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Enhancing soil organic matter in agricultural soils has potential to contribute to
climate mitigation while also promoting soil health and resilience. However, soil
carbon (C) sequestration projects are rare in C markets. One concern surrounding
soil C is uncertainty regarding the permanence of newly sequestered soil C. This
scientific uncertainty is exacerbated by differences in terminology used by scientists
and policymakers, which impedes the integration of new scientific findings regarding
soil carbon longevity into evidence-based policies. Here, we review the evolution of
understanding of soil C lifespan and the language used to describe it in both scientific
and policy sectors. We find that recent scientific findings that have bearing on soil C
lifespan are not part of discussions surrounding C policy, and conversely, policymaker
concerns are not clearly addressed by scientific research. From a policy perspective,
soil C is generally assumed to be a vulnerable pool at risk of being quickly lost via
microbial degradation or other avenues of physical loss if soil C building practices are
not maintained indefinitely. This assumption has been challenged by recent scientific
advances demonstrating that microbial consumption and transformation of plant-
derived C actually necessary for the long-term storage of soil organic matter. Here, we
argue that soil C longevity can best be understood as resulting from continual movement
and transformation of organic compounds throughout the soil matrix, and show that this
definition is directly at odds with how soil C longevity is represented in current policies.
Given current interest in new policies to promote soil C sequestration activities, resolving
these definitions is critical. We further identify priority areas for future research in order to
answer key policymaker questions about soil C lifespan, and to help develop new tools
and benchmarks necessary to assess efficacy of agricultural soil C sequestration efforts.

Keywords: climate change, sustainable agriculture, soil carbon, carbon sequestration, microbial biomass

INTRODUCTION

How permanently will carbon (C) stored in soil remain sequestered? This question is often posed in
public policy concerned with C sequestration offsets (Smith, 2005; Thamo and Pannell, 2016; Smith
et al., 2019), but is rarely considered by the scientific community in those terms, and therefore
rarely addressed. Differences not only in terminology, but in conceptual models of C sequestration
used by policymakers versus scientists, makes it challenging to clearly define science-based policies
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promoting long-term soil C sequestration. Concern that any soil
C stored would be easily lost and re-emitted to the atmosphere
was one reason that soil C sequestration projects were excluded
in early C offset markets, such as those created under the
Kyoto Protocol (von Unger and Emmer, 2018). Though soil C
sequestration projects are now gaining a presence, particularly
in voluntary C markets, permanence concerns remain difficult
to directly address using scientific data because of differences
in terminology, definitions, and focus between scientists and
policymakers (Box 1). A clear understanding of definitions and
research gaps related to soil C lifespans is both timely and
necessary to catalyze more ambitious soil conservation practices
as a part of broader climate change mitigation efforts.

Soils hold the largest store of organic carbon (C) on the
planet (Batjes, 1996), but human activities have degraded soils
worldwide, causing a gap between global soil C capacity and
current storage (Scharlemann et al., 2014; Sanderman et al.,
2018). This gap has been framed as an opportunity for soils to
serve as C sinks and contribute to climate change mitigation
(Sommer and Bossio, 2014; Lal, 2016; Zomer et al., 2017).
Restoring C in agricultural soils particularly is seen as a win-
win climate solution, since management practices that would
restore soil C can improve soil health and food security (Paustian
et al., 1997; Lal, 2004a,b; Minasny et al., 2017), reduce chemical
fertilizer needs (Oldfield et al., 2018), while also providing a cost-
effective natural solution to combat climate change (Fuss et al.,
2018; Bossio et al., 2020).

Efforts such as the French Ministry of Agriculture’s 4 per 1000
Initiative (Minasny et al., 2017) have stimulated considerable
discussion regarding the potential, globally, for agroecosystems
to sequester significant C stocks. Models and CO2-enrichment
studies show that supplies of nitrogen and phosphorus may
constrain plant productivity and therefore pose limits to soil C
accumulation (Hungate et al., 2003; van Groenigen et al., 2006;
Wieder et al., 2015; Van Groenigen et al., 2017). Additional issues
include biophysical constraints such as insufficient availability of
organic biomass to add to soils and potential saturation of soil
C storage (Poulton et al., 2018; Schlesinger and Amundson, 2018;
White et al., 2018), as well as social and economic constraints that
may hinder widespread adoption of C-sequestering agricultural
practices (Amundson and Biardeau, 2018; Baveye et al., 2018).
Regardless of how much C can be sequestered by agricultural
soils, the issue of permanence is still of importance.

Despite these challenges, restoring organic matter to
agricultural soils still provides an opportunity to improve soil
health and global food security while drawing down atmospheric
CO2. A better understanding of the longevity of sequestered
soil C could increase confidence in the amount of C that is able
to be sequestered in agricultural soils, enabling policymakers
to develop appropriate incentive and C payment structures
while simultaneously restoring critical soil ecological functions
(Baveye et al., 2020).

Recently, significant strides have been made in illuminating
how, and for how long, SOM persists in soils, which can help
inform data-supported soil C sequestration efforts. Here, we
describe the evolution of the scientific understanding of soil C
longevity, and highlight how outdated scientific concepts have

perpetuated an inaccurate understanding of soil C in the public
sphere. Using our current understanding of soil C permanence,
we outline key priorities for synergistic scientific and policy
advances in support of long-term soil C sequestration.

THE SOM PARADIGM SHIFT

Soil C is predominantly found in organic molecules collectively
referred to as soil organic matter (SOM), which also contain other
elements such as nitrogen, phosphorus, sulfur, potassium and
calcium. SOM serves as both a substrate for microbial metabolism
as well as a warehouse for long-term soil C storage, with SOM-C
ages as old as several millennia detected in deep soils (Campbell
et al., 1967; Scharpenseel and Becker-Heidmann, 1989; Krull
and Skjemstad, 2003). A portion of SOM is labile and can be
metabolized by microbes on time scales varying from days to
decades, whereas other fractions persist in soils for thousands
of years. Thus, most widely used ecosystem models (e.g., the
CENTURY model) represent SOM as multiple, distinct pools
with mean residence times ranging from a few years in the
labile pool, to thousands of years in the passive or stable pool
(Parton, 1996). Elucidating the biochemical nature of SOM in
these theoretical pools, and the mechanisms by which the stable
SOM pool forms, has been the subject of continual controversy
and research over the past century.

Many of the recent developments in SOM research have
been discussed extensively in previous reviews. Here, we
present a summary of previous research most relevant to
understanding the longevity of soil C sequestration. For
more in-depth discussion of specific topics, we refer the
reader to the following literature: Marschner et al. (2008),
Schmidt et al. (2011), Lehmann and Kleber (2015) (controversy
about humic substances and recalcitrance), Dungait et al.
(2012) (role of physical inaccessibility in SOM longevity),
Lavallee et al. (2019) (mineral-associated organic matter and
particulate organic matter), Rumpel and Kögel-Knabner (2011)
(subsoil C storage), Jilling et al. (2018), Bailey et al. (2019)
(soil C destabilization).

Classical views in soil science held that stable SOM
consisted of compounds known as humic substances that were
inherently resistant to decay due to their complex, highly
aromatic structures (Box 1). Humic macromolecules were
hypothesized to form spontaneously from organic monomers
via a series of abiotic condensation reactions through the
process of humification (Waksman, 1925; Hedges, 1988; Tan,
2014). However, the presence in soil of humic substances,
traditionally isolated and quantified using a series of harsh
chemical extractions, has not been supported by non-destructive
observation techniques, such as 2D-NMR and near-edge
X-ray fine structure spectroscopy (NEXAFS) (Kelleher and
Simpson, 2006; Lehmann et al., 2007, 2008). For example, an
examination of a humic acid standard and the humic acid
fraction extracted from soils using 2D-NMR could find no
distinct chemical signature that could not be attributed to
well-characterized plant and microbial compounds, including
proteins, carbohydrates, and biomarker compounds such as
lignin and cutin (Kelleher and Simpson, 2006).

Frontiers in Environmental Science | www.frontiersin.org 2 November 2020 | Volume 8 | Article 514701

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-514701 November 11, 2020 Time: 12:39 # 3

Dynarski et al. Soil Carbon Permanence

BOX 1 | Unpacking commonly used terms to describe permanence.
Language surrounding soil C longevity is inconsistent between C policymakers and soil scientists, muddying the communication between these two groups.
Furthermore, across scientific disciplines, and even within disciplines, some of the same terms have different meanings, adding to confusion. Clarifying language that
is used to describe how, and for how long, SOM is preserved in soils is critical for effectively communicating opportunities and challenges for soil C sequestration, as
well as aligning scientific research goals with the needs of policy makers and other stakeholders.
Terminology:
Sequestration: The transfer and storage of atmospheric CO2 to other pools, such as soil or plant biomass (Lal, 2008). In most C financing markets, C
sequestration projects are required to sequester more C than would normally be sequestered without the intervention, not result in the transfer of C emissions to a
different region or sector, and permanent (see below).
Permanence: Permanence is a necessary condition for creditable CO2 emissions offsets. Sequestered C must remain sequestered during the period of the offset
credits, which are typically issued for a 100-year period (although in newer markets, temporary credits can be issued for periods as short as 25 years). Critically, in
practice, permanence typically refers to the duration for which a C-sequestering practice is carried out, rather than the soil C itself. It is assumed that once the
management practice ends, any accumulated soil C will be quickly lost (Smith, 2005).
Turnover time: In soil science and biogeochemistry, the lifespan of soil C is often described as its turnover time, mathematically defined as the ratio of the total
carbon stock in a particular soil pool to the output flux (Schimel et al., 1994; Sierra et al., 2017). It is colloquially used to describe the average length of time a single
organic molecule remains in the soil before being lost via leaching or respiration. Traditionally, soil C has been represented in global biogeochemical models, e.g.,
with three pools with turnover times ranging from <1 year (active pool), 20–50 year (slow pool) to >1000 year (passive pool) (Parton, 1996). The passive C pool has
been interpreted to be permanently stored soil C. However, this model presents an overly simplistic view of soil C, one which is now being challenged (see “Toward
dynamic stability” section).
Humus, humic substances, and humification: Humus originally referred to SOM that had undergone degradation and secondary synthesis to form new organic
compounds distinct from their plant or microbial origin (Waksman, 1925). The term is also used colloquially to describe SOM of all forms (Schlesinger and Bernhardt,
2013). The idea of humus or humic substances dates back to the 18th century, when an alkaline extraction method was introduced to separate the soil organic
phase from the mineral phase. Humic substances were operationally defined to be the compounds soluble in alkaline solution. Though never observed directly in
un-treated soils through spectroscopic methods, humic substances were thought to be large, irregular, aromatic organic molecules resistant to microbial
decomposition. Humification refers to the series of abiotic condensation reactions which transform plant and microbial monomers into humic substances. Today,
humic terminology is controversial, with many scientists dismissing the concept of humic substances entirely (Lehmann and Kleber, 2015; Kleber and Lehmann,
2019), others maintaining that it is still useful (Olk et al., 2019), and still others using the terminology of humic substances and humification to broadly refer to SOM
and SOM production, irrespective of alkaline extraction (Kirkby et al., 2013).
Recalcitrant: Refers to SOM that is resistant to microbial and enzymatic degradation due to its chemical structure. Microbes were thought to selectively degrade
organic matter based on its ease of oxidation, leaving behind organic matter that is increasingly difficult to break down (Sollins et al., 1996). Alkyl and aromatic
functional groups are both theorized to contribute to chemical recalcitrance (Melillo et al., 1983).
Stability: Refers broadly to SOM resistance to decay, whether that results from humification, selective preservation of recalcitrant organic matter, and
physicochemical interactions such as adsorption to mineral surfaces and occlusion within soil aggregates (Knorr et al., 2005; von Lutzow et al., 2006).
Stabilization: Broadly refers to processes resulting in SOM that is resistant to decay. Though our knowledge of specific processes involved have changed as
scientific understanding of SOM preservation has grown, the term generally reflects the paradigm that there is some physical mechanism through which SOM
becomes permanently resistant to decay.
Persistence: Refers to long-term preservation of SOM resulting from ecological, biological, and physicochemical conditions and interactions rather than any
inherent chemical property of SOM (Schmidt et al., 2011). Recent research suggests that not even physicochemical interactions (e.g., occlusion in microaggregates
or sorption to mineral surfaces) can explain long-term persistence, as they are reversible (e.g., Fontaine et al., 2007; Keiluweit et al., 2015). Here, we advocate for an
understanding of SOM persistence as a property driven by continual movement and transformation of organic molecules within the heterogeneous soil environment
via interactions with both soil microbes and the physical soil matrix.

Another hypothesis was that the stable SOM pool consisted
of recalcitrant organic molecules, such as lignin, that were
selectively preserved during plant tissue decay due to their
complex chemical structure (Marschner et al., 2008). Long-term
C stability was still assumed to be conferred by the chemistry
of persistent organic molecules (Box 1). Yet, decomposition and
13C labeling studies show that compounds previously assumed
to be recalcitrant, such as lignin, decay in soil at rates similar
to those of simpler organic compounds (Dignac et al., 2005;
Heim and Schmidt, 2007; Klotzbücher et al., 2011; Haddix et al.,
2016). Supporting that, 13C and 14C dating methods reveal that
soil lignin is not older than simple, labile molecules like amino
sugars (von Lutzow et al., 2006). Similarly, recent 13C-NMR
spectroscopy work examining the decomposition of the organic
biomarkers suberin and cutin shows that both compounds
can be decomposed quickly (Angst et al., 2016a). In several
long-term agricultural experiments, 14C dating indicates that
the turnover time of free particulate organic matter (POM),
the low-density size fraction of SOM which should contain
recalcitrant plant compounds, is only ∼50 years (John et al., 2005;

Rethemeyer et al., 2005). Biochemical recalcitrance, it seems,
prevents decomposition of plant matter for decades at most.

Recent advances in soil chemistry and microbiology over
the past decade have dramatically shifted previous ideas about
SOM formation. Direct characterization of SOM via NMR
spectroscopy, scanning electron microscopy, NanoSIMS, and
pyrolysis-GC-MS indicates that the majority of SOM is actually
microbial in origin, consisting mainly of microbial necromass
fragments such as proteins, lipids, and polysaccharides (Grandy
and Neff, 2008; Simpson et al., 2008; Miltner et al., 2012; Gleixner,
2013; Plaza et al., 2013; Kallenbach et al., 2016; Kopittke et al.,
2020). These observations are further supported by modeling
work indicating that microbial necromass makes up as much
as 80% of SOM (Liang and Balser, 2011; Liang et al., 2011),
suggesting that microbial metabolism and transformation of
organic matter is critical to long-term storage of SOM.

These partially decomposed microbial residues can be
protected from further degradation via interactions with the soil
matrix, such as sorption to mineral surfaces and incorporation
into soil microaggregates (<53 µm) (Adu and Oades, 1978;
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Jastrow et al., 1996; Balesdent et al., 2000; Six et al., 2000;
Kelleher and Simpson, 2006; Lehmann et al., 2007; Kögel-
Knabner et al., 2008; Cotrufo et al., 2013, 2015; Six and Paustian,
2014); organic matter protected via interaction with soil mineral
surfaces is referred to as mineral-associated organic matter
(MAOM) (Cotrufo et al., 2019). Because soil microbes are
typically associated with the surfaces of soil minerals, microbially
derived residues and necromass are more likely to be sorbed to
mineral surfaces than is unprocessed, plant-derived SOM (Pett-
Ridge and Firestone, 2017). Thus, MAOM mainly consists of
low-molecular weight compounds that have been processed by
soil microbiota, via either incorporation into microbial biomass
or extracellular enzymes (Christensen, 2001; Six et al., 2001;
Sanderman et al., 2014; Cotrufo et al., 2015). MAOM has been
measured to have 14C ages as old as centuries to millennia
(Jastrow et al., 1996; Rasmussen et al., 2005; Kögel-Knabner et al.,
2008; Kleber et al., 2011), suggesting that mineral association
confers a high degree of stabilization.

Despite its physical protection and observed longevity,
however, even MAOM is not inherently stable or permanent.
Organo-mineral interactions are reversible; the complexes
can be disrupted by root exudates such as oxalic acid
that can outcompete MAOM for ligand interactions with
mineral surfaces, freeing MAOM and making it susceptible to
decomposition (Keiluweit et al., 2015). Fluctuations in soil pH
can also promote desorption of C from mineral associations
(Wagai and Mayer, 2007; Rasmussen et al., 2018). Furthermore,
the addition of labile C compounds, either in incubations
or via root exudation, has also been shown to stimulate
the decomposition of native SOM (both MAOM and POM)
that is old and theoretically stable, via the so-called priming
effect (Fontaine et al., 2007; Finzi et al., 2015; Murphy et al.,
2015; Bernal et al., 2016). Physical disturbance such as freeze-
thaw cycles, wet-dry cycles, bioturbation, and tillage can also
disrupt mineral-organic matter associations (Fierer and Schimel,
2002; Herrmann and Witter, 2002; Lavelle et al., 2006). Thus,
not even MAOM, theoretically the best candidate for the
hypothesized stable C pool, is permanently protected from
decomposition and loss.

TOWARD DYNAMIC STABILITY

The suggestion that observed ancient SOM is not inherently
stable presents a paradox – how can a thermodynamically
unstable form of C be very old if it is not stabilized in
some way (Hedges et al., 2000)? Current research suggests
that the observed longevity of SOM results from biological,
environmental, and physicochemical constraints on SOM
decomposition, a concept that is described as persistence
(Box 1, Schmidt et al., 2011). Understanding persistence requires
an understanding of the complexity of the soil environment
and the myriad constraints on the spatial distribution and
metabolism of soil microbial communities. Soil is a complex
environment, with substantial variation both horizontally and
vertically, and a heterogeneous 3-dimensional structure (Young
et al., 2001; Ettema and Wardle, 2002; Kinyangi et al., 2006;

Nunan et al., 2007; Lehmann et al., 2008; Séger et al., 2009;
Tarquis et al., 2009; Young and Bengough, 2018). Though
soils are often depicted as teeming with microbial life, less
than 1% of the soil surface is actually colonized by microbes
(Young and Crawford, 2004), and soil microbes tend to
congregate in specific, resource-rich areas like the rhizosphere,
detritusphere, and along preferential flow pathways (Joergensen,
2000; Bundt et al., 2001b,a; McMahon et al., 2005; Chabbi
et al., 2009; Angst et al., 2016b; Sokol and Bradford, 2018).
Soil aggregation and micropore development further enhances
heterogeneity in resources, oxygen diffusion, and organisms
(Chenu et al., 2001; Smucker et al., 2007; Kravchenko et al.,
2014; Bach and Hofmockel, 2016). The size, composition,
and metabolic efficiency of the soil microbial community
also varies in response to resource availability, moisture,
temperature, redox conditions, and disturbances (Manzoni et al.,
2012; Wallenstein and Hall, 2012; Sinsabaugh et al., 2013;
Schmidt et al., 2018).

Heterogeneity leads to physical isolation of microbes from
SOM, and places thermodynamic and ecological constraints
on microbial populations even when they do have access to
degradable SOM (Rovira and Ramón Vallejo, 2002; Ekschmitt
et al., 2008; Salomé et al., 2010; Dungait et al., 2012; Manzoni
et al., 2012). Soil organic matter is not evenly distributed within
soil; direct observations using techniques such as NEXAFS
and NanoSIMS shows that the distribution and identity of
SOM compounds varies even at micro- and nanometer scales
due to preferential MAOM accumulation in distinct submicron
soil structures, particularly within microdomains of densely
arranged clay minerals (Lehmann et al., 2007, 2008; Vogel
et al., 2014; Steffens et al., 2017; Kopittke et al., 2020). Variable
distribution of SOM and limited pore connectivity in these
microdomains constrain microbial access to both SOM and
nutrients, which in turn limits the activity of soil microbial
communities (Nunan, 2017; Nunan et al., 2017; Steffens
et al., 2017). A direct observation study pairing micro-scale
enzyme mapping with X-ray microtomography suggests that
heterogenous soil pore networks may be a particularly important
influence on both microbial activity and SOM stabilization
(Kravchenko et al., 2019).

New hypotheses based on these findings posit that rapid
cycling can still result in long-term SOM persistence, with
mineral interactions temporarily slowing the flow of SOM
rather than conferring permanent protection (Cagnarini et al.,
2019). Empirical support for this hypothesis comes from recent
high-resolution mass spectrometry work demonstrating that as
dissolved organic C moves downward through the soil profile, its
composition shifts toward mid-weight, saturated molecules with
a high degradation index (Roth et al., 2019). This indicates that
microbial consumption and subsequent transformation is a key
control on SOM composition and persistence. Recent process-
based modeling efforts similarly find that observed distribution
of SOM stocks and 14C ages can be reproduced without requiring
the assumption of permanent protection of MAOM (Robertson
et al., 2018; Woolf and Lehmann, 2019). Instead of being
permanently sorbed to minerals, MAOM may de-sorb and
re-enter soil solution as dissolved organic C, be transported
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downward in the soil profile, be consumed again by soil microbes
and incorporated into biomass, and eventually become re-sorbed
onto mineral surfaces (Woolf and Lehmann, 2019).

Given these advances, we advocate for an expanded definition
of SOM persistence that explicitly recognizes the critical
importance of the movement of soil C molecules for their long-
term preservation (Box 1). Interactions between SOM and soil
minerals, aggregates, and other physical protection mechanisms
are not permanent; instead, SOM persistence is driven by its
flow throughout the heterogeneous soil environment and its
interactions with both soil microbes and the physical soil matrix
(Box 1 and Figure 1).

The soil regions most likely to accumulate microbially
processed SOM are thus those where soil microbes, C substrates,
and the conditions necessary for microbes to degrade those
substrates do not co-occur. Such isolation is particularly
pronounced in deep soils (below 30 cm), where microbial density
and activity is markedly lower and highly variable (Nunan et al.,
2003; Salomé et al., 2010), and SOM distribution is patchy
(Chevallier et al., 2000; Don et al., 2007; Chabbi et al., 2009). At
these depths, up to 90% of SOM is in the MAOM fraction, which
significantly decreases its accessibility (Eusterhues et al., 2003;
Moni et al., 2010; Jackson et al., 2017). Furthermore, constraints
on microbial distribution and metabolism in deep soils can
simultaneously suppress POM decomposition and increase its
residence time (Hicks Pries et al., 2018; Sokol et al., 2018).
Accordingly, significant quantities of old C can accumulate in
deep soils despite low concentrations of soil C at depth, with the
majority of C in the top meter of soil found deeper than 30 cm
(Jobbagy and Jackson, 2000; Lorenz and Lal, 2005). Process-
based models similarly predict the accumulation of very old C
in deep soils when processes such as mineral sorption, microbial
metabolism, and downward C transport are taken into account
(Riley et al., 2014; Wieder et al., 2014; Woolf and Lehmann, 2019).
However, research focusing on soil C sequestration in deeper soils
is relatively rare, and should be a priority for future study, given
the potential for subsoil horizons to accumulate persistent soil C.

PERMANENCE IN POLICY

As interest in soil C sequestration projects deepens in the policy
arena (e.g., Minasny et al., 2017; Bossio et al., 2020), it increases
the need for timely translation of scientific knowledge of soil
C longevity to inform effective policy. Currently, policy and
science-based definitions of soil C permanence do not align. As
described above, soil C longevity can best be conceptualized as
persistence, in which the long-term sequestration of SOM results
from the flow of C throughout a complex soil environment, where
it can be transformed by soil microbes and interact with soil
minerals and physicochemical structures (Box 1 and Figure 1).

In contrast, most C offset markets understand soil C longevity
as resulting from the permanence of a particular C sequestration
management practice (Box 1, Smith, 2005). This stems from
difficulties in monitoring soil C stocks over long timeframes, and
assumptions that (1) once the period of benefits/requirement is
over, agricultural land managers will end any soil C sequestration

practices (e.g., cover cropping, reduced tillage) (Hediger, 2009),
and (2) once the C sequestration practice is ceased, C will
be lost from soils at a rate faster than the C accrued (Smith,
2005). Because most C trading mechanisms require that offsets
be maintained for a minimum of 100 years, this translates to
a requirement that any management practices to sequester soil
C be maintained for 100 years, a cumbersome and unrealistic
expectation for most land managers (though there has been
recent experimentation with shorter permanence requirements,
see below). In recent years, incentives-based programs without
such time requirements have become more common (e.g., the
California Healthy Soils Incentive Program), but permanence
requirements still remain a hurdle in offset markets (e.g., cap-
and-trade programs) (von Unger and Emmer, 2018).

Clear translation of scientific knowledge could address
policymaker concerns about the permanence of sequestered soil
C, resulting in wider adoption of soil C sequestration efforts.
In practice, changes in agricultural management are unlikely
to result in loss of all soil C that was newly stored, calling
into question the necessity and efficacy of 100-year permanence
requirements. This has been demonstrated at the Rothamsted
long-term agricultural experiment, wherein farmyard manure
was applied to a cereal cropping system for twenty years in the
late nineteenth century and then stopped. Nearly 150 years later,
this soil still contains about 2.5 times as much SOM as soil that
never received manure (Johnston et al., 2009). Similarly, studies
focusing on conversion of no-till fields to conventional tillage
have found that infrequent tillage (once a year or less) does not
result in significant C loss relative to no-till (Conant et al., 2007;
Dimassi et al., 2013). Translocation of C from topsoil into deeper
soil horizons likely helps facilitate long-term C sequestration,
even if management alters conditions in surface soils. Thus, a
single tillage event is unlikely to cause the massive loss of soil
C that is commonly assumed in economic models (Hediger,
2009). Sequestration practices that are centered around biochar
application are also not likely to result in emissions reversals if
the practice is ended (i.e., ceasing to apply further biochar is not
likely to cause C emissions) (Lehmann, 2007). Even if ending a
particular C-sequestering management practice did mean all the
newly gained C would be lost, decay kinetics predict that it would
take several years at a minimum (Schimel et al., 1994; Giardina
and Ryan, 2000). The assumption that C will be lost so quickly as
to be essentially immediate is therefore likely not accurate.

Synergistic efforts between scientists and policymakers to
understand and address these soil C permanence questions are
particularly critical now, as interest in soil C sequestration
projects is increasing (von Unger and Emmer, 2018),
necessitating the development of data-based policy mechanisms
to overcome potential non-permanence of soil C sequestration
management practices. The fact that C sinks in soil are not
strictly permanent (i.e., there is potential risk of reversal) is not
unusual among C sequestration solutions. Such risks also exist in
reforestation and afforestation projects, where C is sequestered in
aboveground forest biomass. The risk of sequestration reversal in
forest biomass projects has been successfully managed through
insurance-like schemes called buffers (Murray et al., 2007),
suggesting that permanence is an important, but manageable,
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FIGURE 1 | Conceptual illustration of soil carbon (C) flows. Carbon enters soil mainly via plant inputs (green arrow) and is lost via heterotrophic respiration (brown
arrow). Plant C inputs are the precursor to particulate organic matter (POM), which can be depolymerized by microbes and taken up into biomass, or transported
deeper into the soil profile as particulate matter. Microbial depolymerization, exudation, and turnover releases microbially processed C, which is free in soil solution
and can sorb onto mineral surfaces to produce mineral-associated organic matter (MAOM). Mineral-associated organic matter can de-sorb from mineral surfaces
and taken back up into microbial biomass or be transported to deeper soil profiles via leaching. Over time, these cycling processes result in the movement of both
microbially processed C and POM into increasingly deeper soil horizons.

issue. A similar buffer scheme is used by the Alberta Offset
System to protect C offset credits generated from conservation
cropping against potential future practice reversal (Alberta
Agriculture and Forestry, 2020). Shorter, 25-year permanence
periods have also been successfully used in the Australian
Carbon Farming Initiative, one of the few national-level C
financing schemes to include improved soil management as
a creditable offset (Australia Clean Energy Regulator, 2019).
Projects opting for the shorter permanence period receive fewer
credits than they would for a 100-year permanence period,
but gain flexibility. These existing policy precedents, combined
with a better scientific understanding of soil C permanence,
vis-à-vis persistence, can help policymakers evaluate potential
performance of climate projects on soil C sequestration and
inform necessary funding structures (Bossio et al., 2020).

DISCUSSION

In the flow-based model of C persistence developed here, SOM
is simultaneously cycled through microbial biomass and stored
via interactions with soil minerals that effectively introduce
friction into the flow of C through the soil profile. These
interactions between soil microbial communities and the physical
soil matrix, with downward movement of SOM, ultimately

result in the accumulation of persistent SOM stocks. Carbon
cycling also supports soil health goals; one critical co-benefit
of building SOM is improved nutrient availability and cycling,
which can improve soil fertility and support higher crop yields
while reducing the need for chemical fertilizers (Oldfield et al.,
2018). Because nutrient release and cycling depends on microbial
decomposition of SOM, this co-benefit has historically been
understood to be at odds with intentions of sequestering soil C
(Janzen, 2006). However, in a flow-based understanding of SOM
persistence, consumption and transformation by soil microbes
is crucial for producing MAOM and allowing movement and
transformation of SOM. Thus, restoring soil biological function
and C sequestration are fundamentally interwoven, rather than
contradictory, goals.

Agricultural management strategies with potential to promote
soil C storage have been detailed in several recent papers
(Paustian et al., 2016; Chenu et al., 2019). Many of these
strategies have potential to contribute to soil C flows as
described in this paper. Understanding the specific mechanisms
by which different management strategies may contribute to
soil C flows is critical for informing selection of strategies most
likely to result in persistent C sequestration (Table 1). We
argue that optimal management strategies to enhance both the
sequestration potential of agricultural soils and promote the
co-benefits of increased SOM are those that support a robust
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TABLE 1 | Sequestration potential, contributions to C flow, and trade-offs/constraints of selected cropland management practices (compiled from Paustian et al., 2016
and Chenu et al., 2019) that are most related to the soil C flow conceptual model developed in this paper.

Strategy Sequestration
potential
(Pg CO2-eq yr−1)1

Contributions to C flow Potential C flow tradeoffs References

Perennialization
or inclusion of
perennial crops
in rotation

0.3–1.6 Increases above- and belowground
plant C inputs to soils which supports
production of microbially processed C,
typically reduces soil disturbance which
supports aggregation and pore network
development

Potential for C losses if additional C supply
supports microbial decomposition that
outstrips MAOM production (priming effect)

Bird et al., 2011;
Anderson-Teixeira et al.,
2013; Bach and
Hofmockel, 2016;
Kantola et al., 2017

Cover cropping Increases above- and belowground
plant C inputs to soils which supports
production of microbially processed C

Potential for C losses if additional C supply
supports microbial decomposition that
outstrips MAOM production

Poeplau and Don, 2015;
Tautges et al., 2019

Residue retention/
plant high C-input
crops

Increases aboveground plant C inputs
to soils which supports production of
microbially processed C

Aboveground residues not as efficiently
metabolized by microbes as belowground
C inputs

Turmel et al., 2015; Sokol
and Bradford, 2018;
Sokol et al., 2019

Organic
amendments

Increases aboveground C inputs to
soils in a form highly accessible to soil
microbes; stoichiometry of inputs can
be manipulated to support efficient
microbial metabolism; C inputs reach
deep soils (30 cm depth), where C is
more likely to accumulate over
long term

Additionality of C sequestration dependent
on life cycle emissions of amendment

Kirkby et al., 2013;
Tautges et al., 2019;
White et al., 2020

Reduce tillage Reduces disruption of soil aggregates,
promoting protection of plant-derived
and microbially-processed C within
aggregates

C sequestration under reduced or
zero-tillage only apparent in surface soil
horizons, may not lead to C sequestration
when whole soil profile is considered

Six et al., 2000; Angers
and Eriksen-Hamel,
2008; Luo et al., 2010;
Martínez et al., 2016

Biochar
amendments

1–1.8 Increases size of a soil’s potential C sink
by adding degradation-resistant C, may
increase microbial biomass in
surface soils

Degradation-resistant C inputs do not
contribute to microbial metabolism and C
flow, additionality of C sequestration
dependent on life cycle emissions of
biochar

Major et al., 2010;
Liu et al., 2016;
Wang et al., 2016

Deep-rooted crops ∼1 Increases plant C inputs to deep soils,
where microbial density is lower and
lifespan of plant-derived C tends to
be longer

Effects on soil C stocks not
well-constrained, potential for C losses in
deep soils if additional C supply supports
microbial decomposition outstripping
MAOM production, deep-rooted cultivars of
many crops have not been developed

Hicks Pries et al., 2018;
Pett-Ridge et al., 2018;
Sokol et al., 2018

1Estimated annual C sequestration potentials are from Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

biological C cycle and promote C flow. This, in turn, supports
microbial processing of plant organic matter and subsequent
translocation of microbially processed SOM to deeper soil
horizons, building up a stock of persistent soil C over time.
Based on this framework, the key principles for supporting C
flows that efficiently produce persistent SOM are: 1) maintain C
inputs to agricultural soils, particularly high-quality C substrates
that support efficient microbial metabolism, and 2) reduce
soil disturbances that disrupt biological and physicochemical
interactions. Increasing plant inputs to soils, whether from living
plants or their organic residues, increases resources available to
soil microbes, promoting C flow. Partially decomposed organic
amendments such as compost and manure are especially good
C sources, as organic molecules with simple structures and
relatively low C:N ratios are more efficiently assimilated into
microbial biomass (Bradford et al., 2013; Cotrufo et al., 2013) and
sorbed to mineral surfaces (Haddix et al., 2016). This has been
supported empirically by several recent experiments in California

showing that compost and winter cover crops additions result in
significantly greater soil C stock gains than winter cover crops
alone (Tautges et al., 2019; White et al., 2020). Maintaining
nutrient availability, either via C inputs themselves (i.e., nutrient-
rich compost) or with supplementary fertilizer additions may
also be necessary to support efficient microbial metabolism
(Kirkby et al., 2013). Soil disturbances that repeatedly disrupt soil
aggregates, such as frequent tillage, are likely to suppress C flows
by shifting the balance of interacting mechanisms sharply toward
decomposition, resulting in C loss (Six et al., 2000; Lal, 2004b;
Oost et al., 2007). Evidence suggests, however, that infrequent
and/or less destructive tillage practices do not cause the same
disruption to soil aggregates and do not result in significant C
loss (Conant et al., 2007; Cooper et al., 2016).

Several key differences emerge between the management
practices associated with a flow-based model of soil C persistence
and current policy representations of soil C storage, exemplifying
how a unified understanding of soil C persistence is necessary to
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inform climate policy related to agricultural soil management.
For example, the C flow model of persistence emphasizes the
importance of microbially accessible C inputs in order to build
SOM. However, currently an agricultural management practice
with some support as a policy for climate change mitigation is
incorporation of pyrogenic organic matter (biochar) (Whitman
and Lehmann, 2009; Woolf et al., 2018; Pourhashem et al., 2019).
Because pyrogenic organic matter is less readily degradable than
many other carbon inputs (Glaser et al., 2002; Nguyen and
Lehmann, 2009; Major et al., 2010; but see Hamer et al., 2004)
it may effectively increase the size of a given soil’s potential C
sink. Climate mitigation policies based on knowledge of C flows
may thus prioritize management strategies that promote C flows,
such as regular compost additions or planting perennial crops,
in addition to inputs of less decomposable C such as biochar.
Furthermore, fears about non-permanent implementation of
soil C sequestration management practices, particularly zero-
till, have been a major barrier to inclusion of soil projects in
most C financing markets (Smith, 2005). Awareness of current
scientific knowledge regarding mechanisms of soil C persistence
could therefore inform which agricultural management practices
should be prioritized, provide more confidence about the
retention of SOM, and facilitate wider adoption.

Simultaneously, key policymaker questions have currently
gone unanswered by scientists; harmonizing concepts and
terminology across disciplines can facilitate scientific research
into these critical unknowns. One lingering question is how
long soil C will remain if a C-sequestering management practice
is ceased. Though a few studies have indicated that loss of
sequestered C may not be a concern in the case of occasional
tillage (Conant et al., 2007; Cooper et al., 2016), very little field-
based research has considered the lifespan of newly sequestered
C when management practices are reverted.

Future research is also needed to understand land manager
motivations in order to determine realistic expectations for time
frames of management practice adoption, as well as identify
appropriate incentives and support structures. Though incentives
may be necessary to make adoption of C sequestration practices
financially feasible, there is little evidence that land managers will
immediately revert back to previous management practices when
incentives periods end, as is commonly assumed in economic
models. For farmers who have already adopted management
practices that increase SOM, the agronomic benefits of these
practices are often viewed as more important than short-
term financial incentives (Conservation Technology Information
Center., 2015). More recently, many farmers have been adopting
soil C sequestration practices with the goal of supporting
long-term soil health (Carlisle, 2016); soil health co-benefits
associated with increasing SOM include increased water-holding
capacity and fertility, which may boost agricultural yields,
providing an economic incentive (Oldfield et al., 2018). In
Australia’s Carbon Farming Initiative, early research suggests
having access to information about the co-benefits of C
sequestration, and knowing other growers are implementing
these practices, is more important to farmers than financial
incentives (Kragt et al., 2017).

Additional investigation to identify target regions for soil C
sequestration based on sink capacity would also be valuable.

There are concerns in both the soil science and public policy
sectors that there is an upper limit to how much C soil can
store – that is, the soil C sink can be saturated (Schlesinger, 2000;
Smith, 2005; Stewart et al., 2007; Sommer and Bossio, 2014).
Current evidence suggests that a soil’s capacity to accumulate
MAOM is finite due to limited mineral surfaces for SOM
adsorption. Mineral-associated organic matter capacity depends
on physicochemical properties such as clay content and specific
soil mineralogy (Six et al., 2002b; Cotrufo et al., 2019; Wiesmeier
et al., 2019). Examples of soil with theoretically high capacity for
MAOM sequestration include those containing clays with high
surface area, such as vermiculites, as well as non-clay minerals
with high specific surface areas such as allophane (Wiesmeier
et al., 2019). Recent work examining thousands of soil profiles
suggests that the physicochemical predictors of SOM storage
vary across environments, with exchangeable calcium emerging
as a strong predictor of SOM in arid environments, and iron
and aluminum compounds becoming more important in wetter,
more acidic environments. This calls for more nuanced research
into relationships between soil mineralogy and MAOM capacity
(Rasmussen et al., 2018). On the other hand, POM, while more
readily available to soil microbes because it is unprotected,
theoretically cannot saturate because POM accumulation does
not require unoccupied mineral surfaces (Lavallee et al., 2019).
Although many soil properties that promote C sequestration
cannot easily be altered by management, this knowledge can help
guide where to focus C sequestration incentives. Soils that could
be considered good candidates for C sequestration projects are
those with a large potential sink size; e.g., deep and high clay soils
that are relatively depleted in SOM relative to their maximum
sink size. Pedo-climatic context plays a large role in defining sink
potential (Chenu et al., 2019); new work additionally suggests
that deep soil horizons (>30 cm depth) may have high C sink
potential. In a meta-analysis of 13C isotopes in 41 agricultural soil
profiles, nearly a quarter of newly accumulated soil C was found
below 30 cm within 20 years, and the turnover time of this C
was four times slower than newly accumulated C in surface soils
(Balesdent et al., 2017). Similarly, a recent long-term experiment
in a California organic agricultural system found substantial C
storage in the 60–200 cm depth in response to compost additions
and winter cover crops (Tautges et al., 2019). This may be due
to relatively greater mineral surface area available for MAOM
adsorption than in surface soils, as well as greater constraints on
microbial activity which limit POM degradation. Results such as
these suggest that further research is necessary to understand the
potential and to identify the opportunities for targeted efforts to
build soil C stocks in subsoils.

Finally, although the scientific community has recently made
great strides in understanding SOM persistence, there remains
a lack of reliable indicators and tools for practitioners and
policymakers to assess soil C flows and quantify the success of
soil C sequestration efforts. Measurements that divide soil C into
“labile” and “protected” fractions, such as density fractionation to
separate MAOM from POM (Six et al., 2002a; Sollins et al., 2009;
Lavallee et al., 2019), or permanganate-oxidizable C (Culman
et al., 2012; Hurisso et al., 2016; Morrow et al., 2016; Wade et al.,
2020), should provide insight into the flow and transformations
of C throughout the soil system. Measurements that capture
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soil biological capacity, such as metabolic quotient, microbial
biomass or microbial growth rate may also be useful indicators
(Kallenbach et al., 2015; Bailey et al., 2018; Singh and Gupta,
2018), given the role of soil microbes as both producers and
consumers of stabilized SOM. These dynamic properties need to
be assessed across multiple soil depths in order to link knowledge
of C transformations and movement to quantification of whole-
profile C accumulation. Such efforts will also help elucidate
which, if any, proxy measurements in surface soils might indicate
C movement and accumulation in deeper horizons.

Though numerous terms have been used to describe SOM
transformation and lifespan as our knowledge of the nature of
soil C has evolved, scientists have generally assumed there to
be some soil C pools with an extremely long turnover time
(Box 1). This assumption has been codified into most carbon-
climate models and facilitated a broader understanding that some
forms of soil C can be stored more or less permanently, and
other forms will be lost to microbial decomposition. However,
current scientific understanding of soil C storage has largely
moved beyond the idea of humified or recalcitrant C, and
instead reveals a dynamic world dominated by spatial and
temporal complexity, biotic and abiotic interactions, and the
continuous C movement and transformation. In this flow-based
model, C pools with infinitely long turnover times are no
longer necessary to explain observed global patterns of soil C
distribution and age (Woolf and Lehmann, 2019). We argue
that a widespread understanding of soil C accumulation and
persistence as the result of flow and transformation of C as
it moves through the soil profile, and the use of terminology
that reflects these mechanisms, can support policy development
to promote agricultural management strategies that both build
persistent soil C stocks and support soil health. Many of the
practices that support soil biological activity and C flows, and
therefore both soil health and persistent C accumulation, are
not new suggestions and have been gaining in popularity in
recent years (Vermeulen et al., 2019). Implementation can be
supported by the development of policies that promote and
incentivize management practices that increase soil biological
capacity. Concurrently, scientific advances can support these
goals by addressing policymaker questions and concerns,
as well as defining useful indicators for assessing C flows.
Harmonizing concepts and language used by both policymakers
and scientists is thus essential to stimulate design of science-
based policies.

CONCLUSION

Enhancing SOM in agricultural soils is an important and
readily implementable practice that contributes to natural climate

mitigation solutions (Smith, 2016; Griscom et al., 2017; Zomer
et al., 2017; Bossio et al., 2020), and, critically, with significant
soil health co-benefits for global agricultural yields and food
security (Lal, 2004a). Currently we are not making use of soil’s
full C sink potential, which is estimated to be as high as
5.3 Gt of CO2-equivalent yr−1 (Fuss et al., 2018), not including
biochar. Implementing agricultural management practices that
support soil microbial communities promotes active C cycling
in surface soils, with benefits for soil fertility and structure,
as well as long-term accumulation of SOM, particularly in
deeper soil horizons.

Policymaker concerns about the permanence of sequestered
soil C present a significant barrier to the wide-scale funding
of soil C conservation projects as a climate mitigation tool
(Smith et al., 2019). Different terminology and definitions used
by scientists and policymakers to describe soil C longevity
has both slowed down transfer of new scientific understanding
of soil C sequestration to policymakers, as well as insulated
scientists from targeting the research needs of policymakers.
Integrating new scientific findings regarding soil carbon longevity
into data-based C policies is critical for broader adoption of
agricultural soil C sequestration projects that could expand
the contribution of soils to climate change mitigation on a
global scale.
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