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Abstract
A self-mixing interferometry (SMI) system is a laser diode (LD) with an external cavity formed by a moving
external target. The behavior of an SMI system is governed by the injection current J to the LD and the
parameters associated with the external cavity mainly including optical feedback factor C , the initial external
cavity length ( L0 ) and the light phase (∅0) which is mapped to the movement of the target. In this paper, we
investigate the dynamic behavior of an SMI system by using the Lang-Kobayashi model. The stability
boundary of such system is presented in the plane of (C , ∅0), from which a critical C (denoted as Ccritical) is
derived. Both simulations and experiments show that the stability can be enhanced by increasing either L0 or
J . Furthermore, three regions on the plane of (C , ∅0) are proposed to characterize the behavior of an SMI
system, including stable, semi-stable and unstable regions. We found that the existing SMI model is only valid
for the stable region, and the semi-stable region has potential applications on sensing and measurement but
needs remodeling the system by considering the bandwidth of the detection components.
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Abstract: A self-mixing interferometry (SMI) system is a laser diode (LD) 
with an external cavity formed by a moving external target.  The behavior 
of an SMI system is governed by the injection current J  to the LD and the 
parameters associated with the external cavity mainly including optical 
feedback factor C , the initial external cavity length ( 0L ) and the light 

phase ( 0 ) which is mapped to the movement of the target.  In this paper, 
we investigate the dynamic behavior of an SMI system by using the Lang-
Kobayashi model.  The stability boundary of such system is presented in 
the plane of ( C , 0 ), from which a critical C  (denoted as criticalC ) is 
derived.  Both simulations and experiments show that the stability can be 
enhanced by increasing either 0L  or J .  Furthermore, three regions on the 

plane of ( C , 0 ) are proposed to characterize the behavior of an SMI 
system, including stable, semi-stable and unstable regions. We found that 
the existing SMI model is only valid for the stable region, and the semi-
stable region has potential applications on sensing and measurement but 
needs re-modeling the system by considering the bandwidth of the 
detection components.  
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OCIS codes: (120.3930) Metrological instrumentation; (120.7280) Vibration analysis; 
(280.3420) Laser sensors.   
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1. Introduction  
Self-Mixing Interferometry (SMI) is an emerging non-contact sensing technique for the 
measurement of various metrological quantities, such as absolute distance, angle, 
displacement, and velocity [1-11].  An SMI system is composed of a laser diode (LD) with a 
photodiode (PD) packaged at the rear of the LD, a lens, an external target and a data 
processing unit.  When the external target moves, a small portion of light reflected re-enters 
the internal cavity of the LD, leading to the modulation in both the amplitude and frequency 
of the LD output power.  The modulated power is detected by the PD as an SMI signal, which 
is fed to the data processing unit for extracting useful information related to both the external 
target and the LD itself [12-16].  In contrast to the traditional interferometric sensing 
techniques, the SMI is advantageous by impact structure, low-cost and simple 
implementation, thus attracted intensive research [9, 17-19] in recent years.  

In the above-mentioned applications, it is desired that an SMI system operates in a stable 
mode, in which case the LD biased by constant injection current usually leads to SMI signals 
with symmetric sinusoidal-like fringes or asymmetric sawtooth-like fringes, depending on the 
external optical feedback level.  The feedback level is measured by a factor C  defined in 



[20-22].  However, with the change of operational conditions, such as injection current and 
parameters associated with the external cavity including C and external cavity length, the LD 
can also exhibit unstable behavior.  In this case, an SMI system will degrade or even lose its 
sensing ability.  Therefore it is very important to investigate the stability of an SMI system 
with respect to its operational conditions. 

An SMI system is an LD with a time varying external cavity.  Its dynamic behavior can be 
described by the well known Lang and Kobayashi (L-K) equations [23] as follows: 
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where ( )E t ,  ( )t  and ( )N t  are respectively electric field amplitude, electric field phase and 

carrier density. t  is the time index.  ( )t  is given by  0( ) ( ) t t t   , where  ( )t  and 

0   are the optical angular frequency for an LD with and without feedback respectively.  The 

dynamics of the system are governed by the injection current ( J ) to the LD and the 
parameters associated to the external cavity including the feedback strength ( ) and the 
external cavity round-trip time of the light ( ).  2

1 2 1(1 )  r r r , where 1r  and 2r  are the 

reflectivity of the LD’s front facet and the external target respectively.  2 L c , where L  is 
the external cavity length and c  is the speed of light.  The other parameters in Eqs. (1)-(3) are 
related to the solitary LD itself and are treated as constants for a certain LD and these 
parameters are defined in Table 1 [24]. As LD vendors normally do not provide the values for 
these parameters, we just adopted their values from [24] for the below simulation analysis. 

 
Table 1. Physical meanings for the internal cavity parameters in L-K equations [24] 

Symbol Physical Meaning Value

NG   modal gain coefficient 13 3 18.1 10  m s   

0N   carrier density at transparency 24 31.1 10  m  
   nonlinear gain compression coefficient 23 32.5 10 m  
   confinement factor 0.3   

p   photon life time 122.0 10 s  

in   internal cavity round-trip time 128.0 10 s  
 line-width enhancement factor 6.0   
e   elementary charge  191.6 10 C  

V   volume of the active region 16 31.0 10 m  

s  carrier life time 92.0 10 s  

 
The existing SMI model is derived from the stationary solutions of the above L-K 

equations. Let  sE , sN  and s  represent the stationary solutions of L-K equations for 
electric field amplitude, carrier density and angular frequency respectively. When the system 
described by Eqs. (1)-(3) enters into a stationary state, we have ( ) 0dE t dt , 

0( )  sd t dt     and  ( ) 0dN t dt . Substituting ( ) ( )   sE t E t E , ( )  sN t N , 



 0( )  st t   and   0( )   st t      into Eqs. (1)-(3). The well known stationary 

solutions can be obtained as below [3, 9, 17, 20, 23, 24]: 
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Note that   in Eq. (4) is a very important factor as its value describes many aspects of the 
laser behaviour, such as spectral effects, injection locking and the modulation response [12, 
14-16]. 

From Eqs. (4)-(6) by considering a moving target, the existing SMI model can be obtained  
as below by introducing:  

0 0   , s s    and 21 
in

C
  


                          (7) 

Then Eq. (4) becomes: 

0 sin( arctan )  s sC                                         (8) 

Equation (8) is called the phase equation, where 0  and s  are the light phase without and 

with feedback respectively. C  is referred to as the optical feedback factor. By substituting 
Eq. (5) into Eq. (6), the normalized variation of the LD output power (that is the so called 
SMI signal g ) can be described as [25]: 

cos( ) sg                                                           (9) 

Equations (8) and (9) are the existing SMI model which has been widely accepted to describe 
the waveforms of SMI signals [1-16, 20-22, 25].  In the SMI model, C  is an important 
parameter as it characterizes the waveform of an SMI signal.  When 1C , equation (8) 
presents an unique mapping from 0  and s .  In this situation, the SMI signal contains 

sinusoidal-like fringes.  For 1C , equation (8) may yield multiple possible s , and the SMI 
signal shows asymmetric hysteresis and produces sawtooth-like fringes.  The mechanism of 
generating an SMI signal as well as its behavior with respect to C  has been well-established 
and presented in [8, 20, 21, 26, 27].  

However, when the system enters into the unstable state, the premise for deriving the 
stationary solutions will be no longer valid, thus leading to the actual behavior of the system 
can not be described by the existing SMI model. In this paper, the stability boundary of an 
SMI system is obtained and presented in a two dimensional plane defined by C  and 0 .  By 

studying the features of the boundary, a critical C  (denoted as criticalC ) is derived.  If only an 

SMI system is designed with a feedback level below criticalC , its sensing performance can be 
guaranteed and the behavior of the system can be described by the existing SMI model, 
otherwise by the L-K model.  An experimental method for determining the criticalC  is 
presented.  The influence of the initial external cavity length and the injection current on the 

criticalC  are investigated from both simulations and experiments. 



2. Stability boundary of an SMI system 
The stable condition for an LD containing an external cavity was previously derived by 

[24, 28] based on L-K equations, as shown below:  
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for all the values of  (  is defined as the imaginary part for a complex number in Laplace 
transform domain.  The details can be found in [24, 28]), satisfying: 
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In Eqs. (11) and (12), 0sE  is the stationary electric field amplitude of the solitary laser which 

is determined by the injection current J  [28].  R  and R  are called the relaxation 

oscillation frequency and the damping time of the solitary laser [24].  0  is the initial external 

cavity round-trip time of the light, i.e., 0 02 L c , where 0L   is the initial external cavity 
length. 

When designing an SMI system, it is important to know how to configure the system in 
terms of a proper feedback level and suitable movement range for the external target. That is, 
we need to know the stable boundary for the parameter C  and the phase 0 .  Hence, we 

propose to describe the stability of an SMI system in the plane of ( C , 0 ). To achieve this, 

let us replace   by C  (via 2
0 1 

in

C
  


) in the stable condition described by Eq. (10).  

Note that the amount of movement of target should be much smaller than the initial external 
cavity length.  Then,  equation (10) can be written as: 
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where the equal sign corresponds to the condition of stability boundary.  What we want is to 
work out the relationship between C  and 0  to describe the stability for an SMI system.  Let 
us consider the parameters appeared in Eq. (13).  Generally,   is treated as a constant with 
the value from 3 to 6 [25, 29].  s  is the dependent variable of 0 , which can be determined 

by Eq. (8). Both R  and R  are dependent on the injection current J  according to Eq. (12) 

via 0sE  [24, 28].   is determined by J  and 0  according to Eq. (11). So we can say, in Eqs. 

(13) and (11), J  and 0  are two governing parameters that determine the stability boundary 

of an SMI system described by C  and 0 .  Therefore, it is very important to investigate how 
the two parameters influence the stability boundary.  

In order to work out the stability boundaries in the plane of ( C , 0 ), we vary 0  from 

3  to 3  and C  from 0 to 6 respectively with an interval of 0.015  and 0.015, and for 
every pair of ( C , 0 ) we solve Eq. (13) together with Eqs. (11) and (8).  The result of the 
stability boundaries can be obtained in Fig. 1 under different values for the parameter pairs of 



J  and 0 .  As 0  is associated to 0L  via 0 02 L c , instead of 0 , we present the influence 

of 0L  on the stability boundary in order to provide a more informative physical meaning 

related to the SMI system. In Fig. 1(a), the boundary is computed with three different J  for a 
fixed 0 0.25L m .  In Fig. 1(b), the boundary is computed with three different 0L  for a fixed 

1.3 thJ J , where thJ  is the threshold injection current.  The area below each boundary is the 
stable region.  In Fig. 1, we also indicate the different feedback regimes defined by the value 
of  C , where weak feedback regime is for 1C , moderate feedback regime for 1 4.6 C  
and strong feedback regime for 4.6C  [21].  

From Fig. 1, the following features of the stability boundary can be found: 
1. The stability boundary shows periodic fluctuation with a period of 2  equivalent to a 

half wavelength movement of the external cavity.  
2. The system is always stable at a weak feedback regime and may enter unstable when the 

feedback level is moderate or high feedback regime. 
3. To achieve a stable status at a moderate or high feedback regime, we can either increase 

the injection current or choose a long external cavity. 
 

 
Fig. 1.  Influence of J  and 0L  on the stability boundary of an SMI system. (a) 

for a fixed 0 0.25L m  with different J , (b)  for a fixed 1.3 thJ J  with 

different 0L . 

Figure 2 shows a boundary when 1.1 thJ J  and 0 0.35L m .  In Fig. 2, we define three 
different regions referred to as stable, semi-stable and unstable respectively according to the 
dynamic behavior of an SMI system described as below.  As the existing SMI model 
described in Eqs. (8) and (9) is not able to describe the actual behavior of an SMI system 
when the system enters the region above the stability boundary, we need to start from L-K 
equations to investigate the output power of an SMI system, i.e., 2 ( )E t .  The calculation of 

2 ( )E t  by the L-K equations uses the 4-th order Runge-Kutta integration algorithm.   
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Fig. 2.  The stability boundary of an SMI system when 1.1 thJ J  and 

0 0.35L m . 

Now, let us study the features of the LD output power (below we will call it as an SMI 
signal) obtained by the L-K model at the different region defined in Fig. 2.  We choose 

1.5C , 2.5C , 4.0C  and 9.0C  which respectively correspond to the stable, semi-
stable, semi-stable and unstable regions.  Other parameters in the L-K model take the values 
shown in Table 1.  The SMI signal ( )g t  is calculated as the normalized 2 ( )E t .  Supposing 

that the external target moves at a sinusoidal law with 0( ) sin(2 )   L t L L ft , where L   

and f  are the vibration amplitude and frequency respectively which are chosen as 

1.17 L m  and 75f Hz , for the purpose of comparison, Fig. 3 presents the SMI signals 
predicted respectively by the L-K model shown from Figs. 3(b)-3(e) and the existing SMI 
model from  Figs. 3(g)-3(j).  In each row of Fig. 3, the two SMI signals are obtained under 
the same operation condition, i.e., the same C  value. 

 
Fig. 3. SMI signals predicated by the L-K model and the existing SMI model 
respectively. (a) and (f): movement trace of the external target, (b)-(e): SMI 
signals obtained by the L-K model with 1.5C , 2.5C , 4.0C  and 



9.0C  respectively. (g)-(j) SMI signals obtained by the existing SMI model 
with 1.5C , 2.5C , 4.0C  and 9.0C  respectively. 

 
According to the L-K model, obviously, only Fig. 3(b) with 1.5C  shows a stable SMI 

signal which can also be described by using the existing SMI model shown in Fig. 3(g).   
1.5C indicates the SMI system is stable in Fig. 2.  In the region with 1.8 8.4 C ,  

simulations using the L-K model shows that the SMI signal contains a high frequency 
oscillation close to the relaxation oscillation frequency of the solitary laser.  Figures 3(c) and 
3(d) give the two SMI signals at the semi-stable region, which are more complicated than Fig. 
3(b).  Hence, the behaviors described by the L-K model are different from the ones by the 
existing SMI model resulting from the stationary solutions of the L-K model.  It is very 
interesting to observe that, even for a complicated waveform shown in Figs. 3(c) and 3(d), the 
movement information of the target is still visible.  This is why we call the region 
1.8 8.4 C  as the semi-stable region.  With the aid of signal processing technology, the 
system operating at the semi-stable region can also be used for sensing and measurement.  In 
order to achieve this, the SMI waveform needs to be investigated to reveal its relationship to 
the movement of the target.  Also, due to the limit in the rising time of the PD packaged at the 
rear of the LD, it may not be able to detect the details of the high frequency SMI waveform in 
the semi-stable region, and the SMI signal observed will be a distorted version of the high 
frequency waveform.  A complete theoretical model is required to describe the influence of 
the limited bandwidth of the PD on the high frequency SMI waveform with the aim to detect 
the movement of the target from the distorted SMI waveform.  Obviously, extensive work is 
required and could be an interesting topic for future research.  When 8.4C , it is hard to see 
the vibration information from the SMI waveform, implying that the SMI system may lose its 
sensing ability.  In this situation, the spectrum of laser is dramatically broadened, which is 
beyond the scope of this paper.  Fig. 3(e) shows the SMI signal with 9C  indicating that the 
SMI system is not suitable for sensing applications.  

Note that the SMI model is derived from the L-K model by letting ( ) 0dE t dt  , 

0( )  sd t dt     and  ( ) 0dN t dt . These conditions will no longer be valid when the 
system enters semi-stable or unstable region, e.g., the relaxation oscillation will become 
undamped [30, 31].  In summary, for the system working in the semi-stable or unstable region, 
the existing SMI model cannot be used, but we can still use the fundamental L-K model to 
describe the system behaviour. 

Furthermore, from the stability boundary shown in Figs. 1 and 2, We noticed that from the 
stability boundary a critical C  (denoted by criticalC ) can be defined under which the system is 

guaranteed to be stable.   As criticalC  corresponds to the bottom on the stability boundary, by 

performing differentiation with respect to 0  on both sided of Eq. (13), we can obtain s  for 

criticalC C  as follows: 
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where p  denotes an integer. As criticalC  lies on the stability boundary described by Eq. (13), 
inserting Eq. (14) into Eq. (13), thus we can obtain: 
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for all the values of   satisfying Eq. (11).  Equation (15) can be used to estimate criticalC  
when designing an SMI system if the values of the parameters listed in Table 1 are available.  

3. Experiment 

In this section, we present a experimental method to determine  criticalC , and investigate how 

0L  and J  influence criticalC .  Figure 4 shows the experimental SMI setup for such 

investigation.  A 0.8 m  band single mode GaAlAs triple quantum well LD (HL8325G) from 
Hitachi was employed in the experiments.  The temperature of the LD was stabilized to 
within 00.01 C  by using a temperature controller (model TED200).  The injection current to 
the LD was controlled by a laser diode controller (model LDC2000).  The light emitted from 
the LD was focused by a lens and split into two beams by a beam splitter (BS). One beam 
was directed to the external target and then was reflected back to the LD internal cavity.  The 
other beam was collected by an optical spectrum analyzer (Advantest Q8347) for monitoring 
the optical spectrum of the SMI system.  A piece of mirror was attached on the surface of a 
loudspeaker so that to achieve a strong optical feedback level.  The loudspeaker was driven 
by a sinusoidal signal with 75Hz generated by a signal generator.  The optical feedback level 
of the SMI system was adjusted by an attenuator inserted in between the BS and the 
loudspeaker. The SMI signal was detected by the PD packaged at the rear of the LD, then 
collected by data acquisition device and finally processed by the data processing unit.   

 

 
Fig. 4. Experimental setup for investigating the influence of the external cavity 
length and the injection current respectively on the critical feedback level  

 
When the SMI system is in the stable region, the observed optical spectrum is clean 

showing the LD operating on only one single mode as shown in Fig. 5(a).  When the system 
enters into semi-stable region, the relaxation oscillation of the laser becomes undamped.  In 
this case, a subpeak corresponding to the relaxation oscillation frequency appears near to the 
main peak of the optical spectrum [30, 31].  Figure 5(b) shows the optical spectrum observed 
when the system in the semi-stable region.  As our spectrum analyzer has a relative low 
resolution with 0.002nm, it is not able to separate clearly the subpeak from the mean peak.  
However, it can still tell us the appearance of the relaxation oscillation of the laser with 
frequency about 2-4GHz, therefore determining the stability of the system changes from 
stable to semi-stable.   

 



 
Fig. 5.  Two optical spectra obtained with 0 0.25L m   and 1.7 thJ J  for (a) the 

stable region, (b) the semi-stable region. 
 
In the following experiments, we varied the feedback level from weak to strong with the 

aid of the attenuator, the single mode spectrum displayed on the spectrum analyzer will thus 
change.  Once the subpeaks was first observed from the spectrum, the SMI system should be 
at the point of the critically stable.  Then, we apply a tiny change to the attenuator by 
reversely rotating it 2 degrees.  A stable SMI signal very close to the critical level can thus be 
obtained and we used the signal to calculate the parameter C  by the method presented in [16].  
The C  calculated is approximately represented for criticalC .   

Based on above experimental method for estimating criticalC , the influence of J  and 0L  

respectively on the criticalC  are also investigated.  Figure 6 (a) shows the criticalC  goes up with 

the increase of the injection current for a fixed 0 0.25L m .  Figure 6 (b) shows the longer 

the external cavity the higher criticalC  for a fixed 1.3 thJ J .  Obviously, the experimental 

results show the same trend with the simulation analysis shown in Fig. 1 and 2, that is, criticalC  

can be increased by either increase of J  or 0L , thus leading to stability enhancement of the 
SMI system.  We note that the experimental results obtained do not exactly agree with 
simulations. The reason is that the actual values of the internal parameters for the LD used in 
the experiment are different from the parameters shown in Table 1 for the simulation. 
 

 
Fig. 6.  Experimental results. (a) for a fixed 0 0.25L m , (b) for a fixed 

1.3thJ J . 

4. Conclusion 

The stability of an SMI system is investigated in this paper. It is found that, to achieve a 
stable SMI signal for sensing purpose under moderate or strong feedback level, we can either 
increase the initial external cavity length or the injection current to the laser. By monitoring 
the spectrum of the SMI system, a critical optical feedback factor criticalC  can be determined 



approximately. Under the criticalC , an SMI system is guaranteed to be stable and the existing 
SMI model can exactly describe the waveform of an SMI signal.  Furthermore, we presented 
another two regions on the plane of  ( C , 0 ) called semi-stable and unstable with boundaries 
corresponding to the undamped relaxation oscillation and the chaos status respectively.  We 
found that semi-stable region has potential applications on sensing and measurement but may 
require further signal processing technology.  The results presented in this paper provide 
useful guidance for designing various SMI based sensing and instrumentations. 
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