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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem 

The term "dynamic stability'' has been used frequently in the 

literature tg refer to several phenomena. Among these are, buckling 

under impul~ive loading, the snap through of shallow arches and shells, 

the stability of automatic contrQl systems, and the stability of 

structures submitted to the action of pulsating parametric loads. The 

last phenomenon mentioned is sometimes referred to as parametric 

resonance and is the subject of investigation of this thesis. 

Quite generally, whenev~r a static load of a particular configura­

tion can cause a loss of the static stsbility of a given structural 

system, a pulsaUng load of the: same configuration can cause a loss af 

its dynamic stability when certain c~nditions are satisfied. Several 

examples of this phenomenon can be found in the literature (1). In 

particular, if a flat plate is subjected to pulsating in-plane loads, 

and if the amplitudes of th.e pulses are smaller than the static buckling 

load, the plate will perform in-plane or longitudinal vibrations, and 

for certain frequencies of the pulses, in-plane resonance will occur. 

However~ an entirely different type of resonance will occur in the 

plate when a definite relationship between the frequency of the pulses 

and the natural frequency of transverse vibration of the plate exists. 

Thus, besides th~ in~plane vibration, transverse vibrations will be 

l 
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induced in the plate» .and the plate is said to be dynamic.ally unstable. 

The distinction between the ordinary resonance and the parametric 

resonance (dyn.amfo stability) now becomes apparent. In the ordinary 

resenance the vibrations accompanying the load are in the direction of 

the load, i.e. in the direction of the associated deformations, while 

in t:he parametric resonance the induced vibrations are in the direction 

of the buckling deformations and arise only for a definite ratio of the 

forcing frequency and the natural frequency of transverse vibration. 

Thus~ like the buckling problem, the amplitude of the pulsating load 

and its frequency appear in the governing differential equation 

parametrically rather than as a forcing function, as is the case for 

ordinary resonance. 

The spectrum of values of the parameters causing unstable motion 

is referred to as the regions of dynamic instability. It is interest• 

ing to note t..h.at the governing differential equation is always of the 

Matheiu-Hill type, and that dynamic instability may occur for any 

magnitude of the pulsstin.g load, less or greater than the static 

buckling load. For practical considerations, however, only loads with 

magnitudes less than the static buckling load are of interest. This 

pulsating type loading may be encountered in plate structures housing 

vibratory machinery as well as in aircraft structures traveling at 

transonic and low supersonic speeds. The analysis of such structures 

for dynamic instability is useful in preventing failure due to para­

metric resonance as well .as in avoiding fatigue resulting from the 

induced vibrations. 

1.2 Review ~f Previous Work 

The dynamic stability problem was first recognized by Lord 
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Rayleigh (2) who in.vestiga.ted the stability of a string under variable 

tension. Later» Beliaev (3) published an article in which he discussed 

the dynamic stability of a straight rod pinned at both ends, and deter­

mined the boundaries of the region of instability. Since Beliaev 8 s 

work, many investigators have refined and applied the theory to bars, 

rings, plates, and shells. A review of the literature on the subject up 

to 1951 is available in an article by E. A. Beilin and G. Dzhanelidze 

(4). The most comprehensive account on the subject was presented by 

Bolotin (l) in his book Dyna,!liC Stabilit? of Elastic Systems. 

The dynamic stability of plates under compressive in .. plane loads 

was investigated by Bodner (5), Khalilov (6), Einaudi (7), Ambartsumian 

and Khachatrian (8), Bolotin and others. The effect of damping on the 

instability regiens was discussed by Mettler (9), and Naumov (10). 

Problems involving nonlinear damping and other nonlinear effects are 

due to Bolatin (l), Mettler and Weidenhammer (ll)o A common feature of 

most of the works mentioned is that the governing differential equa­

tions are reduced either exactly or approximately to a single second 

order differential ~quation with periodic coefficients of the Mathieu­

Hill type. However, Chelomei (12) has shown that in the general case 

the problem is governed by a system of differential equations with 

periodic coefficients. 

1.3 Sco..12e 

In all of the above cited works, the authors have employed either 

integral equations or Gale~kin's Method to establish the governing 

equation or equations. The success of either method depends to a great 

extent on the nature of the problem to be investigated. For instance, 

to use a Galerkin approach a prior knowledge of some suitable functions 



that satisfy the boundary conditions i.s necessary in order to .approxi­

mate eH:he:r the buckling or vibrat:i.on modes. BeMuse such functions 

are not always .av1dlable~ many problems of relatively c.omplex loading 

or geometrical nat.u:re have remained unsolved. An alternative approxi­

mate method th.at: is capable of handli.ng a wide range of complex prob­

lems w:ith :regiillrd to geometry, loading, and material property is, 

therefore~ extremely desirable. For such a method, the finite element 

approach origin.ally developed by Clough and others (13), seems to be 

most suitable for these purposes~ and its application to dynamic 

stability analy£is @f plates is demonstrated in this thesis. 

4 

The purpose of this thesis is to develop, using the finite element 

met.hod, a pt'oc.edure t:o determine the regions of dynamic instability for 

plates subjected to v,,l:rii:r,us in-plane pulsating loads and boundary con­

ditions. Included in the ana.lysi:s are plates without damping, plates 

with viscous damping, plates on elastic foundatiens, and plates on 

elastic found<itions with viscous d.lilmping. The plates t@ be examined 

are ast,rrnned to be rectangular~ homogeneous, and isotropic. The mate­

rial is also assumed to obey Hooke's Law, and the well known assumptions 

of the small deflection theory of plates are employed. Although these 

limitations are imp@sed upon the examples which are solved, it is 

pointed out in the conclusions that the method that is developed is not 

limited to all of these :restrictions. Only principal regions of insta­

b;Uity are investigated. Experimental dat.ril for pinned rods presented 

by Bolotin (1) showed that no experimental correlation could be found 

for higher iregions 9 <!lnd that the data for the principal regions agreed 

exceptionally well with the theory. It is further assumed that the 

effects of in=phne inertia can be neglected. lt has been shown by 
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Bolotin (1) ~nd ~thers that this assumption is valid provided the fre~ 

quency of the pulsating load is not close to the res0nance frequency of 

inwplane vibration of the plate. 

The following are the steps in the determination of the regions of 

dynamic instability of plates: 

(a) Divide plate in.to a grid of finite elements; 

(b) Assume a suitable displacement function for the finite 
elements; 

(c) Determine the elemental bending stiffness matrices; 

(d) Det~rmine the elemental inertia or mass matrices; 

(e) Determine the elemental stability matrices; 

(f) Determine any other elemental matrices needed to analyze 
a particular problem, such as stiffness modifier matrices 
due to an elastic foundation, and a matrix which accounts 
for damping; 

(g) Assemble elemental mJtrices to form matrices for the 
entire structure; 

(h) Apply the bGundary conditions; 

(i) Solve for the natural frequencies of transverse vibration; 

(j) Solve for the static buckling load corresponding to the 
load configurati~n of interest; 

(k) Solve f@r the regions of dynamic instability. 

In the f@H(lwing Chapters, Chapter II gives the development of 

the governing set of matrix differential equations, and the procedure 

for the development ~f the elemental matrices; Chapter III discusses 

the mathemat:i.cs involved in finding the boundaries of instability for 

the governing equations; Chapter IV formulates the solution for the 

regions of instability; Chapter V presents typical examples, and Chapter 

VI gives the cenclusions and suggestions for further research. 



Cll.i\PTER II 

GOVERNING FINITE ELEMENT EQUATIONS 

In this Chapter the governing finite element equ<11tions are 

developed for a plate which undergoes parametrically excited vibrations. 

Other th&in the assumption that the given structure can be represented 

by a series of finite elements~ the development is completely general. 

The developed matrices in the latter part of this chapter are deter-

mined for specific cases of mass and lead distributions. The Lagrangian 

equt~tien is used together with the finite element method in the develop-

ment of these equations. 

The Lagnnghn equation mil!y be written as follows (14); 

in which 

T = Kinetic energy 

U = Strain energy due to bending 

V = Potenti.al ffnergy developed by in-plane loads moving 
through bending displacements 

W = One=half the time rate at which energy is dissipated 
by v:i.scous damping 

Qi = Generalized forces 

Si = Generalized coordinates 

Si ::;; Gene,rdized velocities • 

6 

(1) 
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Let a small element of fi.nite dimensions be isohted from a plate 

and the lateral displar.ements of t~e element be represented as 

(2) 

in which w(x,y) is a function of x and y only, and R(t) is a time 

functi0n. Here the middle surface ef the plate is taken as lying in 

the x-y plane and w is measured downward from thi~ plane. Further it 

is assumed t~at the functien w(x»y) can be represented as a linear 

• 

A 
n 

To determine the constants {A}, then nodal displacements ef the finite 

plate element~ {v1R(t)}, ~re chosen as generalized displacements. !hat 

is to say 

(4) 

These node displacements c~n be expressed as follows, 

{5) 

The matrix [BJ is obtained by evaluating the matrix (fn(x,y)] and its 

derivatives at the nade points. Solving for the copstants, {A}, from 

Eq. (5) yields 
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(6) 

.and by substitution into Eq. (3) the displacement function can be ex-

pressed as 

Because the matrices [BJ and lviR(t)} are not functions of x and y, 

the derivatives of w(x,y,t) may be formed as follows; 

~= 
of (x~y) -1 n [BJ [viR(t)} 

(IX 
c)X 

. " of (x,y) 
~= 

-1 n [B] {v1R(t)} oy oY 

o~ == ·l §R(t) 
ot [fn(x,y)][BJ {vi dt } • 

With the above information expressing the displacements of the plate 

element in terms of nod,il er generalized displacements, the terms in 

the L,ag:rangian equati@n cai1. be ev.lilluated in a finite element f@rm. 

2.1 Kinetic Energy 

(8) 

The kinetic energy fer an infinitesimal area of the plate element 

is 

in which pis the mass of the plate for a unit surface area. If this 

expression is integrated over the entire surface of the plate element, 

the total kinetic energy fo,r the element becomes, 
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(10) 

Substitutiag from Eq. (8) into Eq. (10), 

(11) 

The squaring of .the term in the brackets can be accomplished by 

multiplying the expression by its transpose. 

This expresses the total kinetic energy of the plate element in terms 

of the generalized nodal displacements. 

Now the necessary operations are performed on the kinetic energy 

term fqr substitution into the Lagrangian eq~ation. Tb.e first term of 

Eq. (1) t:hen becomes, 

_g_(.Q,.i-) = ...$!_( oT -) = [[Bf1]T [fJ(f (x,y)]T 
dt os. dt dR(t) n 

1 o (v ) · 
i dt 

T . 

The [[BJ-l] , [B]-l 
2 

and {v1d R(i)} matrices can be factored out as 
dt 

shown since they are independent of the variables x and y. Using a 

more concise natation 

d(oT ) 
dt ~-

1. (i=l,2,3--n) 

(13) 

(14) 
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in whfoh 

The matrix [m] is designated as the elemental mass matrix and hereafter 

is referred to ~s such. 

'!'he remaining term involving the kinetic energy is 

oT .: o, 
osi -

(16) 

since the kinetic energy function is independent 0f the variables s1• 

2.2 Strain Energy 

The strain energy for the entire area of the plate element is 

Sii 2 2 2 2 ( 2 )2 J Dowow owow ow 
U = 2 ~~·2(1-v)[ ~ ::--I- ---- ] dxdy. ox oy ox oy oxoy 

(17) 

This can be represented in matrix f0rm as 

(18) 

in wb.ich 
2 

:a:: l \I 0 
ox" 

2 
{c} = ~ 

, and [DJ ::::; v 1 0 

~ 0 0 2 (1-v) • oxoy 

Matrix (C} can be expressed in terms of the generalized displacements 

as 

(19) 
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in which 

2 o f 1 (x)y) 
2 

a f2 (X»Y> 
2 o fn(x,y) --

ox2 ox2 ox2 

~2£1 <:x~y) 
2 2 

o £2 (x,y) o fn (x,y) 
[E] = 

oY2 oy2 oY2 

2 
O fl(XvY) 

2 o £2 (x,y) 
2 o fn(x,y) 

oxoy oxoy oxoy 

Substituti.ng into the strain energy expression the strain energy 

becomes, 

T 

I'fDL }T[ -lJ T -1 
U = J2lviR(t) [BJ [E] [D][E][B] lv1R(t)}dxdy. (20) 

Now the operations indicated by Eq. (1) are performed 

(21) 

or 

(22) 

in which 

(23) 

By definition the [k] matrix is the stiffness matrix for the element. 

2.3 Work Done B~ In~Plane Load! 

The work done by the parsmetric or in-plane loads when they move 

through the bending displacements is 

(24) 
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This expression may be represented in matrix form as follows; 

(25) 

in which. 

and 

(_ 

L~y ~yj [NJ= • 
Ny 

The matrix [IGJ is as follows; 

of1 (x,y) of2 (x,y) ofn (x,y) 

ox ox ox 
[GJ = 

of1(x,y) of2 (x,y) of (x,y) 
n 

oY oY oY 

Substituting these expressions into Eq. (25) the potential energy term 

becomes, 

T 

V = .\fJ{viR(t)} T[[Bf1] [G]T[NJ[GJ[Bf1{v1R(t)}dxdy, (26) 

which when differentiated with respect to s1 , yields 

(27) 

O!' 

"ii!- = [S](v.R(t)} 
osi 1 

(28) 
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in which 

[SJ 

Matrix [SJ is hereafter referred to as the elemental stability matrix. 

2.4 Damping .and ~~c Feund.ation 

To include the effect of viscous damping, the expression for the 

rate at which ene~gy is dissipated due to the damping forces must be 

calculated. This is done by multiplying the damping force by the 

velocity. One,cJ:uilf the !'.l'.lte at which damping energy is expended is 

2 
dW ::: \ (2c) ( ~:} dxdy, (29) 

where 2c is the damping coefficient, and here it is assumed to be con-

st.ant over the pl~te element. Integrating over the area of the plate 

element 

W == JJ(c)[~(x.y,t2]2
dxdy. 

at · · (30) 

Comparing Eq. (30) with the e~~pression for kinetic energy, Eq. (10), it 

can be seen that when the mass (p) and damping coeffici.~mt (c) are both 

constant over the elementvs area the integrals to be evaluated are 

ident:i,cal except for these constant terms. The damping term in the 

Lagrangian equ.ation is rwt ~ however, differentiated with respect to 

time. By comparison with the development for the kinetic energy the 

damping term is 

(31) 

In writing this expression the mass has been assumed to be constant 

over the ent:i:re plate element. 
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The effect of an elastic foundation can be taken into account by 

finding the work done by the elastic foundation forces and differentiat-

ing the work with respect to the generalized coordinates. Thus, 

where q is the spring constant for the elastic feundation per unit area 

of plate surface. Here again, as for damping, by comparing this expres-

sion with the kinetic energy development it is obvious that 

(33) 

In the above expression i.t is assumed that both the foundation modulus 

and the mass a:re const.int over a given plate element. 

2. 5 Governing Eguati.£B.! 

By using Eqs. (14), (16), (22), (28), (31), and (33) in conjunction 

with Eq. (1), the governing equations for a plate can now be generated 

for the various cases of loading and motion. Several cases are listed 

below. The m@trices in these equations denoted by the capital letters 

are matrices for a complete plate corresponding to the elemental 

matrices with, the same small letters. For example the matrix [KJ in 

Eq. (34) is the structural stiffness matrix. The details involved in 

constructing these structural matrices are discussed in Chapter IV. 

1. Static deflections of a plate due to transverse loading 

[KJtv} == [Q} (34) 



[M]{v,g:!Ul} + [K]t_vR(t)} = 0 
dt2 

and for harmonic motion of the form 

v.R(t) = A. sin wt 
l l 

the frequency determinant becomes 

3. Static buckling 

[[K] • [sJ]{v} = 0 

or 

From this determinant static buckling loads can be 
determined. 

4. Deflections of a plate on an elastic foundatian 

[KJ{_v} + .9. (M]{v} = {Q} 
p 

5. Dynamic Stabili.ty 

6, Dynamic Stability including damping 

The equations for other combinations of facto~s affecting the plate 

response can be formed in a similar manner. 

15 

(35) 

(36) 

(37) 

(38) 
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In the expressions for the mass, stiffness, and stability matrices, 

once the displacement function w(x,y) is known the matrices [f0 (x,y)J, 

[E] and [GJ can be determined, and the integrals can be evaluated for 

particular cases. 

Assume the displacement function for the rectangular plate element 

shown in Figure (1) takes the form, 

b 

w 

Figure 1. Finite Element With Generalized Coordinates 
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or in matrix form. 

Although other displacement functions could be used, the one chosen here 

has certain advantages. Eq. (40) is the highest order polynomial which 

identically satisfies the homogeneous plate equation 

t;4w(x,y) = O. 

If the generalized coordinates are chosen as the ones shown in Figure 

(l)i then Eq. (5) can be e~pressed as shown in Figure (2). When the 

various elements are assembled together to represent a plate, the de-

flections and slopes are completely compatible only at the node points. 

Compatibility is also maintained along the connecting boundaries in 

the direction 0f the bouadaries, whereas in general slopes are slightly 

discontinuous across the boundaries. 

Matrices [E] and[~] in Eqs. (20) and (26) may now be constructed 

using the chosen displacement function. These matrices are shown in 

Figure (3). The elemental mass, stiffness, and stability matrices, [m], 

[k] and [SJ, are developed by substitutinginto Eqs. (15), (23), and 



{v} = [BJ { A } 

wl l 1: 
0 0 0 0 0 0 0 0 0 0 ol I Al 

wlx 
l 0 0 0 0 0 0 0 0 0 0 I I A2 

1 ·~ t')' I a 

0 0 
1 

0 0 0 0 0 0 0 0 0 I I A3 w 
ly b 

.. 7 l 
, 

0 l 0 0 1 0 0 0 0 0 I I A4 le. 2: J!. 

0 l 0 
2 

0 0 
3 

0 0 0 0 0 A w2x - -
a a a 5 

0 0 
l 

0 
1 

0 0 
l 

0 0. 
1 

0 A6 w2y = b b b b 
.... 

w3 l l 1 1 l 1 l l l l 1 1 I I A7 

1 2 ' 3 2 1 l l 
0 0 

.t. 
0 0 A8 w3x - - - - - -

a a a a a a a -a 

w3y 0 0 1 0 1 £ 0 1 2 l 1 l A 
b b b b b b b b 9 

W4 l 0 1 0 0 1 0 0 0 l 0 0 A 
10 

"'4x I I 0 1 0 0 1 0 0 0 l 0 0 1 All a a a a 

w4yj Lo 0 
1 0 0 

2 
0 0 0 l 0 0 I I \2 bi b b 

Figure 2. Generalized Coordinates,Function of Constants 

!-' 
(JO 



0 0 0 .l.. 0 0 
6x ~ 0 0 6xy -0 

rl- 3 
a2b .?o a 

[EJ = lo 0 0 0 0 2 0 0 2.x ll 0 6xJ 
b2 ~ b3 ~b ab 

.1... 2.x 1L 3x2 2 

0 0 0 0 0 0 0 ll_ 

ab a2b ab2 a3b ab3 

! 2x 
2 

2iy 
2 2 J 

0 0 :L 0 
2x -1y 0 ~ _.L_ 

2 T ~?b ab3 

[G] I 
a a ab a a b ab 

= 
l h 

2 
2xy 3y2 x3 3xv2 

0 0 0 
x 

0 
x - a2b b2 ab2 3 

a3b ab3 b ab b 

Figure, 3. [E] and [ G J Matrices 

t; 
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(28) :respectively. Ms!:!tric:es [m] imd [k] are sh®wn in Figures (4) and 

(5). In the mass m.atrix shewn the mass per unit area is taken as con~ 

st.lint. The stability matrix is separated int0 three parts reflecting 

indivi.dually the :!.nfh11ence @f Nx, Ny' ap.d Nxy• These ni.atrices are 

shown in Figures (6) through (8) .. for load distributions which are con .. 

stant across an edge of the plate. All of the elemental matrices in 

Figures (4) through (8) have been non~dimensionalized, and the gener~ 

alized displacements and forces as a result are, 

wl Fl 

awlx M I . lx a 

bw1 
-Y Mly/b 

w F 
'.I 2 "" 

aw,, ... x M2x/a 

bw2 y M2y/b 

{v} = w 
3 

{q} = F3 

,!!lW3 . JI: M3x/a 

b>s~:1" M3y/b 

w 
Li F4 

aw 
4x M4x/a 

bv,J 
4y M4y/b 



3454 461 461 J.226 -274 199 394 -116 

80 63 274 - 60 42 116 ... 30 

80 199 • 42 40 116 .. 28 

3454 -461 461 1226 .. 119 

80 -63 -199 40 

[m] = p 80 274 - 42 

_ p ab 
p = 25,200 3454 -461 

80 

{Symmetrical) 

Figure 4. Elemental Mas~ Matrix 

-116 1226 
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- 60 116 
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- 60 
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80 

-274 

.. 42 

• 60 

-116 

28 

- 30 
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42 
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-461 

- 63 

80 
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Figure 6. Elemental Stability Matrix for N 
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Figure 8. Elemental Stability Matrix for Nxy 

~ 



CHAPTER III 

BOUNDARIES OF STABILITY FOR LINEAR EQUATIONS 

WITH PERIODIC COEFFICIENTS 

Both Eq. (38) and the more general one, Eq. (39), 0£ the previous 

chapter represent a system of second erder differential equations with 

periodic coeffici~nts. Equati@ns of this type are known as Mathieu­

Hill equations, and the criteria for stability of their solutions have 

been well established by several investigators such as Cesari (15), 

and Chetayev (16). The solutions may be greuped into two classes; one 

class is stable and bounded and the other is unstable and unbounded. 

The stability er instability of the solutions corresponds to the 

stability or instability of the structural system at hand. The spectrum 

of values of the parameters yielding stable solutions farm the so 

called regions of stability, while those yielding unstable solutions 

form the regions of instability. It is clear that the analysis of 

structures for dynamic instability reduces to the finding of the 

boundaries separating the regions of stability from the regions of 

instability. It is the purpose of this chaptei to review the basic 

principles of the theory of these equations and to formulate the neces­

sary conditions for the determination of the above mentioned boundaries 

in a form amenable to the finite element method. 

3.1 Behavior of Solutions 

First consider a system of equations which has the same form as 

26 
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the system given by Eq. (38). 

2 

[HJ{d iJ+ [CJJ - a.[LJ - ~R(t)[N.J]Lf} = 0 
dt 

(41) 

in which [HJ, [JJ, [LJ and [NJ are matrices containing constant terms 

and R(t) is a continuous periodic function with a period T, 

R(t+T) = R(t). (42) 

For convenience and te give greater symmetry to the solution of these 

equati®ns~ this sytem of (n) second order equations is replaced by an 

equivalent system of (2n) first order equations by making appropriate 

variable changes. 

Rewriting Eq. (41) as 

in which 

ifi ?, 
~·+L 
dt k=l 

and introducing the new variables 

x = f. (j = 1, 2, - - - - n) 
j J 

= df i-n 
xj dt 

(j = n+l, n+2, ---- 2n) 

the resulting system of (2n) equations becomes 

dx 
i 

-= 

dt 

dx 
_!, + 
dt 

(i = 1, 2 9 ---- n) 

n 

[ ( i = n+l, n+2, ---- 2n). 

k=l 

(43) 

(44) 

(45) 
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In matrix notation 

· &hl + [R(t)J{x} = o. 
dt 

(46) 

The structure of [R(t)] will be as follows: 

[R(t)] = 

It is clear from Eq. {42), that matrix [R(t)J is periodic with a period 

T. 

The solution of equations ot the form given in Eq. (45) is not 

always possible, but fortunately the complete solution is not needed to 

determine the spectrum of the stability or instability of the equations 

(15, 16). The investigation of these equations is facilitated by the 

fact that with the substitution 

t + T = t 

the form of the equations remain unchanged. Applying this substitution 

an unlimited number of times to the solutions {x81, which are assumed 

to be known for the time interval (O,T), the behavior of the solution 

can be determined for an unlimited variation of the variable t (16). 

Assume that the (2n) linearly independent solutions of Eq. (45) 

are known within the interval t = (O,T)1 

Or writing in matrix form 
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xu (t) x12 (t) ••• xl, 2n (t) 

x21(t) X22(t) ••• x2,2n(t) 

[X(t)] = ' 
(47) 

• • • 
• 

x2n,1 (t) x2n,2(t) ••• x2n,2n(t) 

where the first subscript represents the number of the function and the 

second subscript represe~ts the number •f solution. From the properties 

of linear equations wit~ periodic coefficients with the invariant 

substitution t + T = t, the functions 

(48) 

also represent a set of solutions, and they can be expressed as a 

linear combination of the independent solutions (15, 16). 

[X(t+T)] = [AJ[X(t)] (49) 

From the selected independent selutions a similar set of solutions is 

constructed by a linear transformation with constant coefficients. 

{ xs} = { b1x1 (t) + ....... + b2 x2 (t)} 
,s n n,s 

(SO) 

The constantsD bi' are chosen.such that this set of solutions has the 

fundamental property, 

(51) 

To determine the constants h1 substitute from Eqs. (49) and (50) inte 

Eq. (51), 
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b [a x (t) +----a x (t)] = 
n 2n,l ls 2n,2n 2n,s 

( s = 1 2 ---~ 2n) 
' ' 

These relationships should be satisfied regardless of the value of the 

variable t, therefore, identical coefficients can be equated. 

[AJlb}=P[b} (52) 

This system af linear algebraic equations has a non-trivial solution if 

the determinant of the coefficients vanish. 

(53) 

The values p1, p2 , -- pn which satisfy the relationship given in Eq. 

(53) are then connected with the fundamental particular solutions. For 

this particular set of solutions Eq. (49) becomes 

[X(t+T)] = [DI.AG Pk][X(t)]. 

Or in vector notation 

(54) 

Eq. (54) can be written with the diagonal matrix cf p's only if the 

roots of the characteristic Eq. (53) are distinct, which permits [A] 

to be reduced to the diagon<;iil form. In the case where there are 

multiple roots of the characteristic equation, [A] can be reduced to 

the Jordan normal form~ and the fonn of the solutions depends upon the 



structure of the elementary divisors (p - pi) of the characteristic 

equation. In either case there is at least one solution of the form 

The fundamental form of a continuous, single valued function which 

satisfies this relationship is 
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{ i : (trt)lnp } 
x (t)J = LZ (t)e. k 

k k 
(55) 

waere { Zk (t)} is a periodic v~ctor with. a period (Tl~ 

3.2 Roots of Characteristic Equation 

It can be shown that the characteristic·equation formed from Eq. 

(53) is a reciprocal equation. Tkat is to say the equation 

+ -----

has root, pk and also 1/pk. The proof of this is given here for the 

case when R(t) i.s an even functien (1). Tb.is cue is the cme of most 

importance to the work presented :i.n this thesis. For an even valued 

function 

R(t) = R(·t) • 

Since the form of the differential equation system is unchanged when 

(-t) is substituted for (t), and since 

t 
-lnp 

{x(t)} =lZ(t)e T J 

is a solution cf the system of equations, then 



32 

is .also one of the solutions of the system. Therefore, 1/p is alse 0.ne 

of the characteristic reots. 

3.3 Regions ef Stability and Instability 

The system under consideration has solutions, other than the 

trivial solution, of the form given in Eq. (55). The characteristic 

exponent in this relationship is 

It is clear that if all the characteristic expenents have negative real 

parts the solutions will damp out with time increasing. But if among 

the ch.art'lcterhtic expenents there is one with a positive real part the 

solutions will be unbounded or unstable. Censidering that 

it can be seem that if any root of the characteristic equ•tion has an 

absolute value greater than unity instability occurs. 

Now consider the fact that if pk is a root of tl:ie characteristic 

equation then lfpk is alsG a root of the equation. The solutions 

corresponding to these two roots are 

(56) 

If pk _is any real number different from ± 1, then one of tlie solutians 

above will increase unboundedly with time. Therefore, w~en any one of 

the roots of the characteristic equation is real and different frem ± l 

instability will occur. If the coefficients of the system are varied 



such that the roots p = 1 or p = ·1 are obtained then the solution 
k k 

will be periodic since the function{Z(t)}is periodic. In the case 

where p = 1 
k 

i[lnjll + i(O)]} 
lx (t)} ={Z (t)e =lz (t)} 

k k k • 
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The solution has a period of T since"i,Zk(t)}has a period of T. For tb.e 

case when 'pk= ·1 

/) 

ln pk= lnll I+ i"l'r 

s i1f 

{xk(t)} = {zk(t)eT } • 

This solution is periodic •nd has a period equal to 2T. With a further 

variation of the coefficients of the system the pairs of roots of the 

characteristic equation will become complex conjugates, 

pk== m + ih 

Pn+k = m • ih 

Since it bas been shown that pk and 1/pk are roots. taen in this case 

PkPn+k = 1. The absolute value ef each ctmplex root is therefore equal 

to unity, amd the region of stability or beunded solutions is tbe 

region of complex reots. 

lt follows from the preceding treatment that the boun.daries 

between stability and instability are periodic solutions tdtn periods 

oft or 2T. Two solutions of the same period confine the region of 

instability and two solutions with different periods confine the 

region of stability. this follows from the fact that the root p. a O 
k 

cannot lie in the interval between pk= land pk; ·l because of the 

non~singularity of the transformation given in Eq. (49). Therefore; 
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the problem of determining the regions of instability of Eq. (41) is 

merely a problem of finding periodic solutions of periods Tor 2T of 

these equations (1) • 

. ) .4 Boundary Frequencies for Instability 

As was shown in the preceding sections, the finding of regions of 

instability or boundaries for instability reduces to the finding of 

periodic solutions of period Tor 2T for Eq. (41). Here the periodic 

function R(t) will be taken as 

R(t) = cos (9t) 

and Eq. (41) becomes 

2 
[HJ{~}+ [[JJ - a.[LJ - ~[NJ cos(9t)]{f} = 0. (57) 

dt 

The solution of Eq. (57) is sought in the form of the convergent 

trignemetric series, 

{f (t)J = L { akJ sin k~t + {bkJ cos k:t 

k=l,3,5 

where lsk~ and {bkJ are time independent vectors. Substituting Eq. 

(58) into Eq. (57) the following matrix equations are obtained; 

2 

[CJ] - a.[LJ + ~~[NJ - !z:-(HJ]{a1} - ~~[NJla3} = 0 

[[JJ .. a,[LJ .. k:92[HJ][ak} .. l.ia[NJ[{ak .. 21 +{sk+23] =O 

(k = 3,5,7 ....... ) 

(58) 



and 

[[JJ • a.[L] • \~[NJ • f[HJ]{b1} • ,\~[B]lb3} = 0 

2 2 
[[J] • a.[L] • k 4g [HJ] ibk} - \~[NJ [{bk-21 + lbk+2JJ = 0 

(k = 3,5,7 ----) 
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The condition for the existence of solutions with a period 4 Tr /Q is that · 

the determinant of the coefficients of [ak} and{_bkl must vanish. In 

this case the equations for {ak} and {bk} ~re separable and the two con­

ditiens are combined with the (±) sign. 

2 

[JJ•a.[L]~~[N]-~ [HJ -\~[NJ 0 .. 
2 

-\~[NJ [J J·a.[L ]-filL[H] 
4 

-~~[NJ 

2 = 0 
0 ·t~[NJ [JJ•a.[LJ·2!9 [HJ • 

(59) 

By substitution of tae series 

lf(t)} = ~{b0} + L { ak} sin~+\ bk~ cos ~ • (60) 

k=2,4,6 

the followins coruUtiens are found for the existence of solutions with 

a period 2'tr)'9; 
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2 
[J]~et[L]·Q [HJ -\[,[NJ 0 

-~[,[NJ [J)·et[L]·492[H] -~[,[NJ • 

2 = 0 (61) 

0 -.~[,[NJ [J]·et[L]•169 [HJ 

• 

and 

[J]·a.[L] ·[,[NJ 0 • 

-\~[NJ [JJ•a[LJ·92[H] ·\~[NJ 

[J ]·et[L]•492[H] 
= 0 • (62) 

0 ·\r,[N] 

• • • 

All three of the relationships given in Eqs. (59), (61), and (62) 

are infinite determinants. Fer the case where the period is 41f/9, the 

first term of the determinant taken alone yields values of Q which give 

the zeroes of the infinite determin1nt with reasonable accuracy (1). 

Therefore 

[JJ .. o.[LJ ± ·~[NJ .. f[H] I = 0 • (63) 

Using only this first term is equivllent to 1asuming that the function 

{.f(t)} can be adequately represented as follows; 

Similar approximations can be made for the case where the period is 
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3.5 Equation With Damping Terms 

In this section equations which contain terms involving the first 

derivative are considered. Con,ider tb.e following matrix equation; 

[HJ[g} + 2g[HJ[~} + [BJ{£} = 0 
dt dt 

(64) 

where the matrix.[BJ is periClldic with a period T, [H.J is a constant 

matrix and g is a constant. Assume that Eq. (64) has a solution of the 

same ferm. as the analogous single equation with a damping term. That is 

Differentiating 

When these expressiens are. substituted into the d:lffetential Eq~ (64) t 

the terms involving the f:l.rst derivative vanish and 'the resulting 

equatien is as follows, 

Since e·gt is a scalar factor it can be factored out of the equation 

(65) 

The term e·gt does not v1nish., therefore, the term in the bracket in 

the above expression must vanish. The same arguments can be used for 

finding the regions of stability of Eq, (65) as was done for Eq. (41) 1 

since tbe term in brackets, 
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[H]{_u11 (t)} + [[BJ • g2[HJ]{u(t)} = 0 

has exactly the same form as Eq, (41). 

If the matrix [BJ is taken as 

[BJ= [JJ - a[LJ - ~ cos(Qt)[NJ 

then the condition for existence of solutions with a period 41f{Q is as 

follows; 

2 
[J] • ~[LJ +~~[NJ· -\-[HJ 

Qg[HJ 

·9g[HJ 

2 
[JJ • a[L] ·~~[NJ· ~[HJ 

= 0 (66) 

The determinant shown is the central elements from the infinite deter-

minant which is obtained. 

3.6 Physical Considerations 

The farm of th.e equations discussed in this Chapter are identical 

tQ Eqs. (38) and (39) in Cb.apter II. The fact th.at the boundaries 

between stable and unstable salutions are periodic solutians Cl)f the 

differential equatien is net surprising when the physical system is 

visualized. Basically there are three types of vibrations that the 

plate can perform: (1) vibrations which are damped out with time, (2) 

vibrations which are perif)dic, and (3) vibrations whose amplitudes 

become unbounded as tiJne increases. Periodic solutiens, by their 

nature, form the boundary between bounded and unbounded solutions. 

The. three types of vibr1tions are shown in Figure (9). 
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---~ .............. 
BOUNDED PERIODIC UNBOUNDED 

Figure 9. Nature of Vibrations 

In the absence of rigorous mathematical proof, it is the opinion 

of the writer that aa approximation of instability boundaries fer other 

systems where facters such u nom•linear damping are censidered, can be 

represented 'by periodic solutions of the governing equatiens. The pre-

ceding statement is based entirely upon the in,tuitive physical argument 

th.at the nature ef periedic solutions mam.ifest themselves as the 

boundary between stability and instability. 



CHAPTER IV 

SOLUTION FOR THE REGIONS OF 

DYNAMIC INSTABILITY 

The general preblem which is solved in this thesis is illustrated 

in Figure (10). Tlile beundaries ef dynamic instability are found for 

this problem fer different ratios of the leads N, N, and N , differ-
x y xy 

ent aspect ratios, and it is Jelved bath with and without including the 

effects ef an elastic foundation and visceus damping. The problem is 

alse solved with varieus boundary conditions. The ease with which the 

different bouudary conditiens are handled is the primary advantage ef 

the finite element method. The finite element grid size used te selve 

a particular problem is variable depending upon the amount of computer 

time and storage space available. The number ef generalized coordinates 

er degrees of freedom for a given p:re'blem will depend upen the grid 

size selected. Since each node point can have three generalized 

displacements (one translation a]l).d two rotatiens), the total number of 

degrees of freedom for the plate will be 3 (m+l) (n+l) minus the number 

of constraints imposed by the boundary conditions, where mis the number 

of plate divisions in the·x-direction ~nd n is the number of divisions 

in ~he y·dire~tion. Another factor which influences the selection of a 

grid size is that the number of degrees of freedem ·~~owed must be 

sufficient te represent adequately the mode shapes of the plate. 

40 
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4.1 Formulation of the Structural Matrices 

The first step in applying the finite element method to finding 

the regions of dynamic instability is to divide the plate into finite 

plate elements and form the tatal structural matrices corresponding to 

the elemental matrices developed in Chapter II. To accomplish this, 

the effects of all plate elements joining together at a node point are 

added together. Fer example, consider elements I, II, III, and IV 

which have the common node point (a) as shown in Figure (10). Let the 

node points for each individual element be numbered as the ones shown 

on element III. Then the elemental matrices shown in Figures (4) 

through (8) (the example used here is the stiffness matrix) may be 

partitioned into (3x3) matrices as follows; 

k12i I k22i I k32i I k42i 

[k] = (67) -- -- -- -- ---

kl3i k23i k331 I k43i 

Noting that each term in the Lagrangian equation (Eq. (1)) has the 

units of generalized force, then the structural m•trices may be formed 

by adding the forces at each node point. The subscripts used fer the 

sub-matrices in Eq. (67) have the follewing me11ning; the sub-matrix 

k1 is the force at node point m caused by the deformations at node 
mn 

point 1 for the plate element n. The structural stiffness matrix will 

have the following form 
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Ka CKi,a CKca .. c~a ,. 

CKab CKc'b .. . . 

• • • 

[K) • • (68) = 

• 

• • • • 

• Kn 

In each line of the above matrix there is a carry~over term, CKji• fGr 

every node point adjacent te node point i. The stiffness, Ki' and the 

carry-over stiffness, CKji' matrices for an arbitrary point (a) are 

• 

The structural mass and stability matrices are formed in exactly the 

same manner as the stiffness matrix. 

4.2 Boundary Conditions 

After the formation of the structural matrices the necessary 

boundary conditions or constraint conditions must be applied. Since 

there are three pessible degrees of freedom at any node point there are 
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three possible constraints which may be applied either singly or in any 

combinatfon. The possible displacement type constraints far node i 

are, 

w. = 0 
l. 

w = 0 
iy 

The common types of boundary conditions for plates are as follows; 

l, Rigid column support 

w = 0 

w == 0 x 

w =0 
y 

2. Pinned column support 

w = 0 

M = 0 
x 

M = 0 
y 

3. Simple edge 

at all node points along the edge 

w = 0 

wt = 0 (slope along the edge) 

M = 0 
n 

4. Chmped edge 

at all node points along the edge 

w = 0 

w = 
t 

0 (slope along the edge) 

w = 0 
n 

(slope normal to the edge) 

The constraint conditions are applied to the structural matrices by 
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deleting the corresponding rows and columns. If n is the number of 

node points and r is the number of constraints, the final size of the 

structural matrices will be (3n - r). 

4.3 Solution 

The governing equations for the plate, Eqs. (38) and (39), can now 

be formed. Let the in-plane loads be expressed as 

N = N0 + Nt cos(9t) = aN + bNt cos(9t) x x x s 

NY= Noy+ Nty cos(Qt) = cN8 + dNt cos(Qt) 

N = N0 + Nt cos(Qt) = eN + fNt cos(9t) xy xy xy s · 

The loads are represented in this manner so tha.t each term contains the 

common factors Ns and Nt• Substituting into Eq. (38) and factoring out 

the commcn terms in each matrix the following expression is obtained; 

pab [MJ{U} + Jl..[K] - ......!...[s ] - -Les ]cos (Qt) l v J = o. 
2- [ a.N * _ !,N * _ ~ _ 

25,200 dt2 ab 2520 8 2520 t 

in which 

N8 = al\* 

Nt = !,Ni* 

[s8 J = a[sxJ + c[syJ + e[SxyJ 

[stJ = b[sxJ + d[i1J + £[ixyJ 

(69) 

N1*•s are the static buckling loads which are determined as the eigen­

values of the determinant 

(70) 
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(69) reflects the influence of the static components of the loads while 

the term ~N1*[St] reflects the influence of the pulsating components of 

the loads. By comparison of terms in Eqs. (38) and (41) the equation 

which gives the boundaries of dynamic instability (Eq. (63)) is found 

to be 

::; 2 
lL[K] - ~Ni*[s J ± ~Ni* [S] - pab(ew1) [M] = 0 (71) 
ab 2520 s 2(2520) t 4(25,200) 

in which 

The wi's are the natural frequencies of the system determined from 

Eq. (35), 

2 
~a~b[KJ - pabw lM] = 0 

25,200 
(72) 

In the same manner, the characteristic determinant for determin• 

ing the regions of instability, when the effects of viscous damping 

(Eq. (66)) is considered, becomes 

(ew)ca~[M] 
25,200 

• (~w)cab[MJ 
25,200 

= 0 

:(73) 

If the effect of an elastic foundation is considered the only change in 

Eqs. (70) through (73) is that the term 
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lL[K] 
ab 

is replaced by 

J2.. , K + 98 · M • .. ~ 2b2 J 
ah· [] 25,200(D)[] 



CHAPTER V 

DISCUSSION OF RESULTS 

5.1 Interpretation of Results 

A program for the IBM 7040 electronic digital computer was written 

to solve Eqs. (70) through (73) for the natural frequencies, static 

buckling loads, and regions of dynamic instability for several plates. 

The results are shown in a series of figures and tables, and are 

expressed non-dimensionally in terms of the parameters~,~ and 9fw. 

As can be seen in Chapter IV the parameter~ is the percentage of the 

static buckling load which is applied statically,~ is the percentage 

of the static buckling load which is the amplitude of the pulsating 

load, and 9fw is the ratio of the frequency of the pulsating load to 

the natural frequency of transverse vibration of the plate. In all of 

the examples both the static and the pulsating components of the loads 

Nx, Ny, and Nxy were applied proportionally. The static and the pul­

sating components of the loads were applied independently, but each 

type of leading was varied in the same proport~ons as the ones used to 

determine static buckling loads for a particular example. That is; if 

in determining the static buckling loads, N1*, the loading is applied 

as~= N, N7 = .SN, and ~y = .SN, then the static and pulsatittg com­

ponents of the load used in determining the regions of instability 

are varied with these same proportions. This type of loading allows 

the results to be presented in a uniform non~dimensional form. The 

48 
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method which has been presented is not, however, restricted to this 

type of loading. The subscript i which appears with the parameters a, 

13 and 9fw, on some of the figures depicting the results, indicates that 

th th 
the results are for the i natural frequency and i · buckling load, 

each of which is ranked numerically. For example, when considering the 

region of dynamic instability corresponding to the 1th natural fre-

quency (G1rw.) the load axis is non-dimensionalized with respect to the 
. 1 

th th 
i buckling load, with a and~ being percentages of the i buckling 

load. Also shewn on these figures are the constants necessary to cal-

culate the natural frequencies and buckling loads for several of the 

lower modes once the physical properties 0f the plates are specified. 

With this information in addition to the curves, design loads and fre-

quencies can be specified. In addition to the figures which show the 

regions of instability the mode shapes for free vibration and static 

buckling for some of the examples are shown. As is pointed out later, 

these mode shapes are helpful in interpreting the results which are 

obtained. 

5.2 ,I'.lates Without Dam.pins 

The first series of examples which was solved is as follows; 

Lo$_ding 

s.s Ny em N, Nxy = 0 

s.s s.s 
N = •05N. ~v 1z .SN 

y " 

s.s 
Ny= 01 Nxy = .SN 

Nx = O, Ny=), Nxy = N 

Nx = .lN, Ny= .lN, Nxy = N 



5() 

afb = 1.5 (*)N = N, N = N, N = 0 
x y xy 

(*)Nx = N, N = .SN, Nxy = .SN y 

N = N, N = 0, N = .SN x y xy 

c 
afb = 1.0 (*)Nx = N, N = N, y Nxy = 0 

N = N, N = .SN, N = .SN 
c c x y xy 

N = N, N = o, Nxy = .SN 
x y 

c 
(*)N = N, afb = l.S N = N, N = 0 

x y xy 

N = N, N = .SN, Nxy = .SN x y 

Nx = N, Ny= O, ~y = .SN 

afb = 1.0 (*)N = N, N = N, N = 0 s.s x y xy 

N = N, N = .SN, N = .SN 
c s.s x y xy 

c 

IF s.s - Simply Supported Edge 

C - Clamped Edge 

The variation of results for these examples ranged between two extremes, 

one shown in Figure (ll) and the other shown in Figure (13). The 

regions in Figure (13) were obtained for the simply supported plate 

under the action of pure shear. The regions shown in Figure (11) 

correspond to the darkened portion of Figure (12) which shows the 

regions of stability and instability for the Mathieu equation, 

d2f 2 
---- + (i - h cos 2t) f = 0 
dt2 

(74) 

McLachlan (17) states that for the more general case of 
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2 

Ji.!+ (R - h2 cos 9t) £ = o (75) 
dt2 

regions equivalent to those in Figure (12) are obtained. It.should 

be pointed out that the region for a= 0.6 will coincide with the 

region for. a= O.O in Figure (11) if in each case the horizontal axis 

is non~dimensi.onalized with respect to the natural frequency of the 

plate with the static component of the loads applied. This follows 

from Eq. (63) which g:1.ves the first approximation to the regions of 

instability. It can be seen from this equation that as ex. approaches 

zero, Q approaches twi.ce the natural frequency of the plate with the 

static loads applied. 

The examples in the above list marked with an asterisk all have 

the same characteristic regions of dynamic instability, and these 

regions are the ones in Figure (ll). The mode shapes for the two 

lowest modes and information necessary to use the curves shown in 

Figure (U) for these examples are given in Table (I). The information 

' necessary for constructing the region of instability corresponding to 

the fundamental natur~l frequency of free vibration for the remaining 

examples with the exceptions of the simply supported plate with N = O, 
x 

Ny= O, Nxy = N and with Nx = .lN~ Ny= .lN, Nxy = N, is given in Table 

(II). The first 9 second, fourth, sixth, and eighth sets of results 

shown in Table (II) also give the characteristic regions like those in 

Figure (ll) except f@r very slight variations. HJwever, regions corres-

ponding to higher frequencies tended to differ from those in Figure (11) 

considerably. The reason for these variations is given below. The 

results for higher frequencies for the examples in Table (II) are not 



TABLE I 

MODE SHAPES, NATURAL FREQUENCIES, AND BUCKLING 
LOADS FOR SEVERAL PLATES 

PLATES AND MODE SHAPES 
VIBRATION MODES BUCKLING MODES w =wi/ab,jWp N*= N/ab ( D) 

1st 2nd 1st 

l@loo 
(SAME AS ABOVE l 

G 
/'-~,} 

c,ro 0 
~ 10101 ~ 

~ % ~ 

2nd lwl \N*l 

s.s 1.0 Nx = N w, = 19.15 

s.s 
S.S Ny =N Wz = 47.40 

s.s Nxy = 0 w3 = 47.40 

1.5 Nx =N w, = 20.70 

Ny =N Wz = 39.10 

Nxy = 0 W3 = 63.26 

[Q[QJ ... 0 ~:~ 
I ) SS 

'-' S.S 

[Q[gJ S.S 1.5 Nx = N W1 = 20.70 

( ___ .... _) _Q ____ ;s:.s~- Ny =.5N Wz = 39.10 

_ Nxy =.5N w3 = 63.26 

,,. .. , } c 1.0 
Nx = N w, 0 34.30 

c 

c,ro c Ny =N w2 = 70.03 

c Nxy = 0 (j) = 70.03 
3 

10101 
c 1.5 Nx = N w, = 38.63 

c w2 = 58.19 c Ny = N 

c Nxy = 0 W3 = 95.18 

~ 
c 1.0 Nx = N w, = 25.31 

c 
Ny = N w2 = 56.74 

S.S 

Nxy = 0 w3 = 56.74 S.S 

-* 
N, = 18.58 

N; = 45.46 

N1 = 45.46 

Nf = I 9. 13 

-* 
N2 = 35.36 

N:= 57.24 

Nf = 28.50 

Nf = 41. I 2 

Nf = 73.85 

Nf • 47 .. 81 

Nf = 84.oo 

N: = 84.oo 

Nt = 55.54 

Nf = 69.19 

Nf =108.98 

Nf=28.12 

N:= 58.97 

-* N3 =61.48 
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c 

s.s 
s.s 
s.s 
s.s, 

s.s 
s.s 
s.s 
.[.S 

s.s 
s.s 
s.s 
s.s 
•rem 

c 
c 
c 
0 . -
c 
c 
(j 

c 

c 
c 
c 
c 

c 
c 
c 
c 

c 
c "' s.s 
s.s 

u = 

! 
b 

1.0 

1.0 

1.5 

1.0 

TABLE II 

INFORMATION FOR OBTAINING FUNDAMENTAL REGION OF 
INSTAIBILITY FOR SEVERAL PLATES 

Regions -Lo,adin.g wl 
u. 0:, = 0 0:, = 0.6 

Nx = N .2 2.18 ~.79 l.39 l,14 19.15 
Ny = .SN .4 2.36 l.56 1.50 .99 
Nxy = ,SN .6 2.51 1.27 1.60 .81 

N :::!::: N .2 2.18 1.80 l.40 1,15 19.15 
i' = 0 .4 2.35 1.56 1.51 1.00 y 

.SN .6 2.50 1.28 1.61 .82 Nxy = 

Nx = N .2 2.15 1.82 20.23 
Ny = 0 .4 2e30 1.61 
Nxy = • SN .6 2.44 l.35 
. i'lil'i"" ................ ,illi 

f#"IIO" I ------.. tJ'lil 

N = N • :2. 2.17 1,80 1.4.3 1.18 34.30 
:it. 

Ny = .SN .4 2.32 1.59 1.53 1,03 
Nxy = .SN .6 2.47 l,31 1.63 .as 

·-~oiioW'l·1·n·;111tiWtiKllt -- . - y-·-·yp 

" 

1.0 Nx. = N .2 2.1.s l.62 l.47 1.23 34.30 
N = 0 .4 2,29 1.61 l.57 1.08 
1? .SN .6 2.42 1.36 1.66 .98 :Ky = 

- . -·· ··-- . ~-- ... 

l.5 N:K: = N .2 2.16 l.81 1..45 l.22 38 .. 63 

Ny = .5N .4 2.:30 1.61 l.56 1.01 
Nxy = ,SN .6 2.45 1.35 1.65 .97 

1.5 Nx = N .2 2 .. 09 l.59 1.67 1 .. 52 38.63 
Ny ~ 0 .4 2.18 1.76 1.73 l.42 
Nxy = .SN .6 2.26 1 .. 66 1.79 1.28 

1.0 Nx = N .2 2.17 1.30 1.41 1.16 25.31 
Ny ::::: .SN .4 2.34 1.57 1.51 1.01 

Nxy = .SN .. 6 2.49 1.29 1.62 .83 

_a 
ill = w-{f N* = N* 

2 (l - a.) ab p ab 
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1\* 

23.29 

34.07 

52.10 

58.89 

79,86 

74.61 

95.42 

36.30 

(D) 
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reported in this thesis. 

In a stu.dy performed by this writer on the dynamic instability of 

beams 9 it was found that for all common boundary conditions the beams 

exhibited the same characteristic regions of dynamic instability as 

those shown in Figure (11). Brown (18) in his study of tbe dynamic 

stability of beams on elastic foundations obtained the same regions for 

certain cases. An analytical explanation as to why certain of these 

problems give the same characteristic regions of dynamic instability is 

presented below. 

First consider the governing differential equation for the dynamic 

stability of a plate, 

(76) 

Assuming a solutian of the form 

w(x,y,t) = f(t) g(x,y) 

and subst:Ltut:1.ng into Eq. (76) $ the following differential equatbn is 

obtained; 

f" + f [~
4

S .. ...L (Nx ~ + 2~ ~ + N ia_)] = 0 • (77) 
pg Dpg ax2 y oxoy y oY2 

Next consider the governing differential equation for free vibra­

tion of the plate 

= .. (78) 

Making the substitution 
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into Eq. (78) leads t® 

4 v g f u 2 
--1=-p-L=n. (79) 

f 81 l 

The natural frequencies for the plate are 

w =-fir. 
p 

(80) 

Finally, from the governing differential equation for static 

buckling 

(81) 

the following expression is obtained when the substitution w2 = g2 is 

made; 

(82) 

4 
V '2 l -=-

Now if the assumptions that the mede shape functions 

and 

where a, b, and dare constants, are made, and Eqs. (79) and (82) are 

substituted into Eq. (77) the following equation is obtained; 

2 Nt cos Qt 
f" + wi ( l - ) £ = 0 

N* 
i 

where N1 is the static buckling load calculated using a loading 

N = bN , 
y s 

(83) 
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Eq. (83) is of the same form as Eq. (75) which gives the regions of 

instability that are equivalent to those in Figure (11). It follows, 

therefore, that if the mode shapes for free vibration and static buckl-

ing are the same, the regions of dynamic instability will be those 

characteristic regions shown for a= 0 in Figure (11). It can be shown 

in a similar manner that when a static component of the load is present~ 

the same conclusion can be drawn if the free vibration is taken to be 

the free vibration of the plate under the action of the static leads. 

In this case the regions will be the same as the ones shown for a= 0 

with the exception that the horizontal axis should be normalized with 

respect to the natural frequency for the plate with the loads applied. 

I 11 h l .th d h f ib . n a· cases were t1e i mo e sape or v ration was very 

similar to the ith mode sh.ape of static buckling the characteristic 

regions were obtained. In cases where the mode shapes for vibration 

and static buckling were very dissimilar, as for example the simply 

supported plate subjected to the loadings N = O, N = O, and N = N, 
x y xy 

and Nx = .lN, Ny= .lN, and Nxy = N, the regions of insta~ility differed 

greatly from those in Figure (11). The results for these two examples 

are shown in Figures (13) through (16). 

In the above mentioned examples, the comparison of mode shapes for 

vibration and buckling has been done only for modes which were ranked 

numerically the same. It is not necessary, however, that the modes be 

of the same numerical rank in order to obtain the characteristic 

regions. In making the assumption that the shape functions for vibra-

tion and buckling be the same in the development of Eq. (83) no mention 

was made as to whether or not the functions resulted from the same 

numerically ranked modes. The examples of the cantilevered and fixed 
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ended plates shown in Figures (17) through (20) illustrate this point. 

The axes on Figures (17) and (19) are normalized in numerical order as 

has been done on pr~vious figures of this type. Notice, however, that 

in both of these examples the second vibration mode is the same as the 

first buckling mode, and that the curves denoted by i = 2 become the 

characteristic curves, denoted here as Bolotin curve, if the vertical 

axis, load axis, is normalized with respect to the first buckling load 

and the horizontal axis, frequency axis, is normalized with respect to 

the second natural frequency. 

It is important to 

shape, for instance the 

vibration mode, as for 

recognize that if there exist a buckling mode 

th 
j mode shape, that is the same as a given 

th 
example the i mode, then there exist a region 

th 
of dynamic instability corresponding to the i natural frequenc7 that 

has the characteristic s~ape shown in Figure (11) if the load axis is 

th. 
·nermalized with respect to th.e j buckling load and tl\e frequency axis 

is normalized with respect to the ith natural frequency. 
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5.3 Plates on Elastic Foundations 

The results for a simply supported plate and a clamped plate each 

loaded with Nx = N, N = N~ N = 0 and each solved with two different 
y xy 

foundation moduli are illustrated in Figures (21) through (30). Here 

the natural frequeracies (w) are for free vibration of the plates rest-

ing upon the foundations. Notice that for these examples, as was the 

case with the examples discussed in the previous section, when the mode 

shapes for vibration and static buckling become similar, the regions of 

dynamic instability approach the characteristic curves. For these 

particular examples it is seen th.at when the foundation modulus is in-

creased the region of instability corresponding to the lowest natural 

frequency narrows somewhat, whereas the regiens corresponding to higher 

frequencies appear to be affected to a lesser degree. 
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5.4 Plates With Viscous Damping 

Regions of dynamic instability corresponding to the fundamental 

vibration frequency are found for a simply supported plate and a clamp-

ed plate, each subjected to a loading Nx = N7 = N, and Nxy = O, and 

viscous damping. These results are illustrated in Figures (31) and 

(32). Tb.e damping coefficients are expressed as a percentage of criti• 

cal damping. For relatively small damping ceefficients, the effect ef 

damping is that the amplitude of the pulsating lead must have a finite 

value before the plates will become dynamically unstable. Fer example, 

fer the problem illustrated in Figure (31) when Yi= 0.05 the amplitude 

of the pulsating lead must reach O.l times the static buckling load 

before any instability will occur. As the damping coefficient is in-

creased the lead required to produce any instability becomes very large. 

5.5 Plate 0n Elastic Foundation With Viscous Damping 

Figure (33) shews the regien of dym.amic instability f0r a simply 

supported plate on an elastic foundation subjected te the effect of 

viscous damping and a loading of N = N = N and N = O. The purpose x y xy 

of this example is to illustrate the simplicity in handling this class 

of relatively complex problems by the metnod developed in this thesis. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6.1 Summary and Conclusions 

A methGd has been developed in this thesis, using a finite element 

stiffness analysis, to determine the principal regions of dynamic in­

stability of rectangular, hemogeneeus plates. The procedure employed 

in tb.e development consists of the derivation of the governing set of 

ordinary differential equations by applying the Lagrangian equation to 

the individual finite plate elements, and ef the solution of these 

equations for regions ef instability using the methods from the theory 

of linear differential equations with periodic coefficients. The 

development of a finite element solution for structural problems using 

the Lagrangian equation has not~ to this writer's knowledge, appeared 

her~tefere in the literature. Alth0ugh the approach taken by others 

for the solution of various problems using the finite element method is 

very similar mechanically to the Lagrangian approach, the Lagrangian 

method offers a unified approach which is more adaptable for extensions 

of the finite element procedure. A series of examples which includes 

plates subjected to several loading and boundary conditions» and plates 

with and without the effects of viscous damping and an elastic founda­

tion were solved. A limited parametric investigation was made upon 

these examples. 

The method is capable of handling a wide range of complex problems 
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with regard to boundary conditions and loading. The method makes no 

presuppositions with regard to the eigenfunctions for free vibration 

and static buckling as is the case with most existing analytical solu­

tions. It has been shown that the size of the regions of dynamic 

instability depend upon the similarity of the mode shapes of free vibra­

tion and static buckling. For the special cases when the mode shapes 

for vibration and static buckling are the same the regions of insta­

bility are the characteristic curves shown in Figure (11). In these 

eases the governing differential equation can be reduced to one second 

order Mathieu~Hlll equation. Although no attempt was made to develop 

a criterion for likeness or similarity of mode shapes, it was observed 

that when the mode shapes were very similar the instability regions 

were largest, and when the mode shapes were very dissimilar the insta­

bility regions were smallest. 

The finite element method for analyzing plates for dynamic 

stability makes it possible to solve large numbers of complex problems, 

.and to analyze the problems with respect to the various parameters 

which affect the stability of the plates. This type of analysis with 

other solution methods at the present is unpractical.. The treatment of 

the various boundary conditions which poses probaoly the biggest prob­

lem to analytical solutions is trivial in a finite element analysis. 

It is possible that the results of finite element analyses of plates 

might aid in giving direction to analytical research in this area. 

6.2 Suggestien for Further Research 

The examples that have been solved in this thesis have been 

limited to rectangular, homogeneous plates loaded with uniformly dis­

tributed loads across the edges. The metnad developed is capable, 
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however, of handling a much wider range of problems. Other geometrical 

shapes can be solved, but it might be necessary to use finite element 

shapes other than rectangular to acconunodate the various shapes. In 

the literature some of the necessary elemental matrices have been 

developed for finite elements of other shapes.· Plates of variable 

thickness can be analyzed by using the variable mass and rigidity terms 

in the integrals used in evaluating the elemental matrices. Other types 

of leading conditions should be analyzed. The loadings used in this 

thesis were uniformly distributed across the plate edges and the in­

plane stress distribution due to these loads was known.to be constant 

througho~t the plates. The in-plane stress distribution caused from 

other lead cenfigurations could be determined using methods similar to 

those given in works by Lundgren (19) and Apanian (20). Once the stress 

distributions are knewn the elemental stability matrices could be 

evaluated for these conditions and the regions of dynamic stability 

determined. A dynamic stability analysis of multilayered sandwich 

plates can be perfermed using the metheds of this thesis and those pre­

sented by Lu.ndgren (19). 

Other basic fact0rs which should be investigated in relatien to 

the dynamic stability of plates are the effects of in-plane inertia, 

non-linear damping, and the use of materials which exhibit non-linear 

or elasto-plastie stress~strain distributions. 
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