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ABSTRACT

A study has been made to determine the dynamic ‘stability of
an imperfect circular cylindrical shell subject to a step loading in the
axial direction, In the analysis, the radial displacement of the shell
is approximated by a finite degr'ee.of freedom system. To assure
that the created model is proper, its static buckling behavior was
studied. It was found that the model gives the proper imperfection
sensitivity behavior,

The dynamic ané.lysis includes not only the effect of the radial
inertia, but also that due to the axial inertia in an approximate man-~
ner., The critical loads are determined by numerical integration of
the equation of motion. In addition a study is carried out to consider
the effects of wave number of the radial mode shape, mass on the
loaded edge of the shell and damping of the axial motion. Compared
with the static case, there is a significant reduction of the dynamic
buckling load for the high wave numbers of the radial modes. Also,
there is a critical damping value, above which the dynamic buckling
- load is close to the static buckling load, The dynamic buckling load
approaches half of the static buckling load with increasing mass on
the loading edge. Through the parametric studies of thg wave number,
mass, and damping factor it is concluded that due to frequency coup=-
ling between axial and radial motions, the axial inertia plays an

essential role in characterizing the dynamic instability of a finite

length shell,
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I. INTRODUCTION

Research concerned with the elastic stability of cylindrical
shells has been carried out by many authors since the early nonlinear
investigations by Donnell (ref. 1) and Karman and Tsien (ref. 2). A
great amount of effort has been put forth to explain the large discrep=-
ancy between experimental results and the classical buckling load.
Geometrical imperfections have been recognized as the main contri-
bution to this discrepancy (ref, 3)., However most of the investigations
have been limited to a static analysis. On the other hand, interest in
the dynamic stability of thin shells has been increased during the last
decade. This work can be largely divided into two categories,

The first categories of the problem are analogous to static
buckling problems in that, for subcritical values of the load the
measure of the response is small, whereas for supercritical values
of the load the response is large (refs. 4-6), The critical load is
defined as that load for which a discrete change in response is ob-
tained with a small change in the loading parameter,

The second categories of problems are those similar to the
one studied by Goodier and Mclvor (ref. 7), Lindberg and Her-
bert (refs. 8,9), etc., who study how the selected modes of response
grow. This growth may occur during a single oscillation of the
fundamental response or over many cycles of the fundamental oscil-
lation. In general there is not a discrete change of amplitude, but
one says that if the amplitude grows, say to 1000 times some initial

imperfections (ref., 10), the structure has dynamically buckled,
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Pioneering analytical work in the first category of dynamic
buckling problems for the cylindrical shells subject to longitudinal
dynamic loads was carried out by Volmir (ref. 11) where a two
degrees of freedom system was obtair-1 by Galerkin's method. A
recent study due to Coppa and Nash (ref. 12) used the potential energy
method and also studied a two degrees of freedom model. Roth and
Klosner (ref. 13) applied a similar analysis to obtain a four degree
system which they studied numerically,

The axial impacted cylindrical shell problem dealt with by
these investigators was \an axisymmetric structure subjected to an
axisymmetric load. Iﬁ is clear that there must be some trigger
mechanism such as an asymmetric initial velocity or displacement
or some asymmetric initial imperfection, In most previous work
this triggering mechanism was assumed arbitrarily since better
information on, say, initial imperfections did not exist. None of
these studies assessed the influence of a realistic triggering mech-
anism on the calculated dynamic buckling loads., In addition, all of
these investigators neglected the influence of inplane inerti; in the
analysis. Among other things, this simplification is equivalent to
assuming if an axial load is applied to the end of a cylindrical shell
the resultant axial stress is felt everywhere in the shell simultan-
eously,

To begin a dynamic buckling analysis of a shell structure,
the governing differential equation must be simplified in some
appropriate manner. This is usually accomplished by discretizing

the system using an energy approach, finite elements, finite differ-
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ences or Galerkin's procedure. One must then establish that the
resulting mondel created is realistic. This step has not been carried
out in the most dynamic buckling investigations, Some discrete
models have displayed static equilibrium positions which the con-
tinuous structure did not possess (refs, 14, 15).

In the present analysis of the dynamic buckling problem,
the static problem was thoroughly studied to determine whether the
model was realistic or not, The model which had the proper static
behavior among the various models attempted was chosen. Then
this model was investigated with various modes of radial deflection
to determine which were important in the static buckling problem.,
This static investigation incorporated a realistic distribution of
initial imperfections (ref. 16), This imperfection model gives a
balance between the amplitude of imperfection in any mode of de-
formation and the sensitivity of the structure to that mode of imper-
fection.

In the present dynamic buckling analysis the following
points are emphasized: |

(i) The analysis includes the effect of axial inertia in an

approximate manner. The case of a shell with a mass
on its loading edge is also treated.

(ii) The discrete model used in the dynamic analysis is

based on the study of static buckling behavior. .

(iii) Experimental results are used for values of the

initial imperfections,
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II. ANALYTICAL FORMULATION
The governing differential equations for a cylindrical shell to
be used in this study are the nonlinear Donnell's equations (ref. 1).
In previous investigations using these equations they have usually
been written in terms of the inplane stress function and the out-of-
plane diSplacerﬁent. The procedure used is to assume an expression
for the out-af;plane displacement and find the solution of the compati-
bility equation., The out-of-plane equiliBrium equation is then
satisfied by Galerkin's procedure or an energy method. The inplane
displacements must be obtained from the stress function and checked
to see if they satisfy the circumferential periodicity condition. In
the present analysis the two inplane equilibrium equations are directly
solved after an assumption on the radial displacement has been made.
The following procedure is used,
1. Assume an appropriate radial displacement function w
and an initial imperfection function w.
2. Find the displacement u and v from the inplane
equilibrium equations and in turn the stresses
O s Cy and Txy'
3. Evaluate the total potential energy and the kinetic
‘energy of the system.
4. Apply Hamilton's principle by carrying out the
variation with respect to the variables in the assumed
expression for w. A set of nonlinear ordinary differ-
ential equations is obtained,

The geometry of the system is shown in Fig, 1, where u, v, and w
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are the axial, circumferential and radial displacements of the median
surface, respectively, It should be noted that radial displacement is
positive inward,

2.1 Equilibrium Equations

The nonlinear strain-displacement relationship for thin cylin-
drical shells of radius R having initial imperfection w, are based on
the work of Donnell (ref. 1)

2 2

_8u,1,0w ow ow "w
“ Tzl T T %2 (1a)
ov w .1 ow’ . ow ow o%w
ey:-a—y_--i'-f'-z—(g};) +~8-;;—;-Zayz (1b)
— — 2
~8u, 5v Ow ow , Owdw , Owow , 9w
Yy =0y "ox T ox By | Bx oy | Oy 0% 2% Bxoy (le)

The static equilibrium equations can be found by applying a variation
principle. The total strain energy, considered as an implicit function
of displacements, is made stationary by setting the total variation

with respect to u, v, w equal to zero. The resulting three equations

are:
Dody o (g 8wy, 0 o ow 0 = 2w 0  ow y
BY YT 9% ) Ty Tay w0 Y m xy 3y %k oy TR
(2a)
aox &rxy
et = 0 (2b)
oy, Ty
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Finding the stresses in terms of the displacements by using the usual

form of Hooke's law, equation (2) is expressed in the following form:

aw, 2

Dodpy =2 (¢ ), 0 (, Bwy 0 8w 08 XL (2
BV W e O ax) oy Uy ) T ox My 3y ) T oy Oy 3y TR (42
1%, 1 %, 1 dfu__ 1 (ew, oW ofw

(102) o | ET) BBy ATV 52T 1,7 |l 5 R gk
+ v ( 82‘-”- E_W-}-@____azw)
oxdy Oy 9Oy oy
- 1 (82; _8_W_.+ __82W 8_-v_v + ___aZGQy_Jr .?:.“}-____azw) (3a)
Z07) Bxdy By T o7 ox ' o2 Ox | 0x oxdy
1 %, 1 dfw ., 1 v _ 1 ia%g_ergG_v'aZw
(1v2) o2 | ZA) Bxdy T IO o7 T 02 By By o
o 2T w5 ol
Bx0y ox | ox Oxdy
1 (azw oW, %% ow , oPw oW, ow a?‘W) (3b)
2(1+v) ‘xdy o T2 oy ',z By T Bx oxdy
2
where V =(-—§-2- + —8—2—
ox oy

The mathematical problem then resolves itself to solving three non-
linear partial differential equations (2a), (3a) and (3b)., The corre-
sponding equations for the dynamic problem are obtained by adding
inertia terms to the above equations. Boundary conditions and initial
conditions must also be specified for a proper solution, |

2.2 Approximate Displacement Funcation and Initial Imperfections

Rather than attempt to solve this set of equations directly,

a technique was used whereby approximate functions for w and w



iy
were substituted into the inplane equilibrium equations (3a) and (3b).
The inplane displacement u and v are then found from these
equations. The approximate radial deflection function w was chosen

to have the following form, which includes both axisymmetric and

asymmetric modes,

w [g (t)cos I~ X 4 £,(t) sin (——)sm(R) + 53(1:)] (4)

where £, §2, and §3 can be functions of time (t) for the dynamic
problem, and i and k are integers for the half wave numbers in the
axial direction, which will be called axial wave numbers in the pres=-
ent report, { is the number of full waves in the circumferential
direction,

This form, which is a cosine-sine representation in the axi~
s.ymmetric and asymmetric modes, respectively, was found to be
the simplest and the best approximation among the combinations of
trfgonometric functions attempted. (Ref. Appendix A,) The initial

imperfections of the shell were chosen to be

w h[‘E-1 cos ( TX) 4 -52 sin (-——) sin (_.X)] (5)

2.3 Solutions of Inplane Equilibrium Equations

The substitution of the expressions for w and W into the right-
hand side of equations (3a) and (3b) results in the following.

2 2 -
1 0 u 1 0v 1 ou _ . s oA s oA
(1v2) ol | Z1) oy T 20w gz“Plsmaix”l’zs‘n2“1x+P35mz°kx

+ p4cosﬁ xsmﬁy + p5cosa itk xsmﬁy+p6cosa xsmﬁy

+ pq sin Zakx ' (6b)
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1 82v+ 1 Bzu + 1 azv
l-vz 8y2" 2(1-v) oxoy 2(1+v) ax2

= qlsinﬁi_kx cosﬁy + qzsin 6i+kx coséy + q3si.nﬁkxcosﬁy

+ a4sinZﬁy + q5c0826\.kxsin23y (6b)
The particular solutions, up and vp are found to be

_ . A . . oA .
u, =b,sindx + b,sin28.x + b,sin2a, x + b 4cos@ xsinfy

+b5cosei+kxsinﬁy + b6cosﬁi_kxsinﬁy + b7sin28kxc052ﬁy (7)

= ; s A s A
vy = els1nﬁi_kxcosﬁy+ ezsmai_'_kxcosﬁy + e3smakxcosﬁy

+e4sin2ﬁy + e5cos26kxsin23y (8)

Coefficients bi and e, are listed in Appendix B-1. Now consider the
solution form such as to satisfy the boundary conditions of the shell,
The homogeneous solutions of the inplane equilibrium equatic;ns (6a),
(6b) are then found, .. An example of this type of solution is given in
Appendix A, The appropriate homogeneous solution consists of a

boundary layer type solution plus a simple function of x,

4, Ax+B+'uBL

Vh = VBL

where A and B are constant or functions of time and Up1, and VBL

are boundary type solutions, The complete solutions for u and v are



then given as
u=up+Ax+B+uBL
v = vp + VRL
The boundary conditions to be satisfied at x = 0, L, are as follows,
u=0, v=0 at x=0
u=§°(t), v=0 at x=L
The substitution of the above condition gives atx = 0
u = (b tbytb ) sinfy + B " up(0,y) =0

v = (e4+e5)sin2’r3y +vgy (0,y) = 0

As shown in Appendix A, the boundary-type solutions can be chosen

to cancel the first terms and B then becomes zero.

at x=L
u = (-1)5(b +bstb )sinBy + AL + ug (L, y) = £ (1)
v = (e4+e5)si;n2@y + VBL(L, y) =0

Again the boundary-type solutions can be chosen to cancel the first
terms, therefore

£, (t)

A=L

It should be noted that a new time-dependent variable §o(t), which



-10-
represents a motion in an axial direction, has been introduced. This
is a crucial assumption in the present analysis, Finally, the approx-

imate displacement field of the system is summarized as follows,

W(Xilz,t) = [&,(t) cos (%E) + gz(t)sin(-lg-i)sin(%)*'%(t)] (4)

£,(t)
ux, y, t) = U.p(x, Y,t) - T X (10)
v(x,y,t) = vp(x, v, t) (11)

The boundary layer type solutions in u and v have been dropped,
Now we are ready to evaluate the equations resulting from the above

assumption,

2.4 System Equations by the Energy Method

Using the displacement functions, (4), (10) and (11), found in
the previous section, a set of differential equations for the four vari-
ables, go, §1, {;2 and -‘;3 can be found by the application of Hamilton's
principle, In order to perform this calculation the potential and
kinetic energies of the shell must be evaluated, The expressions used
for this calculation are consistent with the assumptions made in the

Donnell equations. The elastic strain energy corresponding to the

membrane stresses is

h L 2wR 2 2
V) = 5w .f; fo [(oto ) -2(14v)(o 0 -7 )] dxdy (12)

The elastic bending strain energy of the shell is given as

D A Z‘ITR[ 52 02 2 02w 52w 82w 2
V., == (—z + —7) =2(l-v)(~—5 — = tg5=) )] dxdy
22 o o ox oy 8:2 oy &xdy ]

(13)
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The potential of the applied axial load, p(t), can be expressed as

v, =h fo P(t) u(L, y)dy

Finally, the expression for the kinetic energy of the system can be

written as

1 L, 2vR 2 2
=3en [ [ [&D +(at)+( )]dxdy+ smE@h) - (15)
: o O

where p is the mass density of the shell, and m is the mass at the
loaded end of the shell. The only axial inertia term taken into
account results from the variable go(t), while the circumferential
inertia terms will be completely neglected. This assumption is
shown to be valid over the range of wave numbers i, k, and £ of

importance in the present analysis (ref. 17).

If the expressions for O cy, Txy" w and w are substituted

into equations (12) to (15) and the integration performed, then

’ 3 2 2
. wEh”L 2 I
v, =—x gél(§2+2€2€2) + Cy(f 6,4 E,4E,E))

é 2,1 .2 — 2 2 - |
P8y 2 Ll g 00 + 5,0 +zvgx<§)gy<e)]§

3
“Eh L ’Q £ (§2+21:72 )+0 2 65(6, 6,18, 6,488, )E (16)

3 A A
_TmEh"L 2 2
VZ = {C4§1 + ngz} (17)

A A
where Q1 and Q2 appear only under the restriction i = 2k,



- 1 (R Noe2 Noe2
B (8) = — [T 6o * V83 - Gy (6272855, - C,(67+2E,£.)] (18)
-V
A A
g, (6) = '{ITZ' [-6, - 5B & + Cg(62+2E,8,) + Co(£5+2E )] (19)

A A
Coefficients Ci and Qi are listed in Appendix B-2, The potential

energy of the applied axial load is given as
2_. A
V4 = -20h“E p(t)§ (t)

_ P{t)R
where f(t) = ‘Eih— |

Finally, the kinetic energy of the system can be easily evaluated.

dg, 2 d¢_ 2 dg, 2 __ag 2
T RLG () rgiad ¢ ¢ GG ] @

here m = m
whe = ZrohRL

Now applying Hamilton's principle
*2
6 { [T-(V,+V,+V,)] dr =0 (22)
1
and carrying out the variation with respect to the four dependent

variables t_’,l, §2, §3, and §°, we obtain the following set of simul-

taneous nonlinear differential equations,

(20.1.2) gl ' [xci ) ch(g)]gl * C3(g1§2+-51§2+-52§1)(§2+EZ)
1

+ Q) (82 + 2E,8,) + Q82 + E8,) = B () (23a)
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(2—0%_-) 5+ [N, OB, (8)]6,+C (£5+2E,6,)(8,+E,)
k

TG (6 €188, 8 08 +E )+ C (€48, )8 (E)

Q46 (E,+E,)+Q (28 £,+8, E,42E £,) = cE, 8 (§) (23b)

o [6, + B &, - Gy (E542E,8,)-Co(e242E £ )] = 0 (23¢)

'é +
3 l-v

(i. e., g3 + EY(g) =0)

% m) éo LT?——Z—)[%§°+V§°-é\6(§g+2-€2§2)-é\7(§f+2~€1§1)]
-V
= () B(t) (23d)
(e, (k+ mE + BT (6) =T p(t)

where the nondimensional time is defined as

r= £4E

ki3
oT

(T2 1 I8
1]

and

A LA " Ci’ Qi are listed in Appendix B-3,
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III. STATIC ANALYSIS

Before attempting to analyze the dynamic behavior of the shell
using the four degrees of freedom model, the static buckling load and
post-buckling behavior of the model should be investigated. This
step is necessary to insure the existence of post-buckling equilibrium
positions. As mentioned in the Introduction there must be more than
one stable equilibrium position under a given load, if dynamic buck-
ling, as defined in this paper, is to occur,

3.1 Formulation

The static buckling behavior of the model can be obtained
from the set of dynamic differential equations (23a-23d) in the fol-
lowing manner. Dropping the inertia terms and setting the end load
equal to a constant, allows one to solve directly for Ex(g) and Ey(g).
Then substitution of Ex and EY into equations (23a) and (23b) gives

the two nonlinear algebraic equations, which are

(e -ME; + C5 (578,08, 4E,6,] (Bp+e,) + Q) (E5+2E,8,)
1
+Q,(E5+E,8,) = )2 (24)
2
(g TME ¥ Cp(E5+28,8,)(E,+E,)+C, [(B48,)8, 48 £, ] (B +5))
0,6, (E,48,) + Q, (286,48 E,+2E ;) =2E, (25)

B\/3(1- v?)
E

where ) = % = 0/0cy

and C,;, Q, is given in Appendix B-3. It should be mentioned here
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that the solution for -g_y(g) (i. e., Ey(&) = 0) is the same as the perio-
dicity condition usually enforced (ref. 1). Also the set of nonlinear
algebraie equations (24) and (25), which are obtained from minimizing
the potential energy are exactly the same equation obtained by Galer-
kin's method (ref. 3). A solution of these nonlinear equations yields
the equilibrium configuration of the finite length shell as a function

of x. If A, the axial compression loads, attain a local maximum, then
this is the value of the static buckling load called 2.

A typical path of A is a function of the variable gl, and gz is
schematically shown in Fig., 2, The response is dependent upon the
size and sign of the initial imperfection El in the axisymmetric mode,
However, the asymmetric response is the same for a plus or minus
sign of Tf:,-z, which can be seen from the algebraic equations (24) and
(25). ' If 351 is positive, then the shell has a higher buckling load
than classical buckling load and if El is negative, . alower buck-
ling load is obtained. This result is due to the coupling between the
asymmetric mode and the axisymmetric mode of response,

3.2 Numerical Procedure

In order to determine the static buckling load and post-buckling
behavior, the two nonlinear algebraic equations (24) and (25) must be
solved numerically for the given wave numbers and the imperfections,
The followingv procedure was employed. £ | is eliminated from the

two equations to obtain the following third order polynomial in A

A%+ p,(6,) 2% + py(E,00 + pyl6y) = 0 (29)
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The load-deﬂeqtion curve, i.e., the relation between §2 and )\ is
obtained by finding the minimum real root of equation (29) for a given
£

Differentiating with respect to f;'z yields,

dx PLEN” + p(E,) + Py(Ey)

-CE_Z.. o 37\2 + le1(§2)+p2(§2)

= 0 (30)

To find only the static buckling load, equation (30) must be also sat-

isfied. The two equations (29) and (30) are solved numerically by a

modified Newton's method.

3.3 Results and Discussion

The algebraic equations (24) and (25) contain several parame-
ters which must be chosen in the numerical study. These are the
three wave numbers i, k and ¢ and the initial imperfections, El and
EZ' The wave parameters are not independent and can be chosen in
the following manner, Without the condition of i = 2k, all the quad-
ratic terms in equations (24) and (25) would vanish identically and
the resulting equation would describe a system which can be shown
to be insensitive to initial imperfections, In other words, this sys-
tem is not expected to have a dynamic buckling load as defined in
this report. In addition to this condition, the asymmetric wave
parameter must be selected to minimize the asymmetric buckling
load (ref. 3). This requirement is the same as saying that the
asymmetric buckling mode lies on the Koiter circle (ref. iS). The

condition is written as 0.12( - o + [32 =0,
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Next the amplitudes of the initial imperfection must be se-
lected for the numerical study., The following formula is employed,

based on the results by Arbocz and Babcock (ref, 16),

__ 0.256
£ =- T8 (272)
3,26
E = =573 (27b)
2 = [1.01,1.33

This imperfection distribution uses the decrease in imperfection
amplitude with i, k and ¢ as determined from experimental results.
However, the amplitude has been doubled from the results as meas=-
ured on high quality electroformed shells., This was necessary to
produce significant reduction of the imperfect shell buckling load, 7\8.

The load-deflection behavior of an imperfect shell for dif-
ferent wave numbers k is shown in Fig., 3., From this figure, the
static buckling load is determiﬁed as the local maximum point. In
addition, the existence of multiple equilibrium positions at a given
load is seen., Therefore, this indicates that the radial-displacement
assumption employed at the beginning of analysis is physically ap-
propriate and one can use the present model for a dynamic buckling
problem under step loading.

Fig. 4 and Table 1 summarize the static buckling load as a
function of the axial wave number, k. Fig. 4 indicates that there
are two possible wave numbers which produce a minimum static
buckliﬁg load, One of them is at the lowest wave number, i.e.,

k=1, i=2, £ =9, and the other is at a rather higher number near
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Q = B =0.5 and a; = 1. This occurs since the shell is very sensitive
to imperfections in the high wave number mode. On the other hand,
the shell is not particularly sensitive to the imperfection, k = 1, but

it has the largest amplitude,
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IV. DYNAMIC INSTABILITY
Now that the four degrees of freedom model has been shown
to exhibit the proper static behavior, the dynamic equations will be

solved, First the numerical method used will be discussed and then

the results presented,

4,1 Numerical Method

The set of four simultaneous nonlinear ordinary differential
equations (23a) to (23d) is integrated numerically for given initial
conditions and initial imperfections under a specified step load.
For these calculations the initial conditions (i. e., velocity and dis-
placement) are set equal to zero,

The differential equations can be written in vector form,

£= L)

'
Letting x = £ the above equation can be written in a scalar form,

x, = (8 , €., 6,5, 85)

x3 = £3(5g0 615 650 65)

%4 =£,(8,6;,65,85) 28)
6o =%
él = %2
éz = %3
é3 = %4

Using a Runge-Kutta numerical-integration scheme for the starting

solutions, the integration was switched to a 6th order predictor-
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corrector method., The interval of integration was controlled to
obtain the desired accuracy of each integrated péint. The interval
was selected as large as possible within the above restriction in

order to save computing time.

The Runge-Kutta method employed in the present analysis

can be written symbolically for any variable yj as (ref. 19),

1 1

Y 541 =Yy +At(3kl+3ka+-3-kj,+%kj4)

J,1+1

where k 1 = f (Aat, Yy Vo500 le)

1

¥* = -
in y'ji+2 At kjl
At
sz —f (t +—2—, Yll' Yzl, v e YNI)

Y:i: =Y. + l At ka

Jji ji 2

At
kS-f(t+2,Y11: YZI‘.'.YN'[)
-37* =y +lAtk
i YTz 3

At

kya = 6508 +570 v 4T

where j is a subscript for the jth variable of the system,

iis a subscript of an integration point,
The predicted solution Yiel is computed, by using the f011§wing 6th
order Milne~.method, (ref. 19). |
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3At

yi+1 = yi-s + o (1lfi-14fi_1+26fi_2-14fi_ +11fi_

3 4

Finally, the Milne-corrector equation is solved to obtain a more

accurate solution, which is given as

_— 2At

Yiel = Vi3t g (T r32fh12f,

+32£i_ +7f

1 2 i—3)

If the difference between the predicted value Yisy and corrected
value y'i+1 is within the desired tolerance, then the integration pro-

ceeds to the next step. Otherwise, the interval of integration is

changed by a factor of two. The details of computer programming
are shown in the flow chart (Appendix C).

4,2 Results and Discussion

The set of differential equations (23a-d) were numerically
integrated with a specified load, given initial imperfections and the
selected modes of deformation. The behavior of the generalized
coordinates go, §1, §2 and §3 were then determined as a function
of time,

Let us consider a typical numerical result, The res'ponse of
the §0 mode (motion in the axial direction), §1 (axisymmetric mode
in the radial direction) and §2 (asymmetric mode in the radial direc-
tion) are shown in Figs, 5-a, 5-b and 5-c, respectively. A dis-
tinguishable change in the amplitude of the §O-mode and the gl-mode
can be seen. This change occurs with a small change in the loading
parameter (i.e., 2.1% from X\ = 0. 792 to 0.809)., As shown in Fig.
6, if the magnitudes of the maximum amplitude of «‘_3,2 taken over

time are plotted against load, this discrete change is more precisely
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recognized.

Figs. 7-a and 7-b provide an interesting result which shows
the path of motion on the generalized coordinate gl-gz plane, This
is obtained by eliminatl:ing the parameter time from the previous
response of the f,l and gz modes. The detail of this path in the
neighborhood of origin is shown in Fig. 7-b. It is quite clear that
only the axisymmetric mode, f_f,l, is initially oscillating, This oscil-
lation occurs for several cycles before a significant asymmetric
response, §2, builds up. After the build-up of 62, the trajectory
of the system is direct to the post-buckling equilibrium position.
The system then oscillates about this position. This behavior is
typical of the many example cases which were run, From this
result it seems reasonable to establish the stability criteria by
the response of the §2-mode rather than any other measure of re-
sponse,

The value of the dynamic buckling load will depend on the
following parameters:

(i) Modes of radial deformation (i, k and ()
(ii) "Mass" at the loaded end of shell (m)
(iii) Damping of the motion ({)

(iv) Initial imperfections (El and Ez)

(v) Geometric parameters and material constants of the shell
Item (iv)were previously mentioned in the section of the static buck-
ling problems. The same formula (equations (27a) and (27b)) giving
the imperfection distribution was used for the present (iynarnic

analysis. Concerning item (v), it can be seen from the dynamic
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equations (23a-d) that only the nondimensional shell parameters (R/h)
and (L/R) and Poisson's ratio (v) must be taken into account. For
the numerical results, R/h is set equal to 1000 and L./R equal to 2
with v equal to 0, 30, In this section the effects of wave number and
the effect of '""mass'" on dynamic instability are covered, in addition
to the consideration of the damping effect on the axial motion,

4,2.1 Selection of Deflection Modes

The wave numbers of the axisymmetric mode and the asym-
metric mode are represented by (i) and (k, ¢), respectively, where i
and k are the number of half waves in the axial direction and £ is the
number of full waves in the circumferential direction. As mentioned
before in the static analysis, however, only k can be chosen as an
arbitrary integer among i, k and ¢, if { is determined from the con-
dition that the asymmetric modes lie on the Koiter's circle and the
restriction, i = 2k, The investigation of the static buckling problem
(Fig., 4 summarizes the effect of wave number k on the static buck-
ling load) indicated that there were two local minimum buckling
loads, One of these is at k = 1 and ¢ = 9 (the lowest wave nﬁmber)
and the other is near k = 17 and ¢ = 29 which gives a N p~0,5.

Fig. 8 shows the results of the dynamic buckling load for
the various wave numbers k. The static buckling load denoted by the
upper dotted line is traced from Fig. 4. The lower dotted line indi-
cates the minimum post-buckling equilibrium position for that
particular value of k; that is, the local minimum load, Amin’ in the
load-deflection curve. The dynamic buckling loads as depicted in

Fig. 8 were determined by numerical integration of the equations of
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motion, The maximum response of the shell must be determined
for all time under a specified load level in order to find the critical
load, Of course, the integration time must be truncated at some
finite value., For most of the integration the maximum value of non-
dimensional time, 7, was taken to be 150. A few cases were run to
determine if this upper limit was adequate, Except for the‘ low wave
numbers, the upper limit of 150 was found to be satisfactory (T = 150
is equivalent to approximately 3,1 msec for an 8 inch diameter alumi-
num shell).,

It is quite clear thét there is a significant decrease of the
dynamic buckling load in the neighborhood of k = 15, compared with
the static case, On the other hand, in the range of lower wave
numbers (k < 4), the numerical results showed even higher values
than the static buckling loads. This has also been observed for the
nonlinear analysis of a shallow arch (ref, 20). In order to understand
the dynamic buckling behavior at low values of k, one must examine
the frequencies of the system. This is of course most easily done
from the linearized equations. These frequencies are showﬁ in
Fig. 9, as a function of wave number k, As can be observed, the
frequency of the asymmetric mode, W, is much less than that of
the driven mode, W, at small values of k. In addition, the frequency
of the uniform expansion mode can be calculated as

3 1 L

L
— =——==1,15 for ==2.0
wo 5 R R

Since these two modes, §o and §,3 are directly excited by the step
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loading and they have much higher frequencies than the major re-~
sponse mode, §2, it is reasonable to neglect the inertia of these two
modes for the values of k. This neglect is based upon the assumption
that the damping in the system would suppress the dynamic response
of these modes before the asymmetric response in the §2 mode oc-
cured. For the two mode case the shell response from the numerical
integration (Tmax = 1000) for the case k = 1 is shown in Fig. 10. The
buckling load is seen to lie between A equal to 0. 82 and 0, 86.

Secondly, it should be pointed out for the case k = 8 and
k = 10 in Fig. 8 that a definite dynamic buckling load is established.
However, the system did not buckle for the time of numerical inte-
gration (v = 200) if the load is increased approximately 3 percent
larger than the critical load. A typical response of the case k = 8
is shown in Figs, 11-a, 11-b and 11-c. An applied load )\ = 0,892
obviously gives the buckling behavior, while fhe amplitude of the
response for A = 0,92 is much smaller than the case A = 0,892, The
reason for this behavior is that the integration time is probably not
sufficiently long for the system to reach the saddle point* onl the
potential energy surface. In addition there exists a complex coupling
of frequencies between the gl and §0 mode. The nature of this coup-
ling is affected by the load level, A.

Thirdly, the buckling load at extremely high wave numbers,

There are generally three kinds of equilibrium positions, a stable
center, an unstable center and a saddle point for the two degrees of
freedom system for a given applied load. Of all the paths connecting
two stable equilibrium positions, the path which has the least increase
of potential energy goes through the saddle point,
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say k = 20 to 24, should be discussed. The dynamic buckling loads
in Fig. 8 for these wave numbers are less than the value of the min~
imum post-buckled equilibrium position. Since there is only the
unbuckled equilibrium position for the value of A less than )\min’ one
would not expect a dynamic buckling characterized by a jump of
response with increasing ), for the load less than Amin (ref. 23).
However, these buckling loads were defined from the response cal-
culated by numerical integration and some judgement must be used
in picking out the dynamic buckling load. Figs. 12~a, 12-b and
12-c show the response of EZ, §1 and go mode for the case of k
equal to 23 at different applied loads., A distinguishable jump of

the response with a small change in load parameter X is not quite
clear, but one cannot but admit that the buckling has occurred at

A = 0,728, in spite of the fact that X is less than kmin = 0,75, The
explanation of this phenomenon will be given by some observation

of the present system equations in the following discussion, Also,
for such high wave numbers of the radial modes, the potential energy
surface of the system may consist of a shallow surface, Tﬁis makes
it difficult to define the dynamic buckling load.

Finally, the concluding remark concerning Fig. 8 is that,
compared with the static case, there is a significant reduction of
the dynamic buckling 1oad in the range of high wave number k. The
dominant reason for these numerical results will be given by the
following consideration of the present system of equations,

To study further the effects of wave number k, let us con-

sider the linearized frequencies which are functions of the wave
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numbers, First, by simplifying the set of nonlinear differential

equations (23), the following set of simplified equations is obtained.

£ _* g *
1y 0
ZE Ay e =5 (312)
w C. C.
1 1 1
1} o) go*
U °k °k
1 rt
= X+ £X =H(t) (3l¢)
(o]

where all the cubic and quadratic terms except gogl and §o§2 terms
have been dropped and Poisson's ratio was set to zero. The fre~

quencies of each mode are

= Y22y | (32a)

W
k k i
‘/ 2
w, = Y2 X (32b)
1 1 Ci
RZ 1 R
o =YVP=T=V3 (32¢)
m+ =
3
_ cR
where §o* = 5= go

The assumption of zero Poisson's ratio yields the uniform radial
motion equal to zero (§3E 0). It should be noticed that the frequency
of axial mode, W s is approximately the same value as the axial
frequency of a cylindrical shell with one end fixed. Now substitution
of a solution of equation (31lc) into equation (31a) and (31b) yields

the following Mathieu-type equations
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where T = w,Te Each solution of equations (33) and (34) would lead

to an instability of the Mathieu type for certain combinations of-xz‘-—
“ic A i K
and — , or — and — . Such combinations were given by
w A w
o c; o W, W
D. A. Danielson (ref. 22)., According to his analysis, —, —= 0.5,
o o
1.0, 1.5,... give an instability condition for any load parameter

W, w
1

A> 0, = and — are written in the following forms,
o ,

o
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where R/h = 1000

These frequency ratios are plotted as a function of k in Fig. 9. It

is found from the upper two lines in Fig. 9 that if k is chosen to be
" .

close to 12, then the condition -Jli &~ 0.5 will be satisfied and if k
w, o

is 17, then the condition ;1— & 1,5 will be obtained, Therefore in
o

the range of 12 < k < 17 the axisymmetric mode, &1, as well as the
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asymmetric mode, &2, would have a Mathieu~type instability by
coupling with the axial mode §°.

For the next stage, let ué congider the nonlinear coupling
between the asymmetric mode and the axisymmetric mode., The
nature of the interaction between gl and §2 modes can be demon-
strated by the approximate equations of motion, If the cubic terms
§1§§, §§§2 and E.Z in equations (23a) and (23b) are neglected, these

simplified equations are written as
¢ 2

3 w
) 2 o _ k x
K “k
* © 2
I 2 0 2 _ i 2
1 + wi (1 - "i:") gl + ngz = Ac gO -El (36)
i i
A A}
where q; = Q1+ Q2

A A . - 3
q, = 49+ Q), O and @, are listed in Appendix (B-2).

From these two equations (35) and (36) we see that the parametric
excitation of the asymmetric mode EZ arises through the term ngl
in equation (35), The interaction of this mode with the symmetric
mode arises through the term q1§§ in equation (36), Considering
the effect of wave number k, the conéitions of k = 16 gives not only
large values of q, and q, but also ;1-(- ~ 0.5. The fact that the fre-
quency of the axisymmetric mode, ul)i, is twice that of the asym-
metric mode, Wy s leads to a favorable coupling between these two

modes, This coupling, which results from the shell attempting to

vibrate without stretching, has been previously pointed out (ref. 24).
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Therefore, the analysis including the quadratic terms indicates that
the system has a strong coupling between the axisymmetric mode
and the asymmetric mode at k = 16. Consequently this interaction
can be considered to lead to dynamic buckling loads much less than
the static load in the high wave number range.

Now refe‘rring to the numerical results, the previous explana-
tion will be demonstrated. For the case of k =15, which shows a
typical response in the high wave numbers, 12 < k < 20, the buckled
and unbuckled response of the §1, &2 and f;o modes are shown in

Figs. (13a,b,c). The linearized frequency ratios for each mode are

given as follows,

w.
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w

o

®4
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w w '
from counting the cycles of the numerical uftbuckled ore3ponse‘ as
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There appears to be a Mathieu-type coupling phenomenon between
the E,l mode and the go mode. As depicted in Figs, 13-a and 13-b,
the initial motion of the asymmetric mode is small, However the
axisymmetric mode §1 is initially oscillating with almost the same
frequency as the -";o mode and the amplitude of the §1 mode exponen=
tially builds up. After five cycles, the influence of this motion can
be observed in the asymmetric §2 mode, This "parametrically
induced buckling'' process (i, e., the §l mode excited by the &o mode
causes the triggering mechanism for the large deformation of the
gz mode) can be understood through Figs. 13-a, 13-b and 13-c.

On the other hand, in the low wave number range (k< 10),
the axisymmetric mode, §1, is comparatively not as strongly cou-
pled with the §0 mode., Also, as the wave number k decreases, the
magnitude of 9, of the coupling from equation (35) becomes smaller.,
It will be considered that these two reasons essentially give the
relatively high dynamic buckling load for the wave number k less
than 10,

It is clearly understood through the study of the effect of the
wave number that the presence of axial-mode go plays an essential
role in determining the dynamic instability, If the axial inertia
were neglected, the resulting dynamic buckling load would be higher
than the present analysis, and would, in fact, be associated with the
""direct-buckling" phenomefla (which will be discussed‘in section
(4. 2. 4)).

4,2,2 Effect of Mass on the Loading Edge of the Shell

In investigating the dynamic stability of a cylindrical shell
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experimentally, a certain amount of structure is required on the
loading edge in order to transfer the load from the loading device
to the shell. This transfer device is generally a ring or a circular
plate of some kind. Therefore, the effects of mass of the end fix-
ture should be taken into account in the analysis, From this point
of view, the present analysis including the motion in the longitudinal
direction will be applied in a study of the effect of mass on the
dynamic stability of a cylindrical shell,

Fig. 14 summarizes the numerical results concerning the
effect of mass on the dynamic buckling load, The buckling loads
for the two cases of the wave number k = 14 and 20 are plotted as
a function of mass, m, where m is a nondimensional mass (end
mass divided by the shell' s own mass), Although the critical values
at the negative mass are physically meaningless, these points were
evaluated in order to obtain the more information at near m = 0. 0.
If m is equal to - -_}5-, the inertia term in equation (23d) vanishes and
the system is mathematically equivalent to the three degrees of
system where the axial inertia is neglected. The buckling load
resulting from the three mode system is found to be close to fhe
static buckling load (see section 4.2.4). On the other hand, as the
mass increases, the asymptotic value of critical load of the system
subject to a step loading should be nearly half of the static buckling
load. This is quite obvious from the fact that when the mass be-
comes large, the shell is subject to a load almost twice as large
as the static load, The numerical results of m greater than 5.0

turns out to be approximately 55 percent of the static buckling load.
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For the case k = 14 and m = 1.0, the resulting dynamic buckling load
shows a higher value than the m = 0,0, This phenomenon can be ex-
plained due to the frequency coupling between the {:,o mode and the §2
mode, as shown in the previous section.

A typical response for the case of m = 5,0 and k = 20 is
shown in Figs. 15-a, 15-b and 15-c., This particular choice of the
wave number and mass yields w ~ 0. 77 for the asymmetric mode,
w, & 1. 56 for the axisymmetric mode and w, ~ 0. 216 for the axial
mode. The average frequencies, ;k and 60, found from the response
of Figs. 15-a and 15-b approximately agree with the above linearized
frequencies. This is a quite different phenomenon, comparing with
the case of m = 0, 0, where the {51 mode oscillates at the same fre=-
quency as the go mode (see, for example, Figs. 13-b and 13-c).

The response of the radial motion is not at the frequency of the 5_5,0
mode, but can be understood as if this system were subject to the
double magnitude of the quasi-static* loading, Consequently the
dynamic buckling load will be close to half of the static buckling
load, if the size of the mass satisfies the condition such that ‘51_ is
greater than about 4. 0.

As shown, the mass directly affects only the fundamental
frequency of the axial motion. However, the wave number of the
radial motion which is induced by the axial motion, would be influ=-
enced, If the wave number were chosen differently, -for instance,

*From a judgement of the rise time of the axial response, we call
this type of loading quasi-static for convenience's sake.
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such as to couple with the axial mode, then the resulting buckling
load must be changed. The radial motion of the shell subject to the
axial load with a low frequency can be expected to have a small
value of the wave number k, In this sense, if a shell has a rather
heavy mass, or if a load is statically applied, the shell would prefer
to buckle with a small wave number.

4.2.3 Effect of Viscous Damping

From the experimental observation of a cylindrical shell sub=~
jected to a step loading, it is known that the damping of the axial
motion is much more pronounced than that of the radial motion. It
is considered reasonable to include the effect of damping on the axial
motion only in the present analysis, The inclusion of viscous damp-~
ing of the axial vibrations, §0 mode, was found to have an appreciable
effect on the critical loads. This effect is particularly marked in
those cases where the buckling loads were determined by a '"paramet-
rically induced" buckling phenomenon,

Typical examples of the response for the damping factor,
£ =0.1, were shown in Figs. 5a,b,c. Comparing these figﬁres with
the response of an undamped system, it is noted that the response
with damping is much more reasonable. The large amplitudes of the
gl mode and the gz mode develop during buckling., Then the system
vibrates about the second equilibrium configuration, while the axial
motion §0 decays to a constant value with increasing time..

The effect of the magnitude of the damping factor on the
critical loads is studied for the case of the wave number, k = 14.

It should be remembered that the minimum dynamic buckling load
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was obtained at this wave number by "parametrically induced" buck-
ling. Fig. 16 shows the dynamic buckling load for the various values
of {, where { is the ratio of damping of the system to critical damp=
ing. The bucicling load for ¢ = 0. 05 is 48 percent above the value
corresponding to the undamped system, and is close to the static
critical value for { = 0.2,

The response for the value of { equal to 0.2 is shown in Figs.
17-a, 17-b and 17-c. The resulting critical load is approximately
equal to the static critical value, This can be explained as follows.
In this case the gl and EZ modes initially oscillate due to the motion
of the §o mode. However, at the time when the §1 mode starts to
play a triggering mechanism for the gz mode, the axial go mode has
already decayed to the static value due to the damping. Additional
computer results for larger values of T max showed that a buckling
was achieved at a value of \ slightly lower than the static buckling
load., Also this result demonstrated that the buckling was due to the
coupling motion between the axisymmetric and asymmetric modes.

Another interesting feature of the effect of damping ié that the
quasi-static response can be obtained by considering the dynamic
problem with very large damping in the axial motion. This is illus=-
trated in Figs. 18-a and 18-b which show the response obtained by
setting the damping factor equal to 2.0 and the applied load one per-
cent higher than the static buckling load, The amplitudes of the §1

and §2 modes grow simultaneously without oscillation before the

buckling occurs,
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Through the study of damping in the axial motion, it can be
more clearly understood that the dynamic response of the system is
sensitive to the coupling between the radial and axial motion as well
as the §1 and gz modes., Damping is particularly important when the
stability is governed by "parametrically induced' buckling. In those
cases, a small amount of damping has a large influence on the sta-
bility, However, buckling loads for the lower wave numbers of the
radial mode are not affected.

4,2.4 Comparison with the Analysis Excluding Axial Inertia

It has been shown in the previous sections on the effects of
wave numbers, mass, and damping that the axial inertia plays an
important role in determining the dynamic stability of a shell, It is
interesting to compare the present results with the numerical results
based upon the analysis which does not include the axial inertia but
has the same radial displacement as the present analysis,

The governing differential equations for this case can be
directly obtained from the system of equations (23a) through (23d) by
the following procedure., Dropping the axial inertia term, ‘éo’ in
equation (23d), E.o can be eliminated from the set of equations. The
resulting three differential equations of motion are listed in Appendix
D. The response of the asymmetric and the axisymmetric modes
for the wave number k = 15, is shown in Figs. 19-a and 19-b, respec-
tively., From the relation between load and the maximum amplitude
of the displacement, the critical load, ), of this system is found to
lie between 0. 88 and 0.89. This is significantly higher than the

critical load (A = 0. 54) resulting from the previous four degrees of



37
freedom system which includes the axial inertia term. These results
are in good agreement with the results obtained by Budiansky and
Hutchinson (ref. 25) who also neglected axial inertia. The equations
used by Budiansky and Hutchinson are slightly different since they
neglected the cubic terms and terms of the order £€. Their justifi-
cation for neglecting the axial inertia is that the ratio of time it
takes an axial compressive wave to travel half of a buckle length to

one quarter of the free vibration period has the small value

for all of the radial modes. This means, for practical purposes,
the stress in the shell remains steady at the value of the applied step
function. This is only true for an infinite length shell. However,
for finite length shells, reflections of the axial stress waves must
be taken into account, In other words, a more appropriate measure
for neglecting the axial inertia is that the ratio of the time the axial
stress wave takes to travel the length of the shell to the period of
radial vibration should be small compared to unity, This colndition
is not met in the present analysis,

Fig. 20 shows schematically the difference in shell motion
if the system of equations includes the axial inertia or not. The
motion in the axial direction of the loaded edge is shown by the solid
line and the radial displacements at the same time are represented
by the dotted lines in this figure. In Case (A) of Fig., 20, the axial
motion §o has two time-dependent contributions, namely (i) primary

contribution due to the applied load which excites an axial vibration
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and (ii) secondary contribution due to the end shortening accompany-
ing radial motion. However in Case (B), due to the absence of the
axial inertia, the first contribution is not oscillatory and the time~
dependent axial motion is because of the end shortening only., From
Fig. 20 it is apparent that while Case (A) with axial inertia included
represents the response of the shell under step force, Case (B) with~
out axial inertia represents the response more like that due to a
step axial displacement, The resulting mathematical model does
not properly represent the shell behavior subject to a step force, if
there is likelir to be interaction between the axial vibration mode

and radial response mode.
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V. SUMMARY AND CONCLUSIONS

The critical step loads required to produce buckling of a cylin=
drical shell were determined by an approximate method, taking into
account the inertia in the axial direction, Also, the dynamic buckling
mechanism of the system was investigated. The analysis makes
several important assumptions regarding the nature of the boundary
conditions, the response modes, and the circumferential inertia. The
boundary conditions that were not satisfied in the present analysis
were analytically shown to affect the shell only near the ends, The
radial response modes studied consisted of a coupled axisymmetric
mode and an asymmetric mode, in addition to a uniform expansion
mode, The axial and circumferential displacements were found using
the inplane equilibrium equations, taking into account the axial inertia
in an approximate manner.

A study of the numerical results of the "mathematical model"
with four degrees of freedom, for which the static buckling behavior
is well defined, led to the following conclusions.

(i) The dynamic buckling criterion can be defined by’ a sharp
jump in amplitude of the asymmetric mode with a small change in
load parameter.

(ii) The present analysbis leaves the wave numbers of the
radial modes as arbitrary parameters. However the parametric
study of the wave number, k, with the restriction that the asymmet-
ric mode lies on the Koiter circle, shows that there is a significant
reduction of the dynamic buckling load in the range of high wave

numbers. A minimum critical load is found near a, N B~ 0.5,
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This can be explained by the Mathieu-type instability of the system.
There is a strong frequency coupling between the radial modes and
the axial mode. Also there is a nonlinear coupling arising from the
quadratic terms of the radial modes. These two coupling phenomena
play an essential role in reducing the dynamic buckling load in the
range of high wave numbers.

(iii) The mass on the loaded edge of a shell is important in
the dynamic buckling load, If the mass is several times greater than
that of the shell, the resulting dynamic critical loads approach ap-
proximately half of the static buckling load.

(iv) According to a study of the effect of damping in the axial
motion, it is found that its effect is particularly marked in the case
where critical loads are controlled by the “'parametrically induced
buckling." The damping suppresses the parametric resonance be-
tween the radial and axial modes. The buckling load for the system
with the damping factor equal to or greater than 0,2 is close to the
static value.

(v) To demonstrate the importance of axial inertia, ti’le results
of the present analysis are compared with those from a study which
does not include axial inerj:ia terms. The buckling loads from the
latter analysis are found to be much higher than those from the present
analysis, due to the absence of any coupling between radial and axial
motion. Therefore, if the axial inertia is ignored, for the finite
length cylindrical shell problem, the resulting model cannot properly

describe the shell behavior subject to a step force.



From the above observations, it can be concluded that the
axial inertia has a very significant influence on the dynamic stability

of a shell subject to a step force.
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APPENDIX A

Analysis of Sine-Representation

The radial displacement and initial imperfection are assumed

as the following forms,

=g k]
i

gl Bm('_—) + gz sm(———-—) Sm(R) + §3 (A"l)

€|
]

El m(—-) + EZ sm(—) sm(—l) (A-2)

(A-1) Boundary Layer-type Solutions

The particular solutions u, and o of the inplane equations are

obtained as

u, = blsmai_kxsmpy + b

25111'1c:.i_|-k431n{3y + b3cosakxsinpy
+b4sin2akx + bscosaix + b6sin20.kx0082f3y + b7sin2aix (A=3)
Vp = elcosai_kxcosﬁy + ezcosai+kxcosﬁy + e3sino.“_xcospy

+ e4sinpy + e5c052akxsin2[3y (A-4)

The homogeneous solutions for the simple support boundary condition

are obtained in the following form,
uy = 2(x)sin[3y + f3(x)c052ﬁy + fl (x) (A-5)

vy = f4(x)si.n2.py + fs(x)cOSZﬁy (A-6)

and



w4l

and  f(x) =& x - bg

-b3

.fz(x) = (*mEPLHI) %7 [xcoshﬁ(L-x)+(L-x)coshﬁx] '

+ [sinh(3x+sinhﬁ(L-x)]%

(el+ez)'y
+ (SIBhpL—yT) [(L-x)sinhpx-xsinhp(L-x)] (A=T7)
-2(e1+e2)y
fa(x) = (STBZPL-2yL) [(L-x)sinh2Bx-xsinh2p(L-x)] (A-8)

(e4+e5)
£ (x) = (sTah2PL-3yT) g 2y [(Li-x)cosh2px + xcosh2p(L-x)]

- [sinh2px + sinhZﬁ(L—x)]$ (A-9)

-b Y
f5(x) = (si_nhﬁi-l'yL) [(L-x)sinhfx - xsinhf(L-x)]

(e1+e2)
+ GhpLoy L) ¥ [xcosh(L-x)+(L-x)coshpx]

- [sinhpx + sinhﬁ(L—x)]g (A=-10)

_ B(l4v)
where Y = %—_—;—
The boundary layer-type solutions, fz(x) through fs(x) are shown in

Fig., 21-a and 21-b, All coefficients are listed at the end of this

section,
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The list of Coefficients in Appendix A

!

€3

[}

ag B2(p%-va %)

a.a
i~k

Z 732
20, plag o +B7)

‘13‘32( v a1+k2-[32)

ol AU UMY

. 7232
2054k(ag4 1B7)

ak( BZ' Vakz)

€
R(af +8%)° T2

vﬁz-aﬁ

G..Clk |
- 2;k+1 (gl g2+El gz"'Ezgl )

- l.Eak (Eg + 2-€2§2)

O .2, .7
TE (gz + 25252)

¢ .2

a;i_zﬁz(o-i_kz" v ‘32)

2(ai_kz + p2)2

2.2, 2 2
a; B agyy - vB)

2. 72
2agpct A7)

B [B%+( v+2)a, % ]

R( a.k2+ [32 )2

2
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2 .2

va, -B 2

ey = —1gp— (82 + 2538,)
2

es = 15 (&5 + 25,6,

. (i+k)w

iw _ kw = 5

where . = FT, O T Fo % S T and ﬁ-R

(A-2) Algebraic Equations for Static Buckling
The method employed in the present analysis yields the follow-

ing set of two nonlinear algebraic equations,

(N, M) &,+C, [(6,+F,)8, + F,6,] (E,+8,) + Q (£2+2E,8,)

1

+Q,E,(E,+E,) = A (A-11)
(g, M) 6y + G, (62+2E,6,)(E,+6,1+C, [(6, 4 16, +E,6, 1 (B +6))

+Q5 §(B,+E,) + Q (28, 6,+2E  £,4E,€) =2E, (A-12)

Note: quadratic terms Qi appear in equations (A-11) and (A-12) only
if i = odd numbers,
Numerical Results of the System of Equations (A-11) and (A-12)
The system has a local maximum in the variation of load
parameter, A, and disﬁlacements, gl and EZ’ only for the barticular
combination of the wave numbers. The wave numbers have to satisfy

the following conditions
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i=2k+l or i=2k-i, and 1i2=17

= 0.5, % = 0. 001

2
2 1
ﬁc = e, "('5:'{) 2
i i ag
D
1
Q. = —
1742
1
o <22
2 2(1.2
i
D
Q3 =3
Ok
D,
Q=73
%k
e 2
Dl = - 2ic
(4k“-i%) o
2kc a.zu.zﬁz
D. = ik 3 1 + 1 }
2 " . 2 2 2 2 2. 2
1(2k-1)7r(ak+ ) ai_k+ﬁ ui+k+ﬁ
2(1+v )cai'ﬁz 2i akai+k-kai2 Ziakai_k-kuf
- +
. 2, 2.2 . 2 2.2 . 2. 2.2
11r(ak+;3 ) (2k+1)(ai+k+p ) (2k-1)(ai_k+p )

kci, hck, Cl’ CZ’ C3, a;, A, B, a; and a; .y are the same as
Appendices B~2 and B-3,
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(B=1) Coefficient of Particular Solutions of Inplane Equations, up

d
an 5

For solution u

b, = —— ¢
1 Rai 1
o ai(gf+2€1gl)
2 = )

(8F- vp®)(E2+ 2E,8,)
168,

b, = =

ai(/ﬁ\z' Vei)gz

4 R(e§+ﬁ2)2

]

" a2B2 (A% 102 ) 4.4
b, = | — Lut S ‘k](§§+E€+E§)
5 2 N2.2 1°2 °1°2 °2°1
28, (8, “+B) 28, 1 -

racBe (B2 8. %) b4
b, = |- k. 1k](§§+‘€§+§&)
6 A 2 N2.2 1°2 °1°2 2°1
28, (8, “+B9)° 28,




wb2a-

2

b, = 16

For solution vp

‘ﬁ?é(&._kz-véz)
e = 21(6._1k2+62)2 (616, + 18, + EpE))

1

ASA 2 A2
8BB4 -vED)

e, = sz (6185 + 518, +E,58))
2(85y +8)

\ ) 2(& 2+v62)
Jl_[ k ‘% ) 1] :,

3 R-e (ak2+62)2

(¢!
n

(v ékz-ﬁz)(§§+2-€2g2)

(B-2) Coefficients of Energy Expressions in Equations (16),(17)

- 2
2 .2, Rh, w
a,” =i(37) (T.)

2
2 2,Rh,  w
a =k (2‘;) ()

2
0y = (i-k)% G2) ()

2
2 _ ...\ Rh, 7
Usie = (R (0) (T)
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C1=

é

2:

2 Rh, ,1.2

B = 2% ()

A :-z(ak4+ﬁ4)
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32
c®agp? 1-6,1 1 2
) YL + W Zapf (616,18 E,1E,8))
i=k Ltk
where IF i=k, 6., =1
ik
IF i #k, 5ik =0
4
Ok
4:(ak2+['32)2

2..2.2
(().k +87)
4

|
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2

A
@, = B, where Ifif2k, Q=0
2 2.2
(_5\ caiakﬁ : ‘ -
2= T35 where If i# 2k, Q, =0
2(uk+‘3)

(B=3) Coefficients of Nonlinear Differential Equations

1. 2. 1
)\c --:,-(ai +——2-)
1 Q.
1
(o 24p2)2 2
\ =l[ k + k
¢, "2 ak?‘ I 2,627
2 4
_ c B 2
C,=7g (Fzta)
a
k
2, 454 -5, 1
Cy = - 53 + 2 2.2
2og (o5 ) TR lagy *+B7)
c%q.2pt 1-6, .
Cy= —3 [ 557 * RV
(ai-k +B87) (a'+k +B7)
where If i=k, 6§, =1
ik
fi#kk, &, =0
2
- B_
Cy= 3
ak’.
C(ak2+vﬁz)
C T S ——

5~ ]
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2
Cai
Ce = 3
c(vak2+ﬁ2)
C, = -
7 )
cva
Cg = —3—
2
- 1 _(cB”
Q = 2 =)
et

2 2.2
ca, a, P
Q. = ik
2 2 [ 2 pZ)Z]

ZCLi 2(0.k +
2 <8
%

2 2.2
q - L [_____ﬁ__]
4 2 2(ka_kﬁz)z

where if i #2k, then Q=0 j=1,23,4

aiz, ai’, 52, a; Zk and o’iik are defined in Appendix (B=-2).
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APPENDIX C

THE FLOW CHART OF COMPUTER PROGRAM

The set of four simultaneous nonlinear ordinary differential
equations is integrated numerically for given initial imperfections
and under step loading, Numerical methods of Runge-Kutta and
Milne predictor-corrector can be found in reference 19,

The present program was optimized in accuracy and time.
The essence of the employed technique is in choosing an appropriate
interval of integration., The procedure is to use the 4th order Runge-
Kutta method to generate the starting values and then switch to use
the Milne predict-correction method. If the error of the corrected
value is bigger than the fnaximum tolerance, the interval is halved
and if the error is smaller than the minimum toleréﬁce, the interval
can be doubled.

The details of the involved technique are shown in the following
flow chart,

LIST OF NOTATION

YR Vector of solution
FR Vector of derivative approximations
H Step size

COUNT Step counter

RUNGE Subroutine of Runge-Kutta
PRECOR Subroutine of predict-corrector
FUN(J) Function of derivative

PCC Control parameter

ERROR Difference between predicted value and correct value
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EPS Upper bound of error tolerance
SPS Lower bound of error tolerance

TMAX Upper limit of integration
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(START )
o

(1) M
YR(J) = 0.0, J = 1,1q
7 |
(2) |couNnT =0
v
(3

KK = RUNGE €

FR(J) = FUN(J)

COUNT = COUNT + 1

WV

ISUB = 6-COUNT

W

Y(ISUB, J) = YR(J)

V

F(ISUB, J) = FUN(J, YR)

YES

COUNT < 5

NO

PCC =0




~59.

(4)

\

MM = PREDICT-CORRECTOR

A\’
F(1.J) = FUN(J, ¥(1,1))

NO YES

Y(I,J) < DEVCK

ERROR = Y(1,7)-SAVYR(J)

SAVYR(J) = Y(I,J)

(Y(T, J)) ERROR = Y(1, J)-SAVYR(J)

GO TO 2

v

EPMAX = MAX(ERROR(J))

NO

YR(J) = Y(I, J)

H = 2¥H

NO

A

GO TO 1
\

H = 0. 5%H
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IPLT =IPLT+1

¢

XXPLT(IPLT) =T

/
YYPLT(J, IPLT) = Y(1,J)

YES
Y(1,1)<SAIMAX

v NO

AIMAX = Y(1,1)

YES

NO

PLOT XY PROCESS

, /
C’END )

GO TO 4
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APPENDIX D
THE SYSTEM EQUATIONS WITHOUT AXIAL INERTIA
The governing differential equations which do not include the
axial inertia but have the same radial displacement as the present
analysis can be directly obtained from the system of equations (23a
through 23d). The resulting three differential equations of motion
are given as follows,

(=) €] + [, ~ch(t)] &) + Cyl6 £,4E £,4E,6, )NE,+E,)
1

2a,
1
+Q(E5+2E,8,) + Q,(65+E,6,) = BLIE, (D-1)

(ikz) £, + [ ~<Pit)] £,+C, (£2+2E,6,)(E,+E,)

+Co(816,7E,6 8 £5)(6+E)) + Cy c(E51E,) B (£)

1" 2 —
§3 + €3 - E';L (gg"'z_gzgz) = - i’p(t)

2
By(8) = -vB(t) - &4 + S0 (£742E,8,)

where X, X, C. and Q. are listed in Appendix (B-3).
c;” "¢’ i i
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TABLE 1. STATIC BUCKLING LOAD

ASYM AXI-SYM CIRCUMF BUCKLING LOAD ASYM-IMP AXI-IMP

k i 2 X, [ [
1 2 9 0.8765 0.1754  -0.1130
2 4 13 0. 8962 0.0534  -0,0499
3 6 16 0.9111 0.0269  =-0.0309
4 8 18 0.9173 0.0172  =0.0220
5 10 20 0. 9230 0,0119  -0.0169
6 12 21 0.9254 0.0093  -0.0136
7 14 23 0.9274 0.0071  -0.0114
8 16 24 0.9263 0.0058  =0.0097
9 18 25 0. 9249 0.0049  -0.0085
10 20 26 0.9226 0.0042  =-0.0075
11 22 26 0.9186 0.0038  -0.0067
12 24 27 0.9120 0.0033  =0.0060
13 26 28 0.9057 0.0029  -0.0055
14 28 28 0. 8970 0.0027  =0.0050
15 30 28 0. 8896 0.0025 -0, 0049
16 32 29 0. 8838 0.0022  -0.0043
17 34 29 0. 8812 0.0021 -0, 0040
18 36 29 0. 8831 0.0020  -0.0037
19 38 29 0. 8894 0.0019 ~ -0.0035
20 40 29 0. 9000 0.0018  -0.0033
21 42 28 0.9120 0.0018  -0.0031
22 44 28 0. 9246 0.0017  -0.0029
23 46 28 0.9367 0.0016  -0.0028
24 48 27 0. 9480 0.0016  =-0.0027
25 50 27 0.9568 0.0016  -0.0025
26 52 26 0. 9647 0.0016  -0.0024
27 54 25 0.9718 0.0616  =0.0023
28 56 24 0.9787 0.0016  -0.0022
29 58 23 ket A AR 0.0017  -0.0021
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o(t)h

FIG. | SHELL GEOMETRY AND COORDINATE SYSTEM
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