

(
D̃A ,= (A) cos(<\) cos(:I), D̃\,= (A) sin(<\) cos(:I), D̃I,= (A) cos(<\) sin(:I)

)

× exp [(8=Ω + _<(:)) C] (2.17)

where the (complex) eigenmodes D̃A ,= (A), D̃\,= (A) and D̃I,= (A) are determined using expres-

sions 2.15(a,b) in equations 2.8a. These are

D̃A ,= (A) =
<

A
I<( 9=A)A= + : 9=I

′
<( 9=A)C= + :2I

′
<(:A)D=

D̃\,= (A) = −
{
9=I

′
<( 9=A)A= +

:<

A

(
I<( 9=A)C= + I<(:A)D=

)}

D̃I,= (A) = −
{
92=I<( 9=A)C= + :2I<(:A)D=

}
, (2.18a,b,c)

prime indicating differentiation with respect to the argument e.g. I
′
<(I) ≡ 3I<

3I
and so on.

Note that despite the presence of terms of the form 1/A in expressions 2.18(a,b), the velocity

components do not diverge at the axis of the cylinder. This may be easily verified for the case

< > 0 and the asymptotic form of I<(I) for small I.

The boundary conditions in eqns. 2.6(a,b,c,d) may now be simplified employing expres-

sions 2.17 and 2.18(a,b,c) to obtain linear algebraic equations in A=, C= ,D= and M=.

The algebra is provided in supplementary material and we provide only the normal stress

Rapids articles must not exceed this page length
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boundary condition below[
`

{
:D=

[
(:2 − 92=)

:I′<(:'0)
'0

−
(
:2 + 92= +

2<2

'2
0

)
:2I′′<(:'0)

]
− 2

(
:2 + <2

'2
0

)
92=I′′<( 9='0):C=

−2

(
:2 + <2

'2
0

)
<

'0

(
9=I′<( 9='0) −

I<( 9='0)
'0

)
A=

}

− )

'2
0

(
:2 + <2

'2
0

) (
:2'2

0
+ <2 − 1

)
M=

] ©­­«
2'2

0

d
(
:2'2

0
+ <2

) ª®®
¬
= ℎ [M=−1 +M=+1] (2.19)

Equations 2.19 is solved symbolically in Mathematica using expressions for A=, C=

and D= in terms of M= to obtain a single equation relating M=−1, M= and M=+1 for

= = 1, 2, 3 . . . # . Equation 2.19 is thus written as a generalised eigenvalue problem

A ·M = ℎ Q ·M = = 0, 1, 2, .....# (2.20)

where A and Q are matrices and we have taken # = 30 terms in the Fourier series for

this study (see supplementary material). Expressing _<(:) = ˜̀ + �U, the sub-harmonic

case is U = Ω/2 and harmonic case is (U = 0) (Kumar & Tuckerman 1994). With ˜̀ = 0,

the resultant equations are solved using the Matlab generalised eigenvalue solver eig(,),

MATLAB (2015) to obtain the stability boundaries on the wavenumber : versus forcing ℎ

plane for a given choice of <, forcing frequency Ω and fluid parameters ), d, ` and '0. The

stability charts obtained from Floquet analysis will be discussed in section 4.

3. A non-local equation governing am (t; k)
In this section, we present an analytical formulation which complements the Floquet analysis

presented in section 2. We obtain a self-contained equation for 0<(C; :), the linearised

amplitude of a Fourier mode (cos(:I), cos(<\)) in eqns. 2.11(c). This equation will allow

us to understand the physical role of viscosity. The starting point of the derivation are eqns.

2.12(a,b). We define Laplace transforms as[
Ψ̃

(<) (A, B; :), Ξ̃(<) (A, B; :), 0̃<(B; :)
]
=

∫ ∞

0

exp (−BC)
[
Ψ<(A, C; :),Ξ<(A, C; :), 0<(C; :)

]
3C

(3.1)

In further algebra, the Laplace transform operator and its inverse are indicated as L̂ (·)
and L̂

−1 (·) respectively and variables in the Laplace domain are indicated with a tilde

on top. Laplace transforming equation 2.12(a,b) with the initial conditions Ψ<(A, 0; :) =

Ξ<(A, 0; :) = 0,
.
0<(0; :) = 0 and 0<(0; :) = 0(0) which correspond to deformation of the

free surface and zero perturbation velocity (dot indicates time differentiation) initially, we

obtain

(B − aL) L� Ψ̃
(<) (A, B; :) = 0, (B − aL) LL� Ξ̃

(<) (A, B; :) = 0 (3.2a,b)

The solution to equations 3.2(a,b) which stay finite as A → 0 are the counterparts of

expressions 2.15(a,b). These are

Ψ̃
(<) (A, B; :) = A(B)I< (;A) + B(B)A<, Ξ̃

(<) (A, B) = C(B)I< (;A) + D(B)I< (:A) + E(B)A<
(3.3a)

where ;2(B) ≡ :2 + B

a
, Re(;) > 0.



12 Patankar and Basak and Dasgupta

andA(B),B(B), C(B),D(B) and E(B) are unknown functions to be determined subsequently.

The algebra which follows is enormously simplified by recognising that the set of variables[
A(B),B(B), C(B),D(B), ;2

]
in this section are the analogues of the corresponding set[

A=,B=, C=,D=, 9
2
=

]
used in the previous section. The compatibility condition is thus

B(B) + :E(B) = 0 (3.4)

and the normal stress boundary condition (equation 2.6d) in the Laplace domain maybe

written as

)

d'2
0

(
:2'2

0 + <2 − 1
)
0̃< + 2a<;

'0
I
′
<(;'0)Λ2(B)A(B) + 2a:;2I

′′
<(;'0)C(B)

+
{
2a:3I

′′
<(:'0) + :BI<(:'0)

}
D(B) − F̃ ('0, B) ∗ 0̃<(B; :) = 0

(3.5)

where the convolution term indicated with ∗ arises from the Laplace transform of the product

of F ('0, C)0<(C; :) (Prosperetti 2011). Analogous to the earlier section, from the other

boundary conditions (equations 2.6(a,b,c)) written in the Laplace domain we may obtain

expressions for A(B), C(B) and D(B) in terms of 0̃<(B) and these are provided in Appendix

A. These are substituted in 3.5 and produces the equation

B (B0̃<(B) − 0(0)) + 2a:2 I
′′
<(:'0)

I<(:'0)
(B0̃< − 0(0)) + 4a:

I
′
<(:'0)

I<(:'0)
Z̃ (B) (B0̃< − 0(0))

+ I
′
<(:'0)

I<(:'0)
j̃(B)

[
)

d'3
0

:'0

(
:2'2

0 + <2 − 1
)
0̃< − : F̃ ('0, B) ∗ 0̃<(B; :)

]
= 0

(3.6)

where expressions for j̃(B) and Z̃ (B) are provided below equation 3.7. Equation 3.6 can be

inverted into the time domain to obtain an integro-differential equation governing 0<(C; :)
(recall

.
0<(0; :) = 0)

320<

3C2
+ 2a:2

I′′<(:'0)
I<(:'0)

30<

3C
+

∫ C

0

L̂
−1 ( j̃(B)) I′<(:'0)

I<(:'0)

[
)

d'3
0

:'0

(
:2'2

0 + <2 − 1
)

+ℎ: cos [Ω(C − g)]
]
0<(C − g)3g + 4a:

I′<(:'0)
I<(:'0)

∫ C

0

L̂
−1 [Z (B)] 30<

3C
(C − g)3g = 0 (3.7)

where j̃(B) ≡
(
:2 − ;2

)
Λ1(B) − 2:2Λ2(B) + 2;2Λ3

2:2Λ2(B) −
(
;2 + :2

)
Λ1(B)

,

Z̃ (B) ≡ ;
I′<(;'0)
I<(;'0)

{
2:2Λ2 (B) −

(
;2 + :2

)
Λ3(

;2 + :2
)
Λ1(B) − 2:2Λ2(B)

}
Λ2 (B) − :2;

I′′<(;'0)
I′<(;'0)

{
Λ1(B) − Λ3(

;2 + :2
)
Λ1(B) − 2:2Λ2(B)

}
,

while expressions forΛ1(B),Λ2(B),Λ3 are provided in Appendix A. Note that since inversion

of j̃(B) and Z̃ (B) is not feasible analytically without further approximations, these inversions

are indicated formally as L̂−1 (·) in equation 3.7. Equation 3.7 is one of the central results of

our study and to the best of our knowledge this equation has not been derived in the literature

before.

Equations 3.6 and 3.7 thus govern the amplitude of Fourier modes with indices (:, <)
in the Laplace and time domain respectively. These represent the cylindrical counterpart

of the non-local equation governing viscous Faraday waves in Cartesian geometry, see



Dynamic stabilisation of RP modes 13

(Beyer & Friedrich 1995; Cerda & Tirapegui 1997). The advantage of having an equation like

3.7 for 0<(C; :) is that it becomes possible to estimate separately, the viscous contributions

to the time evolution of the free surface from damping in the irrotational part of the flow and

from the boundary layer at the free-surface and this is done at the end of this study. We will

demonstrate in section 5 that the numerical solution to equation 3.7 shows the stabilisation

of RP modes that is sought and agrees very well with Direct Numerical Simulations. A

number of consistency checks have been performed on equation 3.6 and 3.7 ensuring that

these equations are consistent in various limits. These limits are discussed below.

Inviscid limit of equations 3.6 and 3.7

The first check on equation 3.7 is to demonstrate that it reduces to equation 2.3 (Matheiu

equation on an inviscid cylinder) in the inviscid limit. In the inviscid limit, ; → ∞ (for fixed

B) and it maybe shown that lima→0 Z̃ (B) → 0 and lima→0 j̃(B) → 1 in equation 3.7. For

this, we have used the asymptotic expressions for I<(I) and I
′
<(I) as I → ∞ and fixed <

(F. W. J. Olver et. al. 2021). Consequently the inversion of equation 3.6 into the time domain

becomes trivial leading to the Mathieu equation (Patankar et al. 2018) for potential flow viz.

320<

3C2
+ I′<(:'0)

I<(:'0)

[
)

d'3
0

:'0

(
:2'2

0 + <2 − 1
)
+ :ℎ cos (ΩC)

]
0<(C) = 0 (3.8)

where we have used F (A, C) = −ℎ
(
A
'0

)
cos(ΩC) in writing equation 3.8.

Unforced (ℎ = 0) limit of equation 3.6

The next test is to show that in the absence of forcing, expression 3.6 leads to the correct

dispersion relation for free, viscous modes. We demonstrate this for the axisymmetric case

where expressions for j̃(B) and Z̃ (B) (see below equation 3.7) are particularly very simple

viz. for < = 0, we have

j̃(B) → ;2 − :2

;2 + :2
=

B

B + 2a:2
, Z̃ (B) → − :2;

;2 + :2

I
′′
0
(;'0)

I
′
0
(;'0)

= − a;:2

B + 2a:2

I
′′
0
(;'0)

I
′
0
(;'0)

(3.9)

These maybe obtained from the observation that for < = 0, Λ1(B) diverges while Λ2(B) and

Λ3 remain finite. Using expressions 3.9 in equation 3.6 leads to,

[
B20̃0 − B0(0)

]
+ 2a:2

I′′
0
(:'0)

I0(:'0)
[B0̃0 − 0(0)] − 4a:

I′
0
(:'0)

I0(:'0)
a;:2

B + 2a:2

I
′′
0
(;'0)

I
′
0
(;'0)

[B0̃0 − 0(0)]

+
I′
0
(:'0)

I0(:'0)
B

(B + 2a:2)

[
)

d'3
0

:'0

(
:2'2

0 − 1
)
0̃0

]
= 0 (3.10)

implying

0̃0(B; :) =

[
B + 2a:2

I
′′
0
(:'0)

I0(:'0)
− 4a2; :3

B + 2a:2

I
′
0
(:'0)

I0(:'0)
I
′′
0
(;'0)

I
′
0
(;'0)

]

B2 + 2a:2
{ I

′′
0
(:'0)

I0(:'0)
− 2a;:

B + 2a:2

I
′
0
(:'0)

I0(:'0)
I
′′
0
(;'0)

I
′
0
(;'0)

}
B − B

B + 2a:2
f2

0

0(0)(3.11)

Comparing the denominator of equation 3.11 with expression 2.2b, and replacing B → f,

we find that these are the same expressions. This is consistent as the viscous dispersion

relation for free perturbations is obtained from the homogenous solution to the linear set
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of equations governing �̃(B), C̃(B), D̃(B) and 0̃<(B; :). The denominator of equation 3.11

represents the determinant of the homogenous part of these equations (Prosperetti 1976;

Farsoiya et al. 2020) and thus leads us to the dispersion relation provided in equation 2.2b.

We have thus verified that equation 3.6 produces the correct dispersion relation in the

unforced, axisymmetric limit.

Flat interface limit of equation 3.7

We demonstrate that in the limit '0 → ∞ (flat interface limit), our equation 3.6 reduces to

the following equation (mC ≡ 3
3C

) (Beyer & Friedrich 1995){
1

:

(
mC + 2a:2

)2

+
(
):2

d
+ ℎ cos (ΩC)

) }
00(C)

−4a3/2:2

c

∫ C

−∞

√
c

C − g
exp(−a:2 (C − g))

(
mg + a:2

)
00(g)3g = 0 (3.12)

The algebra for this is lengthy and is provided in Appendix B. Equation 3.12 is analogue of

equation 3.7 govering Faraday waves on a flat surface and was obtained by Beyer & Friedrich

(1995) (deep-water limit).

Having demonstrated the consistency of equations 3.6 and 3.7, we will return to analysing

these at the end of section 5. Equation 3.7 is solved numerically in Mathematica using built-

in numerical Laplace inversion subroutines (Wolfram Research, Inc. 2017) and results will

be compared with DNS in section 5 in the context of RP stabilisation. In the next section,

we discuss the stability plots obtained from Floquet analysis which will suggest the RP

stabilisation strategy.

4. Linear stability predictions

We discuss the stability plots on the ℎ-: plane obtained through Floquet analysis presented

earlier. Refer to figure 4a (Case 1 in table 3 provide the parameters), we wish to stabilise

the axisymmetric RP unstable mode (:0 = 4.8, <0 = 0) by subjecting the cylinder to an

optimum forcing ℎ. As shown in figure 4a, the viscous stability tongues are moved upwards

due to viscosity (Kumar & Tuckerman 1994), compared to the inviscid tongues which touch

the wavenumber axis (black dashed line in left panel). The figure shows that the critical

threshold of forcing (we will call it ℎcr1 hereafter) for stabilising (:0 = 4.8, <0 = 0) is

ℎcr1 = 1.23×104 cm/s2, and the applied forcing (ℎ) needs to satisfy ℎ > ℎcr1 for stabilisation

of this mode. Simultaneously, we also need to ensure that ℎ is below a second threshold ℎcr2.

This second threshold (ℎcr2) is chosen to be the ordinate corresponding to the lowest minima

among all the stability tongues in figs. 4a and 4b. For stabilisation we require ℎcr1 < ℎcr2

and this is ensured by using the frequency of forcing Ω as a control parameter for a given set

of fluid parameters. Once we have chosen an Ω which satisfies the ordering ℎcr1 < ℎcr2, any

choice of ℎ satisfying ℎcr1 < ℎ < ℎcr2 not only stabilises the primary mode (:0, <0) but also

keeps moderately high modes (: > :0 for < = 0, 1, 2, 3, 4 . . .) stable.

Note that viscosity plays a very important role in this stabilisation as by displacing the

(in)stability tongues upward, it allows for the possibility of choosing the forcing such that

ℎcr1 < ℎ < ℎcr2. In the inviscid case, this is impossible to arrange as ℎcr2 = 0 because in

the inviscid case all (instability) tongues touch the wavenumber axis. Consequently in an

inviscid system if we force the cylinder at ℎ > ℎcr1, while the RP mode (:0, <0 = 0) is

definitely stabilised, at long time (Patankar et al. 2018) higher modes (axisymmetric and

non-axismmetric) are produced due to nonlinearity and some of these are inevitably linearly

unstable at the chosen level of forcing ℎ. As a consequence, the stabilisation in inviscid
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(a) m=0

m=1
m=2

m=3

m=4

(b) m=1,2,3,4

Figure 4: Panel a) Stability plot for axisymmetric (< = 0) and panel (b)
non-axisymmetric (< = 1, 2, 3, 4) modes with Case 1 parameters, table 3 (Ω = 600c). For
ℎ > 0, grey and white regions are unstable and stable respectively. (Left panel) Bold black
lines → viscous tongue, black dashed line→ inviscid tongue. (Inset) de-magnified view.

The mode (:0 = 4.8, <0 = 0) is stabilised for ℎ > ℎcr1 = 1.23 × 104 cm/s2. The optimum

forcing satisfies ℎcr1 < ℎ < ℎcr2 with ℎcr2 = 2.05 × 104 cm/s2 for < = 4 (see right panel).

The chosen ℎ = 1.8 × 104 (indicated by red symbol and solid red line in left and right
panels respectively) keeps the cylinder stable.

systems in short-lived thus rendering the stabilisation strategy unsuitable (this was shown in

figure 3b). The situation is rectified by including viscosity into our analysis. Refer to figure

4 where the red dot in the left panel and the solid red line in the right panel indicates a

suggested optimal value of ℎ satisfying ℎcr1 < ℎ < ℎcr2 for the RP mode :0 = 4.8, <0 = 0.

Note that the high modes (i.e. those with : >> :0 and < >> <0) which can be generated due

to nolinearity, are also associated with high rates of dissipation. Consequently we need not

take into account the stability of very high modes in our stabilisation strategy. For the present

purpose, we found it adequate to ensure that at the chosen value of Ω and ℎ, the primary

mode (:0, <0) as well as modes upto (7:0, < = 0, 1, 2, 3, 4) are stable. This is found to be

adequate for stabilisation of the liquid cylinder for several forcing time-periods.

An important point to note here is that although our theory has been developed assuming

that a continuous range of RP modes with arbitrary long wavelengths (: → 0) are accessible

to our system, in practise there is a finite upper limit on the maximum wavelength that the

system can access (due to axial confinement). In validating the present stability predictions

via direct numerical simulations (see section 5), we chose the length ! of the unperturbed

cylinder to be ! =
2c
:0

, :0 being the wavenumber of the axisymmetric RP unstable mode we

intend to stabilise. Boundary conditions (periodic) in the axial (I) direction imply that only

integral multiples of wavenumber :0 are allowed to appear in our simulations. This ensures

that wavenumbers verifying : < :0 are not accessible to our system, although it is clear from

figure 4a that such axisymmetric modes can continue to be unstable at the optimal level of

forcing (ℎ = 1.8 × 104). We shall return to this point at the end of this study. For stabilising

the mode (:0 = 4.8, <0 = 0), we have chosen ℎ = 1.8 × 104 (satisfying ℎcr1 < ℎ < ℎcr2) as

indicated by the red dot in figure 4a. It will be shown in section 5 through direct numerical

simulations (DNS) that exciting the perturbation :0 = 4.8, <0 = 0 on the cylinder at C = 0

with the forcing strength ℎ = 1.23 × 104 (at Ω = 600c), allows it to remain stable upto

several hundred forcing time periods. The imposed perturbation decays to zero at long time,

in excellent agreement with the solution to equation 3.7.
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(a) m=0 (b) m=1,2,3,4

Figure 5: Panel a) Stability plot for axisymmetric < = 0 and panel b) non-axisymmetric
(< = 1, 2, 3, 4) modes with case 2 parameters, table 3 (Ω = 2200c). The figures are to be

read in the same way as figure 4. The mode (:0 = 3.48, <0 = 0) is stabilised for

ℎ > ℎcr1 = 1.52 × 105 cm/s2. The optimum forcing satisfies ℎcr1 < ℎ < ℎcr2. Here

ℎcr2 = 1.74 × 105 cm/s2 for < = 4 (right panel). The chosen ℎ = 1.65 × 105 (indicated by
red symbol and solid red line in left and right panel respectively) keeps the cylinder stable.

We next provide the optimal forcing strength for a slightly longer wavelength RP mode

compared to the previous case. We choose to stabilise the axisymmetric RP unstable mode

(:0 = 3.48, <0 = 0). This mode is indicated with a pink star in figure 4a. It is seen that ℎcr1

for this mode is ≈ 4.1×104 cm/s2 and thus we do not satisfy ℎcr1 < ℎcr2 (the minima of all the

axisymmetric and non-axisymmetric stability tongues are much lower than ℎcr1). Choosing

simply ℎ > ℎcr1 allows the possibility of higher unstable modes to appear in simulations, as

discussed in the last paragraph. In order to prevent this we now use the forcing frequency Ω

as a tuning parameter. In figure 5, we have increased Ω = 2200c (from 600c earlier) holding

all fluid parameters at the same value as earlier (this is Case 2 in table 3). The advantage of

doing so is visible in figs. 5a and 5b where it is seen that by increasing Ω, we have the desired

ordering. For our chosen mode (:0 = 3.48, <0 = 0), we can see that ℎcr1 ≈ 1.52 × 105 and

ℎcr2 ≈ 1.74 × 105 (obtained from the minima of the < = 4 tongue shown in the right pane)

and the desired ordering ℎcr1 < ℎcr2 exists at this forcing frequency. The optimal level of

forcing is chosen to be ℎ = 1.65 × 105 cm/s2 (indicated by the red dot and the solid red line

in the left and right pane respectively). It will be shown in the next section through DNS that

this mode is also stabilised at this optimal forcing for more than two thousand forcing time

periods.

5. Numerical simulations

We compare the predictions made in the previous section(s) with direct numerical simulations

(DNS). The simulations are executed using Basilisk (Popinet 2014) which solves the

incompressible, Navier-Stokes equations for two-fluids with outer fluid density and viscosity

dO , `O and inner fluid parameters dI , `I . As our theory neglects the outer fluid, the ratios

dO/dI and `O/`I have both been chosen to be quite small to minimise the dynamics of the

outer fluid. Basilisk is based on the Volume of Fluid (VoF) algorithm and the solver has been

extensively benchmarked for unsteady two-phase flows (Farsoiya et al. 2021; Basak et al.

2021; Mostert & Deike 2020; Singh et al. 2019; Farsoiya et al. 2017). A comprehensive list

of publications based on the Basilisk solver is provided in Popinet (2014).



Dynamic stabilisation of RP modes 17

Figure 6: DNS geometry. A radial body force F (A, C) = −ℎ
(
A
'0

)
cos (ΩC) êA is applied at

every grid point in the domain. Boundary conditions are listed in table 2. The length of the

domain ! =
2c
:0

, :0 being the wavenumeber of the axisymmetric RP unstable mode that is

excited at C = 0

Sl. Face Pressure (?) Velocity (D, E, F) Volume fraction (2)
1 1854, 2763 Periodic Periodic Periodic
2 1234, 5678, 3456, 1278 Dirichlet Neumann Neumann

Table 2: Boundary conditions for 3D DNS.

The computational geometry and the boundary condtions are shown in figure 6 and table

2 respectively. For numerical reasons we have applied the radial forcing term F(A, C) =

−ℎ
(
A
'0

)
cos (ΩC) êA to the entire computational domain in figure 6. As the density of the

outer fluid is very small (viz. dI/dO ≈ 103), the effect of forcing on the outer fluid remains

small and results from the DNS will be seen to agree very well with theory which ignores the

effect of the outer fluid. A base level refinement of 6 (in powers of two) with adaptive higher

grid levels of 9 are employed at the interface and for fluid inside the cylinder. Table 2 lists

the boundary conditions used on the various faces of the domain. Note that for axisymmetric

simulations, we use symmetry conditions on the axis of the cylinder. The length of the

computational domain is ! =
2c
:0

where :0 is the RP unstable mode we wish to stabilise. The

interface is deformed initially as [(I, \, 0) = 0<(0) cos(:0I) with zero velocity everywhere

in the domain and we track the evolution of the interface with time at the centre of the domain

(see figure 6). Baslisk (Popinet 2014) solves the following equations

�u

�C
= d−1 {−∇? + ∇ · (2`D) + )^XBn} − ℎ cos(ΩC) A

'0
eA , (5.1)

∇ · u = 0 and
m2

mC
+ ∇ · (2u) = 0, (5.2)

where d ≡ 2dI + (1−2)dO , ` ≡ 2`I + (1−2)`O , u, ?, D = [∇u+ (∇u)) A ]/2, 2 are density,

velocity, pressure, stress tensor and volume fraction respectively. The volume fraction field

2 is unity for fluid inside the filament and 0 for the fluid outside. ) is the surface tension

coefficient, XB is a surface delta function, ^ ≡ 1
R is the local curvature, n is a local unit normal

to the interface and '0 is the radius of the unperturbed filament.
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Case Fluid 0(0) <0 :0 dI dO `I `O '0 ℎ Ω )

1 properties
close to

silicone oil

0.01 0 4.8 0.957 0.001 0.1 0.001 0.2 1.8 × 104 600c 20.7

2 -do- 0.01 0 3.48 0.957 0.001 0.1 0.001 0.2 1.65 × 105 2200c 20.7

3 -do- 0.01 0 4.8 0.957 0.001 0.2 0.001 0.2 1.8 × 104 600c 20.7

Table 3: DNS Parameters (CGS units)

Figure 7: Case 1 in Table 3: (Red and blue dots) DNS time signal for (:0 = 4.8, <0 = 0)
excited at C = 0 and ℎcr1 < ℎ < ℎcr2, refer stability plot in figure 4. (Black line) Solution to

equation 3.7 (Pink line) Destabilisation seen in axisymmetric DNS when ℎ < ℎcr1 and
when (Green line) ℎ > ℎcr2. Note the excellent agreement between solution to equation 3.7
and DNS upto 600 forcing cycles (C̃ ≡ CΩ/2c). This is in contrast to inviscid simulations

in figure 3b where for the same :0, stabilisation is seen for only three forcing cycles.

(a) Case 1 in table 3 (b) Time signal

Figure 8: Panel a) Effect of turning-off forcing on RP mode stabilisation. This is the same
mode as figure 7 with forcing turned off at C̃ = 485 ≈ for DNS. Subsequently the RP

unstable mode displays unbounded growth. Panel b) Case 2 in table 3: DNS time signal for
the mode (:0 = 3.48, < = 0). Stabilisation is seen upto 3000 forcing cycles with excellent
agreement between DNS (axisymmetric) and the solution to equation 3.7. Refer stability
chart in figure 5 for this case with frequency increased to Ω = 2200 compared to case 1.
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5.1. Stablisation of RP modes: DNS results and comparison with theory

Figure 7 shows stabilisation of the RP mode :0 = 4.8, < = 0 in DNS, both axisymmetric as

well as three dimensional (refer figure 4 for stability chart for this case). This is case 1 in table

3 and shows stabilisation of the mode :0 = 4.8, <0 = 0 (subscripts 0 are used for primary

modes viz. the modes excited initially in DNS). The solid lines in red and blue are from

DNS and nearly overlap. These indicate the amplitude of the interface as a function of time

(the interface is tracked at the centre of the domain at \ = 0, see figure 6). The signals show

stable, underdamped behaviour, decaying to zero after a few hundred forcing cycles (≈ 400

cycles). Note the excellent agreement between the DNS signals and the numerical solution to

equation 3.7 indicated by the solid black line. The inset to the figure shows that superposed

on the long time underdamped oscillations, are fine scale oscillations arising from the high

frequency (compared to the growth rate of the RP mode) forcing imposed on the cylinder.

Also shown in figure 7 are two more DNS signals, one with forcing ℎ > ℎcr1 and another

with ℎ < ℎcr2. Both forcing levels are outside the optimum window ℎcr1 < ℎ < ℎcr2 and thus

stabilisation is not achieved (see figure 4 for the optimum forcing window).

In figure 8a, we further validate the stabilisation obtained in figure 7, by turning off forcing

at C̃ = 485 in DNS. It is seen that the interface destabilises in the absence of forcing indicating

that forcing is crucial to the observed stabilisation. In figure 8b, we show stabilisation of the

RP unstable mode :0 = 3.48, <0 = 0 (Case 2 in table 3). Recall from our discussion in the

previous section that the frequency of forcingΩ was increased to 2200c for this case, in order

to satisfy the ordering ℎcr1 < ℎ < ℎcr2 (refer figure 5 for stability chart for this case). The

figure shows that stabilisation is acheived and sustained for more than 3000 forcing cycles

when the perturbation decays to zero in an underdamped manner.

5.2. Damping and the memory term

We return in this section to a discussion of terms in equation 3.7 that appear due to viscosity

viz. the damping and the memory terms. These terms are physically easiest to intepret in the

axisymmetric limit. It is shown in the supplementary material that in this limit, equation 3.7

reduces to
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If we temporarily disregard the memory term in equation 5.3, then it is clear that the rest of

equation constitutes a damped Mathieu equation i.e. the damped version of equation 2.3 for

< = 0 (axisymmetric). This is
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(5.4)

Equation 5.4 is the cylindrical analogue of its Cartesian counterpart which has been

discussed in Kumar & Tuckerman (1994); Cerda & Tirapegui (1998) for viscous Faraday

waves over a flat interface (see equation 4.21 in Kumar & Tuckerman (1994) or equation 3.4

in Cerda & Tirapegui (1998)). In order to put this analogy on a sound footing, we take the limit
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(a) m=0

(b) Time signal

Figure 9: Upper panel a) Stability diagram for case 3 in table 3. The viscosity has been
doubled for this case compared to case 1 in table 3. The RP mode :0 = 4.8, <0 = 0 and

moderately higher modes are stabilised if ℎcr1 < ℎ < ℎcr2 . Here ℎcr1 = 1.24 × 104, and

ℎcr2 = 3.74 × 104 is determined from the non-axisymmetric stability plot for < = 4 (not

shown here). We choose ℎ = 1.8 × 104 for stabilisation as indicated by the red dot. Lower
panel b) Time signal from axisymmetric DNS showing stabilisation for the RP unstable
mode indicated by a red dot in the upper panel viz. : = 4.8, < = 0. Note the overdamped

response and the excellent agreement with the soln. to equation 3.7. (Blue line) Solution to
the damped Mathieu equation equation 5.4. The analytical response is the solution to

equation 5.3

'0 → ∞ (for fixed :) on equation 5.4 expecting to recover results relevant to a flat interface

(as '0 → ∞, the cylinder locally becomes flat). Using the identity limI→∞ I
′′
0
(I)/I0(I) = 1,

it is seen that the coefficient of the second term in 5.4 in this limit, reduces to the damping

coefficient of viscous capillary waves (deep water) on a flat interface viz. 4a:2, which

is the same as estimated in Kumar & Tuckerman (1994); Cerda & Tirapegui (1998). Note

that the damping factor 4a:2 for a flat interface is obtained by estimating disspation for

potential flow (Kumar & Tuckerman 1994). By analogy it may similarly be expected that

the pre-factor 2a:2
(
1 + I′′

0
(:'0)

I0 (:'0)

)
in equation 5.4 arises from the damping of potential flow

(Patankar et al. 2018) in the liquid cylinder. It has been verified that this is correct and the

factor 2a:2
(
1 + I′′

0
(:'0)

I0 (:'0)

)
indeed agrees with the damping predicted by the dispersion relation

in equation 5.10 of Wang et al. (2005) which was obtained through a viscous potential flow

calculation (VCVPF in their terminology with a crucial viscous pressure correction)

Turning now to the memory term in equation 5.3, we note that it does not depend on
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the forcing strength ℎ. Thus it persists even in the unforced limit (ℎ → 0), in which case

equation 5.3 becomes one governing free perturbations. This equation was derived earlier

by Berger (1988) by solving the corresponding IVP with ℎ = 0 and we have verified that the

unforced limit of equation 5.3 agrees with the equation of Berger (1988) (see supplementary

material). The Laplace inversion of K(B) in equation 5.3 is analytically feasible and maybe

expressed as infinite summation over integrals from residue theory (see expression 79 in

Berger (1988)). For convenience, we reproduce this here as the term on the right hand side

of equation 5.5 (the damping term in equation 5.5 has been slightly modified from Berger

(1988) but is exactly equivalent to his expression)
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where 9= represents the =th (non-zero) zero of �1( 9=) = 0 (Berger 1988). The origin of the

infinite summation in 5.5 may be rationalised as follows: the initial condition of zero vorticity

and surface deformation (i.e. [(I, \, 0) = 00 cos(:0I)) excites all modes in the spectrum (viz.

two capillary modes and a countable infinite set of hydrodynamic modes (García & González

2008)). The excitation of the countably infinite set of hydrodynamic modes (which are all

purely damped modes) produces the infinite summation in the analytical expression for

00(C; :) also manifesting as the memory term(s) in equation 5.5. These conclusions for

free perturbations on a cylinder have analogues on a flat surface (e.g. see equation 2.30 in

Cerda & Tirapegui (1998) which expresses the amplitude as a sum over two capillary modes

and an infinite sum over the hydrodynamic modes).

Physically, the presence of the memory term implies that the damping seen in DNS contains

contributions not only from the potential part of the flow (as is modelled correctly by the

damped Mathieu equation equation 5.4) but also from the memory term(s) which arise due

to the boundary layer at the free surface. We find that the contribution of the memory term

in equation 5.4 increases as the kinematic viscosity of the fluid is increased and is the largest

(in the axisymmetric limit being studied here), when viscosity is sufficiently large for the

stabilised response of the liquid cylinder to be overdamped. Figure 9b depicts this for the RP

mode :0 = 4.8, <0 = 0 (Case 3 in table 3) highlighting the difference between the solution

to the damped Mathieu equation 5.4 and the integro-differential equation 5.3. It is seen that

at intermediate time (80 < C̃ < 100), the damped Mathieu equation 5.4, underpredicts the

damping that is seen in the DNS and in equation 5.3. The corresponding stability chart with

the optimal level of forcing for stabilisation is indicated in the upper panel of figure 9a.

We conclude this study with a discussion on the limitation of the present stabilisation

technique viz. that it does not stabilize the entire RP unstable spectrum at any finite level of

forcing, but only modes with : > :0. This arises from the infinitely long cylinder assumption

that we have made allowing all modes from 0 < :0 < ∞ to be present. In practise we

expect to encounter liquid cylinders of finite length typically confined between supports.

The boundary conditions at the end-points (e.g. pinned, see Sanz (1985)) can substantially

modify the nature of the eigenmodes in the I direction compared to the Fourier modes that

we have assumed here. As remarked in the introduction, stabilisation of capillary-bridges is

an active area of research and the specific problem of dynamic stabilisation of a liquid bridge

is under investigation and will be reported in future.
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6. Conclusions

In this study, we have proposed dynamic stabilisation of RP unstable modes on a viscous liquid

cylinder subject to radial, harmonic forcing. We use linearised, viscous stability analysis

employing the toroidal-poloidal decomposition (Marqués 1990; Boronski & Tuckerman

2007). It is demonstrated that for a viscous fluid, by suitably tuning the frequency of forcing

and optimally choosing its strength, not only can a chosen axisymmetric RP mode (:0) be

stabilised but also all moderately large integral multiples of :0, both axisymmetric and three-

dimensional, can be prevented from destabilising the cylinder. Direct numerical simulations

have been used to validate theoretical predictions demonstrating stabilisation upto hundreds

of forcing cycles, in marked contrast to our earlier inviscid study (Patankar et al. 2018) where

stabilisation could not be achieved. We have shown that viscosity plays a crucial role in this

as it enables the upper critical threshold of forcing to be greater than zero ℎcr2 > 0, unlike

the inviscid case. It is demonstrated that one can tune the forcing frequency Ω such that the

optimal strength of forcing satisfies satisfy ℎcr1 < ℎ < ℎcr2.

Additionally, we have also solved the initial-value problem (IVP) corresponding to surface

deformation and zero vorticity initial conditions, leading to a novel integro-differential

equation governing the (linearised) amplitude of three-dimensional Fourier modes on the

cylinder. This equation is non-local in time and represents the cylindrical analogue of the

one governing Faraday waves on a flat interface (Beyer & Friedrich 1995; Cerda & Tirapegui

1997). Our equation generalises to the viscous case the Mathieu equation that was derived

in Patankar et al. (2018). In the axisymmetric limit, we have proven that the memory term in

the equation is inherited from the unforced problem and represents the excitation of damped

hydrodynamic modes. We find that the contribution from this term is the highest when fluid

viscosity is taken to be sufficiently large such that the stabilised response of the RP mode is

overdamped. The stabilisation strategy that has been proposed here can in-principle be used

to stabilise any axisymmetric RP mode of wavenumber :0. In practise, as :0 gets smaller

(longer modes), the threshold frequency increases sharply and compressibility effects can

become important. We have also seen that modes which satisfy : < :0, are still unstable

although they are inaccessible to our numerical simulations due to the periodic nature of the

boundary conditions. This is proposed for future study wherein we will investigate dynamic

stabilisation of liquid bridges held between substrates as well as stabilisation of thin films

coating a hollow tube pulsating radially in time. The latter situation also offers a way to

practically realize the radial, oscillating body force which has been applied here.

We conclude with an interesting analogy of the present study with that of Woods & Lin

(1995). In our study, there is a range of long waves (: < '−1
0

) which are linearly unstable

when there is no forcing (ℎ = 0). For fixed viscosity of the liquid and through optimal choice

of the strength (ℎ) and frequency of forcing (Ω), we have demonstrated stabilisation of these

hitherto unstable RP modes. A nearly analogous situation arises in flow over an infinitely

long inclined plane where the base-flow is linearly unstable to long gravity waves (Yih 1967;

Benjamin & Ursell 1954) and may be stabilised by subjecting the plane to vertical oscillation.

Fig. 4 of the study by Woods & Lin (1995), bears a strong qualitative resemblance to our

axisymmetric stability charts (inset of figure 4a).
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Appendix A: expressions for coefficients

Expressions for A(B), C(B) and D(B) used in solution to the IVP are provided below:

A(B) = 2:2;I′<(;'0)I′<(:'0)
{ (

;2 + :2
)
Λ3 − 2:2Λ2(B)
V(B)

}
[B0̃< − 00] (6.1)

C(B) = 2<:3

'0

I<(;'0)I′<(:'0)
(
Λ1(B) − Λ3

V(B)

)
[B0̃< − 00] (6.2)

D(B) = <;

'0

I<(;'0)I′<(;'0)
{

2:2Λ2(B) −
(
;2 + :2

)
Λ1(B)

V(B)

}
[B0̃<(B; :) − 00] (6.3)

where V(B) ≡ Det



<
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I<(;'0) :;I′<(;'0) :2I′<(:'0)
<:
'0

I<(;'0)
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)
;I′<(;'0) 2:3I′<(:'0)
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I<(;'0)Λ1(B) 2:;I′<(;'0)Λ2(B) 2:2I′<(:'0)Λ3


=
<;:2

'0

I<(;'0)I′<(;'0)I′<(:'0)Λ(B), (6.4)

;2 ≡ :2 + B

a
, Λ(B) ≡

(
:2 − ;2

)
Λ1(B) − 2:2

Λ2(B) + 2;2Λ3, (6.5)

Λ1(B) ≡ 1 − ;'0

<2

I′<(;'0)
I<(;'0)

+
'2

0
;2

<2

I′′<(;'0)
I<(;'0)

, (6.6)

Λ2(B) ≡ 1 − 1

;'0

I<(;'0)
I′<(;'0)

and Λ3 = 1 − 1

:'0

I<(:'0)
I′<(:'0)

. (6.7)

Appendix B

For axisymmetric perturbation < = 0, the equation governing 00(C; :) may be written in the

time domain as (see supplementary material)
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Using the identity I
′
0
(:'0) = I1(:'0) and I

′
1
(:'0) =

(
I0(:'0) − 1

:'0
I1(:'0)

)
, we obtain
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In the limit, '0 → ∞, equation 6.2 becomes
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where K̃ (∞) (B) = L̂
[
K (∞) (C)

]
=

1

B

{
1 − ;

:

}
=

1

B
− 1

:
√
a
·
√
B + a:2

B

From Erdelyi et al. (1954), we can analytically invert K̃ (∞) (B) to write
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Substituting expression 6.4 in equation 6.3,
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Integrating by parts the last integral term of above equation and using the shorthand notation
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where G(C − g) ≡
√

c

C − g

Equation 6.6 matches with equation 44 in Beyer & Friedrich (1995) in the deep water limit.
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