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Abstract—Dynamic state estimation (DSE) accurately 
tracks the dynamics of a power system and provides the 
evolution of the system state in real-time. This paper focuses 
on the control and protection applications of DSE, compre-
hensively presenting different facets of control and protec-
tion challenges arising in modern power systems. It is 
demonstrated how these challenges are effectively ad-
dressed with DSE-enabled solutions. As precursors to these 
solutions, reformulation of DSE considering both synchro-
phasor and sampled value measurements and comprehen-
sive comparisons of DSE and observers have been pre-
sented. The usefulness and necessity of DSE based solutions 
in ensuring system stability, reliable protection and secu-
rity, and resilience by revamping of control and protection 
methods are shown through examples, practical applica-
tions, and suggestions for further development.  

Index Terms—Dynamic state estimation, Kalman filter, 
parameter estimation, stability, control, protection, syn-
chrophasor measurements, sampled value measurements, 
synchronous generation, converter-based resources. 

I. INTRODUCTION

Today’s power systems are witnessing a rapid transition in 

generation technology from coal and gas-based non-renewable 
generation to wind and solar energy based renewable genera-
tion. Energy storage and modern power electronic loads pene-
trate power systems rapidly as well. As more and more of such 
converter-based resources (CBRs) are connected to the net-
work, two major challenges emerge: (a) system response is 
faster and, therefore, its control should have a commensurate 
response speed, and (b) legacy protection functions that rely on 
the characteristics of conventional power systems (high fault 
currents and fault characteristics associated with synchronous 
generation) can be inadequate. Solutions to these challenges can 
be sought in dynamic state estimation (DSE) applications [1]. 
Specifically, DSE provides real-time operating states of the sys-
tem at fast rates [2], which in turn can be utilized to fulfill the 
requirements for modern power systems protection and control. 

Traditional schemes for power system control and protection 
are primarily based on a deterministic system model with the 
majority of electricity coming from a few centralized and syn-
chronous sources of generation [3-6]. Such a system model has 
gradually become out of context due to the distributed, stochas-
tic, and intermittent nature of renewable energy sources. In ad-
dition, stability, control and protection challenges introduced by 
the increased renewable integration include: 1) reduced system 
inertia, and 2) extreme variation in the timescales of system dy-
namics – from a few milliseconds or lower in the case of CBRs 
to a few minutes or higher in the case of boiler and long-term 
dynamics of synchronous generation. To deal with these chal-
lenges, it is necessary to consider the control of each dynamic 
component in the system individually, and how different com-
ponents influence each other’s dynamics, and how they should 
be controlled together holistically. As DSE provides state esti-
mates at the required timescales, it can serve as a versatile tool 
to holistically control system trajectory, ensuring rotor-angle 
stability, frequency stability, voltage stability, resonance stabil-
ity and converter-driven stability [3]. 

With the increasing penetration of CBRs in power systems, 
traditional schemes for power system protection face the fol-
lowing challenges: 1) Many traditional protection schemes de-
pend on abrupt changes of voltages/currents during faults, e.g. 
overcurrent/undervoltage relays to detect faults; however, these 
characteristics may not be valid in systems with high penetra-
tion of CBRs [4]; 2) Phasor domain quantities are usually uti-
lized in traditional relays, which can cause misoperation of re-
lays during complex and unusual system transients in CBR-
dominated power systems; 3) Traditional protection schemes 
usually require complex coordination among relays, e.g. time 
overcurrent relays and 3-step distance relays, resulting in risks 
of mis-coordination; 4) Hidden failures, such as failures of in-
strumentation channels, can lead to misoperation of protection 
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relays [5]. DSE is a valuable tool to overcome the above limi-
tations. First, DSE can accurately track complex dynamics and 
provide accurate estimates of the dynamic states of the system, 
enabling precise extraction of fault characteristics in both the 
phasor domain and time domain [1]. In addition, for a specific 
protection zone, DSE can formulate the protection logic by sys-
tematically checking the consistency between the measurement 
and the dynamic model of the protection zone without coordi-
nation among relays [8]. Finally, with redundant measurements, 
DSE is able to identify and reject bad data, and therefore pre-
vent relays from misoperation during hidden failures. 

With the development of advanced measurement devices and 
substation automation, high-quality synchrophasor measure-
ments and synchronized sampled value (SV) measurements 
provide more information at higher rates and enable DSE-based 
advanced control and protection schemes. Towards this end, 
this paper summarizes the joint efforts of the Task Force on 
Power System Dynamic State and Parameter Estimation, with 
an emphasis on DSE for power system control and protection. 
It has the following new insights:  

 The existing DSE literature mainly focuses on electrome-

chanical dynamics of synchronous machines while this pa-

per extends it to consider the electromagnetic dynamics 

from CBRs.  

 The relationships and differences for observer and DSE us-

ing Kalman filters have been extensively compared and 

discussed to clarify their advantages and disadvantages. 

 The roles of DSE for control and protections have been 

thoroughly discussed with the support of numerical results 

in Sections IV and V.  

 Several research directions have been offered to pave the 

way for further development in Section VI. 

II. DSE FORMULATION: SAMPLED VALUE MEASUREMENTS

VERSUS PMU MEASUREMENTS 

Traditionally, power systems are dominated by synchronous 
generators. For these power systems, electromechanical oscil-
lations with periods of a few seconds are very important. Alt-
hough the detailed synchronous machine dynamic models in-
volve electromagnetic transients, they are too fast as compared 
to the electromechanical oscillations and thus are neglected in 
the traditional dynamic studies and stability assessment [6]. 
With the increasing penetration of CBRs, such as distributed 
energy resources (DERs) and FACTS devices, to cite a few, the 
system dynamic responses are heavily dependent on the fast-
response power electronic devices and their controls, and con-
verter-induced dynamics and stability issues start to dominate 
the system [6][9][10]. In addition, power electronics devices 
cause waveform distortions and deviations from near sinusoidal 
waveforms. Note that the time-scale of the CBRs can range 
from a few microseconds to several milliseconds, due to switch-
ing operations of the power electronics. Conventional phasor 
representation or quasi sinusoidal approximation is usually used 
for the study of electromechanical oscillations accounting for 
the synchronous machine oscillations and converter control dy-
namics (the dynamic phasors [11] or average models [12] could 
simplify the design of protection and control strategies for CBR 
systems). However, conventional phasor representation may 
not be suitable for the study of electromagnetic phenomena 
which represent the fast dynamics of the system. Hence, the for-

mulation, measurement requirements, and potential applica-
tions of DSE are revisited in this paper, and the requirements 
for each application are defined. 

Irrespective of the different time scales of power system dy-
namics, they can be described by differential and algebraic 
equations (DAEs). Note that for models described through par-
tial differential equations (PDEs), such as wave propagations in 
transmission lines, appropriate discretization methods need to 
be utilized to convert PDEs into (1). 

    (1) 

where x is the state vector; y is the algebraic variable vector; u 
is the input vector, p is the parameter vector; and f and g are 
nonlinear vector-valued functions. For power system applica-
tions, the measurements are sampled in a discrete manner and 
thus, (1) needs to be discretized to be compatible with online 
measurements. To this end, the measurement function at time 
instant k can be written as , where  
can come from PMUs, merging units (MUs), digital fault re-
corders, and in general intelligent electronic devices (IEDs); 
and  is a nonlinear vector-valued function. The way of solving 
(1) using DSE can be found in [1].

For capturing the electromechanical transients, phasor repre-
sentation is leveraged while fast-electromagnetic transients are 
neglected. Measurement vector  usually includes time-syn-
chronized phasor measurements from PMUs, such as voltage 
and current phasors, the calculated real and reactive powers, 
frequency and rate of change of frequency (RoCoF); and the 
state vector x includes internal dynamic variables of synchro-
nous machines and dynamic loads. Note that the phasor meas-
urements provide the fundamental frequency phasor voltages 
and currents, while the electromagnetic transients are filtered 
out. Thus, the model in (1) represents the electrical quantities 
with phasors, and the electromechanical system and control dy-
namics are formulated with differential equations. 

To capture fast electromagnetic transients in a power elec-
tronics-dominated power system, there is an increasing need to 
use SV measurements directly. The synchronized SV measure-
ments contain rich time-domain information and can be ob-
tained from MUs, which can be standalone devices or embed-
ded in non-conventional instrument transformers and other ap-
paratus. The standard SV sampling rates in MUs are 80 or 256 
samples per cycle according to IEC61850-9-2LE standard [7]. 
Note that phasors and harmonics can be computed from SVs. 
Furthermore, electromagnetic transient models must be adopted 
to represent the fast dynamics of system components. The latter 
can include any components with electromagnetic transients, 
such as generators, transmission lines, transformers, CBRs, 
among others [8]. In this case, the voltages and currents are ex-
pressed using instantaneous SVs; the electromagnetic transients, 
such as fast electromagnetic transients of voltages or currents, 
are considered. Measurement vector z includes SV measure-
ments, and the state vector x consists of instantaneous voltages, 
currents, generator speeds, and other internal states of the dy-
namic components. 

The applications of DSE using PMU measurements for elec-
tromechanical transients include both control and protection. 
For control applications, DSE contributes to the enhancement 
of the visibility of system operations, and the validation and cal-
ibration of the control models. Furthermore, it provides essen-
tial feedback state signals and accurate measurements for con-
trols. It is shown in the literature that DSE-based out-of-step 
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protection provides more benefits for fast and reliable relay ac-
tions than traditional approaches. 

DSE using SV measurements for both electromagnetic and 
electromechanical transients also enable advanced control and 
protection applications. For the control applications, it can 1) 
provide essential state feedback signals for CBR control, in-
cluding both grid following and grid forming controls to en-
hance system stability; 2) identify unknown parameters and 
help calibrate electromagnetic models; 3) detect and diagnose 
anomalies locally, especially for converter-interfaced resources; 
and 4) provide accurate frequency measurements even in the 
presence of large disturbances. The widely used phase-lock-
loop is well-known to be vulnerable to large disturbance and 
can trigger erroneous relay actions, for example, see the 2016 
California blue-cut fire events [9]. For protection applications, 
it allows us to 1) design protective relays with improved de-
pendability, security, sensitivity, and speed; 2) develop fault 
locators that work with short data window with improved fault 
location accuracy; and 3) enable cyber intrusion/hidden failure 
detection of protective relays. These issues will be discussed in 
subsequent sections. 

III. CONTROLLER OPTIONS: DSE VERSUS OBSERVER

Both observers and DSE can be used to provide state feed-
back signals for control. In this section, the advantages and dis-
advantages of these two methods are discussed. Note that the 
detailed formulations of observers and DSE can be found in [1] 
and [13]. 

Operational principle: Observers are based on sensor out-
puts measured from the physical system and are usually based 
on the Luenberger criterion [13]. The sliding mode observer 
and the observer using the Koopman-based model of the pro-
cess are also proposed [14]. DSE is based on the minimum var-
iance estimation criterion from a statistics point of view and it 
fuses both the physical model predictions and the sensor outputs. 
Although these two approaches fundamentally differ in their as-
sumptions and algorithmic details, both can be used to estimate 
the state of a dynamic system.  

Addressing stochastic systems: The majority of designed 
observers in the literature do not assume statistical distributions 
for the process and measurement models. Most control-theo-
retic observer designs assume the existence of unknown inputs 
and sensor noise in a deterministic way without associating any 
distribution to these uncertainties. This is because deterministic 
observers still perform well in the presence of various noise dis-
tribution types. Note that gain matrix design for an observer can 
be challenging for large nonlinear systems due to high nonline-
arity in state transition [15]. A good observer design can pro-
vide robustness to exogenous disturbances, though its perfor-
mance cannot adapt to time-varying changes unless it evolves 
with time. Furthermore, if the noise distribution deviates from 
assumptions, such as Gaussian distribution, an observer may 
obtain better performances than the traditional DSEs using Kal-
man filters since an observer only requires the bounds for noise. 
During information extraction from data, there are random fluc-
tuations or measurement errors in the data that are not subject 
to any models. They are called stochastic noises. When the phe-
nomenon being modeled is too complex and some approxima-
tions are applied, errors are induced and they are called deter-
ministic noises or biases (i.e., model uncertainty/error). Both 
DSE and observer need to be designed to handle both types of 

noises. The comparisons of robust DSE and observer consider-
ing different types of noises, i.e., both deterministic and sto-
chastic need further investigations. 

Sensitivity to outliers: Measurements are frequently sub-
jected to outliers and the model outputs can be corrupted by 
gross errors due to control failures, incorrect model inputs, pa-
rameter errors, etc. [16]. In the presence of outliers, both state 
observer and DSE may provide biased results. To mitigate the 
influence of outliers, an observer needs to increase the assumed 
error bounds, which would significantly decrease its perfor-
mance in the absence of outliers. In contrast, by adopting a sta-
tistical test or developing robust DSEs, outliers can be automat-
ically detected and suppressed without affecting DSE perfor-
mance when there are no outliers [1] [16].  

Computational efficiency: The majority of DSE designs re-
cursively compute gains; this involves matrix multiplications 
and inversions at each time-step. In contrast, once the observer 
is designed offline, state estimation can be performed with a 
significantly smaller number of matrix multiplications, as the 
calculations of observer gain are usually done offline assuming 
certain error bounds of process and measurement models [17]. 
This offline calculation involves computationally costly linear 
matrix inequalities and convex semidefinite programs. Thus, re-
calculation of observer gains is time-consuming in the presence 
of changes in the network topology or parameters, whereas 
DSE can update such new information more efficiently at each 
time-step. 

Sensor requirements: Both DSE and observers require the 
system/states to be observable as a prerequisite from the dy-
namical system perspective [1]. For DSE, more sensors would 
lead to better statistical efficiency of the state estimates. Ob-
servers usually suffer from a key limitation regarding the re-
quired number of sensors, which can lead to infeasible observ-
ers [18]-[19], theoretically infinite estimation error, or practi-
cally unusable estimates. DSEs, however, still produce some 
useful results even with a limited number of sensors.  

Handling system nonlinearity: Both DSE and observers can 
be designed to deal with nonlinear systems. However, design-
ing a good observer when the system is subjected to complex 
nonlinearities is very challenging as it involves nonlinear opti-
mization [19]. Also, the Jacobian matrix is needed for some 
nonlinear observer designs. However, magnetic saturation in 
synchronous machines is frequently encountered in power sys-
tems [2], making infeasible the computation of Jacobians and 
subsequent observer design. In contrast, there exist derivative-
free nonlinear Kalman filter-based DSEs, such as unscented 
Kalman filter, ensemble Kalman filter, particle filter, etc. [1], 
which avoid the use of Jacobian matrix and thus handle system 
nonlinearity better. 

Sensitivity to initial conditions: For DSE, a good initial 
condition is usually needed, otherwise, it takes some time to 
converge to the true value. This, in general, is not an issue since 
DSE runs continuously and in the long run, once it has con-
verged, the initial condition is the state estimate of the system 
at the prior time step, which is an accurate initial condition. For 
state observers, irrespective of the initial condition, fast conver-
gence of the estimated states to their accurate values is guaran-
teed as long as a proper observer gain is determined, and the 
system is observable. It should be noted that practically, a rea-
sonable initial condition can typically be obtained by utilizing 
power flow calculations or state estimation, or engineering 
judgments or experiences. 
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IV. CONTROL APPLICATIONS OF DSE 

Overview of control: Control of different components in a 

power system is performed by controlling the devices which 

govern their power and voltages. For a synchronous generator, 

these devices are the governor (which controls the mechanical 

power input) and the automatic voltage regulator (AVR) (which 

controls the excitation voltage). For CBR, on the other hand, 

these devices are the power electronics converters, which have 

a few control options, for example, maximum power tracking 

and voltage control, real and reactive power control, real power 

and voltage control, and AC/DC voltage control. In addition, 

depending on operating conditions, the controls can switch to 

low voltage ride through logic, storage control, etc. Since syn-

chronous generator controls are slower than converter controls, 

DSE must provide feedback to the controllers on a commensu-

rate time scale. DSE operating at a cycle scale can meet the re-

quirements of controllers for synchronous machines and con-

verter control. For other applications such as protection and as-

sociated controls, DSE needs to operate at faster time scales and 

typically uses SV measurements. An overall scheme for imple-

mentation of DSE-based control of power systems is shown in 

Fig. 1. It should be noted that the “traditional phasors” assume 

steady state operation of the system, while the “synchrophasors” 

obtained from PMUs are time synchronized phasors with fast-

varying amplitudes and phase angles, which can better describe 

the dynamics of the system [20]. However, the synchrophasors 

are still based on the framework of phasors, which assumes si-

nusoidal-shape waveform, but with a much faster update rates 

(hundreds of samples per second). By contrast, SV measure-

ments directly utilize measured values from the waveforms at 

each sample, with full description of measurement transients. 

Thus, PMU measurements and SV measurements are two op-

tions for controls with fast time scales. 
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Fig. 1. Example implementation of DSE-based control architecture  

A. DSE-Based Control using PMU Measurements 

1) DSE-based Control of Rotor Angle Stability 
As synchronous generators form the backbone of today’s AC 

power system, they are the main points of control-actuation and 
can be directly controlled using excitation systems & governors. 
Other important actuators are the transmission paths, controlled 

using FACTS devices and transformer taps. DSE-based control 
design can be centralized, decentralized, or hierarchical (Fig. 2). 

 
Fig. 2. A flowchart of DSE-based control decision and design pro-

cess for rotor angle stability 

Centralized and Hierarchical Control 
In DSE-based centralized control, measurements from across 

the system are transmitted to a central location, and DSE for the 
whole system is performed [21]-[23], as shown in Fig. 2. A con-
trol law is then obtained using the system model and the dy-
namic state estimates via various control techniques, including 
L∞ robust control that models disturbances as L∞ bounded inputs 
and finds a state-feedback control law using nonconvex optimi-
zation [21]; linear quadratic regulator (LQR) where the quad-
ratic costs of control and state-deviation are optimized with 
pole-placement for crucial system eigenvalues using state-feed-
back [22]; and residue-based control, where pole-placement is 
explicitly done using power system stabilizers (PSSs)/power 
oscillation dampers [23]. Some limitations of centralized con-
trol that restrict its field implementation are: communication la-
tencies can impact performance, an accurate model of the whole 
system at the central location is required, and communication 
failures and bottlenecks can create serious issues.  

A partial solution to the problems of centralized control is 
hierarchical control in which decentralized DSE is performed at 
machine locations and the estimates are sent to a central loca-
tion (or PMU measurements are sent to a central location for 
performing DSE in a decentralized manner using a federation 
of estimators [24]). Global control laws are then developed at 
the central location along with local control laws for decentral-
ized locations. The local and global controls form the two levels 
of hierarchical control, as shown in Fig. 2, and are implemented 
using actuators, such as FACTS devices and excitation systems 
of synchronous generators [25]-[26]. In the worst-case scenario, 
such control can also be used to shed run-away generators on 
the fly to prevent instability [27]. The hierarchical control ap-
proach also requires knowledge of a complete system model at 
the central location. 

Decentralized Linear Control 
In decentralized control, each generator is controlled inde-

pendently, requiring only local measurements for both DSE and 
control. By controlling local machine dynamics, some aspects 
of global system dynamics may also be controlled. This elimi-
nates communication requirements, but in many cases, it suffers 
from limited system-level controllability/observability. As a re-
sult, special techniques are needed to establish system stability. 
Both linear and nonlinear methods can be used to implement 
such control. 
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Linear methods of DSE based decentralized control are valid 
only for small-signal dynamics [6], and are similar to the tradi-
tional PSSs: in PSSs the control parameters are tuned offline, 
while DSE-based methods do so online. Such a ‘dynamic tun-
ing’ of control parameters can be done using various methods, 
such as decentralized L∞ [21], in which a convex approximation 
of centralized L∞ formulation ensures that only local machine 
states are needed for control; and extended LQR [28], in which 
the costs of voltage phasors (as exogenous inputs) are included 
in the LQR costs to find control gains. A drawback of linear 
methods is that the asymptotic stability of the whole system 
cannot be guaranteed. However, this is usually not an issue as 
linear methods are applicable only for small disturbances, 
which usually do not alter the asymptotic stability.  

Another linear control approach is to use data-driven DSE, 
where local measurements are used to find a linear Koopman 
predictor [14] to mimic system dynamics, which is then used to 
perform DSE (similar to an observer) and to design model pre-
dictive control (MPC). The estimated rotor speed of each gen-
erator is used as a feedback signal in the MPC for excitation 
control. To build the Koopman predictor, the data of all the 
states and measurements are collected in matrixes X and Y, re-
spectively, for different trajectories of the system, while inputs 
are collected in matrix U. Lifting radial basis functions (RBFs), 

, are used for lifting X and Y, and are defined as follows 
(with the centers  obtained randomly from uniform distribu-
tion in ) [14]:

 
After data lifting, extended dynamic mode decomposition is 
used to compute the lifted matrices, which represent the pre-
dicted model used to design the MPC controller. The lifted ma-
trices (A, B, C) are the solution to the following optimization 
problem [14], with  and  denoting the lifted states and 

measurements, respectively, and U denoting the inputs.  

 

Fig. 3 shows that the proposed Koopman MPC (KMPC) pro-
vides a much better oscillation damping performance as com-
pared to the classical PSS, after a 100 ms symmetrical three-
phase fault at the infinite bus in a single machine infinite bus 
system (  denotes the rotor speed of the machine, while Vt de-
notes its terminal voltage). This example uses a highly accurate 
Koopman model trained with random excitations, with dimen-
sion N=108 (8 physical states plus 100 RBFs) [14]. System tra-
jectories are generated through simulations after applying ran-
dom control signal inputs to generate the trajectories. The con-
trol input for each trajectory is selected randomly from uniform 
distribution in [-1,1]. The parameters for the two-stage lead-lag 
PSS with a washout filter used in this example are (parameters 
found using the standard root-locus method [29]): KPSS=5.2450, 
T1=0.5603, T2=0.0145, T3=0.6614, T4=0.0415, TW=10. 

 
Fig. 3. Rotor speed response of KMPC vs PSS 

Decentralized Nonlinear Control 
Nonlinear control methods are needed to ensure the stability of 
the system against large disturbances, i.e. when a linear approx-
imation of the system is no longer valid. These methods either 
find a partially linear transformation of system dynamics, called 
feedback linearization [30]-[31], or find a positive scalar with a 
negative time derivative, called a Lyapunov function [32]-[33]. 
Feedback linearization is easier to formulate and use than Lya-
punov functions, but the latter has better asymptotic stability 
characteristics. In [30], detailed generator modeling has been 
used to implement feedback linearization based excitation con-
trol to ensure transient stability, while [31] considers detailed 
load modeling for the same. In [32], a Lyapunov function is 
constructed for excitation and governor control, and [33] pro-
poses an optimal Lyapunov formulation for excitation control 
and uses neural networks for computational efficiency.  

Although nonlinear control works well even for small dis-
turbances, its control costs (given by the time integral of a 
weighted sum of the squares of control inputs) are much higher 
than the linear control costs. Hence, it is practical to activate 
nonlinear control only for large disturbances. Based on this idea, 
a hybrid decentralized control is proposed in which RoCoF es-
timation is used to infer if a large disturbance has occurred. To 
do this, the DSE-based RoCoF estimate obtained using [34] is 
multiplied with the machine’s inertia to get a switching signal: 
if the absolute value of this signal is greater than a predefined 
value (say 0.5 p.u.) for two AC cycles, then the control is 
switched to the nonlinear control given in [30]. Control is 
switched to the linear control given in [28] only if the switching 
signal stays within ±0.5 p.u. continuously for 5 s.  

The comparison of performances of the hybrid decentralized 
control and classical PSS control is shown in Fig. 4. Test system 
model, simulation conditions, and controller parameters are 
same as in [30]. The test system starts from steady state, and at 
t = 1s a small disturbance takes place in form of a step load 
change by doubling the load on bus 53. At t=20s, a large dis-
turbance takes place in form of a solid three phase fault on bus 
54, which is cleared after 200 ms by opening of circuit breakers 
on the line 54–53. The difference between rotor speeds of ma-
chines 1 and 16 ( ) has been plotted in Fig. 4 corre-
sponding to the two control methods. It can be seen that hybrid 
control can ensure both small-signal stability and transient sta-
bility of the system (Fig. 4), and exhibits both linear and non-
linear control properties.  

 
Fig. 4. Control performance of decentralized hybrid-control 

2) DSE-based Control of Frequency Stability  
Unpredictable load fluctuations, intermittency due to sto-

chastic generation, and random system disturbances may result 
in continuous fluctuations in system frequency and tie-line-
power exchanges causing them to deviate from their nominal 
values. These variations are corrected by governor-based load 
frequency controller (LFC) action [35]. The performance of 
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LFCs is significantly affected by the inherent governor dead-
band (GDB) and generation rate constraint (GRC) [36]-[38]. In 
contrast, DSE-enabled LFC [39] (Fig. 1) is not affected by the 
GDB or GRC and uses PMU measurements to derive the auxil-
iary signal for the governor loop. However, communication im-
pediments hinder the applicability of such LFCs. To address 
this issue, it is proposed that traditional LFCs should be assisted 
by a supplementary stabilizer, in which turbine-governor dy-
namics are estimated using decentralized DSE to derive the 
control signal. This improves the frequency stability margins 
compared to observer-based conventional LFCs (as in [40]) and 
is illustrated in Fig. 5.  

 
Fig. 5. Frequency Stability: DSE-Stabilizer vs conventional LFC 

Fig. 5.(a) depicts the frequency response in Area 1 of the 
IEEE 10 machine 39 bus system (system details are as in [41]) 
following a stepped load increment of 2% of load at Bus 15 at 
t=10s followed by a decrement of 2.5% at t=110s. Fig. 5.(b) 
depicts the frequency response for the system under fluctuating 
wind power output which was simulated by considering a real-
istic wind speed profile (please see [37] and [38] for the details 
of wind modelling). The details of turbine and governor model, 
including nonlinearities like GDB and GRC, are given in Ap-
pendix of [36]. The auxiliary frequency control law uses turbine 
states (valve opening, turbine power and reheater output), 
which are estimated through DSE [36], as inputs to derive the 
corrective control signal. The gain vector for this control signal 
is obtained by modelling the stochastic generation and load per-
turbations as unmatched perturbations and solving the resulting 
nonlinear equation following the same procedure as detailed in 
[42]. Since the time evolution of the governor states is relatively 
slow, the estimated states need to be supplied to the auxiliary 
stabilizer at a slower rate (10Hz or less) compared to reporting 
rate of the PMUs (100Hz or above) using a zero-order hold. 

The response in the Fig. 5.(a) illustrates that the stabilization 
time of the frequency improves by many fold (about 3 times)  
via the DSE-enabled supplementary stabilizer in the event of 
stepped load changes. In the event of continuous parity between 
generation and load due to stochastic nature of renewables, the 
frequency excursions are reduced significantly by employing 
the DSE enabled stabilizer compared to traditional LFC as il-
lustrated by Fig. 5.(b). Therefore, DSE-enabled frequency sta-
bilizers can help in improving the frequency control indices 
manifold. 

3) DSE-based Control of Voltage Stability  
Real-time voltage instability detection and control methods 

that are the best candidates to take advantage of DSE are those 
that use snapshots of evolving system trajectories, captured ei-
ther by dedicated measurement/communication system or by a 

tracking state estimator [43]-[45]. In principle, those methods 
can use the system snapshots provided by a DSE giving access, 
for instance, to the excitation system status of generators 
(namely: is the generator controlling its voltage or is it under 
field or armature current limit?) and system frequency. The 
same holds for other voltage controlling components such as 
static VAr compensators or STATCOMS. Long-term voltage 
instability detection and control can use originally proposed ap-
proaches (like sensitivities in [43] and modal analysis in [45]). 
In addition to the dynamic states, the network state and topol-
ogy are required to monitor, detect, and control voltage insta-
bility. In this respect, the local DSE approaches discussed in [1] 
are combined with network state estimation, which can be fully 
based on PMUs or multi-rate measurements [44]. In principle, 
for long-term voltage instability, the system state can be up-
dated at low rates (less than 10 times per second). One of the 
advantages of DSE is its ability to provide full state estimates, 
thus enabling full-state feedback MPC controllers [46]. 

An example of emergency control against long-term voltage 
instabilities [47], which can be adapted to take advantage of 
DSE outputs and be used for long-term instability detection, is 
illustrated in Fig. 6.  

 
Fig. 6. A framework for two-level long-term voltage stability (VS) 

monitoring, instability detection, and emergency control   

 It is a two-level scheme. The upper level is in charge of wide-
area monitoring, while the lower level controllers provide re-
medial actions such as Load Shedding (LS) or modified Load 
Tap Changer (LTC) control. In an emergency voltage situation, 
the upper level relies on the voltage instability detection method 
of [43] (DSE can replace the dedicated PMU measurements 
proposed in[43]) and provides the lower-level controllers with 
minimum transmission voltages to maintain. Those voltages 
correspond to the point where long-term voltage instability is 
detected [47]. 

In terms of short-term voltage instability detection and con-
trol, the voltage control statuses of synchronous generators or 
compensators are crucial information. The phenomenon of con-
cern is faster and a DSE used for this purpose must provide the 
system dynamic states at a high rate (10 to 60 times per second); 
a PMU-based network state estimation appears to be mandatory 
for this application.

Increased penetration of grid-connected CBRs (particularly 
when connected to weak grids) brings concerns to voltage in-
stability (both long- and short-term). This requires even more 
rigorous metering infrastructure and DSE should use a detailed 
model with the full complement of state variables for the CBRs 
to solve voltage instability problems. 
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4) DSE for CBR Control  
The intermittent and asynchronous nature of variable CBRs, 

mainly wind and solar, poses several pressing challenges in to-
day’s energy systems research [6][10], especially for CBR-DSE 
and control. Several methods for DSE based control of CBRs 
have been proposed in the literature. A UKF-based DSE is de-
veloped to estimate doubly-fed induction generator (DFIG) flux 
dynamics and this allows for the development of a flux estima-
tion based control scheme [48], which achieves better fault re-
covery response than traditional control methods. In [49], DSE 
has been used to estimate the electromechanical dynamics of a 
DFIG and the estimated states have been used to derive the sup-
plementary signal for damping of electromechanical oscilla-
tions (Fig. 1). DSE-based sliding mode control for DFIG-
integrated power systems is developed in [50] for maximum en-
ergy extraction and power quality enhancement. The idea is fur-
ther extended to the DSE-based frequency restoration method 
considering solar irradiance variations [51]. DSE based control 
can also be used to damp sub-synchronous oscillations in series-
compensated lines with wind generation [52]. 

B. DSE-based Control using SV Measurements 

Traditional generator controls are mostly decentralized as the 
local frequency and voltage information acts as a medium to 
bring the information of the rest of the grid to the local genera-
tor. Modern power systems are evolving with a lower inertia 
and more complex transients with CBRs. In this case, controls 
with local frequency and voltage information may not be suffi-
cient; remote side information such as frequency, RoCoF, and 
waveform distortion can also help minimize the transients and 
prevent damage/shut-down of converters during disturbances. 
However, remote side information usually requires communi-
cation channels, resulting in increased cost and compromised 
reliability of the system. With the help of SV measurements and 
the accurate time-domain transmission line model, DSE can ef-
fectively estimate the voltages and currents at the remote side 
of the transmission line using local information only, without 
any physical communication channels between the two termi-
nals of a transmission line [53]-[54]. Afterward, remote side in-
formation such as frequency, RoCoF, and waveform distortion 
is extracted from the estimated voltages and currents and is uti-
lized as the input to CBR control. Fig. 7 depicts an example of 
a DSE-based converter control system using SV measurements.  

 Line Dynamic 
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DSE Based Control using Sampled Value Measurements

Line of interest
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CTs

Physical laws

DSE

AlgorithmSampled Value 
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Remote Sides

Merging 

UnitsWTS
Converters

Local & Remote Side Info for Control

 
Fig. 7. DSE based converter control system using SV measurements 

In this example, the local voltage and current SV measure-
ments are first obtained via potential transformers (PTs), cur-
rent transformers (CTs), and MUs. Next, using the DAEs of the 
line of interest, DSE estimates the dynamic states of the system, 
including SV voltages and currents at the remote side. Finally, 
the frequency and the RoCoF at the local and remote sides are 

extracted from the estimated SV measurements. These are fed 
into the local converter controller to initiate supplementary con-
trol using local and remote frequency and RoCoF to minimize 
transients during system oscillations and keep the converter 
synchronized with the system. Note that the remote side fre-
quency information could also be approximated using phasor 
domain methods [55]. In addition, estimated SV states of the 
system can also be used for other applications such as fast con-
trol of converters, harmonics filtering, etc. 

V. PROTECTION APPLICATIONS OF DSE 

When a fault occurs on power system components, protective 
relays need to immediately operate, to isolate the faulty compo-
nents, minimize the power outage, and ensure the safety of hu-
man beings and the overall power system. Protective relays are 
evolving with improved reliability. However, statistically, the 
industry in the U.S. and abroad are still experiencing around 10 
percent misoperation on average [56]. These are due to limited 
measurements, mis-coordination among relays, or faults that 
are hard to be quickly and reliably detected, such as high im-
pedance faults, faults near neutrals, etc. In addition, most pro-
tective relays are based on fundamental frequency measure-
ments, which limit their operational speed as well as applicabil-
ity to DC systems. The proliferation of CBRs has also generated 
new challenges for legacy protection systems. Most relay set-
tings are fixed; but with reduced system inertia, the settings 
need adjustment to distinguish stable and unstable swings. DSE 
based protection provides a new approach to deal with these 
challenges. DSE is a powerful tool in tracking power system 
transients (including electromechanical and electromagnetic 
transients) and therefore enables protective relays with im-
proved operational speed, sensitivity, and reliability. 

A. DSE-based Protection using PMU Measurements 

1) Out-of-step Protection using Direct Stability Assessment 
DSE for electromechanical dynamics has been used to mon-

itor the stability of generators and to detect instability when it 
occurs. This provides better system protection for stability. Spe-
cifically, generator instability is a serious problem for power 
systems; generators must be protected against this condition; 
out-of-step (OOS) relaying is used to detect and protect the gen-
erator when it spins into instability. Present out-of-step protec-
tive relays typically monitor the apparent impedance at the ter-
minals of a generator. When instability occurs the impedance 
moves from the right-hand side of the impedance diagram to the 
left-hand side. Upon this detection, the relay will schedule to 
trip the generator when the generator swings another 120 to 150 
degrees, which will minimize the transients in the breaker (tran-
sient recovery voltage) and allow the reliable opening of the 
breaker. Because of this timetable (i.e. detection of the instabil-
ity and then a delay for favorable conditions to trip the genera-
tor), the period during which the generator experiences severe 
current flow due to the oscillation is long. 

A new DSE based protection method has been introduced to 
detect the onset of instability much faster than the impedance-
based approach described above [57]-[58]. The basic idea is 
quite simple: DSE is used to estimate the full dynamic state of 
the generator and the immediate network to which the generator 
is connected. The DSE provides the speed of the generator [55], 
the frequency, and RoCoF at each bus of the system. A simple 
calculation provides the center of oscillation (CoO). The CoO 
is characterized by the fact that the frequency at that point does 
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not oscillate (it may be linearly changing with time) and the fre-
quency at the nearest two buses oscillates with approximately 
180 degrees out of phase. Knowledge of the generator speed 
and the location of the CoO enables the computation of the total 
energy of the generator, 

   (2) 

where ,  and  are the total energy, potential energy, 

and kinetic energy of the generator, respectively. , 
 is the per-unit inertia constant,  is the generator position,  

is the rotor speed, and  is the synchronous speed. 
The stability of the generator is determined by the total en-

ergy using classical Lyapunov’s theory. The theory states that 
when the total energy reaches the value of the peak potential 
energy (stability barrier) the generator becomes unstable. The 
dynamic state estimator provides the total energy of the gener-
ator as well as the potential energy function and asserts insta-
bility when the total energy reaches the stability barrier. It turns 
out that the assertion of generator instability occurs before the 
generator has swung away from the system and therefore can 
be tripped immediately, avoiding severe transients of an unsta-
ble generator. Next, we present a simplified example to illus-
trate the performance of this method. 

Generator 
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         Y

Y         

Y         
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G3: 25kV, 200 MVA
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115kV, 18 miles

115kV, 28 miles

 
Fig. 8. Single-line diagram of the example test system 

The example test system is illustrated in Fig. 8. It consists of 
three generators, three transformers, six transmission lines, five 
loads, and 12 breakers. The parameters of the generators, trans-
formers, lines, etc. are typical. We consider a fault on the 115 
kV, a 38-mile-long line that is successfully cleared by the pro-
tection system of the line. The fault disturbs the system and os-
cillations are triggered. 

Fig. 9 illustrates the results of the DSE and computed trajec-
tory of the impedance of the generator as “seen” at the terminal 
of the generator. The trajectory is superimposed on the charac-
teristics of an OOS legacy protective relay to compare the DSE 
based protection results with the legacy protection. The appar-
ent impedance moves to a value very close to the origin upon 
fault initiation at time t=1 sec. During the fault, as the generator 
and the system oscillate, the trajectory moves. The fault is 
cleared 0.25 sec after the occurrence of the fault (i.e. t=1.25 sec) 
by disconnecting the faulted transmission line. For this system, 
the critical clearing time is 0.2 sec. This means that the genera-
tor enters instability at time t=1.2 sec. The legacy relay will 
alarm the condition at time t=1.43 sec and will assert instability 
at t=1.51 sec while the generator rotor is at 216.2 degrees. At 
this angle, the generator cannot be tripped immediately (due to 
concerns over transient recovery voltage at the generator 
breaker and possibility of restrike) but need to wait until the 
phase angle goes to a smaller value. The DSE estimates the po-
tential energy after the clearing of the fault and due to compu-
tational latencies, it asserts instability at t=1.29 sec when the 
generator rotor is at 118.4 degrees out of phase with the center 
of oscillation. At this phase angle, the generator can be tripped 
immediately, avoiding any additional stress on the generator. 

 
Fig. 9. Instability assertion time via DSE and comparison to legacy 

OOS Protection 

2) Adaptive OOS Relay Settings Approach 
Adaptive OOS settings based on dynamic model parameters 

estimation preserves existing industrial practice, and it is as-
sisted by DSE for electromechanical dynamics. The OOS set-
tings are mainly influenced by the direct axis transient reac-
tance, quadrature axis speed voltage, and generator inertia. As 
seen by the relay, these parameters vary with time in the modern 
grid architecture with high penetration of power electronic in-
terfaced technologies. The approach reported in [59] can be 
used to provide this real-time information for OOS relay set-
tings recalculation. DSE is used to estimate dynamic model pa-
rameters which are used to recalculate the setting of OOS to 
adapt the relay sensitivity towards the generator instability with 
the system operating condition before the disturbance. This ap-
proach has been reported in [60]. In the paper, the settings of 
OOS are recalculated based on the extended equal area criterion 
method and demonstrated to be more effective OOS condition 
detection and protection. 

B. DSE-based Protection and Fault Location Using SV meas-
urements 

1) DSE-based Protection Using SV Measurements 
Compared to the synchrophasor measurements from PMUs, 

synchronized SV measurements from state-of-the-art MUs cap-
ture system dynamics in time domain. DSE can be utilized to 
extract the system information embedded in SV measurements, 
to provide reliable detection of fault conditions that are not re-
flected by fault current levels, distortion of waveforms and 
characteristics of fault currents. In addition, the use of SV meas-
urements provides detection of faulty conditions much faster 
than legacy protection functions (such as overcurrent protection, 
distance protection, current differential protection, etc.), which 
usually require collection of enough data to compute phasors, 
resulting in fault detection delays. 

DSE based protection methods using SV measurements have 
been introduced in [8]. These methods were inspired from the 
widely adopted current differential protection. The latter exam-
ines whether the phasor domain KCLs of the protection zone is 
satisfied; many but not all internal faults will violate KCL al-
lowing differential protection to detect these faults and trip the 
component. By contrast, DSE based protection examines 
whether all the physical laws of the specific protection zone are 
satisfied and an internal fault is detected with any violation of 
any physical law. Depending on the protection zone, physical 
laws may include KCLs, KVLs, motion laws, thermodynamic 
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laws, etc. The primary improvements of the DSE based protec-
tion compared to the existing protection approaches (such as 
current differential protection) include: 1) speed: DSE based 
protection approach utilizes time-domain SV measurements in-
stead of phasor/spectral domain synchrophasor measurements, 
which enables faster fault detection; 2) applicability to DC sys-
tems; 3) DSE based protection approach checks all the physical 
laws (instead of KCLs only), and therefore can detect internal 
faults with improved sensitivity and reliability. Note that cur-
rent differential protection fails to detect some faults, for exam-
ple, inter-turn faults in transformers, etc. 

A systematic procedure for DSE-based protection is as fol-
lows: 1) building the dynamic model that encapsulates all the 
physical laws of the protection zone in the time domain; the 
model uses differential and algebraic equations (DAEs) that 
could include electromechanical, electromagnetic, and thermal 
transients; the model represents a high fidelity time-domain 
representation of the protection zone; 2) applying DSE for esti-
mating dynamic states and checking the consistency between 
the available measurements and the dynamic model. Low con-
sistency indicates that some of the physical laws are violated 
and therefore an internal fault is detected. The validity of the 
DSE based protection comes from the following key ad-
vantages of DSE: 1) accurately tracking the dynamics of the 
system; 2) systematically checking the consistency between the 
measurements and the dynamic model through the residuals, 
and 3) effectively filtering out measurement errors. DSE based 
protection schemes have been applied to transmission lines 
[61]-[62], microgrids [54], transformers [63], etc. With in-
creased security and dependability compared to legacy methods, 
the DSE based protection can be utilized as the main protection 
of the component of interest (protection zone). Additionally, the 
DSE based protection is capable of detecting bad data through 
centralized substation protection (details in section V.B.3). 

The implementation of an example DSE based protective re-
lay with a two-terminal transmission line as the protection zone 
is shown in Fig. 10. Due to space limitations, the figure only 
demonstrates the relay on the left terminal of the line, with the 
inter-trip signal connected to the left side breaker (the relay on 
the right terminal is equivalent).  

 Protection Zone 

Dynamic Model

DSE Based Protective Relay Using SV Measurements

Line under protection
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Fig. 10. Example DSE based protective relay using SV measurements 

at the left terminal, with a 2-terminal line as the protection zone 

The two-terminal voltage and current SV measurements are 
obtained through PTs, CTs, and the MUs. The dynamic model 
of the protection zone is established by describing all the phys-
ical laws of the line under protection using DAEs. Afterward, 
DSE combines the dynamic model and the SV measurements, 
solves the dynamic states of the system, and computes the con-
sistency between the dynamic model and the measurements (via 
the well-known chi-square test). Finally, the trip signal is issued 
to open the circuit breaker of the transmission line if an internal 

fault is detected. Using such an approach high impedance, or 
arcing faults are easily detected. A similar approach can be used 
to design smart auto-reclosure procedures [64]. 

2) DSE-based Fault Location Using SV Measurements 
Fault Location is another important function when the fault 

occurs in a protection zone. Specifically, the exact fault location 
should be determined to minimize the time spent searching for 
the fault location by repair crews, yielding reduced power out-
age time and operating costs. With the development of fast-trip-
ping techniques of protective relays, the time window of avail-
able measurements during faults for fault location is further 
shortened to the order of milliseconds. In addition, during this 
short time window, the available measurements usually experi-
ence severe transients. This leads to compromised accuracy of 
calculated phasors and therefore increases the fault location er-
rors for legacy phasor domain-based fault location approaches. 

To deal with these challenges, DSE based fault location ap-
proaches using SV measurements have been proposed in [65]-
[67]. They were inspired by the widely adopted traditional 
phasor domain fault location methods. Traditional phasor do-
main methods build the relationship between the available 
phasor domain measurements and the location of the fault using 
algebraic equations, which are afterward solved to identify the 
location of the fault. DSE based fault location methods first de-
scribe the relationship between the available time-domain 
measurements and the location using an accurate time-domain 
dynamic model of the transmission line with fault. The time-
domain model can also include the model of the arc [68]. The 
dynamic model is a set of DAEs, which typically include in-
stantaneous voltages and currents through the transmission line 
as dynamic states of the system, and also the location of the 
fault as an extended state. Then, DSE is applied to systemati-
cally estimate the location of the fault. The primary advantages 
of DSE based fault location approach over traditional phasor 
domain approaches are 1) the DSE based methods make full use 
of information embedded in SV measurements and systemati-
cally filter out measurement errors; 2) time-domain algorithms 
typically possess faster convergence compared to phasor do-
main algorithms; 3) time-domain algorithms are not sensitive to 
complex harmonics distortions and are capable of accurate 
tracking severe dynamics during faults [68]. 

3) Hidden Failure Detection of Protective Relays using DSE 
DSE-based protection schemes have also been applied at the 

substation level to achieve centralized substation protection 
[69], to detect compromised devices such as MUs and relays. 
The main idea is to utilize all the measurements in a substation, 
resulting in high data redundancy; this enables surgical detec-
tion of bad/missing data and validation of the source of anoma-
lies (i.e. actual fault in the system, instrumentation faults, bad 
data injection cyber-attacks, etc.) via systematic hypothesis 
testing. Instrumentation faults (blown fuses, shorted CT, incor-
rect instrumental transformer ratios, etc.) known as hidden fail-
ures are a real problem in any protection system. DSE offers 
another advantage: upon detecting a hidden failure and bad data, 
the compromised data can be replaced in real-time by estimated 
values to ensure the resilient and reliable operation of the pro-
tection system. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper has explored the usefulness and the advantages of 
DSE on many control and protection applications for modern 
power systems. It has been shown how DSE-based solutions 
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comprehensively respond to challenges in the control and pro-
tection of modern power systems holistically. In addition, sev-
eral gaps in the existing literature have also been identified and 
several new DSE-based control and protection methods have 
been proposed as possible solutions.  

Future research on DSE applications on control and protec-
tion are categorized into the following key areas: 

 Role of AI/machine learning: DSE enables the validation 
and calibration of system dynamic models, but there are still 
scenarios that good calibrations cannot be achieved due to the 
lack of high-quality large disturbances. As a result, the dy-
namic model may create deficiencies, yielding unreliable con-
trol, and protection. By mining the historical operational char-
acteristics, advanced AI and machine learning tools may be 
able to compensate for these deficiencies. This further allows 
us to develop deep reinforcement learning or advanced MPC-
based control algorithms that interact with the compensated 
DSE model outputs for system protection, control, and stabil-
ity enhancement. 

 Enhancement of DSE and Observer: Although the ad-
vantages and disadvantages of observer and DSE have been 
discussed, there is still a need to develop computationally ef-
ficient and robust alternatives in terms of handling sensor 
quality, model uncertainties, and nonlinearities. The practical 
implementation challenges for them need to be further inves-
tigated as well when designing state-feedback controls. 

 Management of distributed energy resources (DERs): In 
cases where fully decentralized DSE-based protection and 
control for all DERs do not cover all protection and control 
needs, as in cases of grid forming converters, multi-agent dis-
tributed DSE-based approaches need to be investigated, so as 
to share and transmit key information for frequency and volt-
age control, and protective actions. 

 DSE based control for inertia emulation: One possible so-
lution for the decreasing system inertia due to increase in 
CBRs can be through estimation of the states as well as the 
frequency, rate of change of frequency of the CBRs using 
DSE. These estimates can be utilized to control the power out-
put of the CBRs in an intelligent manner such that the CBRs 
can provide inertial response to the grid and, to some extent, 
also participate in its frequency control. 

 DSE based protection with high penetration of CBRs: For 
systems with high penetration of CBRs, protection systems 
encounter additional challenges with the extremely fast elec-
tromagnetic transients. Therefore, DSE tools should be care-
fully validated to ensure their capability of tracking electro-
magnetic transients in those conditions. In addition, parameter 
identification of CBRs using DSE can also improve the visi-
bility of the system and therefore benefit the protection design. 
Moreover, the computational complexity of DSE should be 
considered to ensure real-time protection operation. 

 DSE-based optimal operations of distributed microgrid: 
DSE has already been used for estimating and controlling so-
lar power sources, wind energy power sources, traditional 
generation units, and monitoring and estimation of batteries. 
Aided by MPC and data-driven methods, the applications of 
DSE can be extended to microgirds stability and operation, 
synergistically achieving optimal operations of renewable en-
ergy microgrids. Overall, this will help supply electricity in a 
economic, reliable and sustainable manner. 

 Design of fault tolerant and reconfigurable controls: It is 
reasonable to expect that DSE become a key enabler to design 

fault tolerant and reconfigurable controls particularly for 
long-term phenomena (like long-term voltage instability). A 
good starting point is to take advantage of similar and proven 
approaches from other engineering fields [70]. The ability of 
DSEs to detect and handle bad measurements (failure) and to-
pology changes (errors in the model) would further simplify 
this problem focusing on control failures. 

 DSE enabled control of energy storage state-of-charge for 
grid scale applications: Reliability, longevity, and efficiency 
of electrochemical energy storage systems like battery storage 
deployed for grid scale applications, such as intermittency 
mitigation, frequency control etc., can be enhanced by utiliz-
ing its internal states like state-of-charge (SoC) in modulating 
the flow of energy from/to the energy storage via control of 
its power conditioning circuit. DSE can utilize the terminal 
measurements of the energy storage unit to dynamically esti-
mate the SoC (otherwise unmeasurable directly) to ensure op-
timal flow of energy from/to the energy storage system while 
keeping overcharge/over-discharge in check to avoid its deg-
radation thereby prolong its life expectancy. 

 Practical implementation: Practical implementations should 
address issues of response time commensurate with the appli-
cation. DSE applications need to be supported by adequate 
computing resources or distributed to achieve practical and 
acceptable performance in real-time. Many DSE applications 
of control and protection lack examples of their practical im-
plementation in the field. Research topics include: How to en-
sure interoperability with currently used tools of control and 
protection? How to make them compatible with the current 
control room environment? What level of centralized or dis-
tributed computing is needed? What response times are desir-
able? What information should be communicated between re-
mote sites and control rooms? What training should be devel-
oped and provided to power engineers? And what new stand-
ards are needed? 

ACKNOWLEDGMENT 

The authors would like to thank Dr. Yingchen Zhang, Dr. 
Shahrokh Akhlaghi, and Dr. Anjan Bose for their valuable 
discussions. 

REFERENCES 

[1] J. Zhao, et al., “Power system dynamic state estimation: motiva-
tions, definitions, methodologies, and future work," IEEE Trans.
Power Syst., vol. 34, no. 4, pp. 3188-3198, July 2019.

[2] J. Zhao, et al., ''Roles of dynamic state estimation in power sys-
tem modeling, monitoring and operation," IEEE Trans. Power
Syst., 2020.

[3] N. Hatziargyriou et al., "Definition and classification of power
system stability revisited & extended," IEEE Trans. Power Syst.,
2020.

[4] V. Telukunta, J. Pradhan, A. Agrawal, M. Singh and S. G. Srivani, 
"Protection challenges under bulk penetration of renewable en-
ergy resources in power systems: A review", CSEE Journal 
Power Energy Syst., vol. 3, no. 4, pp. 365-379, Dec. 2017. 

[5] Protection System Misoperation Task Force, “Misoperations re-
port”, NERC Planning Committee, Atlanta, GA, USA, 2014. 

[6] “Stability definitions and characterization of dynamic behavior in 
systems with high penetration of power electronic interfaced 
technologies," IEEE Technical Report, IEEE Power and Energy 
Society, Power System Dynamic Performance Committee, 2020. 

[7] IEC Std 61850, “Communication Networks and Systems in Sub-
stations”, 2003. 



IEEE TRANSACTIONS ON POWER SYSTEMS, VOL., NO., 2021 11 

[8] A. P. Meliopoulos et al., “Dynamic state estimation-based protec-
tion: status and promise," IEEE Trans. Power Delivery, vol. 32,
no. 1, pp. 320-330, Feb. 2017.

[9] “1,200 MW Fault Induced Solar Photovoltaic Resource Interrup-
tion Disturbance Report: Southern California 8/16/2016 Event”,
NERC, Atlanta, GA, June 2017.

[10] Z. Huang, H. Krishnaswami, G. Yuan, and R. Huang, “Ubiqui-
tous power electronics in future power systems”, IEEE Electrifi-
cation Magzine, September 2020.

[11] V. Venkatasubramanian, H. Schattler, and J. Zaborszky, “Fast
time-varying phasor analysis in the balanced three-phase large
electric power system," IEEE Trans. on Automatic Control, vol.
40, no. 11, pp. 1975-1982, Nov. 1995.

[12] S. R. Sanders, J. M. Noworolski, X. Z. Liu, G. C. Verghese, “Gen-
eralized averaging method for power conversion circuits,” IEEE
Trans. on Power Elec., vol. 6, no. 3, pp. 251-259, April 1991.

[13] H. K. Khalil, Nonlinear Systems, 3rd ed., Prentice-Hall, 2002.
[14] M. Korda and I. Mezić, “Linear predictors for nonlinear dynam-

ical systems: Koopman operator meets model predictive control,” 
Automatica, vol. 93, pp. 149–160, Jul. 2018.

[15] M. Nicolai, L. Lorenz-Meyer, A. Bobtsov, R. Ortega, N. Niko-
laev, and J. Chiffer, “PMU-based decentralized mixed algebraic
and dynamic state observation in multi-machine power systems”,
IET Gener. Transm. Distrib., accepted.

[16] J. B. Zhao, L. Mili, "A robust generalized-maximum likelihood
unscented Kalman filter for power system dynamic state estima-
tion," IEEE Journal of Selected Topics in Signal Processing, vol.
12, no. 4, pp. 578-592, 2018.

[17] J. Qi, A.F. Taha, J. Wang, "Comparing Kalman filters and observ-
ers for power system dynamic state estimation with model uncer-
tainty and malicious cyber-attacks," IEEE Access, vol. 6, pp.
77155-77168, 2018.

[18] S. Nugroho, A.F. Taha, J. Qi, "Robust dynamic state estimation
of synchronous machines with asymptotic state estimation error
performance guarantees," IEEE Trans. Power Syst., vol. 35, no.
3, pp. 1923-1935, 2020.

[19] S. Stefani, H. Savant, Design of Feedback Systems, Oxford Uni-
versity Press, New York, 2002

[20] J. A. de la O Serna, "Dynamic phasor estimates for power system
oscillations," IEEE Trans.  Instrumentation and Measurement,
vol. 56, no. 5, pp. 1648-1657, Oct. 2007.

[21] A.F. Taha, M. Bazrafshan, S. A. Nugroho, N. Gatsis, J. Qi, “Ro-
bust control for renewable-integrated power networks consider-
ing input bound constraints and worst-case uncertainty measure,"
IEEE Trans. Contr. Network Syst., 2019

[22] A. K. Singh, R. Singh, B.C. Pal, “Stability analysis of networked
control in smart grids," IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 
381-390, Jan. 2015.

[23] A.M. Ersdal, L. Imsland, K. Uhlen, “Model predictive load fre-
quency control," IEEE Trans. Power Syst., vol. 31, no. 1, pp. 777-
785, Jan. 2016.

[24] A. Paul, I. Kamwa and G. Jóos, "Centralized Dynamic State Es-
timation Using a Federation of Extended Kalman Filters With In-
termittent PMU Data From Generator Terminals," IEEE Trans.
Power Syst., vol. 33, no. 6, pp. 6109-6119, Nov. 2018.

[25] E. Ghahremani, I. Kamwa, “Local and wide-area PMU-based de-
centralized DSE in multi-machine power systems," IEEE Trans.
Power Syst., vol. 31, no. 1, pp. 547-562, 2016.

[26] W. Yao, L. Jiang, J. Wen, Q. H. Wu, S. Cheng, “Wide-area damp-
ing controller of FACTS devices for inter-area oscillations con-
sidering communication time delays," IEEE Trans. Power Syst.,
vol. 29, no. 1, pp. 318-329, Jan. 2014.

[27] A. Paul, I. Kamwa, G. Joos, “PMU signals responses-based RAS
for instability mitigation through on-the fly identification and
shedding of the run-away generators," IEEE Trans. Power Syst.,

vol. 35, no. 3, pp. 1707-1717, May 2020.
[28] A. K. Singh, B. C. Pal, “Decentralized control of oscillatory dy-

namics in power systems using an extended LQR," IEEE Trans.
Power Syst., vol. 31, no. 3, pp. 1715-1728, May 2016.

[29] M.A. Pai, P.W. Sauer, Power System Dynamics and Stability,

Prentice Hall, New Jersey, USA, 1998. 
[30] A. K. Singh, B. C. Pal, “Decentralized nonlinear control for

power systems using normal forms and detailed models," IEEE
Trans. Power Syst., vol. 33, no. 2, pp. 1160-1172, Mar. 2018.

[31] S. Liu, X. Li, D. Chen, “Wide‐area‐signals‐based nonlinear exci-
tation control in multi‐machine power systems", IEEJ Trans. Elec. 
Electron. Eng., vol. 14, pp. 366-375, 2019.

[32] H. Liu, J. Su, J. Qi, N. Wang, C. Li, “Decentralized voltage and
power control of multi-machine power systems with global as-
ymptotic stability," IEEE Access, vol. 7, pp. 14273-14282, 2019.

[33] A. S. Mir, S. Bhasin, N. Senroy, “Decentralized nonlinear adap-
tive optimal control scheme for enhancement of power system
stability,” IEEE Trans. Power. Syst, vol. 35, no. 2, pp. 1400-1410, 
2020.

[34] A. K. Singh, B. C. Pal, “Rate of change of frequency estimation
for power systems using interpolated DFT and Kalman filter,”
IEEE Trans. Power Syst., vol. 34, no. 4, pp. 2509-2517, 2019.

[35] H. Bevrani, Robust Power System Frequency Control. New York, 
NY, USA: Springer, 2009.

[36] P. Bhui, N. Senroy, A. K. Singh and B. C. Pal, “Estimation of
inherent governor dead-band and regulation using unscented Kal-
man filter”, IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3546-
3558, 2018.

[37] C. Nichita, D. Luca, B. Dakyo and E. Ceanga, “Large band sim-
ulation of the wind speed for real time wind turbine simulators,”
IEEE Trans. Energy Convers., vol. 17, no. 4, pp. 523-529, Dec.
2002.

[38] A. S. Mir and N. Senroy, "Self-tuning neural predictive control
scheme for ultra-battery to emulate a virtual synchronous ma-
chine in autonomous power systems," IEEE Trans. Neural Netw.
Learn. Syst., vol. 31, no. 1, pp. 136-147, Jan. 2020.

[39] K. Emami, T. Fernando, H. H. Iu, B. D. Nener, K. P. Wong, “Ap-
plication of unscented transform in frequency control of a com-
plex power system using noisy PMU data” IEEE Trans. Ind. In-
format., vol. 12, no. 2, pp. 853-863, 2016.

[40] H. Trinh, T. Fernando, H. H. C. Iu, K. P. Wong, “Quasi-decen-
tralized functional observers for the LFC of interconnected power 
systems”, IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3513-3514, 
2013.

[41] H. Bevrani, P. R. Daneshmand, P. Babahajyani, Y. Mitani and T.
Hiyama, “Intelligent LFC concerning high penetration of wind
power: synthesis and real-time application,” IEEE Trans. Sustain. 
Energy, vol. 5, no. 2, pp. 655-662, April 2014.

[42] X. Yang, H. He and X. Zhong, “Adaptive dynamic programming
for robust regulation and its application to power systems,” IEEE
Trans. Ind. Electron., vol. 65, no. 7, pp. 5722-5732, July 2018.

[43] M. Glavic, T. Van Cutsem, "Wide-area detection on voltage in-
stability from synchronized phasor measurements. Part I: Princi-
ple," IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1408-1416,
2009.

[44] B. A. Alcaide-Moreno, C. R. Fuerte-Esquivel, M. Glavic, T. Van
Cutsem, "Electric power network state tracking from multirate
measurements," IEEE Trans. Instrumentation and Measurement,
vol. 67, no. 1, pp. 33-44, 2018.

[45] G. K. Morison, B. Gao, P. Kundur, "Voltage stability analysis us-
ing static and dynamic approaches," IEEE Trans. Power Syst., vol. 
8, no. 3, pp. 1159-1171, 1993.

[46] M. Glavic, T. Van Cutsem, “Some reflections on model predic-
tive control of transmission voltages,” 38th North American
Power Symposium, Carbondale, IL, USA, 2006.

[47] B. Otomega, M. Glavic, T. Van Cutsem, "A two-level emergency
control scheme against power system voltage instability," Control
Engineering Practice, vol. 30, pp. 93-104, 2014.

[48] S. Yu, T. Fernando, K. Emami and H. H.-C. Iu, “Dynamic state
estimation-based control strategy for DFIG wind turbine con-
nected to complex power systems," IEEE Trans. Power Syst., vol. 
32, no. 2, pp. 1272-1281, 2016.

[49] A. S. Mir and N. Senroy, “DFIG damping controller design using
robust CKF based adaptive dynamic programming,” IEEE Trans.
Sustain. Energy, vol. 11, no. 2, pp. 839-850, Apr. 2020.

[50] S. Yu, G. Zhang, T. Fernando and H. H.-C. Iu, “A DSE-based



IEEE TRANSACTIONS ON POWER SYSTEMS, VOL., NO., 2021 12 

SMC method of sensorless DFIG wind turbines connected to 
power grids for energy extraction and power quality enhance-
ment," IEEE Access, no. 6, pp. 76596-76605, 2018.   

[51] S. Yu, L. Zhang, H. H. Lu, T. Fernando, K. P. Wong, “A DSE-
based power system frequency restoration strategy for PV-
integrated power systems considering solar irradiance variations," 
IEEE Trans. Industrial Informatics, vol. 13, no. 5, pp. 2511-2518, 
2017.

[52] “Wind Energy Systems Subsynchronous Oscillations: Events and 
Modeling," IEEE PES Wind SSO Taskforce, Technical Report,
PES-TR80, 2020.

[53] A. P. Meliopoulos, V. Vittal, M. Saeedifard, and R. Data, "Stabil-
ity, protection and control of systems with high penetration of
converter interfaced generation", PSERC Publication 16-03,
March 2016.

[54] Y. Liu, A. P. Meliopoulos, L. Sun, and S. Choi, “Protection and
control of microgrids using dynamic state estimation”, Protection
Control Modern Power Syst., vol. 3, no. 31, pp. 1-13, Oct. 2018.

[55] R. Grondin A. Heniche, et al., "Loss of synchronism detection a
strategic function for power system protection", Proc. 2006
CIGRE Session 41 B5-205.

[56] North American Electric Reliability Corporation, “State of Reli-
ability 2016”, May 2016.

[57] E. Farantatos, R. Huang, G. J. Cokkinides, A. P. Meliopoulos, “A
predictive generator out-of-step protection and transient stability
monitoring scheme enabled by a distributed dynamic state esti-
mator," IEEE Trans. Power Del., vol. 31, no. 4, pp. 1826-1835,
Aug. 2016.

[58] Y. Cui, R. G Kavasseri, and S. M Brahma, “Dynamic state esti-
mation assisted out-of-step detection for generators using angular
difference,” IEEE Trans. Power Del., vol. 32, no. 3, pp. 1441–
1449, Jun. 2017.

[59] M. A. M. Ariff, B. C. Pal and A. K. Singh, “Estimating dynamic
model parameters for adaptive protection and control in power
system,” IEEE Trans. Power Syst., vol. 30, no. 2, pp. 829-839,
March 2015.

[60] M. A. M. Ariff and B. C. Pal, "Adaptive protection and control in
the power system for wide-area blackout prevention," IEEE Trans.
Power Del., vol. 31, no. 4, pp. 1815-1825, Aug. 2016.

[61] Y. Liu, A. P. Meliopoulos, R. Fan, L. Sun, Z. Tan, “Dynamic state
estimation based protection on series compensated transmission
lines”, IEEE Trans. Power Del., vol. 32, no. 5, pp 2199-2209, Oct. 
2017.

[62] Y. Liu, A. P. Meliopoulos, L. Sun and R. Fan, “Dynamic state
estimation based protection on mutually coupled transmission
lines," CSEE Journal Power Energy Syst., vol. 2, no. 4, pp. 6-14,
Dec. 2016.

[63] R. Fan, Y. Liu, A. P. Meliopoulos, L. Sun, Z. Tan and R. Huang,
“Comparison of transformer legacy protective functions and a dy-
namic state estimation-based approach”, Electric Power Syst. Re-
search, 2020.

[64] V. Terzija, G. Preston, V. Stanojević, N. I. Elkalashy, and M. Po-
pov, "Synchronized measurements-based algorithm for short
transmission line fault analysis", IEEE Trans Smart Grid, vol. 6,
no. 17, pp. 2639-2648, Nov. 2015.

[65] Y. Liu, A. P. Meliopoulos, Z. Tan, L. Sun and R. Fan, “Dynamic
state estimation-based fault locating on transmission lines”, IET
Gener. Transm. Distrib., vol. 11, no. 17, pp. 4184-4192, Nov.
2017.

[66] R. Fan, Y. Liu, R. Huang, R. Diao and S. Wang, “Precise fault
location on transmission lines using ensemble Kalman filter”,
IEEE Trans. Power Del., vol. 33, no. 6, pp. 3252-3255, Dec. 2018. 

[67] B. Wang, Y. Liu, D. Lu, K. Yue and R. Fan, “Transmission line
fault location in MMC-HVDC grids based on dynamic state esti-
mation and gradient descent”, IEEE Trans. Power Del., 2020.

[68] M. B. Djuric, Z. M. Radojevic, and V. V. Terzija. “Time domain
solution of fault distance estimation and arcing faults detection on 
overhead lines,” IEEE Trans. Power Del., vol 14, no. 1, pp. 60-
67, Feb. 1999.

[69] H. F. Albinali and A. P. Meliopoulos, “Resilient protection sys-
tem through centralized substation protection," IEEE Trans.

Power Del., vol. 33, no. 3, pp. 1418-1427, June 2018. 
[70] A. P. Deshpande, S. C. Patwardhan, S. S. Narasimhan, “Intelli-

gent state estimation for fault tolerant nonlinear predictive con-
trol,” Journal of Process Control, vol. 19, pp. 187-204, 2009.


