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matrix of second partial derivatives of w
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plate rigidity
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base of natural logarithms

matrix which relates the second partial deriva-
tives of w to the nodal displacements
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CHAPTER I

INTRODUCTION

1,1 Statement of the Problem

The term “dynamic stability" has been used frequently in the
literature to refer to several phenomena. Awmong these are, buckling
under impulsive loading, the snap through of shallow arches and shells,
the stability of automatic contrel systems, and the stability of
structures submitted to the action of pulsating parametric loads. The
last phenomenon mentioned is semetimes referred to as parametric
resonance and 1s the subject of investigation of this thesis.

Quite generally, whenever a static leoad of a particular cenfigura-
tion can cause a loss of the static stability of a given structural
system, a pulsating load of the same configuration can cause a loss of
its dynamic stability when certain conditiens are satisfied. Several
examples of this phenomenon can be found in the literature (1). In
particular, if a flat plate is subjected to pulsating in-plane lecads,
and if the amplitudes of the pulses are smaller than the static buckling
leoad, the plate will perform in-plane or longitudinal vibrations, and
for certain frequencies of the pulses, in-plane resonance will occur.
However, an entirely different type of resonance will occur in the
plate when a defipite velationship between the frequency of the pulses
and the natural frequency of transverse vibratien of the plate exists.

Thus, besides the ia-plane vibration, transverse vibrations will be



induced in the plate, and the plate is said to be dynamically unstable,
The distinction between the ordinary resonance and the parametric
resonance (dynemic stability) now becomes apparent. In the ordinary
resenance the vibrations accompanying the load are in the directicn of
the load, i,e, in the direction of the associated deformations, while
in the parametric resonance the induced vibrations are in the direction
of the buckling defermations and arise only for a definite ratio of the
forcing frequency and the natural freqﬁency of transverse vibration.
Thus; like the buckling problem, the amplitude of the pulsating load
and its frequency appear in the geverning differential equation
parametrically rather than ss a forcing functiomn, as is the case for
crdinary resonance,

The spectrum of values of the parameters causing unstable motion
is referred to as the regions of dynamic instability. It is interest-
ing to note that the governing differential equation is always of the
Matheiu-Hill type, and that dynamic instability may occur for any
magnitude of the pulsating load, less or greater than the static
buckling lead. For practical considerations, however, only leads with
magnitudes less than the static buckling lead are of interest, This
pulsating type loading may be encountered in plate structures housing
vibratory machinery as well as in aircraft structures traveling at
transonic and low supersonic speeds. The analysis of such structures
for dynamic instability 1is useful in preventing failure due to para-
metric resonance as well as in avoiding fatigue resulting from the

induced vibrations.

1.2 Review of Previocus Work

The dynamic stability problem was first recognized by Lord



Rayleigh (2) who investigsated the stability of a string under variable
tension, Later, Belisev (3) published an article in which he discussed
the dynamic stability of a stralght rod pinned at both ends, and deter-
mined the boundaries of the region of instability, Since Beliaev's
work, many investigators have refined and applied the theory te bars,
tings, plates, and shells., A review of the literature on the subject up
to 1951 is available in an article by E, A, Beilin and G, Dzhanelidze
(4). The most comprehensive account on the subject was presented by

Belotin (L) in his beok Dypamic Stability of Elastic Systems.

The dynamic stabllity of plates under compressive ineplane loads
was investigated by Bodner (5), Khalilov (6), Einaudi (7), Ambartsumian
and Khachatrian (8), Bolotin and others, The effect of damping on the
instability regiens was discussed by Mettler (9), énd Naumov (10).
Problems involving nenlinear damping and other nonlinear effects are
due to EBoletin (1), Mettler and Weidenhammer (11), A common feature of
most of the works mentioned is that the governing differential equa-
tions are reduced either exactly or approximately to a single second
order differential equation with periodic coefficients of the Mathieu-
Bill type. However, Chelomei (12) has shown that in the general case
the problem is governed by 2 system of differential equations with

periodic coefficients,

1,3 Scope

In all of the above cited works, the authors have empleyed either
integral equations or Galerkin's Method to establish the governing
equation or equations, The success of either method depends to a great
extent on the natura of the problem to be investigated, For instance,

to use a Galerkin approach a prior knowledge of some suitable functions



that satisfy the boundary conditions is necgssaryvin erder to approxi-
mate either the buckling or vibration modes. Because such funcﬁions
are nét always available, many problems of relatively complex loading
or geometrical nature have remained unsplved. 4&4n alternative apprexi-
mate methed that is capable of handling a wide range of complex prob-
lems with regard to geometry, leading, and material property is,
therefore, extremely desirable, For such a method, the finite element
approach originally developed by Clough and others (13), seems to be
most sultable for these purposes, and its application to dynamic
stability analysis of plates is demonstrated im this thesis.

The purpese of this thesis is to develop, using the finite element
method, a procedure to determine the regions of dynamic instability for
plates subjected to varisus in-plane pulsating leads and beoundary con-
ditiens. Included ia Ehe_analysi$ are plates without damping, plates
with viscous damping, plates on elastic foundatiouns, and plates en
elastic foundatiens with viscous damping. The plates te be examined
are assumed to be rectangular, homogeneous, and lsotrepic. The mate-
rial is also assumed to obey Hooke's Law, and the well knewn assumpticns
of the small deflection theory of plates are empleyed. Although these
limitations are imposed upon the examples which are solved, it is
pointed out in the conclusiens that the methed that is develeped is not
limited to all of these restrictioms, Only primcipal regions of insta-
bility ave investigated. Experimental data for pinned rods presented
by Bolotin (1) showed that no experimental correlation could be found
for higher regions, and that the data for the principal regions agreed
exceptionally well with the theory., It is further assumed that the

effects of in-plane inertia can be neglected., It has been shown by



Bolotin (1) and others that this assumption is valid provided the fre~
quency of the pulsating lead is not close to the resenance frequency of
in-plane vibration of the plate,

The following are the steps in the determination of the regions of
dynamic instability of plates:

(a) Divide plate into a grid of finite elements;

{b) Assume a2 suitable displacement function for the finite
elements;

{c) Determine the elemental bending stiffness matrices;

(d) Determine the elemental inertia or mass matrices;

(e) Determine the elememtal stability matrices;

(£) Determine any other elemental matrices needed to analyze
a particulay problem, such as stiffness modifier matrices
due to an elastic foundation, and a matrix which accounts

for damping;

{g) Assemble elemental metrices te form matrices fer the
entire structure;

(h) Apply the boundary conditions;
(i) Soclve for the natural frequencies of transverse vibration;

(3) Solve for the static buckling load corresponding toe the
load configuration of interest;

{k) Solve for the regions of dynamic instabiliﬁy.

In the following Chapters, Chapter II gives the develepment of
the governing set of matrix differential equations, and the procedure
for the development of the elemental matrices; Chapter III1 discusses
the mathematics involved in finding the boundaries of instability fer
the governing equations; Chapter IV formulates the solution for the
regions of instabilitvy; Chapter V presents typical examples, and Chapter

VI gives the conclusions and suggestioms fer further research.



CHAPTER 11
GOVERNING FINITE ELEMENT EQUATIONS

In this Chapter the governing finite element equatiens are
developed for a plate which undergoes parametrically excited vibrations,
Other than the assumption that the given structure can be represented
by a series of finite elements; the development is completely general.
The developed matrices in the latter part of this chapter are deter-
mined for specific cases of mass and load distributiens., The Lagrangian
equation is used together with the finite element method in the develop-
ment of these equations.

The Lagrangisn equation may be written as follows (14);

Afal ) .2l VLM g 1
de|dd, osy 28y 088 1 &

in which
T = Kinetic energy
U = S8train energy due to bending
V¥ = Potential energy developed by in-plane loads moviang

through bending displacements

W = One-half the time rate at which energy is dissipated
by viscous damping

= Generslized forces
s, = Generalized coordinates

s, = Generaglized veleocities,



Let & emall element of finite dimensions be isolated from a plate

and the lateral displacemente of the element be represented as

wix,y,t) = wx,yIR(L), (2)

in which w(x,y) is a function of x and y enly, and R(t) is a time
functien., Here the middle surface ef the plate is taken as lying in
the x-y plane and w is measured downward from this plame, Further it
is assumed that the function w{x,y) cen be represented as a linear

combination of (n) functiems £, (x,y). Thus

W(XsYst) = [fl(xny):fz(xsy)’ """ fn(x’Y)]-Al R(t)' (3)

To determine the constanis {&), the n nedal displacements of the finite
plate element, {viR(ti}s #re chosen as generalized displacements. That

is to say

{sg) = {wsR(0)]. )

These node digplacements can be expressed as fcllows,

{vgR(£)} = [BI{AYR(Y). ()

The matrix [B] is obtained by evaluating the matrix [f,(x,y)] and its
derivatives at the pode points, Solving for the conmstants, {A}, from

Eq. (5) vields



{a}= 31y (6)

and by substitution into Eq. (3) the displacement function can be ex-

pressed as

W(XSYst) = [fl(xsy):fZ(X9Y)a"““fn(xay)][B]Tlgvia(t)} . (7)

Because the matrices [B] and {yiR(t)} are not functions of x and y,

the derivatives of w(x,y,t) may be formed as follows;

3f_(x,¥) -1
o Zo P paylreen)
. aX
. af , _
v __.__.....n(x ) [B] 1{v.R(t:)] (8)
dy 3y 1

t

¥ = ([, (x,y)1[B] (v, R

ige

Xl

With the above information expressing the displacements of the plate
element in terms of nodal or generalized displacements, the terms in

the Lagranglan equation can be evaluated in a finite element form.

2.1 Kinetic Energy

The kinetic energy for an infinitesimal area of the plate element

is
2
aT = p [ﬁ‘iﬁa‘.éia.?l] dxdy, )
in which p is the mass of the plate for a unit surface area, If this

expression is integvated over the entire surface of the plate element,

the total kinetic energy for the element becomes,



2
T = %jjbﬂiﬂigéiaﬁl} dxdy. (10)

Substituting from Eq, (8) into Eq. (10),
2
-1
= %J];[[fn(x,y)][B] {yiQ%éEl}] dxdy. (11)

The squaring of the term in the brackets can be accomplished by

multiplying the expression by its transpose,
v = 5/lp [{v } 3} ] [£, 66,97 L8, G, 18] (v, M}]cb{dy a2

This expresses the total kinetic energy of the plate element in terms
of the generalized nodal displacements,

Now the necessary operations are performed on the kinetic energy
term for substitution into the Lagrangian equation. The first term of

(1) then becomes,

c 7] [Nty
N X il( 5T ) (B8] [ ENCRHY
aefosy 3 (v <L, ’

(fa(x, Y)]dedy}[B] { :ét) (i=1,2,--n) . (13)

T
-1 22t
The [[B] ] s LB] and {§£Q—§1§l} matrices can be factored out as
t

shown since they are independent of the variables x and y. Using a
more conclse netation
d|oT dzRth

= [ {vy e } (1%)

dt as
i {(i=1,2,3=~n)



T
(=] = (577" m [fn(xsy)]T[fn(xsy)]pdxd-y:’ (377 (15)

The matrix [m] is designated as the elemental mass matrix and hereafter
is referred to as such.
The remaining term inveolving the kinetic emergy 1is

2L = o, (16)
Bsi

since the kinetic energy function is independent of the variables ;.

2,2 Strain Energy

The strain energy for the entire area of the plate element is

2
2
D
ool [%ﬁ—« (1»\,)[5 g ch 5| ]dedy, an
9x” 3y~ 1dxdy
This can be represented in matrix form as
T
U= Hg{c} [(p}{c}dxdy (18)
in which P
aw B N
2\'
{c} = Q—% ; and (D] = | 1 0
oy
2
| 3x0Y | — ~

Matrix {C} can be expressed in terms of the generalized displacements

as

(¢} = [E1(B] (v R(e)} (19



11

in which
.2 2 2 7]
a fl(XSY) a fZ(Xsy) B fn(x,y)
axz ax2 )
2. 2 2
o £1(x,y) 8 f5(x,¥) d £,(x,y)
ay2 ayz Byz
2 2
2%, (e, y) 27K, (x,y) 3°F, (x,)
JxJY 0x0y 0xJy

Substituting inte the strain energy expression the strain energy

becomes,

T
0= B o] elmme re e, @

Now the operations indicated by Eq. (1) are performed

T
oU_ - oU = - [ ' X } - V2
ds;  O(v;R(E)) [[BJ ] JI;EE] [D](EJdxdy|[B] . { (R(E)} (1)

or
oY = || v 3 2
& - [k]{v;R(t)} (22)
in which
=1 T -1
[k] = [[B] ] {j]iE]T[D][E]dxdy}[B] (23)

By definition the [k] matrix is the stiffness matrix for the element,

2.3 Work Dome By In-Plane loads

The work done by the parametric or in-plane loads when they move

through the bending displacements is

veslllgz) o @ e e e
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This expression may be represented in msatrix form as follows;

V= %II{F}T[N][F}dxdy (25)

in which

W

ox -1

{F] = | = [61[B] ~{v;R(t)}

dy

and
( (N] = Nx NX}’ .
Ney Ny

The matrix [G] is as follows;

o, () 3E,(x,¥) AE_ (x,7)
oxX ox T ox
6] =
ofy(x,y)  of,(x,y) of (x,¥)
| 3y ay o dy _'

Substituting these expressions inte Eq. (25) the potential energy term

becomes,

T
N T - -
V= %fJ {vir(e)} (] 1] (67 [N}[61(B] 1{via(t>} dxdy, (26)

which when differentiated with respect to s yields

T .
Y 3y _ =1 [ r T <d ] -1 ‘
ol a@ZR(&)) = [[B] ] J [6] [N][6]dxdy |[B] {v;R(t)} (27)

v . ' D
2. - [s){v;R(w} (28)

i
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in which

T
oo oo
- [s]={[B] (6] [¥][G1dxdy |[B] ~ .
Matrix [S] is hereafter referred to as the elemental stability matrix.

2.4 Damping and Elastic Foundgtion

To include the effect of viscous damping, the expression for the
rate at which emnergy is dissipated due to the damping forces must be
calculated., This is done by multiplying the damping force by the

velocity., One-half the rate at which damping emergy is expended is
2
dW = %(2@)(%%) dxdy, (29)

where 2¢ is the damping coefficient, and here it is assumed to be con-
stant over the plate element. Integrating over the area eof the plate

element
2
W= ”(a)[éﬂ&i{ai.zﬁ)_] dxdy . (30)

Comparing Eq. (30) with the expression for kinetic emergy, Eq. (10), it
can be seen that when the mass (p) and damping coefficient (c) are both
constant over the element’s area the integrals to be evaluated are
identical except for these comnstant terms, The damping term in the
Lagrangian equatien is not, hoﬁevers differentiated with respect te
time. By comparison with the develepment for the kinetic energy the

damping term is

_a,lﬂ,:;.%gm v..(.i_m.); 31
384 p[ i 1 de } Gh

In writing this expression the mass has been assumed to be constant

over the entire plate element,



The effect of an elastic foundation can be taken into account by
finding the work dene by the elastic foundatien forces and differentiat-

ing the work with respect to the generalized coordinates. Thus,

WEF = %j‘j‘q[w(x’)rst):lzdx‘iy (32)

where q is the spring censtant fer the elastic foundation per unit area
of plate surface, Here again, as for damping, by comparing this expres-

sion with the kinetic energy development it is ebvious that

W
ZEF _ ainyfv, R0} (33)
p

Bsi

In the above expression it is assumed that both the foundation modulus

and the mass are constant over a given plate element.

2.5 Governing Equations

By using Eqs, (14), (16), (22), (28), (31), and (33) in conjunction
with Eq. (1), the governing equations feor a plate can now be generated
for the various cases of loading and motion. Several cases are listed
below, The matrices in these equations denoted by the capital letters
are matrices for a complete plate correspending to the elemental
matrices with the same small letters, For example the matrix [K] in
Eq. (34) is the structural stiffness matrix, The details invelved in
constructing these structural matrices are discussed in Chapter 1V,

1. Static deflections of a plate due to transverse loading
[(K]{v} = {Q} (34)

2. Free vibration, no damping
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[M]{vﬂ_ﬁggl} + [K){vR(t)} =0
drs
and for harmonic motion of the form
viR(t) = Ai sin wt
the frequency determinant becomes
2
(K] - w“[M]| =0

3. Statie buckling

[[1{] - ['S"]]{v} =0

or

l[K] - [S]! =0.
¥From this determinant static buckling loads can be
determined.

4, Deflections of a plate on an elastic foundation
[x)w} +% M{v} = {Q}
5. Dynamic Stability
dZRgtz -
{5 + [[K] - [sﬂ{va(c)} =0

6, Dynamie Stability including damping

2
[M]{v%l}+‘?—a§- [M]{vd—%%)} + [[_1(] - [E]]{va(t)} =0

The equations for other combinations of factors affecting the plate

response can be fermed in a similar manner,

(35)

(36)

(37)

(38)

(39)
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2.6 Development of Elemental Matrices

In the expressions for the mass, stiffness, and stability matrices,
once the displacement function w(x,y) is known the matrices [fh(x,y)],
[E] and [G] can be determined, and the integrals can be evaluated for
particular cases,

Assume the displacement function for the rectangular plate element

shown in Figure (1) takes the form,

Figure 1, Finite Element With Generalized Coordinates
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2 2 3 2
W(x,y) =&, +A, 2+ A X +a X o+ A X4 pa X+ A X 4 2T 4
’ 1 2 2 b 4 a’ 3 ab 6 b2 ’ a 8 a?b
A, = + A + A =~ + A
9 abz 10 b3 11 a3b 12 ab3

or in matrix form

‘ R ) _
wix,y) = [19 20y £ X Y. X XY AL Y XJ XV {A} . (40)
a b a b2

Although other displacement functions could be used, the one chosen here
has certain advantages. Eq. (40) is the highest order polynomial which

identically satisfies the homogeneous plate equation

Vaw(xs}') = 0.

If the generalized coordinates are chosen as the ones shown in Figure
(1), then Eq. (5) can be expressed as shown in Figure (2). When the
various elements are assembled together to represent a plate, the de-
flections and sleopes are completely compatible enly at the node peints.,
Compatibility is also maintained aleng the connecting boundaries in
the directien of the boundaries, whereas in general slopes are slightly
discontinuous across the boundaries,

Matrices [E] end [G] in Eqs. (20) and (26) may now be constructed
using the chosen displacement function. These matrices are shown in
Figure (3). The elemental mass, stiffness, and stability matrices, [m],

[k] and [S], are developed by substituting into Eqs. (15), (23), and
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(28) respectively. Matrices [m] and [k] are shown in Figures (4) and
(5). In the mass matrix sheown the mass per unit area is taken as cen-
stant, The stability matrix is separated inte three parts reflecting

individually the influence of N, Ny’ and N These matrices are

y.
shown in Figures (6) through (8) for load distributions which are con-
stant across an edge of the plate. All of the elemental matrices in

Figures (4) through (8) have been non-dimensionalized, and the gener-

alized displacements and forces as a result are,

B wy i B F, ]
awy, Mlx/a
bwly Mly/b

Wy F2
o sz/é
bWZy M2y/b

{v}: WB s {Q}: F3
L : MBx/a

s Maols
w% F4
aw, th/;
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CHAPTER III

BOUNDARIES OF STABILITY FOR LINEAR EQUATIONS

WITH PERIODIC COEFFICIENTS

Both Eq, (38) and the more general one, Eq. (39), of the previous
chapter represent a system of second erder differential equations with
periodic coefficients, Equations of this type are known as Mathieu-
Hill equations, and the criteria for stability of their solutions have
been well established by several investigators such as Cesari (15),
and Chetayev (16). The solutions may be greuped into twe classes; one
class is stable and beunded and the ether is unstable and unbounded,
The stability or instability of the solutiens cerresponds te the
stability or instability of the structural system at hand, The spectrum
of values of the parameters yielding stable solutions form the so
called regions of stability, while these yielding unstable solutions
form the reglons eof instability, It is clear that the analysis of
structures for dynamic instability reduces to the finding of the
boundaries separating the regions of stability from the regions of
instability. It is the purpoese of this chapter to review the basic
principles of the theory of these equations and to formulate the neces-
sary conditions for the determination of the above mentioned boundaries

in a form amenable to the finite element method.

3.1 Behavier of Sclutions

First consider a system of equations which has the same form as

26
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the system given by Eq. (38).
2
[H]{i‘é} + [EJ] - afL] - L‘-‘»R(t)[m}{f} =0 1)

in whick [H], [J], [L] and [N] are matrices containing constant terms

and R{t) is a continuocus periedic function with a period T,
R(t4T) = R(t). (42)

For convenience and te give greater symmetry to the solutiem of these
equatiens, thig sytem of (n) second order equations is replaced by an
equivalent system of (2n) first order equatiens by making appropriate
variable changes.

Rewriting Eq. (41) as

dzf,
1.

n
oL+ Z R; £ = 0 (43)
S o
in which
-1
Ry = [H)[[9] - alL] - BR([N]] ,

and introducing the new wvariables

= = f- (j = 19 23 hnladniing n)

] 3
(44)
df
%, = =42 (j = ntl, n42, ---- 2n)
b ae
the resulting system of (Zn) equations becomes
dx
EE_’Q Xeyn=0 (1 =1, 2, -==-n)
dx n
—t 4 }E: Rikxk =0 (1i=n+l, nt2, --=-- 2n). (45)
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In matrix notation

4 4 R} = o. (46)

The structure of [ﬁ(t)] will be as follows:

. [ﬁ(t)] = S

It is clear from Eq. (42), that matrix [E(t)] is periodic with a period
T.

The selution of equations of the form given in Eq. (45) is not
always possible, but fortunately the complete solution is not needed to
determine the spectrum of the stability or instability of the equatiens
(15, 16). The investigation of these equatiens is facilitated by the

fact that with the substitution
t+ T=¢

the form of the equations remain unchanged, Applying this substitutien
an unlimited number of times to the solutions {xé}, which are assumed
to be known for the time interval (0,T), the behavior of the solutien
can be determined for an unlimited variation of the variable tv(l6).
Assume that the (2n) linearly independent solutions of Eq. (45)

are known within the interval t = (0,T),

b A=)y ---- SLXZn} .

Or writing in wmatrix form
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%17 (£) %, (t) e %y () ]
221(8)  xgp(£)  eer Xp 9y (6)

X(t)] = . . . R (47)

. . .
° ° e

¥9n,1€8)  Xpp o (B) vt Xpn o (8)

— -l

where the first subscript represents the number of the function and the
second subsgcript represents the number of selution, From the properties
of linear equations with periedic coefficients with the invariant

substitution ¢t + T = t, the functions

{x D}, {x, (04D}, -=--{x, (4D)] (48)

also represent a set of selutions, and they can be expressed as a

linear combination of the independent solutiomns (15, 16).

[X(t+D)] = [A][X(t)] (49)

From the selected independent solutions a similar set of selutions is

constructed by a linear transformation with constant coefficients,

'{Xs} = {blxlas(t) Tt bZnXZn,s(t)} (50)

The constants, bi9 are chosen such that this set of solutions has the

fundamental property,

{XS (t+’1.‘)} = p{xs (&)} (51)

To determine the constants bi substitute from Eqs. (49) and (50) inte

Eq. {51).
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(t) + ===« + a (£)] + ==-- +

bl[allxlss nlx2n,s

(£) + -=--

Pal®y,,1%1s on, 20%2m, s ()] =

plbyx; (£) + ---= + D x, (©)].

(s =1, 2, ==~~~ 2n)

These relationships should be satisfied regardless of the value of the

variable t, therefore, identical coefficients can be equated,
[a]{p} = p{b} (52)

This system of linear algebraic equations has a non-trivial solution if

the determinent of the coefficients vanish,
I[Z] - p[I]l = 0. (53)

The values Pys Pgs == Py which satisfy the relationship given in Eq.
(53) are then connected with the fundamental particular solutions. For

this particular set of solutions Eq. (49) becomes
[X(t+T)] = [DIAG pk][X(t)].

Or in vector neotatien

{xk(c+mi} = p dx @] . (54)

Eq. (54) can be written with the diagonal matrix ef p's only if the
roots of the characteristic Eq. (53) are distinct, which permits [Z]
to be reduced to the diagonal form., In the case where there are

multiple roots of the characteristic equation, [K] can be reduced to

the Jordan normal form, and the form of the solutions depends upen the



31

structure of the elementary divisors (p - pi) of the characteristic

equation., In either case there is at least one solution of the form

{xk(t+Tj} = pk{gk(t)} .

The fundamental form of a continuous, single valued functien which

satisfies this relationship is

{Xk(t)} =izk(t)e(-t[T) lnpk }

(55)
where {Zk(t>} is a periodic vector with a period (T).

3.2 Roots of Characteristic Equation

It can be shown that the characteristic equation formed from Eq,.

(53) is a reciprocal equation. That is to say the equation

N + 0
P P TTe a2n-1p + fn =

has roots Py and also lfpk. The proof of this is given here for the
case when R(t) is an even functioen (1), This case is the one of most
importance te the work presented in this thesis., For an even valued

function
R(t) = R(~t) .

Since the form of the differential equation system is unchanged when

{~t) is substituted for (t), and since
t

1
{x(t)}={?(t}eT P

3

is a sclution of the system eof equations, them

- £lop Lin1/p
xe-ot=lz¢oe T }=ze-ve
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is also one of the solutions of the system, Therefore, l/p is also ene

of the characteristic roots,

3.3 Regions of Stability and Instability

The system under consideration has solutions, other than the
trivial solution, of the form given in Eq. (55). The characteristic
exponent in this relationship is

=1 1y
h = = 1npk .
It 1s clear that if all the characteristic exponents have negative real
parts the solutions will damp out with time increasing, But if among
the characteristic exponents there is one with a pesitive real part the

solutions will be unbounded or unstable, Considering that

in Py = lnlpk‘ + i arg Py

it can be seen that 1f any root of the characteristic equation has an
absolute value greater than unity instsbility occurs,

Now consider the fact that if Py is a roet of the characteristic
equation then llpk is also a root of the equation, The seolutions

corresponding to these twe reots are

(%)lnpk
fx (@} =1z (2)e 3 |
. t t (56)
=ln I/ = =lnp
{Xn+k(t)} = {Zn+k(t)eT pk} = iz(t)n+ke. T k} .

If Pl is any real number different from X 1, then one of the solutions
abeve will increase unboundedly with time. Therefore, when any one of
the roocts of the characteristic equation is real and different from 1

instability will occur., If the coefficients of the system are varied



such that the roots pk =1 or p = ~1 are obtained then the solution
will be periodic since the function{Z(t)}is periodic, Im the case

where Py = 1

L
+lin|l i(0)
{x, (©)} ={Zk<t>eT[ = Te{z@F

The solution has a period of T sinceizk(t)}has a period of T. For the

case when‘pk = -1

I

In p, = Infl | + &
t
= i
T
{x ) ={z (0" }.
This solution is periodic and has a period equal to 2T. With a further
variation of the coefficients of the system the pairs of roots of the

characteristic equation will become complex conjugates,

i

P =m ¥ ih

Pogg =0 7 ih

Since it has been shown that Py and lf‘pk are roots, then in this case
PrPrak = 1. The absolute value of each complex root is therefore equal
to unity, and the region of stability or bounded solutions is the
region of complex roots,

It follows from the preceding treatment that the boundaries
between stability and instability are periodic solutions with periods
of T or 2T, Two solutions of the same period confine the region of
instability and two solutions with different perioeds confine the
region of stability. This follows from the fact that the root Py = 0
cannot lie in the interval between Py = i and P = =1 because of the

non=singularity of the transformation given in Eq. (49). Therefore,
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the problem of determining the regions of instability eof Eq, (41) is
merely a problem of finding periodic solutions of perieds T or 2T of

these equations (1).

“}.4 Beundary Frequencies for Instability

w As was shown in the preceding sections, the finding of regions of
instability or boundaries for instability reduces to the finding of
periodic solutions of period T or 2T for Eq. (41). Here the perieodic

function R(t) will be taken as
R(t) = cos(Bt)

and Eq, (41) becomes
2
[Hj{i_t{.} +[197 - ofL] - BN] cos(8t)] {£} = 0 . (57)

The solution of Eq. (57) is sought in the form of the convergent

trignometric series,

{f(t)} == :{: {'ak} sin E%E +-{bk} cos kgﬁ . (58)

k=1,3,5

where {ak} and {bk} are time independent vectors, Substituting Eq.

(58) into Eq. (57) the following matrix equations are obtained;

2 .
(97 - of1] + 58[N] - &-a]{a;} - se0{az} = o
2.2
(097 - afr] - 2qug)fa} - we0v[{a b +1a, 3] =0

(k = 3,5,7 =wwx)
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and
2
[£97 - aley - se0v) - Som] (e} - 58LBIbg} = 0
2 2
[[J] - q[L] - -1—‘-7?—[11]} {b3 -.%B[N] ku-z} + {bk+2}} =0
(k = 3,5,7 ====)

The condition for the existence of solutions,with a period 4 T/6 is that
the determinant of the coefficilents of {al} and-{b } must vanish., In

< k
this case the equatioms for {ak} and{bk} are separable and the two con-

ditions are combined with the (¥) sign.

2
[37-alL}sse(N)-S-(r]  -3B[N] 0
2
-5p[N] [37-a1)-22- 4] -%8[N] .
2 =0
0 -%B[N] [3]-a[L]-28-[n] .
: . : . (59)

By substitution of the series

{z@t =5t} + Z {8 otn BE +{bf cos KE,  (60)
k=2,4,6

the following conditions are found for the existence of solutions with

a period 20



36

(3)-afL]-6°(H]  -4B[N] 0 .
-58[N]  [3)-afL]-46°[H] -3p[N] '

R =0  (61)
0 ~5B[N] [9]-o[L]-166°[H] -

and

[37=alL] ~B[N] 0 .
Caxp[N] [I]-afL]-02([H] -5B[N] :

2 =0 . (62)
0 -%B[N] [J]-a[L]-40"[H] ‘

All ﬁhree of the relationships given in Eqs. (59), (61), and (62)
are infinite determinants. For the case where the peried is 4170, the
first term of the determinant taken aloné yields values of 8 which give
the zeroes of the infinite determinant with reasonable accuracy (1).

Therefore

[3] - afL] & kB[N) - %?-[H] =0, (63)

Using only this first term is equivalent to assuming that the function

{j(tz} can be adequately represented as follows;

if(t)}: {al} sin 95‘?- +{b1} cos %—‘?- .

Similar approximations can be made for the case where the period is

2170,
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3.5 Equation With Damping Terms
In this section equations which contain terms involving the first

derivative are considered, Consider the following matrix equation;

2 -
[H]{%E%} + 2g[H]£§f}’+ (3){f} =0 (64)

where the matrix [E] 1s periodic with a period T, [H] 1s a constant
matrix and g 1s a constant, Assume that Eq. (64) has a solution of the

same form as the analogous simgle equation with & damping term, That is
{£(e)} = B u(o)} .
Differentiating
{ev ()} = e‘gt'[{u'(t)}- s{u(_t)}]
fene)} = 8 [fune)} - 28 (0} + g2fu(e)}]

When these expressions are substituted into the differential Eq. (64),

il

the terms involving the first derivative vanish and the resulting

equation is as follows,
[aje 5 un ()} + [(F) - [H]gz]{u(tz}e-gtv=~0
Since e"8% i5 & scalar factor it can be factored out of the equation
e [ [uy{un ()} + (%3 - s*iuffece}] =o. (65)

The term e 5% does not vanish, therefore, the term in the bra&cket in
the above expression must vanish., The séme arguments can be used for
£inding the regions of stability of Eq., (65) as was done for Eq. (41),

since the term in brackets,
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(A} {u"()} + [[3] - gz[H]]{u(t)} =0

has exactly the same form as Eq. (41).

If the matrix [5] is taken as
[B] = [J] - a[L] - B cos(et)[N]

then the conditlon for existence of solutimns_with a period 4TM0 is as

follows;

2
[37 = afL] + ¥p[N] - E-[H] -85[H]
=0 (66)

| 2
og[H] [37 - ofL] - %B[N] - (8]

The determinant shown is the central elements from the infinite deter-

minant which 1s obtained,

3.6 Physical Comsiderations

The form of the equations discussed in this Chapter are identical
to Eqs. (38) and (395 in Chapter II, The fact that the boundaries
between stable and unstable solutions are periodic solutions of the
differential equation is not surprising when the physical system is
visualized., Basically there are three types of vibrations that the
plate can perform: (1) vibrations which arevdamped out with time, (2)
vibrations which are periedic, and (3) vibrations whose amplitudes
become unbounded as time increases, Periodic solutions, by their
nature, form the boundary between bounded and unbounded solutions,

The three types of vibrations are shown in Figure (9),
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Figure 9, Nature of Vibrations

In the absence of rigorous mathematical proof, it is the opinion
of the writer that an approximation of instability boundaries for other
systems where factors such as non~linear damping are considered, can be
represen;ed by periodic solutions of the governing equations, The pre-
ceding statement is based entirely upon the intuitive physical argument
that the nature of periedic solutions manifest thgmselﬁes as the

boundary between stability and instability.



CHAPTER IV

SOLUTION FOR THE REGIONS OF

1

DYNAMIC INSTABILITY

The general problem which is solved in this thesis is illustrated
in Figure (10). The boundaries of dynamic instability are found for
this proeblem for different ratios of the loads NX, Ny’ and ny, differ-
ent aspect raties, and it is selved both with and without including the
effects of an elastic foundation and viscous damping. The problem is
also solved with varieus beundary conditions., The ease with which fhe
different boundary conditiens are handlgd is the primary advantage of
the finite element method. The finite element grid size used to solve
a particular problem is variable depending upon the amount of computer
time and sterage space available, The number of generalized coordinates
or degrees of freedom for a givem problem will depend upon the grid
size selected, Since each nede point can have three generalized
displacements (one translation and twe rotations), the total number of
degrees of freedom for the plate Qill be 3(m+l) (n+l) minus the number
of constraints imposed by the boundary conditioﬁs, where m is the number
of plate divisions in the x-direction and n is the number of divisions
in the y-direction., Another factor which influences the selection of a
grid size is that the number of degrees of freedom a};owed must be

sufficient to represent adequately the mode shapes of the plate.

40
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4,1 Formulation of the Structural Matrices

The first step in applying the finite element methed to finding
the regions of dynamic instability is to divide the plate into finite
plate elements and form the total structural matrices corresponding to
the elemental matrices develeped in Chapter II, To acceomplish this,
the effects of all_plate elements joining together at a node point are
added together, For example, consider elements I, II, III, and IV
which have the common node point (a) as shown in Figure (10)., Let the
node points for each individual element be numbered as the ones shown
on element III. Then the elemental matrices shown in Figures (4)
through (8) (the example used here is the stiffness matrix) may be

partitioned into (3x3) matrices as follows;

B » —
ki1i | k211 | K311 | k414
kiai | Kapi | K321 | Kpoi
[] = - (67)
k131 | k31 | K331 | Kusg
| Man | Koar | R3an | Kaag

Noting that each term in the Lagrangian equation (Eq, (1)) has the
units of generalized force, then the structural matrices may be formed
by adding the forces at each node point, The subscript§ used for the
sub-matrices in Eq, (67) have the following meaning; the sub-matrix
klmn is the force at node point m caused by the deformatiens at node.
peint 1 fer the plate element n. The structural stiffness matrix Will

have the following form
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Ka CKba CKca * CK; 4 *
CK.ab Kb CK,cb . . .
[K] = . . . [ . [] (68)
L—- . [ ] [ ] L] [] Kn N

In each line of the above matrix there 1s a carry-over term, CKji’ for

every node point adjacent teo node point i, The stiffness, K,, and the

i’

carcry-over stiffness, CKji’ matrices for an arbitrary point (a) are

Ky =kyyprr t Koope * ®sap + kg1

#

Kpa

kyprrr * ¥as1x

CK.a = Kour11

The structural mass and stability matrices are formed in exactly the

same manner as the stiffness matrix,

4,2 Boundary Conditions

After the formation of the structural matrices the necessary
boundary conditions or constraint conditions must be applied. Since

there ave three possible degrees of freedom at any node point there are
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three possible constraints which may be applied either singly er in any

combination, The possible displacement type constraints for node i

are,
wi = 0
wix=0
wiy = 0

The commen types of boundary conditions for plates are as follows;

1. Rigid column support

w =0
w = 0
X
w =0
y

2, Pinned column support

w =0

M =20
X

M =20
y

3. Simple edge

at all node peints along the edge

w =20
v, o= 0 (slope along the edge)
M =0

n

4, Clamped edge

at all node points along the edge

W =0
o= 0 (slope along the edge)
woo= 0 (slope normal to the edge)

The censtraint conditions are applied to the structural matrices by
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deleting the cerresponding rows and celumns., If n is the number of
node points and r is the number of constraints, the final size of the

structural matrices will be (3n - r).

4.3 Solution
The governing equations for the plate, Eqs, (38) and (39), can now

be formed., Let the in-plane loads be expressed as

N, = NOx + Ntx cos(Ot) = aN_ + bNt cos(8t)
Ny = NOy + Nty cos(@t) = cNg + dNt cos(Ot)

Nﬁy= NOxy + Ntxy cos(Bt) = eNs + th cos (Ot)

The loads are represented in this manner so that each term contains the
common factoers N, and_Nt. Substituting inte Eq. (38) and factoring out

the commen terms in each matrix the following expression is obtained;

2 aN,* _ BN, * _ _
p2b__ryfd ¥ +-{JL[K] - (5.7 - ..i_[st]cos(ecﬂ{;v} =0. (69)
25,200 ~-dt? ab 2520 2520
in which
NS = Q,Ni*
Nt = BNi*

[S5] = al8,] + c[5,] + e[5yy]
[5.] = b[s,] + d[sy] + f[sxy]
Ny*'s are the static buckling loads which are determined as the eigen-

values of the determilinant

DKy - N[5 7| = 0.
ant<) ~ g5gpts]| = O (70

This determinant is obtained from Eq. (36). The term aNi*[§;j in Eq.
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(69) reflects the influence of the static components of the loads while
the term 5Ni*[§t] reflects the influence of the pulsating components of
the loads. By comparison of terms in Eqs., (38) and (41) the equation

which gives the boundaries of dynamic instability (Eq. (63)) is found

to be
BN * pab(g&i)zn
-______[S ] - ———[M]| =0 (71)
2520 2(2520) 4(25,200)
in which
The wi"s are the natural frequencies of the system determined from
@33),
Dk - pabe?_ [M]| =0 (72)
‘ 25,200

In the same manner, the characteristic determinant for determin-
ing the regions of instability, when the effects of viscous damping

(Eq. (66)) 1s considered, becomes

N ¥
D -
2[K] = ok —d[8 ] + ——2—[5,]
ab 2520 2(2520) t =
- {ew)cabry
- Pab(ew) [M] 25,200 i
4(25,200)
s T T - = 0
BN, *
E 1- 2520[ sl ” 2(252@£ e
iEQlEEE[M] EEESEQZ__ M
25,200 l 4(25, 200)[ ] L (73)

If the effect of an elastic foundation is considered the only change in

Egs., (70) through (73) is that the term



is replaced by

D

ab

E[gK] +

D
gyl

azb2
25,200(D)

o) .
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CHAPTIER V

DISCUSSION OF RESULTIS

5.1 Interpretation of Results

A program for the IBM 7040 electronic digital computer was written
to solve Eqs. (70) through (73) for the natural frequencies, static
buckling loads; aﬁd regions of dynamic instability for several plates,
The results are shown in a series of figures and tables, and are
expressed non-dimensionally in terms of the parameters o, B and ©/w.
As can be seen in Chapter IV the parameter g is the percentage of the
static buckling load which is applied statically, B is the percentage
of the static buckling load which is the amplitude of the pulsating
load, and ©fw is the ratio of the frequency of the pulsating load to
the natural frequency of transverse vibration of the plate. 1In all of
the examples both the static and the pulsating components of the loads

N

o Ny’ and ny were applied proportionally. The static and the pul-

sating components ef the loads were applied independently, but each
type of leading was varied in the same propertions as the ones used to
determine static buckling loads for a particular example, That is, if
in determining the static buckling loads, Ni*, the loading is applied

as N =N, Ny = 5N, and N, = .5N, then the static and pulsating com-

y
ponents of the load used in determining the regions of instability
are varied with these same proportions. This type of loading allows

the results to be presented in a uniform non-dimensional form. The

48
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method which has been presented is not, however, restricted to this
type of loading. The subscript i which appears with the parameters q,
B and B/w, on smme"of the figures depicting the results, indicates that
the resulté are for the ith natural frequency and ith buckling load,
each of which is ranked numerically., For example, when considering the

ith natural fre-

region of dynamic instabili;y corresponding to the
quency (Qi[wi) the load axis is non-dimensionalized with respect to the
ith buckling load, with o and B being percentages of the ith buckling
load, Also shown en these figureé are the constants necessary to cal-
culate the natural frequencies and buckling loads for several of the
lower modes once the physical properties of the plates are specified,
With this information in addition to the curves, design loads and fre-
quencies can be specified. In addition to the figures which show the
regions of instability the mode shapes for free vibration and static
buckling for some of the examples are shown., As is pointed out later,

these mode shapes are helpful in interpreting the results which are

obtained,

5.2 Plates Without Damping

The first geries of examples which was solved is as follows:

Boundary Conditions#

3.5

$.5 5.8

i

2, Ny =

= N

=
I

= ,1N, N = AN, N =N
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afb = 1.5 (¥N_= N, No= N, Noo=0
(N, = N, N = .5N, N = .58
N =N, N =0, N = .5N
. arb = 1.0 (N =N, N =N, N =0
. . N, =N, N = .5N, N = .5N
N =N, N =0, N = .5N
< a/b = 1.5 (0N =N, N =N, N =0
N, =N, N = .5N, Noo = .5N
N =N, N =0, Ny = .5N
S a/b = 1.0 (N =N, N =N, Neoo=0
. s N, =N, No= .58, Noo = .58
C

# S.S - Simply Supported Edge

C - Clamped Edge

The variation of results for these examples ranged between two extremes,
one shown in Figure (11) and the other shown in Figure (13)., The
regions in Figure (13) were obtained for the simply supported plate
under the action of pure shear, The regions shown in Figure (11)
correspond to the darkened portion of Figure (12) which shows the
regions of stability and instability for the Mathieu equation,

2

4£f, - h2 cos 2t) £ = 0 (74)
de?

McLachlan (17) states that for the more general case of
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2

Q—% + (R - h2 cos Ot) £ =0 (75)

dt
regions equivalent to those in Figure (l2) are obtained. It,should
be pointed out that the region for ¢ = 0.6 will coincidg with the
region for o = 0,0 in Figure (l1) if in each case the horizontai axis
is non-dimensionalized with respect te the natural frequency of the
plate with the static component of the loads applied., This follows
from Eq. (63) which gives the first approximation te the regions of
instability, It can be seen from this equation that as ¢ approaches
zerog, @ approaches twice the natural frequency of the plate with the
statlc loads applied,

The examples in the above llst marked with an‘asterisk all have
the same characteristic regions of dynamic instability, and these
regions are the ones in Figure (11)., The mode shapes for the two
lowest modes and information necessary to use the curves shown in
Figure (l1) for these examples are given in Table (I). The information
necegsary for constructing the region of instability correspohding to
the fundamental natural frequency of free vibration for the remaining
examples Qith the exceptions of the simply supported piate with Nx = 0,
N =0, N

y Xy y
(II). The first, second, fourth, sixth, and eighth sets of results

= N and with N = 1IN, Ny = ,1N, N, =N, is given in Table
shown in Table {1II) also give the characteristic regions like those in
Figure (l11) except for very slight variations. However, regions corres-
ponding to higher frequencies tended to differ frem those in Figure (11)
considerably, The reasen for these variations is giveﬁ below, The

results for higher frequencies for the examples‘in Table (II) ere not



TABLE I

MODE SHAPES, NATURAL FREQUENCIES, AND BUCKLING
LOADS FOR SEVERAL PLATES
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‘ NATURAL BUCKLING
PLATES AND MODE SHAPES Bic|%/p{LOADING [cpeqUENCIES | LOADS
VIBRATION MODES BUCKLING MODES w =@i/ab,/D/p |N*i/ab (D)
Ist 2nd 1st 2nd (@) (N*) =
C> O sS{1O[N, =N | @, = t9.15 | N; = 18.58.
S.5 3 —%
___/4:_:_— ”’\\ S.S Ny = (DZ = 47,40 NZ =45.46
co) G |58 [Ny @, = 47.40 | N¥ - 45.46
SS{I15I Ny =N | @ = 2070 | N¥=19.13
- - SS . -
S clofS]olof [nnje:me|g 2
\ ‘ _‘
<’ s SS|  [Ngy:= @, = 63.26 | Ny = 57.24
ssl15{N =N | @ = 20.70 | N)'= 28.50
(SAME AS ABOVE) ) O 33 Ny =5N| @z = 39,10 | RE= 4112
~— M NS [lss|  [Nyg=5N| @, < 63.26 | RiX=73.85
-y - ClOIn, =N [ @ = 3430 | A= 47.81
/ / C -
{ ,/ | ’,' c Ny =N | &= 70.03 | (i} = 84.00
L S Cl |Ny=0 |@;= 7003 | N3= 8400
c 15N, = @ = 3863 | N¥=55.54
/‘\ » ™\ C _ ~ % .
O L) Rl Ny =N @, =58.19 | NF=69.19
c Ney=0 |[@;=95.18 | R} =108.98
P — lclio|Ng=N |@ = 2531 | W¥=28.12
/ . / _ —
.\_/II//) (// SCS Ny = w, = 56.74 N; = 58.97
Lo ' 0 ss| [Ny=0 |@,=5674 | W3-61.48
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TABLE 11
INFORMATION FOR OBTAINING FUNDAMENTAL REGION OF
INSTABILITY FOR SEVERAL PLATES
Regions _
% % loading El N, *
u a=20 a = 0.6
s.s 1.0 N, =N 2 2,18 1,79 1,39 1,14 19,15 23,29
S.8 Ny = CSN ¢4 2-36 1 56 1.50 099
S$.8 ny = ,5N .6 2,51 1,27 1.60 81
S.S
8. 1.0 Nx = N 2 2,18 1.80 1,40 1,15 19.15 34,07
S.S Ny LR 0 nLi' 2.35 1056 1151 1-00
S.8 ny = ,58 6 2,50 1,28 1,61 B2
5.5
S.S 1.5 Nx = N -2 2.15 1.82 20023 52.10
8.8 Ny = 0 4 2,30 1,61
5.8 nyﬂ « SN 06 2044 1.35
8.8 '
C 140 N}ﬂ = N .2 2017 1380 1-4«3 101-8 34030 58089
C Ny = iSN u4 2.32 lu59 1-53 1-003
c ny = (SN .6 2,47 1,31 1,63 «85
¢
c Ny = 0 4 2,29 1,61 1,57 1.08
C_ — } e
c 1.5 N, =N 2 2,09  1.59 1.67 1.52 38.63 95.42
C N‘K“y = aSN aﬁ 2;26 1 66 1.79 1.28
C
C 1.0 N, =N .2 2,17 1.30 1,41 1.16 25,31 36,30
5.8 Nx = 5N o6 2,49 1.29 1.62 .83
» ¥y
5.8
w=-24/2 w = N (p)
ab
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reported in this thesis.

In a study performed by this writer on the dynamic instability of
beams, it was found that for all common boundary cenditions the beams
exhibited the same characteristic regions of dynamic instability as
those shown in Figure (11). Brown (18) in his study of the dymamic
stability of beams on elastic foundations obtained the same regions for
certain cases. An snalytical explanation as to why certain of these
problems give the same characteristic regions of dymamic Instability is
presented below,

First consider the governing differential equation for the dynamic

stability of a plate,

2 2 2 2
vival ATy 2 4 n2Y . 20 (76)
D o oxdy 3y ot

Assuming a solutien of the form

wix,y,t) = £(t) g(x,y)

and substituting into Eq, {(76), the followlng differential equation is
obtained;
va 1 2 2 2
e LB Lo 2B o 2B +N B =0, ()
P8 Dpg ox 3%y )4
Next consider the governing differenmtial equation for free vibra-

tion of the plate
4 pay |
v = . == (78)
D at
Making the substitution

AEENORNRY
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into Eq. (78) leads teo

4
g fl.l 2

Vi, g, (79)
g1 5

w= \/ &= . (80)

Finally, from the geverning differential equation for static

buckling
4 1 QEE sz azw
T W == (Nx 5 + 2N + N 2) (81)
D ox * oaxdy Yooy

the following expression is obtained when the substitution Wy = 8y is

made ;
4 2 2
v 32 1 3 2 gz Ps) gz
= — (N, + 2ny + y T ). (82)
82 Dgz ox OX3y oy

Now if the assumptions that the mode shape functions

g=g1:gz
and

N, = aNt cos 8t, N = bN. ces 6t, K

. y xy = dNt cos Bt

where a, b, and d are constants, are made, and Egqs. (79) and (82) are

substituted into Eq. (77) the following equation is obtained;

2 N, cos Ot :
"™+ Wy (1l - ————) £=0 (83)
5

where N? is the static buckling lead calculated using a loading
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Eq, (83) is of the same form as Eq. (75) which gives the regions of
instabiiity that are equivalent to those in Figure (11), It follows,
therefere, that if the madé shapes for free vibration and static buckl=~
ing aré the same, the regions of dynamic instability will be these
characteristic regions shown for o = 0 in Figure (11). It can be shown
in a similar manner that when a static component of the load is present,
the same conclusion can be drawn if the free vibration is taken to be
the free vibration of the plate under the action of the static loads.
In this case the regions will be the same as the ones shown for q = 0
with the exception that the horizontal axis should be normalized with
regpect to the natural frequency for the plate with the loads applied,

In all cases where the ith mode shape for vibration was very
similar to the ith mode shape of static buckling the characteristic
regions were obtained., In cases where the mode shapes for vibration
and static buckling were very dissimilar, as for example the simply
supported plate subjected to the loadings Nx = 0, N& = 0, and ny = N,
and Nx = ,1IN, Ny = +1N, and ny = N, the regions of instability differed
greatly from those in Figure (11). The results for these two examples
are shown in Figures (13) through (16).

In the abeove mentioned examples, the comparisen of mode shapes for
vibration and buckling has been done only for modes which were ranmked
nunerically the same, It is not necessary, however, that the modes be
of the same numerical rank in order to obtain the characteristic
regions, In making the assumption that the shape functions for vibra-
tion and buckling be the same in the development of Eq, (83) no mention
was made as to whether or not the functions resulted from the same

numerically ranked modes. The examples of the cantilevered and fixed
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BUCKLING MODES - SIMPLY SUPPORTED PLATE

Figﬁre 16. Mode Shapes for a Simply Supported Plate

(NX = J1IN, Ny = .1N, ny = N)
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ended plates shown in Figures (17) through (20) illustrate this point,
The axes on Figures (17) and (19) are normalized in numerical order as
has been done on previous figﬁres of this type. Netice, however, that
in both of these examples the second vibration mode is the same as the
first buckling mode, and that the curves denoted by i = 2 become the
characteristic curves, denoted here as Bolotin curve, if the vertical
axis, load axis, is normalized with respect to the first buckling load
and the horizontal axis, frequency axis, is normalized with respect to
the second natural frequency,

It is important to recognize that if there exist a buckling mode
shape, for instance the jth mode shape, that is the same as a given
vibration mode, as for example the ith mode, then there exist a region
of dynamic instability corresponding te the ith natural frequency that
has the characteristic shape shown in Figure (11) if the load axis is
normalized with respect to the jth buckling leoad and the frequency axis

th

is nermalized with respect to the i~ mnatural frequency.
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5.3 Plates on Elsstic Foundations

The results for a simply supported plate and a clamped plate each
loaded with Nx = N, Ny = N ny = 0 and each solved with two different
foundation moduli are illustrated in Figures (21) through (30). Here
the natural frequencies (w) are for free vibration of the élates rest-
ing upon the foundations., Neotice that for these examples, as was the
case with the examples discussed in the previous section, when the mode
shapes for vibration and static buckling become similar, the regions of
dynamic instability appreach the characteristic curves, For these
particular examples it is seen that when the foundation modulus is in-
creased the region of instability corresponding to the lowest natural
frequency narrows somewhat, whereas the regions corresponding to higher

frequencies appear te be affected to a lesser degree,
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BUCKLING MODES - SIMPLY SUPPORTED PLATE

Figure 26. Mode Shapes for a Simply Supportad Plate on an Elastic
Foundation (& = .0006, N, = Ny = N)
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5.4 Plates With Viscous Damping

Regions of dynamic instability cerresponding te the fundamental
vibration frequency are found fer a simply supported plate and a clamp-
ed plate, each subjected to a leading Nx = Ny = N, and ny = 0, and
viscous damping. These results are illustrated in Figures (31) and
(32). The damping coefficients are expressed as & percentage of criti-
cal damping. For relatively small damping coefficients, the effect of
damping is that tlhe amplitude of the pulsating load must have a finite
value before the plates will become dynamically umstable., For example,
for the problem illustrated in Figure (31) when n= 0.05 the amplitude
of the pulsating load must reach 0,1 times the static buckling lead
before anﬁ_instability will eccur, As the damping coefficient is in-

creased the load required to preduce any instability becemes very large,

5.5 Plate on Elastic Foundation With Viscous Damping

Figure (33) shows the region of dynamic instability for a simply
supported plate on an elastic foundatiom subjected te the effect of
viscous damping and a loading of N, = Ny = N and ny = 0., The purpese
of this example is to illustrate the simpligity in handling this class

of relatively complex problems by the method developed in this thesis,
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary and Conclusiens

A method has been developed in this thesis, using a finite element
stiffness analysis, te determime the principal regions of dynamic in-
stability of rectangular, homogeneous plates. The procedure employed
in the development consists of the derivation of the governing set of
ordinary differential equations by applying the Lagrangian equation to
the individual finite plate elements, and of the solution of these
equations for regions ef instability using the methods from the theory
of linear differemtial equations with periedic coefficients. The
development of a finite element selution for structural problems using
the Lagrangian equation has net, to this writer's knowledge, appeared
heretofore in the literature. Although the approach taken by others
for the soluﬁi@n of various problems using the finite element method is
very similar mechanically to the Lagranglan approach, the Lagrangian
method offers a unified appreoach which is more adaptable for extensiens
of the finite element procedure. A series of examples which includes
plates subjected to several leading and boundary conditiems, and plates
with and without the effects of viscous damping and an elastic founda-
tion were solved, A limited parsmetric investigation was made upon
these examples,

The method is capable of handling a wide range of complex problems
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with regard to boundary conditions and leoading. The method makes no
presuppoesitions with regard to the eigenfunctions for free vibratioen
and static buckling as is the case with most existing analytical selu-
tiens. It has been shown that the size of the regions of dynamic
instability depend upen the similarity of the mode shapes of free vibra-
tieon and statlic buckling. Feor the special cases when the mode shapes
for vibration and static buckling are the same the regions of insta-
bility are the characteristic curves shown in Figure (11), In these
cases the governing differential equsation can be reduced to one second
order Mathieu~HiLll equation, Although no attempt was made to develep
a criterion for likeness or similarity of mode shapes, it was observed
that when the mode shapes were very similar the instability regiens
were largest, and when the mode shapes were very dissimilar the insta-
bility regions were smallest.

The finite element method for amalyzing plates for dynamic
stability makes it possible te solve large numbers of complex problems,
.and to amalyze the problems with respect to the various parameters
which affect the stability of the plates, This type of analysis with
other solutien ﬁethods at the present is umpractical. The treatment of
the various boundary conditions which peses probably the biggest preb-
lem to analytical sclutions is trivial in a finite element amalysis.

It is possible that the results of finite element analyses of plates

might aid in giving direction to amalytical research in this area,

6.2 Suggestion for Further Research

The examples that have been solved in this thesis have been
limited to rectangular, homegeneous plates lecaded with unifermly dis-

tributed loads across the edges. The method develeped is capable,
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however, of handling a much wider range of problems, Other geometrical
shapes can be solved, but it might be necessary to use finite element
shapes other than rectangular to accommodate the various shapes., In
the literature some of the necessary elemental matrices have been
developed for finite elements of other shapes. Plates of variable
thickness can be analyzed by using the variable mass and rigidity terms
in the integrals used imn evaluating the elemental matrices, Other types
of loading conditions should be analyzed. The loadings used in this
thesis were unifeormly distributed across the plate edges and the in-
plane stress distributioen due to these loads was known to be constant
throughout the plates. The in-plane stress distribution caused from
other load configurations could be determined using metheds similar te
those given in works by Lundgren (19) and Apanian (20). Once the stress
distributions are known the elemental stability matriées could be
evaluated for these conditions and the regions of dynamic stability
determined, A dynamic stability analysis of multilayered sandwich
plates can be performed using the metheds of this thesis and those pre-
sented by Lundgren (19).

Other basic factors which should be investigated in relatien to
the dynamic stability of plates are the effects of im-plane imertia,
non-linear damping, and the use of materials which exhibit non-linear

or elasto-plastic stress-strain distributions.
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