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Abstract

In this paper, we study the dynamic stability of the 3D axisymmetric Navier-
Stokes Equations with swirl. To this purpose, we propose a new one-dimensional
(1D) model which approximates the Navier-Stokes equations along the symmetry axis.
An important property of this 1D model is that one can construct from its solutions a
family of exact solutions of the 3D Navier-Stokes equations. The nonlinear structure
of the 1D model has some very interesting properties. On one hand, it can lead to
tremendous dynamic growth of the solution within a short time. On the other hand, it
has a surprising dynamic depletion mechanism that prevents the solution from blowing
up in finite time. By exploiting this special nonlinear structure, we prove the global
regularity of the 3D Navier-Stokes equations for a family of initial data, whose solutions
can lead to large dynamic growth, but yet have global smooth solutions.

1 Introduction.

Despite a great deal of effort by many mathematicians and physicists, the question of whether
the solution of the 3D Navier-Stokes equations can develop a finite time singularity from
a smooth initial condition with finite energy remains one of the most outstanding open
problems [12]. A main difficulty in obtaining the global regularity of the 3D Navier-Stokes
equations is due to the presence of the vortex stretching, which is absent for the 2D problem.
Under suitable smallness assumption on the initial condition, global existence and regularity
results have been obtained for some time [17, 8, 21, 20]. But these methods based on energy
estimates do not generalize to the 3D Navier-Stokes with large data. Energy estimates seem
to be too crude to give a definite answer to whether diffusion is strong enough to control the
nonlinear growth due to vortex stretching. A more refined analysis which takes into account
the special nature of the nonlinearities and their local interactions seems to be needed.
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In this paper, we study the dynamic stability property of the 3D axisymmetric Navier-
Stokes Equations with swirl. We show that there is a very subtle dynamic depletion mech-
anism of vortex stretching in the 3D Navier-Stokes equations. On one hand, the nonlinear
vortex stretching term is responsible for producing a large dynamic growth in vorticity in
early times. On the other hand, the special structure of the nonlinearity can also lead to
dynamic depletion and cancellation of vortex stretching, thus avoiding the finite time blowup
of the Navier-Stokes equations.

This subtle nonlinear stability property can be best illustrated by a new 1D model which
we introduce in this paper. This 1D model approximates the 3D axisymmetric Navier-Stokes
equations along the symmetry axis. By the well-known Caffarelli-Kohn-Nirenberg theory [3]
(see also [18]), the singularity set of any suitable weak solution of the 3D Navier-Stokes
equations has one-dimensional Hausdorff measure zero. In the case of axisymmetric 3D
Navier-Stokes equations with swirl, if there is any singularity, it must be along the symmetry
axis. Thus it makes sense to focus our effort to understand the possible singular behavior of
the 3D Navier-Stokes equations near the symmetry axis at r = 0. By expanding the angular
velocity (uθ), the angular vorticity (ωθ), and the angular stream function (ψθ) around r = 0,
we obtain the following coupled nonlinear partial differential equations (see Section 2 for
detailed derivations):

(u1)t + 2ψ1 (u1)z = ν(u1)zz + 2 (ψ1)z u1 (1)

(ω1)t + 2ψ1 (ω1)z = ν(ω1)zz +
(

u2
1

)

z
(2)

−(ψ1)zz = ω1, (3)

where u1(z, t) ≈ (uθ)r|r=0, ω1(z, t) ≈ (ωθ)r|r=0, and ψ1(z, t) ≈ (ψθ)r|r=0.

What we find most surprising is that one can construct a family of exact solutions from
the above 1D model. Specifically, if (u1, ω1, ψ1) is a solution of the 1D model (1)-(3), then

uθ(r, z, t) = ru1(z, t), ωθ(r, z, t) = rω1(z, t), ψθ(r, z, t) = rψ1(z, t),

is an exact solution of the 3D axisymmetric Navier-Stokes equations. Thus the 1D model
captures some essential nonlinear features of the 3D Navier-Stokes equations. Further, if we
let ũ = u1, ṽ = −(ψ1)z, and ψ̃ = ψ1, then the 1D model can be rewritten as

(ũ)t + 2ψ̃(ũ)z = ν(ũ)zz − 2ṽũ (4)

(ṽ)t + 2ψ̃(ṽ)z = ν(ṽ)zz + (ũ)2 − (ṽ)2 + c(t), (5)

where ψ̃z = −ṽ and c(t) is an integration constant to ensure that
∫

ṽdz = 0. We will
show that if the initial value of ũ is small, but ṽ is large and negative, then the solution of
the 1D model can experience large growth. On the other hand, we also find a surprising
dynamic depletion mechanism of nonlinearities that prevents the solution from blowing up
in finite time. This subtle nonlinear cancellation is partly due to the special nature of the
nonlinearities, i.e. −2ũṽ in (4), and ũ2 − ṽ2 in (5). If one modifies the sign of the nonlinear
term from −2ũṽ to 2ũṽ or changes ũ2 − ṽ2 to ũ2 + ṽ2 or even modifies the coefficient from
−2ũṽ to −0.9ũṽ, the dynamic depletion mechanism can be changed completely. Another
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interesting fact is that the convection term also helps to stabilize the solution. It cancels
some of the destabilizing terms from the right hand side when we estimate the solution in
a high order norm. Specifically, we find that there is a miraculous cancellation of nonlinear
terms in the equation that governs the nonlinear quantity, ũ2

z + ṽ2
z , i.e.

(

ũ2
z + ṽ2

z

)

t
+ 2ψ̃

(

ũ2
z + ṽ2

z

)

z
= ν

(

ũ2
z + ṽ2

z

)

zz
− 2ν

[

(ũzz)
2 + (ṽzz)

2
]

. (6)

Therefore, ũ2
z + ṽ2

z has a maximum principle. This pointwise a priori estimate plays an
essential role in obtaining global regularity of the 1D model with or without viscosity. If
one attempts to prove global regularity of the 1D model using energy estimates, one cannot
take full advantage of this local cancellation of nonlinearities and would run into similar
difficulties that we encounter for the 3D Navier-Stokes equations.

Finally, we construct a family of globally smooth solutions of the 3D Navier-Stokes equa-
tions with large initial data of finite energy by using the solution of the 1D model. Specifically,
we look for the solution of the form:

ũθ = r (ū1(z, t)φ(r) + u1(r, z, t)) (7)

ω̃θ = r (ω̄1(z, t)φ(r) + ω1(r, z, t)) (8)

ψ̃θ = r
(

ψ̄1(z, t)φ(r) + ψ1(r, z, t)
)

, (9)

where ū1, ω̄1 and ψ̄1 are solutions of the 1D model, φ(r) is a cut-off function to ensure
that the solution has finite energy. By using the a priori estimate of the solution of the
1D model and using a delicate analysis, we prove that there exists a family of globally
smooth functions u1(r, z, t), ω1(r, z, t) and ψ1(r, z, t), such that ũθ, ω̃θ and ψ̃θ are solutions of
the 3D axisymmetric Navier-Stokes equations. Unlike the other known global solutions with
small data, the solutions that we construct above using the 1D model can have large dynamic
growth for early times, which is induced by the dynamic growth of the corresponding solution
of the 1D model, but yet the solution remains smooth for all times.

There has been some interesting development in the study of the 3D incompressible
Navier-Stokes equations and related models. In particular, by exploiting the special structure
of the governing equations, Cao and Titi [4] prove the global well-posedness of the 3D viscous
primitive equations which model large scale ocean and atmosphere dynamics. By taking
advantage of the limiting property of some rapidly oscillating operators and using non-linear
averaging, Babin, Mahalov and Nicolaenko [1] prove existence on infinite time intervals of
regular solutions to the 3D Navier-Stokes equations for some initial data characterized by
uniformly large vorticity. Some interesting progress has been made on the regularity of the
axisymmetric solutions of the Navier-Stokes equations, see e.g. [6] and the references cited
there. The 2D Boussinesq equations are closely related to the 3D axisymmetric Navier-
Stokes equations with swirl (away from the symmetry axis). Recently, Chae [5] and Hou-Li
[14] have proved independently the global existence of the 2D viscous Boussinesq equations
with viscosity entering only in the fluid equation, but the density equation remains inviscid.
Recent studies by Constantin-Fefferman-Majda [7] and Deng-Hou-Yu [10, 11] show that the
local geometric regularity of the unit vorticity vector can play an important role in depleting
vortex stretching dynamically. Motivated by these theoretical results, Hou and R. Li [15]
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have recently re-investigated the well-known computations by Kerr [16] for two anti-parallel
vortex tubes, in which a finite time singularity of the 3D incompressible Euler equations was
reported. The results of Hou and Li show that there is tremendous dynamic cancellation in
the vortex stretching term due to local geometric regularity of the vortex lines. Moreover,
they show that the vorticity does not grow faster than double exponential in time and the
velocity field remains bounded up to T = 19, beyond the singularity time alleged in [16].
Finally, we would like to mention the recent work of Gibbon et al (see [13] and the references
therein) where they reveal some interesting geometric properties of the Euler equations in
quaternion-frames.

The rest of the paper is organized as follows. In Section 2, we will derive the 1D model
for the 3D axisymmetric Navier-Stokes equations. We discuss some of the properties of the
1D model in Section 3 and prove the global existence of the inviscid 1D model using the
Lagrangian coordinate. Section 4 is devoted to prove the global regularity of the full 1D
model in the Eulerian coordinate. Finally in Section 5, we use the solutions of the 1D model
to construct a family of solutions of the 3D Navier-Stokes equations and prove that they
remain smooth for all times.

2 Derivation of the 1D Model

Consider the 3D axi-symmetric incompressible Navier-Stokes equations with swirl.







ut + (u · ∇)u = −∇p + ν∆u,
∇ · u = 0,
u|t=0 = u0(~x), ~x = (x, y, z).

(10)

Let
er =

(x

r
,
y

r
, 0
)

, eθ =
(

−y
r
,
x

r
, 0
)

, ez = (0, 0, 1) ,

be three unit vectors along the radial, the angular, and the z directions respectively, r =
√

x2 + y2. We will decompose the velocity field as follows:

~u = vr(r, z, t)er + uθ(r, z, t)eθ + vz(r, z, t)ez. (11)

In the above expression, uθ is called the swirl component of the velocity field ~u. The vorticity
field can be expressed similarly

~ω = −(uθ)z(r, z, t)er + ωθ(r, z, t)eθ +
1

r
(ruθ)r(r, z, t)ez, (12)

where ωθ = vr
z − vz

r .

To simplify our notation, we will use u and ω to denote the angular velocity and vorticity
components respectively, dropping the θ superscript in the rest of the paper. One can derive
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evolution equations for u and ω as follows (see e.g. [20, 6]).

ut + vrur + vzuz = ν

(

∇2 − 1

r2

)

u− 1

r
vru, (13)

ωt + vrωr + vzωz = ν

(

∇2 − 1

r2

)

ω +
1

r

(

u2
)

z
+

1

r
vrω, (14)

−
(

∇2 − 1

r2

)

ψ = ω, (15)

where ψ is the angular component of the stream function, vr and vz can be expressed in
terms of the angular stream function ψ as follows:

vr = −∂ψ
∂z
, vz =

1

r

∂

∂r
(rψ), (16)

and ∇2 is defined as

∇2 = ∂2
r +

1

r
∂r + ∂2

z . (17)

Note that equations (13)-(15) completely determine the evolution of the 3D axisymmetric
Navier-Stokes equations once the initial condition is given.

Now, we will derive the 1D model for the 3D axisymmetric Navier-Stokes equations. By
the well-known Caffarelli-Kohn-Nirenberg theory [3], the singularity set of any suitable weak
solution of the 3D Navier-Stokes equations has one-dimensional Hausdorff measure zero.
Thus, in the case of axisymmetric 3D Navier-Stokes equations with swirl, if there is any
singularity, it must be along the symmetry axis, i.e. the z-axis. Therefore, we should focus
our effort to understand the possible singular behavior of the 3D Navier-Stokes equations
near the symmetry axis at r = 0.

As observed by Liu and Wang in [19], any smooth solution of the 3D axisymmetric
Navier-Stokes equations must satisfy the following compatibility condition at r = 0:

u(0, z, t) = ω(0, z, t) = ψ(0, z, t) = 0. (18)

Moreover, all the even order derivatives of u, ω and ψ with respect to r at r = 0 must vanish.
Therefore, we expand the solution u, ω and ψ around r = 0 as follows:

u(r, z, t) = ru1(z, t) +
r3

3!
u3(z, t) +

r5

5!
u5(z, t) + · · · , (19)

ω(r, z, t) = rω1(z, t) +
r3

3!
ω3(z, t) +

r5

5!
ω5(z, t) + · · · , (20)

ψ(r, z, t) = rψ1(z, t) +
r3

3!
ψ3(z, t) +

r5

5!
ψ5(z, t) + · · · . (21)

Substituting the above expansions into (13)-(15), we obtain to the leading order the

5



following system of equations:

r (u1)t − r (ψ1)z u1 + 2ψ1r (u1)z = ν

(

4

3
ru3 + r(u1)zz

)

+ r (ψ1)z u1 +O(r3)

r (ω1)t + 2ψ1r (ω1)z = ν

(

4

3
rω3 + r(ω1)zz

)

+ 2ru1 (u1)z +O(r3)

−
(

4

3
rψ3 + r(ψ1)zz +O(r3)

)

= rω1 +O(r3).

By canceling r from both sides and neglecting the higher order terms in r, we obtain

(u1)t + 2ψ1 (u1)z = ν

(

4

3
u3 + (u1)zz

)

+ 2 (ψ1)z u1,

(ω1)t + 2ψ1 (ω1)z = ν

(

4

3
ω3 + (ω1)zz

)

+
(

u2
1

)

z
,

−
(

4

3
ψ3 + (ψ1)zz)

)

= ω1.

Note that u3 = urrr(0, z, t), (u1)zz = urzz(0, z, t). If we further make the assumption that
the second partial derivative of u1, ω1, ψ1 with respect to z is much larger than the second
partial derivative of these functions with respect to r, then we can ignore the coupling in the
Laplacian operator to u3, ω3 and ψ3 in the above equations. Thus, we obtain our 1D model
as follows:

(u1)t + 2ψ1 (u1)z = ν(u1)zz + 2 (ψ1)z u1, (22)

(ω1)t + 2ψ1 (ω1)z = ν(ω1)zz +
(

u2
1

)

z
, (23)

−(ψ1)zz = ω1. (24)

We remark that the above assumption implies that the solution has an anisotropic scaling,
i.e. the solution is more singular along the z-direction than along the r-direction. A possible
scenario is that the solution has a pancake like structure perpendicular to the z-axis.

Let ũ = u1, ṽ = −(ψ1)z, ω̃ = ω1, and ψ̃ = ψ1. By integrating the ω1 equation with
respect to z and using the relationship − ∂2

∂z2ψ1 = ω1, we can obtain an evolution equation
for ṽ. Now the complete set of evolution equations for ũ, ṽ, and ω̃ are given by

(ũ)t + 2ψ̃(ũ)z = ν(ũ)zz − 2ṽũ, (25)

(ω̃)t + 2ψ̃(ω̃)z = ν(ω̃)zz +
(

ũ2
)

z
, (26)

(ṽ)t + 2ψ̃(ṽ)z = ν(ṽ)zz + (ũ)2 − (ṽ)2 + c(t), (27)

−(ψ̃)zz = ω̃, (28)

where the constant c(t) is an integration constant which is determined by enforcing the mean
of ṽ equal to zero. For example, if ψ̃ is periodic with period 1 in z, then c(t) is given by

c(t) = 3

∫ 1

0

ṽ2dz −
∫ 1

0

ũ2dz. (29)
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Note that the equation for ω̃ is equivalent to that for ṽ. So it is sufficient to consider the
coupled system for ũ, ṽ:

(ũ)t + 2ψ̃(ũ)z = ν(ũ)zz − 2ṽũ (30)

(ṽ)t + 2ψ̃(ṽ)z = ν(ṽ)zz + (ũ)2 − (ṽ)2 + c(t), (31)

where ψ̃ is related to ṽ by ṽ = −(ψ̃)z. By (28), we have ṽz = ω̃.

A surprising result is that one can use the above 1D model to construct a family of exact
solutions for the 3D axisymmetric Navier-Stokes equations. This is described by the following
theorem, which can be verified directly by substituting (32) into the 3D axisymmetric Navier-
Stokes equations and using the model equation (22)-(24).

Theorem 1. Let u1, ψ1 and ω1 be the solution of the 1D model (22)-(24) and define

u(r, z, t) = ru1(z, t), ω(r, z, t) = rω1(z, t), ψ(r, z, t) = rψ1(z, t). (32)

Then (u(r, z, t), ω(r, z, t), ψ(r, z, t)) is an exact solution of the 3D Navier-Stokes equations.

Theorem 1 tells us that the 1D model (22)-(24) preserves some essential nonlinear struc-
ture of the original 3D axisymmetric Navier-Stokes equations. As we will see later, the
nonlinear structure of the 1D model plays a critical role in stabilizing the solution for large
times, although the same nonlinearity can lead to large dynamic growth for early times.

3 Properties of the Model Equation

In this section, we will study some properties of the 1D model equations. We will first
consider the properties of some further simplified models obtained from these equations.
Both numerical and analytical studies are presented for these simplified models. Based on
the understanding of the simplified models, we prove the global existence of the inviscid
Lagrangian model, which sheds useful light into our global existence analysis for the full 1D
model with or without viscosity.

3.1 The ODE model

To start with, we consider an ODE model by ignoring the convection and diffusion terms.

(ũ)t = −2ṽũ (33)

(ṽ)t = (ũ)2 − (ṽ)2, (34)

with initial condition ũ(0) = ũ0 and ṽ(0) = ṽ0.

Clearly, if ũ0 = 0, then ũ(t) = 0 for all t > 0. In this case, the equation for ṽ is decoupled
from ũ completely, and will blow up in finite time if ṽ0 < 0. In fact, if ṽ0 < 0 and ũ0 is very
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small, then the solution can experience very large growth dynamically. The growth can be
made arbitrarily large if we choose ũ0 to be arbitrarily small. However, the special nonlinear
structure of the ODE system has an interesting cancellation property which has a stabilizing
effect of the solution for large times. This is described by the following theorem.

Theorem 2. Assume that ũ0 6= 0. Then the solution (ũ(t), ṽ(t)) of the ODE system
(33)-(34) exists for all times. Moreover, we have

lim
t→+∞

ũ(t) = 0, lim
t→+∞

ṽ(t) = 0. (35)

Proof. There are several ways to prove this theorem. The simplest way is to reformulate
the problem in terms of complex variables1. Let

w = ũ+ iṽ.

Then the ODE system (33)-(34) is reduced to the following complex nonlinear ODE:

dw

dt
= iw2, w(0) = w0, (36)

which can be solved analytically. The solution has the form

w(t) =
w0

1 − iw0t
. (37)

In terms of the original variables, we have

ũ(t) =
ũ0(1 + ṽ0t) − ũ0ṽ0t

(1 + ṽ0t)2 + (ũ0t)2
, (38)

ṽ(t) =
ṽ0(1 + ṽ0t) + ũ2

0t

(1 + ṽ0t)2 + (ũ0t)2
. (39)

It is clear from (38)-(39) that the solution of the ODE system (33)-(34) exists for all times
and decays to zero as t→ +∞ as long as ũ0 6= 0. This completes the proof of Theorem 2.

Remark 1. Note that the ODE model (36) has some similarity with the Constantin-Lax-
Majda model [9], which has the form ut = uH(u), where H is the Hilbert transform. By
letting w = H(u) + iu and using the property of the Hilbert transform, Constantin-Lax-
Majda show that their model can be written as the imaginary part of the complex ODE:
wt = 1

2
w2. It is interesting to note that both models ignore the convection term and they

have solutions that blow up at a finite time for initial condition satisfying u(z0) = 0 and
H(u)(z0) > 0 for some z0. However, as we will show later, the convection term plays an
important role in stabilizing the 1D model and should not be neglected in our study of the

1We thank Prof. Tai-Ping Liu for suggesting the use of complex variables
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Euler equations. By including the convection term in the 1D model, we will show in section
3.3 ans section 4 that no finite time blow-up can occur from smooth initial data.

As we can see from (38)-(39), the solution can grow very fast in a very short time if ũ0

is small, but ṽ0 is large and negative. For example, if we let ṽ0 = −1/ǫ and ũ0 = ǫ for ǫ > 0
small, we obtain at t = ǫ

ũ(ǫ) = 1/ǫ3, ṽ(ǫ) = 1/ǫ.

We can see that within ǫ time, ũ grows from its initial value of order ǫ to O(ǫ−3), a factor of
ǫ−4 amplification.

Remark 2. The key ingredient in obtaining the global existence in Theorem 2 is that the
coefficient on the right hand side of (33) is less than −1. For this ODE system, there are
two distinguished phases. In the first phase, if ṽ is negative and large in magnitude, but ũ is
small, then ṽ can experience tremendous dynamic growth, which is essentially governed by

ṽt = −ṽ2.

However, as ṽ becomes very large and negative, it will induce a rapid growth in ũ. The
nonlinear structure of the ODE system is such that ũ will eventually grow even faster than
ṽ and force (ũ)2 − (ṽ)2 < 0 in the second phase. From this time on, ṽ will increase in time
and eventually become positive. Once ṽ becomes positive, the nonlinear term, −ṽ2, becomes
stabilizing for ṽ. Similarly, the nonlinear term, −2ũṽ, becomes stabilizing for ũ. This subtle
dynamic stability property of the ODE system can be best illustrated by the phase diagram
in Figure 1.

In Appendix A, we prove the same result for a more general ODE system of the following
form:

(ũ)t = −dṽũ (40)

(ṽ)t = (ũ)2 − (ṽ)2, (41)

for any constant d ≥ 1. However, if d < 1, it is possible to construct a family of solutions
for the ODE systems (40)-(41) which blow up in a finite time.

3.2 The Reaction Diffusion Model

In this subsection, we consider the reaction-diffusion system:

(ũ)t = νũzz − 2ṽũ, (42)

(ṽ)t = νṽzz + (ũ)2 − (ṽ)2. (43)

As we can see for the corresponding ODE system, the structure of the nonlinearity plays
an essential role in obtaining global existence. Intuitively, one may think that the diffusion
term would help to stabilize the dynamic growth induced by the nonlinear terms. However,
because the nonlinear ODE system in the absence of viscosity is very unstable, the diffusion
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Figure 1: The Phase Diagram for the ODE system.

term can actually have a destabilizing effect. Below we will demonstrate this somewhat
surprising fact through careful numerical experiments.

In Figures (2)-(4), we plot a time sequence of solutions for the above reaction diffusion
system with the following initial data

ũ0(z) = ǫ(2 + sin(2πz)), ṽ0(z) = −1

ǫ
− sin(2πz),

where ǫ = 0.001. For this initial condition, the solution is periodic in z with period one.
We use a pseudo-spectral method to discretize the coupled system (42)-(43) in space and
use the simple forward Euler discretization for the nonlinear terms and the backward Euler
discretization for the diffusion term. In order to resolve the nearly singular solution structure,
we use N = 32, 768 grid points with an adaptive time step satisfying

∆tn (|max{ũn}| + |min{ũn}| + |max{ṽn}| + |min{ṽn}|) ≤ 0.01,

where ũn and ṽn are the numerical solution at time tn and tn = tn−1 +∆tn−1 with the initial
time stepsize ∆t0 = 0.01ǫ. During the time iterations, the smallest time step is as small as
O(10−10).

From Figure 2, we can see that the magnitude of the solution ṽ increases rapidly by a
factor of 150 within a very short time (t = 0.00099817). As the solution ṽ becomes large and
negative, the solution ũ increases much more rapidly than ṽ. By time t = 0.0010042, ũ has
increased to about 2.5 × 108 from its initial condition which is of magnitude 10−3. This is
a factor of 2.5 × 1011 increase. At this time, the minimum of ṽ has reached −2 × 108. Note
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Figure 2: The solutions at t = 0.00099817, and t = 0.0010042, N = 32768, ν = 1.

that since ũ has outgrown ṽ in magnitude, the nonlinear term, ũ2 − ṽ2, on the right hand
side of the ṽ-equation has changed sign. This causes the solution ṽ to split. By the time
t = 0.001004314 (see Figure 3), both ũ and ṽ have split and settled down to two relatively
stable traveling wave solutions. The wave on the left will travel to the left while the wave on
the right will travel to the right. Due to the periodicity in z, the two traveling waves approach
each other from the right side of the domain. The “collision” of these two traveling waves
tends to annihilate each other. In particular, the negative part of ṽ is effectively eliminated
during this nonlinear interaction. By the time t = 0.00100603 (see Figure 4), the solution ṽ
becomes all positive. Once ṽ becomes positive, the effect of nonlinearity becomes stabilizing
for both ũ and ṽ, as in the case of the ODE system. From then on, the solution decays
rapidly. By t = 0.2007, the magnitude of ũ is as small as 5.2 × 10−8, and ṽ becomes almost
a constant function with value close to 5. From this time on, ũ is essentially decoupled from
ṽ and will decay like O(1/t).

3.3 The Lagrangian Convection Model

Next, we consider the 1D model equations in the absence of viscosity. The corresponding
equations are given as follows:

ũt + 2ψ̃ũz = −2ṽũ (44)

ṽt + 2ψ̃ṽz = ũ2 − ṽ2 + c(t), (45)

where ṽ = −ψ̃z, and c(t) is defined in (29) to ensure that
∫ 1

0
ṽdz = 0.

Introduce the Lagrangian flow map

∂z(α, t)

∂t
= 2ψ̃(z(α, t), t), (46)

z(α, 0) = α. (47)
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Figure 3: The solutions at t = 0.001004314 and t = 0.001005862, N = 32768, ν = 1.
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Differentiating (46) with respect to α, we get

∂zα

∂t
= 2zα

∂ψ̃

∂z
(z(α, t), t) = −2zαṽ(z(α, t), t).

Denote v(α, t) = ṽ(z(α, t), t), u(α, t) = ũ(z(α, t), t), and J(α, t) = zα(α, t). Then we can
show that J , u, and v satisfy the following system of equations:

∂J(α, t)

∂t
= −2J(α, t)v(α, t), (48)

∂u(α, t)

∂t
= −2u(α, t)v(α, t), (49)

∂v(α, t)

∂t
= u2 − v2 + 3

∫ 1

0

v2Jdα−
∫ 1

0

u2Jdα, (50)

with initial data J(α, 0) = 1, u(α, 0) = ũ0(α) and v(α, 0) = ṽ0(α). Since
∫ 1

0
ṽ(z, t)dz = 0, we

have
∫ 1

0

v(α, t)J(α, t)dα = 0, (51)

which implies that
∫ 1

0

J(α, t)dα ≡
∫ 1

0

J(α, 0)dα = 1. (52)

It is interesting to note that the 1D model formulated in the Lagrangian coordinate retains
some of the essential properties of the ODE system. In the following, we will explore the
special nonlinear structure of the model equation to prove the global well-posedness of the
1D model in the Lagrangian form. As we will see, the understanding of the 1D model in the
Lagrangian form gives critical insight in our understanding of the full 1D model.

Theorem 3. Assume that ũ(z, 0) and ṽ(z, 0) are in Cm[0, 1] with m ≥ 1 and periodic with
period 1. Then the solution (ũ, ṽ) of the 1D inviscid model will be in Cm[0, 1] for all times.

Proof. Differentiating the ũ and ṽ equations with respect to α, we get

dũα

dt
= −2ṽũα − 2ũṽα, (53)

dṽα

dt
= 2ũũα − 2ṽṽα. (54)

Multiplying (53) by ũα and (54) by ṽα, and adding the resulting equations, we have

1

2

d

dt

(

ũ2
α + ṽ2

α

)

= −2ṽ
(

ũ2
α + ṽ2

α

)

. (55)

Therefore, we obtain
1

2

d

dt
log
(

ũ2
α + ṽ2

α

)

= −2ṽ. (56)
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Integrating from 0 to t, we get
(

√

ũ2
α + ṽ2

α

)

(α, t) =
(

√

(ũ0)2
α + (ṽ0)2

α

)

e−2
∫

t

0
ṽ(α,s)ds =

(

√

(ũ0)2
α + (ṽ0)2

α

)

J(α, t), (57)

where we have used
J(α, t) = e−2

∫ t

0
ṽ(α,s)ds,

which follows from (48) and J(α, 0) ≡ 1. Using (52), we further obtain
∫ 1

0

√

ũ2
α + ṽ2

α dα ≤ ‖
√

(ũ0)2
α + (ṽ0)2

α ‖L∞

∫ 1

0

J(α, t)dα = ‖
√

(ũ0)2
α + (ṽ0)2

α ‖L∞. (58)

In particular, we have
∫ 1

0

|ṽα|dα ≤
∫ 1

0

√

ũ2
α + ṽ2

αdα ≤ ‖
√

(ũ0)2
α + (ṽ0)2

α ‖L∞. (59)

Since
∫ 1

0
ṽJdα = 0 and J > 0, there exists α0(t) ∈ [0, 1] such that ṽ(α0(t), t) = 0. Therefore,

we get

|ṽ(α, t)| = |
∫ α

α0

ṽαdα
′| ≤

∫ 1

0

|ṽ(α′, t)|dα′ ≤ ‖
√

(ũ0)2
α + (ṽ0)2

α ‖L∞. (60)

This proves that
‖ṽ‖L∞ ≤ ‖

√

(ũ0)2
α + (ṽ0)2

α ‖L∞. (61)

Using the equations for J and ũ, we also obtain

e−2tC0 ≤ J(α, t) ≤ e2tC0 , (62)

‖ũ‖L∞ ≤ ‖ũ0 ‖L∞e
2tC0 , (63)

where C0 = ‖
√

(ũ0)2
α + (ṽ0)2

α ‖L∞.

The bound on J(α, t) in turn gives bound on ũ2
α+ṽ2

α through (57). We can then bootstrap
to obtain regularity of the solution in higher order norms. This completes the proof of
Theorem 3.

Next, we illustrate the behavior of the solution through numerical computations. We use a
pseudo-spectral method to discretize in space and a second order Runge-Kutta discretization
in time with an adaptive time-stepping. In Figures 5 and 6, we plot a sequence of snapshots of
the solution for the inviscid model (48)-(50) in the Lagrangian coordinate using the following
initial data

u(α, 0) = 1, v(α, 0) = 1 − 1

δ
exp−(x−0.5)2/ǫ,

with ǫ = 0.0001 and δ =
√
ǫπ. We can see that the solution experiences a similar splitting

process as in the reaction diffusion model. In Figure 7, we perform a similar computation in
the Eulerian coordinate with ǫ = 0.00001. We can see that as the solution ṽ grows large and
negative, the initial sharp profile of ṽ becomes wider and smoother. This is a consequence
of the incompressibility of the fluid flow. If we change the sign of the convection velocity
from 2ψ̃ to −2ψ̃, the profile of ṽ becomes focused dynamically and develops an unphysical
“shock-like” solution, which seems to evolve into a finite time blowup, see Figure 8.
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Figure 5: The Lagrangian solution at t = 0 and t = 0.0188, N = 4096.
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Figure 6: The Lagrangian solution at t = 0.023 and t = 0.0337, N = 4096.
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Figure 7: The Eulerian solution, N = 4096.
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Figure 8: The Lagrangian solutions with the wrong sign, N = 4096.
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4 Global Well-Posedness of the 1D Viscous Model

Based on the understanding we have gained from the previous sections, we are ready to
present a complete proof of the global well-posedness of the full 1D model. It is not easy to
obtain global regularity of the 1D model by using an energy type of estimates. If we multiply
the ũ-equation by ũ, and the ṽ-equation by ṽ, and integrate over z, we would arrive at

1

2

d

dt

∫ 1

0

ũ2dz = −3

∫ 1

0

(ũ)2ṽdz − ν

∫ 1

0

ũ2
zdz, (64)

1

2

d

dt

∫ 1

0

ṽ2dz =

∫ 1

0

ũ2ṽdz − 3

∫ 1

0

(ṽ)3dz − ν

∫ 1

0

ṽ2
zdz. (65)

Even for this 1D model, the energy estimate shares the some essential difficulty as the
3D Navier-Stokes equations. It is not clear how to control the nonlinear vortex stretching
like terms by the diffusion terms. On the other hand, if we assume that

∫ T

0

‖ṽ‖L∞dt <∞,

similar to the Beale-Kato-Majda non-blowup condition for vorticity [2], then one can easily
show that there is no blow-up up to t = T .

In order to obtain the global regularity of the 1D model, we need to use a local estimate.
We will prove that if the initial conditions for ũ and ṽ are in Cm with m ≥ 1, then the
solution will remain in Cm for all times.

Theorem 4. Assume that ũ(z, 0) and ṽ(z, 0) are in Cm[0, 1] with m ≥ 1 and periodic with
period 1. Then the solution (ũ, ṽ) of the 1D model will be in Cm[0, 1] for all times.

Proof. Motivated by our analysis for the inviscid Lagrangian model, we will try to obtain
a priori estimate for the nonlinear term ũ2

z + ṽ2
z . Differentiating the ũ-equation and the

ṽ-equation with respect to z, we get

(ũz)t + 2ψ̃(ũz)z − 2ṽũz = −2ũzṽ − 2ũṽz + ν(ũz)zz, (66)

(ṽz)t + 2ψ̃(ṽz)z − 2ṽṽz = 2ũũz − 2ṽṽz + ν(ṽz)zz. (67)

Note that one of the nonlinear terms resulting from differentiating the convection term
cancels one of the nonlinear terms on the right hand side. After canceling the same nonlinear
term from both sides, we obtain

(ũz)t + 2ψ̃(ũz)z = −2ũṽz + ν(ũz)zz, (68)

(ṽz)t + 2ψ̃(ṽz)z = 2ũũz + ν(ṽz)zz. (69)

Multiplying (68) by ũz and (69) by ṽz, we have

1

2
(ũ2

z)t + ψ̃(ũ2
z)z = −2ũũzṽz + νũz(ũz)zz, (70)

1

2
(ṽ2

z)t + ψ̃(ṽ2
z)z = 2ũũz ṽz + νṽz(ṽz)zz. (71)
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Now, we add (70) to (71). Surprisingly, the nonlinear vortex stretching-like terms cancel
each other. We get

(

ũ2
z + ṽ2

z

)

t
+ 2ψ̃

(

ũ2
z + ṽ2

z

)

z
= 2ν (ũz(ũz)zz + ṽz(ṽz)zz) . (72)

Further, we note that

(

ũ2
z + ṽ2

z

)

zz
= (2ũzũzz + 2ṽz ṽzz)z = 2 (ũz(ũz)zz + ṽz(ṽz)zz) + 2

[

(ũzz)
2 + (ṽzz)

2
]

.

Therefore, equation (72) can be rewritten as

(

ũ2
z + ṽ2

z

)

t
+ 2ψ̃

(

ũ2
z + ṽ2

z

)

z
= ν

(

ũ2
z + ṽ2

z

)

zz
− 2ν

[

(ũzz)
2 + (ṽzz)

2
]

. (73)

Thus, the nonlinear quantity, (ũ2
z + ṽ2

z), satisfies a maximum principle which holds for
both ν = 0 and ν > 0:

‖ũ2
z + ṽ2

z‖L∞ ≤ ‖(ũ0)
2
z + (ṽ0)

2
z‖L∞. (74)

Since ṽ has zero mean, the Poincaré inequality implies that ‖ṽ‖L∞ ≤ C0, with C0 defined by

C0 = ‖
(

(ũ0)
2
z + (ṽ0)

2
z

)
1

2 ‖L∞.

The boundedness of ũ follows from the bound on ṽ: ‖ũ(t)‖L∞ ≤ ‖ũ0‖L∞ exp(2C0t). The
higher order regularity follows from the standard estimates. This proves Theorem 4.

5 Construction of a family of globally smooth solutions

In this section, we will use the solution from the 1D model to construct a family of globally
smooth solutions for the 3D axisymmetric Navier-Stokes equations with smooth initial data
of finite energy. We remark that a special feature of this family of globally smooth solutions
is that the solution can potentially develop very large dynamic growth and it violates the
so-called smallness condition required by classical global existence results [8, 21].

Let ū1(z, t), ω̄1(z, t), and ψ̄ be the solution of the 1D model problem. We will construct
a family of globally smooth solutions of the 3D Navier-Stokes equations from the solution
of the 1D model problem. Denote by ũ(r, z, t), ω̃(r, z, t) and ψ̃(r, z, t) the solution of the
corresponding 3D Navier-Stokes equations. Further, we define

ũ1 = ũ/r, ω̃1 = ω̃/r, ψ̃1 = ψ̃/r. (75)

Let φ(r) = φ0(r/R0) be a smooth cut-off function, where φ0(r) satisfies φ0(r) = 1 if 0 ≤ r ≤
1/2 and and φ0(r) = 0 if r ≥ 1. Our strategy is to construct a family of globally smooth
functions u1, ω1 and ψ1, which are periodic in z, such that

ũ = r (ū1(z, t)φ(r) + u1(r, z, t)) = ū+ u, (76)

ω̃ = r (ω̄1(z, t)φ(r) + ω1(r, z, t)) = ψ̄ + ψ, (77)

ψ̃ = r
(

ψ̄1(z, t)φ(r) + ψ1(r, z, t)
)

= ω̄ + ω, (78)
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is a solution of the 3D Navier-Stokes equations.

With the above definition, we can deduce the other two velocity components ṽr and ṽ3

as follows:

ṽr = −ψ̃z = −rφ(r)ψ̄1z + vr(r, z, t) = v̄r + vr, (79)

ṽz =
(rψ̃)r

r
= φ(2ψ̄1) + rφrψ̄1 + vz(r, z, t) = v̄z + vz. (80)

With the above notations, we can write the velocity vector into two pars as ũ = ū + u.

We will choose the initial data for the 1D model of the following form:

ψ̄1(z, 0) =
A

M2
Ψ1(zM), ū1(z, 0) =

A

M
U1(zM), ω̄1(z, 0) = AW1(zM), (81)

where A and M are some positive constants, Ψ1(y), and U1(y) are smooth periodic functions
in y with period 1. Moreover, we assume that Ψ1 and U1 are odd functions in y. Clearly we
have W1 = −(Ψ1)yy, which is also a smooth, periodic, and odd function in y. It is easy to see
that this feature of the initial data is preserved by the solution dynamically. In particular,
ψ̄1(z, t), ū1(z, t), ω̄1(z, t) are periodic functions in z with period 1/M and odd in z within
each period. Using this property and the a priori estimate (74), we obtain the following
estimate for the solution of the 1D model:

‖ψ̄1(t)‖L∞ ≤ C0
A

M2
, (82)

‖ū1(t)‖L∞ ≤ C0
A

M
, ‖ψ̄1z(t)‖L∞ ≤ C0

A

M
, (83)

‖ω̄1(t)‖L∞ ≤ C0A, ‖ū1z(t)‖L∞ ≤ C0A, (84)

where
C0 = ‖

(

U2
1y +W 2

1

)
1

2 ‖L∞. (85)

Remark 3. As we know from the discussions in the previous sections and as indicated
by (82)-85), if the regularity of the periodic profiles in the initial condition, i.e., U1 and
Ψ1, is very poor, the solution ū1(z, t) and ψ̄z(z, t) will grow very fast dynamically. The
amplification factor is determined by C0 defined in (85).

Let R0 = M
1

4 . From (82)-(85) and the definition of ū, we have

‖ū‖L2 ≈ AR2
0/M = A/

√
M, ‖∇ū‖L2 ≈ AR2

0 = A
√
M. (86)

We would like to emphasize that the corresponding 3D solution defined by (76) -(78)
in general does not preserve the same special structure in the z direction of the 1D model
problem since the correction terms, u1, ω1 and ψ1, are periodic in z with period 1 instead of
period 1/M .
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We assume that the initial conditions for u1, ω1, and ψ1 are chosen in such a way that the
principal contributions to the energy and the enstrophy come from ū, the mollified solution
of the 1D model. Specifically, we assume that the initial condition for ũ satisfies:

‖ũ0‖L2 ≈ AR2
0/M = A/

√
M, ‖∇ũ0‖L2 ≈ AR2

0 = A
√
M. (87)

Thus, we have
‖ũ0‖L2‖∇ũ0‖L2 ≈ A2. (88)

By choosing A large enough, the above product can be made arbitrarily large. Thus it
violates the classical “smallness” condition that guarantees the global existence of the 3D
Navier-Stokes equations [21].

Furthermore, we have from the energy inequality that

‖ũ(t)‖L2 ≤ ‖ũ0‖L2 ≤ A/
√
M. (89)

Using the above bound and (86), we obtain a priori bound for the perturbed velocity field,
u in L2 norm:

‖u(t)‖L2 ≤ A√
M
. (90)

Let f = u2
1, and define

H2(t) =

∫

(

f 2 + ω2
1

)

rdrdz =

∫

(

u4
1 + ω2

1

)

rdrdz, (91)

E2(t) =

∫

(

|∇f |2 + |∇ω1|2
)

rdrdz, (92)

where the integration is over [0, 1] × [0,∞).

If we further assume that the initial conditions for u1, ω1, and ψ1 are odd functions of z,
then it is easy to verify that ũ1, ω̃1 and ψ̃1 are odd functions of z for all times. Since ū1, ω̄1,
and ψ̄1 are also odd functions of z, we conclude that u1, ω1, and ψ1 are odd functions of z
for all times. It follows by the Poincare inequality that we have

∫

f 2rdrdz ≤
∫

f 2
z rdrdz ≤

∫

|∇f |2rdrdz, (93)
∫

ω2
1rdrdz ≤

∫

ω2
1zrdrdz ≤

∫

|∇ω1|2rdrdz. (94)

This implies that
H ≤ E. (95)

Now we can state the main theorem of this section.

Theorem 5. Assume that the initial conditions for u1, ω1 and ψ1 are smooth functions
of compact support and odd in z. For any given A > 1, C0 > 1 and ν > 0, there exists
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C(A,C0, ν) > 0 such that if M > C(A,C0, ν) and H(0) ≤ 1, then the solution of the 3D
Navier-Stokes equations given by (76)-(78) remains smooth for all times.

Proof. First of all, we can use (13)-(15) to derive the corresponding evolution equations for
ũ1, ω̃1 and ψ̃1 as follows:

(ũ1)t + ṽr(ũ1)r + ṽz(ũ1)z = 2(ψ̃1)zũ1 + ν

(

ũ1zz + ũ1rr +
3ũ1r

r

)

, (96)

(ω̃1)t + ṽr(ω̃1)r + ṽz(ω̃1)z = (ũ2
1)z + ν

(

ω̃1zz + ω̃1rr +
3ω̃1r

r

)

, (97)

−
(

ψ̃1zz + ψ̃1rr +
3ψ̃1r

r

)

= ω̃1. (98)

Substituting (76) into (96) and using (75), we obtain an evolution equation for u1.

∂u1

∂t
+ ṽru1r + ṽzu1z = ν∆u1 + 2ψ̃1zũ1 − ū1tφ− ṽrū1φr (99)

− φṽzū1z + ν∆(ū1φ),

where we have used ∆ to denote the modified Laplacian operator defined by

∆w = wzz + wrr +
3wr

r
≡ wzz + ∆rw.

On the other hand, we know that ū1 satisfies the 1D model equation:

ū1t + 2ψ̄1ū1z = νū1zz + 2ψ̄1zū1. (100)

Multiplying (100) by φ and subtracting the resulting equation from (99), we have

u1t + ṽru1r + ṽzu1z = ν∆u1 + 2
(

ψ̃1zũ1 − φψ̄1zū1

)

(101)

− ṽrū1φr − φ
(

[rφr + 2(φ− 1)]ψ̄1 + vz
)

ū1z + νū1∆rφ.

Similarly, we obtain

ω1t + ṽrω1r + ṽzω1z = ν∆ω1 +
(

(u1 + ūφ)2
z − ū2

1zφ
)

(102)

− ṽrω̄1φr − φ
(

[rφr + 2(φ− 1)]ψ̄1 + vz
)

ω̄1z + νω̄1∆rφ.

We divide the analysis into two parts. The first part is devoted to estimates of the
velocity equation. The second part is devoted to estimates of the vorticity equation.

Part I. Estimates for the velocity equation.

First we will present our analysis for the velocity equation.
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Multiply (101) by u3
1 and integrate over [0, 1] × [0,∞). Using the incompressibility con-

dition
(rṽr)r + (rṽz)z = 0,

we get

1

4

d

dt

∫

u4
1rdrdz ≤ −3ν

4

∫

∣

∣∇(u2
1)
∣

∣

2
rdrdz

+ 2

∫

u3
1

(

ψ̃1zũ1 − φψ̄1zū1

)

rdrdz −
∫

ṽrū1φru
3
1rdrdz

−
∫

φ
(

[rφr + 2φ(φ− 1)]ψ̄1 + vz
)

ū1zu
3
1rdrdz + ν

∫

ū1(∆rφ)u3
1rdrdz

hasthesameorder ≡ −3ν

4

∫

∣

∣∇(u2
1)
∣

∣

2
rdrdz + I + II + III + IV, (103)

where we have used the fact that
∫

u3
1∆u1rdrdz =

∫

u3
1

(

u1zz +
(ru1r)r

r
+

2u1r

r

)

rdrdz

= −3

2

∫

(

u2
1u

2
1z + u2

1u
2
1r

)

rdrdz + 2

∫

u3
1u1rdrdz

= −3

4

∫

[

(

(u2
1)z

)2
+
(

(u2
1)r

)2
]

rdrdz − 1

2

∫

u4
1(0, z, t)dz

≤ −3

4

∫

[

(

(u2
1)z

)2
+
(

(u2
1)r

)2
]

rdrdz . (104)

In the following, we will estimate the right hand side of (103) term by term.

Estimate for the I-term.

Using (76)-(78), we have

I = 2

∫

u3
1

(

ψ1zu1 + φψ̄1zu1 + φū1ψ1z + (φ2 − φ)ψ̄1zū1

)

rdrdz

≡ Ia + Ib + Ic + Id. (105)

Using the Hölder inequality, we have

Ia ≤ 2‖ψ1z‖L2‖f‖2
L4 .

Note that

‖ψ1z‖2
L2 =

∫

ψ2
1zrdrdz =

∫

ψ2
1zd(r

2/2)dz = −1

2

∫

rψ1zψ1zrrdrdz

≤ 1

2
‖rψ1z‖L2‖ψ1zr‖L2 ≤ A

M
1

2

‖ψ1zr‖L2 , (106)
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where we have used rψ1z = ψz and (90) to obtain

‖rψ1z‖L2 = ‖ψz‖L2 ≤ ‖u‖L2 ≤ A

M
1

2

.

On the other hand, using the Sobolev interpolation inequality, we have

‖f‖L4 ≤ ‖f‖
1

4

L2‖∇f‖
3

4

L2.

This implies that

Ia ≤ 2‖ψ1z‖L2‖f‖2
L4 ≤ 2

A
1

2

M
1

4

HE
3

2 + 2
(c2C0)

1

2A

M
11

8

H
1

2E
3

2 ,

where c2 = ‖∆rφ0‖L∞, and we have used

‖ψ1zr‖L2 ≤ ‖ω1‖L2 +
c2C0A

M
9

4

, (107)

which we prove in Appendix B.

The estimate for Ib follows from (83):

Ib ≤ 2C0
A

M

∫

u4
1rdrdz ≤ 2C0

A

M
H2.

As for Ic, we use (83), (106), and the Hölder inequality to obtain

Ic ≤ 2C0
A

M
‖ψ1z‖L2‖f‖

3

2

L3

≤ 2C0
A

M

(A)
1

2

M
1

4

‖ψ1zr‖
1

2

L2‖f‖
3

4

L2‖∇f‖
3

4

L2

≤ 2C0(A)
3

2

M
5

4

H
5

4E
3

4 +
2
√
c2C

3

2

0 A
2

M
19

8

H
3

4E
3

4 , (108)

where we have used (107) and the Sobolev interpolation inequality

‖f‖L3 ≤ c0‖f‖
1

2

L2‖∇f‖
1

2

L2. (109)

Finally, we use (83) and the Hölder inequality that

Id ≤ 2C2
0

A2

M2

∫

r≤R0

|u1|3rdrdz ≤ 2C2
0

A2

M2

(
∫

u4
1rdrdz

)
3

4

R
2

4

0 ≤ 2C2
0A

2

M2−1/8
H

3

2 . (110)

Therefore, we obtain

I ≤ 2
A

1

2

M
1

4

HE
3

2 + 2
(c2C0)

1

2A

M
11

8

H
1

2E
3

2 + 2C0
A

M
H2

+
2C0(A)

3

2

M
5

4

H
5

4E
3

4 +
2
√
c2C

3

2

0 A
2

M
19

8

H
3

4E
3

4 +
2C2

0A
2

M2−1/8
H

3

2 . (111)
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Estimate for the II-term. Using (83), (90) and the Hölder inequality, we have

II ≤ c1C0A

MR0

∫

|ṽr||u3
1|rdrdz ≤

c1C0A

MR0

‖ṽr‖L2‖f‖
3

2

L3

≤ c1C0A
2

M
3

2R0

‖f‖
3

4

L2‖∇f‖
3

4

L2 ≤
c1C0A

2

M
7

4

H
3

4E
3

4 , (112)

where c1 = ‖(φ0)r‖L∞, and we have used the Sobolev interpolation inequality (109).

Estimate for the III-term. Using (82), (84), and following the same steps as in our
estimate for the Id-term and the II-term, we get

III ≤ (2 + c1)
C2

0A
2

M2

∫

r≤R0

|u3
1|rdrdz + C0A

∫

|vz||u3
1|rdrdz

≤ (2 + c1)
C2

0A
2

M2−1/8
H

3

2 + C0A‖vz‖L2‖f‖
3

2

L3

≤ (2 + c1)
C2

0A
2

M2−1/8
H

3

2 +
C0A

2

M
1

2

H
3

4E
3

4 . (113)

Estimate for the IV-term.

Using (83) and the Hölder inequality, we have

IV ≤ νc2C0A

MR2
0

∫

r≤R0

|u1|3rdrdz ≤
νc2C0A

M
3

2

H
3

2R
2

4

0 ≤ νc2C0A

M
3

2
−1/8

H
3

2 . (114)

Part II. Estimates for the vorticity equation.

Next, we will present our analysis for the vorticity equation. Multiplying (102) by ω1

and integrating over [0, 1] × [0,∞), we get

1

2

d

dt

∫

ω2
1rdrdz ≤ −ν

∫

|∇ω1|2rdrdz +

∫

(

ũ2
1 − ū2

1φ
)

z
ω1rdrdz −

∫

ṽrω̄1ω1φrrdrdz

−
∫

φ
(

[rφr + 2(φ− 1)]ψ̄1 + vz
)

ω̄1zω1rdrdz + ν

∫

ω̄1∆rφω1rdrdz

≡ −ν
∫

|∇ω1|2rdrdz + Ī + II + III + IV , (115)

where ∆rφ = φrr + 3φr

r
.

We will estimate the terms Ī to IV one by one.
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Estimate for the Ī-term.

Using (76) and (83) and integration by parts, we have

Ī = −
∫

(ũ2
1 − ū2

1φ)ω1zrdrdz = −
∫

(u2
1 + 2ū1φu1 + (φ2 − φ)ū2

1)ω1zrdrdz

≤
∫

u2
1|ω1z|rdrdz +

2C0A

M

∫

r≤R0

|u1||ω1z|rdrdz +
C2

0A
2R0

M2
‖ω1z‖L2

≤
(

(
∫

u4
1rdrdz

)
1

2

+
2C0A

M

(
∫

r≤R0

u2
1rdrdz

)
1

2

+
C2

0A
2

M
7

4

)

‖ω1z‖L2 . (116)

Let Γ = rũ. It is easy to show that Γ satisfies the following evolution equation (see also
[20])

Γt + ṽrΓr + ṽzΓz = ν(Γzz + Γrr −
Γr

r
).

Moreover, for ũ smooth, we have Γ|r=0 = 0. Thus, Γ has a maximum principle, i.e.

‖Γ‖L∞ ≤ ‖Γ0‖L∞ ≤ c0.

This implies that

|r2u1| ≤ |rũ| + r2|φū1| ≤ c0 +R2
0

C0

M
≤ c0 +

C0

M
1

2

≤ c̃0.

Therefore, we obtain

∫

u4
1rdrdz =

∫

(u2
1)

2d(r2/2)dz = −
∫

ru2
1(u

2
1)rrdrdz

≤
(
∫

r2u4
1rdrdz

)
1

2

‖∇f‖L2

≤ ‖ru1‖
1

2

L2

(
∫

r2u6
1rdrdz

)
1

4

‖∇f‖L2

≤ c̃
1

4

0

A
1

2

M
1

4

(
∫

u5
1rdrdz

)
1

4

‖∇f‖L2.

On the other hand, we have

(
∫

u5
1rdrdz

)
1

4

≤
(
∫

u4
1rdrdz

)
1

8

‖f‖
3

8

L3 ≤
(
∫

u4
1rdrdz

)
1

8

‖f‖
3

16

L2‖∇f‖
3

16

L2.

Combining the above estimates, we obtain

(
∫

u4
1rdrdz

)
1

2

≤ c̃
1

7

0A
2

7

M
1

7

H
3

28E
19

28 . (117)
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Thus, we obtain

Ī ≤
(

c̃
1

7

0A
2

7

M
1

7

H
3

28E
19

28 +
2C0A

M
R

1

2

0

(
∫

u4
1rdrdz

)
1

4

+
C2

0A
2

M
7

4

)

‖ω1z‖L2

≤ c̃
1

7

0A
2

7

M
1

7

H
3

28E
47

28 +
2C0A

M
7

8

H
1

2E +
C2

0A
2

M
7

4

E. (118)

Estimate for the II-term.

Using (84), (90), and the Hölder inequality, we get

II ≤ c1C0A

R0
‖ṽr‖L2‖ω1‖L2

≤ c1C0A

R0

A

M
1

2

‖ω1‖L2 ≤ c1C0A
2

M
3

4

H. (119)

Estimate for the III-term.

Integration by parts gives

III =

∫

φ([rφr + 2(φ− 1)]ψ̄1z + vz
z)ω̄1ω1rdrdz

+

∫

φ([rφr + 2(φ− 1)]ψ̄1 + vz)ω̄1ω1zrdrdz (120)

We first study the term
∫

φvz
z ω̄1ω1rdrdz. Note that using (84), we have

|
∫

φvz
z ω̄1ω1rdrdz| ≤ C0A‖(φvz)z‖L2‖ω1‖L2.

On the other hand, we have by the Sobolev interpolation inequality that

‖(φvz)z‖L2 ≤ ‖φvz‖
1

2

L2‖∇(φvz)z‖
1

2

L2

≤
√
A

M
1

4

‖∇(rφvz
1)z‖

1

2

L2

≤ 2

√
A

M
1

4

R
1

4

0 ‖∇ω1‖
1

2

L2 + 2

√
c2C0A

M
7

8
−1/16

,

where we have used

‖∇(vz
1)z‖L2 ≤ ‖∇ω1‖L2 +

c2C0A

M
5

4

,

which we prove in Appendix B.
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Thus we use (83) that

III ≤ (2 + c1)
C2

0A
2

M
R0‖ω1‖L2 +

(

2C0A
3

2

M
1

4
−1/16

HE
1

2 +
2
√
c2C

3

2

0 A
2

M
7

8
−1/16

H

)

+ (2 + c1)
C2

0A
2

M2
R0‖ω1z‖L2 + C0A‖vz‖L2‖ω1z‖L2

≤ (2 + c1 + 2
√
c2)

C2
0A

2

M
3

4

H +
2C0A

3

2

M
1

4
−1/16

HE
1

2 + (3 + c1)
C2

0A
2

M
1

2

E. (121)

Estimate for the IV -term.

Let g(z, t) =
∫ z

0
ω̄1(η, t)dη. Then we have gz = ω̄1 and |g| ≤ C0A

M
. Thus we have

IV = ν

∫

ω̄1(∆rφ)ω1rdrdz = ν

∫

gz(∆rφ)ω1rdrdz

= −ν
∫

g(∆rφ)ω1zrdrdz ≤
νc2C0A

MR2
0

∫

r≤R0

|ω1z|rdrdz

≤ νc2C0A

MR2
0

R0‖ω1z‖L2 ≤ νc2C0A

M
5

4

E. (122)

By adding the estimates for
∫

u4
1rdrdz to those for

∫

ω2
1rdrdz, we obtain an estimate for

d
dt
H2. Note that except for the diffusion terms, each term in our estimates from I to IV can

be bounded by
ν

16
E2 +

ǫ

16
g(H),

where g(H) is a polynomial of H with positive rational exponents and positive coefficients
that depend on C0, A, and ν, and ǫ = 1

Mγ for some γ > 0. Putting all the estimates together,
we get

d

dt
H2 ≤ −ν

2
E2 + ǫg(H) ≤ −ν

2
H2 + ǫg(H), (123)

since H ≤ E.

For given A > 1, C0 > 1, and ν > 0, we can choose M large enough so that

−ν
2

+ ǫg(1) ≤ 0.

Thus, if the initial condition for u1, ω1 and ψ1 are chosen such that H(0) ≤ 1, then we must
have

H(t) ≤ 1, for all t > 0.

Using this apriori estimate on H(t), we can easily follow the standard argument to prove
the global regularity of ψ1, u1 and ω1 in higher order norms. This completes the proof of
Theorem 5.

27



Appendix A.

In this appendix, we prove the following result for the generalized ODE system.

Theorem A. Assume that ũ0 6= 0 and d ≥ 1. Then the solution (ũ(t), ṽ(t)) of the ODE
system (40)-(41) exists for all times. Moreover, we have

lim
t→+∞

ũ(t) = 0, lim
t→+∞

ṽ(t) = 0. (124)

Proof. We first make a change of variables into the polar coordinate 2

ṽ = r cos θ, ũ = r sin θ. (125)

Substituting the above change of variables into the ODE system, we obtain

r′ cos θ − r(sin θ)θ′ = r2 sin2 θ − r2 cos2 θ, (126)

r′ sin θ + r(cos θ)θ′ = −dr2 cos θ sin θ. (127)

From the above equations, we can easily derive

r′ = −r2 cos θ
(

cos2 θ + (d− 1) sin2 θ
)

, (128)

θ′ = −r sin θ
(

(d− 1) cos2 θ + sin2 θ
)

. (129)

Note that if ũ0 > 0, then ũ(t) > 0 as long as |
∫ t

0
ṽ(s)ds| < ∞. Similarly, if ũ0 < 0, then

ũ(t) < 0. Thus, if the solution starts from the upper (or lower) half plane, it will stay in
the upper (or lower) half plane. Without loss of generality, we may consider the solution
starting from the upper half plane. It follows from (129) that θ′ ≤ 0 since d ≥ 1, and r ≥ 0.
Therefore, θ(t) is monotonically decreasing. On the other hand, θ(t) is bounded from below
by zero. As a result, the limit of θ(t) as t → ∞ exists. Let us denote the limiting value as
θ. Clearly, we must have

lim
t→∞

θ′ = 0, lim
t→∞

θ = θ. (130)

First, we consider the case that the solution starts from the second quarter (y axis
included). We claim that this solution must cross the y-axis into the first quarter. If the
solution stay in the second quarter forever, then θ must be no less than π/2. From (129)
and (130), we know that

lim
t→∞

r = 0. (131)

However, from (128), we have r′ ≥ 0, which contradicts with (131). The contradiction
implies that the solution must cross the y-axis at a later time.

Now we only need to consider the case when the solution starts from the first quarter
since the system is autonomous. Since θ(t) decreases monotonically, we obtain

r′ ≤ − cos3(θ0)r
2, (132)

2This proof was inspired by a discussion with Mr. Mulin Cheng.
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where we have used the fact that d ≥ 1 and cos2 θ+(d−1) sin2 θ ≥ cos2 θ. Solving the above
ODE inequality gives

r(t) ≤ r0
1 + r0(cos3 θ0)t

. (133)

Thus, we conclude that
lim
t→∞

r(t) = 0. (134)

To determine that limiting angle, θ, we use the fact that

tan(θ) = lim
t→∞

(

ũ′

ṽ′

)

= − d tan(θ)

tan2(θ) − 1
.

Since d ≥ 1, we conclude that θ = 0, which implies

lim
t→∞

θ(t) = 0. (135)

This completes the proof of Theorem A.

Appendix B.

In this appendix, we prove the following two estimates which relate the L2 norm of the
derivatives of ψ to that of ω1:

‖ψ1zz‖L2 + ‖ψ1rz‖L2 + ‖ψ1rr‖L2 + ‖ψ1r

r
‖L2 ≤ ‖w1‖L2 +

c2C0A

M
9

4

, (136)

and

‖∇vz
1z‖L2 = ‖∇(

2ψ1z

r
+ ψ1rz)‖L2 ≤ ‖∇w1‖L2 +

c2C0A

M
5

4

, (137)

where c2 = ‖∆rφ0‖L∞.

Proof. From the definition, we have

−∆ψ̃1 = w̃1.

Using the definition of ψ̃1 and w̃1, we can rewrite the above equation as

−w1 = ∆ψ1 + (∆rφ)ψ̄1. (138)

Multiplying (138) by ψ1zz and integrating over [0, 1] × [0,∞), we obtain:

‖w1‖L2‖ψ1zz‖L2 ≥
∫

(∆ψ1ψ1zz − (∆rφ)ψ̄1ψ1zz)rdrdz (139)

≥
∫

(ψ2
1zz + ψ2

1rz)rdrdz − 2

∫

ψ1rzψ1zdrdz −
c2C0A

M2R2
0

∫

|ψ1zz|rdrdz (140)

≥
∫

(ψ2
1zz + ψ2

1rz)rdrdz +

∫ 1

0

ψ2
1z(0, z, t)dz −

c2C0A

M2R0

‖ψ1zz‖L2, (141)
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where we have used (82). This implies that

‖ψ1zz‖L2 + ‖ψ1rz‖L2 ≤ ‖w1‖L2 +
c2C0A

M
9

4

. (142)

Next, we multiply (138) by ∆rψ1 and integrate over [0, 1] × [0,∞). We obtain by using
a similar argument that

‖w1‖L2‖∆rψ1‖L2 ≥
∫

(∆ψ1∆rψ1 − (∆rφ)ψ̄1∆rψ1)rdrdz (143)

≥
∫

[(∆rψ1)
2 + ψ2

1rz]rdrdz −
c2C0A

M2R0
‖∆rψ1‖L2 . (144)

On the other hand, we note that
∫

(∆rψ1)
2rdrdz =

∫

(ψ2
1rr + 9

ψ1r

r2
)rdrdz + 6

∫

ψ1rψ1rrdrdz

=

∫

(ψ2
1rr + 9

ψ1r

r2
)rdrdz − 3

∫ 1

0

ψ2
1r(0, z, t)dz

=

∫

(ψ2
1rr + 9

ψ1r

r2
)rdrdz,

where we have used the fact that ψ1r(0, z, t) = 0 since ψ1r is odd in r. Thus we obtain

‖ψ1rr‖L2 + ‖ψ1r

r
‖L2 ≤ ‖∆rψ1‖ ≤ ‖w1‖L2 +

c2C0A

M
9

4

. (145)

Combining estimate (144) with (145) gives the desired estimate (136). Similarly, we can
prove (137).
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