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Abstract The dynamic stiffness of a chemically and physically ageing rubber vibration isolator in the audible
frequency range is modelled as a function of ageing temperature, ageing time, actual temperature, time,
frequency and isolator dimension. In particular, the dynamic stiffness for an axially symmetric, homogeneously
aged rubber vibration isolator is derived by waveguides where the eigenmodes given by the dispersion relation
for an infinite cylinder satisfying traction free radial surface boundary condition are matched to satisfy the
displacement boundary conditions at the lateral surface ends of the finite rubber cylinder. The constitutive
equations are derived in a companion paper (Part 1). The dynamic stiffness is calculated over the whole
audible frequency range 20–20,000 Hz at several physical ageing times for a temperature history starting at
thermodynamic equilibrium at +25 ◦C and exposed by a sudden temperature step down to −60 ◦C and at several
chemical ageing times at temperature +25 ◦C with simultaneous molecular network scission and reformation.
The dynamic stiffness results are displaying a strong frequency dependence at a short physical ageing time,
showing stiffness magnitude peaks and troughs, and a strong physical ageing time dependence, showing a large
stiffness magnitude increase with the increased physical ageing time, while the peaks and troughs are smoothed
out. Likewise, stiffness magnitude peaks and troughs are frequency-shifted with increased chemical ageing
time. The developed model is possible to apply for dynamic stiffness prediction of rubber vibration isolator
over a broad audible frequency range under realistic environmental condition of chemical ageing, mainly
attributed to oxygen exposure from outside and of physical ageing, primarily perceived at low-temperature
steps.

Keywords Dynamic stiffness · Vibration isolator · Chemically and physically ageing · Waveguide ·
Mode-matching

1 Introduction

Vibrations from sources such as engines, machines and fans frequently cause unwanted emission of noise
while transmitting into receiving structure. Noise is generated by structure-borne sound, that is, vibrations in the
audible frequency range that connects to surrounding air at surfaces receiving the transmitted vibrations from the
source through the structure. The ability to reduce noise emission is a key market discriminator for presumptive
consumers of devices containing any vibration source, and a simple measure is to decouple the source from
receiving structure by mounting it upon vibration isolators. Vibration isolators are frequently made of rubber
due to its high elasticity and moderate material damping and the possibility of designing rubber vibration
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isolators with desirable properties along with their low need of maintenance. The basic principle of vibration
isolation is to provide mechanical mismatch between source and receiving structure, the mismatch acting as a
mechanical mirror, reflecting vibrations backwards to the source while minimizing transmitted vibrations and
thus the noise emitted. As a general rule of thumb, sources and receiving structures are hard, thus requiring a
soft vibration isolator for appropriate vibration transmission reduction; the softer the vibration isolator is, the
better is the attenuation. However, vibration isolators also offer stability and convey the static load of source
resulting in a strongly constrained multi-dimensional design parameter space in the attenuation optimization
procedure, thus clearly excluding a vanishing vibration isolator stiffness solution. Furthermore, source and
receiving structure undergo resonances and anti-resonances within the audible frequency range resulting in a
break down of the rule of thumb while showing both soft and stiff behaviour depending on the studied frequency.
Finally, vibration isolators display internal resonances and anti-resonances within the same audible frequency
range also resulting in alternating soft and stiff behaviour depending on frequency [11,27]. As a result, the
mechanical properties of source, vibration isolator and receiving structure need to be properly determined for
appropriate vibration transmission attenuation within the audible frequency range where generally the dynamic
stiffness modelling of vibration isolators provides the greatest challenge.

There are various techniques to model dynamic stiffness of vibration isolators; a simple, straightforward
method is to apply lumped parameter models with Maxwell–Voigt elements [32,33] and fractional damping
elements [1,2,8], the latter shown to fit rubber material experiments with a minimum number of material
parameters. In order to include internal resonances and anti-resonances, a multi-dimensional mass–spring
system [28] and classical, essentially one-dimensional waveguides [20–22] may be applied. However, the
wavelength in rubber is generally short within the audible frequency range resulting in a break down of the
assumption on which the classical, essentially one-dimensional waveguides methods rely on, thus requiring
more elaborated methods such as waveguide methods derived from the full-wave equations that are also valid
for short wavelengths [7,15,16,19,34,35] and are essentially based on the possible eigenmodes found in the
Pochhammer–Chree solution for waves in infinite solid cylinders [6,26]. For more elaborated geometries,
boundary elements method [9] and nonlinear finite element methods [17,29,30] are applicable, the latter
also taking into account nonlinear viscoelasticity. However, none of the above methods includes physical and
chemical ageing, the former being a reversible process including such as free volume alterations, trapping
and freeing of polymer chain ends and other polymer chain reorganizations [4,12,13,24], while the latter
being an irreversible process mainly attributed to oxygen reaction with polymer network either damaging the
network by scission or reformation of new polymer links [13,14]. Rubber vibration isolators undergo ageing
while frequently being exposed for harsh environmental conditions under a long time including oxygen, water,
ozone, oil, contaminants and radioactive radiation exposures, usually at various temperatures, resulting in a
dynamic stiffness alteration from that predicted by methods assuming a virgin state, disregarding any ageing.

In this paper, dynamic stiffness within the whole audible frequency range 20 to 20,000 Hz for an axially
symmetric, homogeneously aged rubber vibration isolator is derived by waveguides while using constitutive
equations, derived in a companion paper [18], including physical and chemical ageing. The resulting model
is suitable for stiffness prediction of rubber vibration isolators over a broad audible frequency range under
realistic environmental condition of chemical ageing, mainly attributed to oxygen exposure from outside, and
of physical ageing, primarily perceived at low-temperature steps.

2 Vibration isolator

The cylindrical vibration isolator in Fig. 1 of radius r0 and length l0, consisting of isotropic, homogeneously
aged rubber of density ̺0 at reference temperature T0, is axially excited a displacement uexcitation with a force
fexcitation at one end while being blocked ublocked = 0 at the other end generating a blocking force fblocked.
The radial displacement is enforced to be zero at both ends, in practical achieved by gluing a circular, thin
metal plate on the excitation end, while the other end of rubber cylinder is glued to the hard, brown blocking
end plate shown in Fig. 1. The dynamic driving point stiffness kD = f̃excitation/ũexcitation and dynamic transfer
stiffness kT = f̃blocked/ũexcitation, where temporal Fourier transformation [̃ · ] =

∫ ∞
−∞[ · ] exp(−iωt) d t , t is

time, i is imaginary unit and ω is angular frequency.

3 Waveguides

The constitutive equations for rubber are derived in a companion paper [18], including physical and chemical
ageing, giving bulk modulus
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Fig. 1 Cylindrical rubber vibration isolator excited at one end and blocked at the other (above) with blocked end separated for
clarity while showing blocking force fblocked (below)
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where actual temperature is T , temperature difference �T = T −T0, physical ageing time is tph, and chemical
ageing time is tch. Moreover, network link scission relaxation time

τsci = τsci 0e
Esci

R

(
1

Tch
− 1

T0

)

, (3)

network link scission relaxation time is τsci 0 at reference temperature T0, chemical ageing temperature is Tch,
network link scission activation energy per mole is Esci, universal molar gas constant R = 8.314 J/mol K,
network link reformation relaxation time

τref = τref0e
Eref

R

(
1

Tch
− 1

T0

)

, (4)

network link reformation relaxation time is τref 0 at reference temperature T0, network link reformation acti-
vation energy per mole is Eref , Mittag–Leffler function

Eα(x) =

∞∑

n=0

xn

Γ (1 + αn)
, (5)
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Gamma function is Γ (z) =
∫ ∞

0 sz−1e−s d s, network link scission fractional order is αsci, network link
reformation fractional order is αref , maximum network link reformation possible is q̂ref , thermal volume
expansion coefficient of rubber at the rubbery and crystalline state is βrubber and βcrystal, respectively, fractional
free volume thermal expansion coefficient �β ≈ βrubber − βcrystal, nearly incompressibility material constant
is a ≫ 1, material constants in shear are μν and α, respectively, non-dimensional relaxation intensity is
△ ≫ 1 and equilibrium elastic modulus is μ∞ 0 at reference temperature T0 and at no chemical ageing.
William–Landel–Ferry (WLF) shift function

XT = 10
−

A1�T

A2+�T , (6)

using the method of reduced variables, A1 and A2 are material constants, physical ageing shift factor

Xph( ft (tph)) = 10
A1 A2

{
�β

fT (tph)
− 1

A2+�T

}

, (7)

evolution of actual fractional free volume fT at temperature T is given by fractional differential equation

τα
T Dα [ fT ] =

∞

fT − fT, (8)

fractional free volume at the thermodynamical equilibrium state is
∞

fT = limtph→∞ fT (tph), actual relaxation
time at temperature T is

τT =
μν Xph XT

△
1
α

, (9)

and finally, Caputo fractional derivative of fT and order α [5] with respect to physical ageing time tph is

Dα [ fT ] =
1

Γ (1 − α)

∫ tph

0

1(
tph − s

)α

d [ fT ]

d s
d s . (10)

The density relation

̺T

∞
̺T0

=
1 − βrubber�T

1 + fT (tph) − �β[A2 + �T ]
, (11)

where actual density is ̺T and equilibrium density is
∞

̺T0 at temperature T , results in approximate expressions
for the actual vibration isolator length

lT

(
fT (tph)

)
≈

{
3 + fT (tph) + [βrubber − �β]�T − �β A2

} l0

3
(12)

and radius

rT

(
fT (tph)

)
≈

{
3 + fT (tph) + [βrubber − �β]�T − �β A2

} r0

3
, (13)

while assuming an homogeneous thermal expansion, where the relative equilibrium volume expansion at T is
βrubber�T , equilibrium fractional free volume at T0 and T are �β A2 and �β A2 + �β�T , respectively.

The waveguide method is based on mode-matching technique [7,15,16,19,34,35], here extended to include
physical and chemical ageing. To this end, the axial dependence is separated, the eigenvalues and eigenmodes
of the cylinder cross section are calculated, where the total field is obtained by eigenmode superposition, and
finally they are matched with the cylinder end boundary conditions given in Sect. 2 and Fig. 1. The reader
is referred to Kari [15,16] for details regarding the complete derivation of the waveguide guide solution for
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axial waves in solid rubber cylinders and their resulting dynamic stiffness solution, however restricted to non-
ageing material at reference temperature T0. The transcendental, dispersion relation for axially symmetric and
non-torsional waves in an infinite rubber cylinder, extended to include physical and chemical ageing, is

0 =
[
2k2
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]2
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)

− 2k2
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[
k2
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z

]
, (14)

while satisfies the traction free boundary condition on the radial surface in Fig. 1, where kz �= kS, kz �= kL,
Onoe function of first kind and first order is ϑ(z) = zJ0(z)/J1(z) [23,25], Bessel function of first kind and
order n is Jn , longitudinal wave number and shear wave number are

kL(T, tph, Tch, tch;ω) = ω

√
̺T

(
fT (tph)

)

κ̂(T, tph, Tch, tch;ω) + 4
3 μ̂(T, tph, Tch, tch;ω)

(15)

and

kS(T, tph, Tch, tch;ω) = ω

√
̺T

(
fT (tph)

)

μ̂(T, tph, Tch, tch; ω)
, (16)

respectively, and actual density

̺T

(
fT (tph)

)
=

1 − βrubber�T

1 + fT (tph) − �β[A2 + �T ]

∞
̺T0 . (17)

The solution to Eq. (14) is eigenvalue kz , also known as axial wave number. The solution is calculated by a
modified Newton–Raphson method with initial values given by a winding integral method based on argument
principle where search domain is spit into branch-cut absent sub-domains, resulting in eigenvalues

kz,n = kz,n(T, tph, Tch, tch;ω), (18)

where n = 1, 2, . . . , M , total number of eigenmodes is M , eigenvalues are ordered in increasing imaginary
part value as |ℑkz,1| ≤ |ℑkz,2| ≤ · · · ≤ |ℑkz,M | and imaginary part is denoted ℑ. The search domain is
restricted to ℜkz,n ≥ 0 as −kz,n is also a solution to Eq. (14), where real part is denoted ℜ.

The total field is obtained by eigenmode superposition using a sufficient number of eigenvalues M , where
rubber cylinder end displacement boundary conditions given in Sect. 2 and Fig. 1 are satisfied by mode-
matching, and where the resulting dynamic stiffness solution is readily calculated from the resulting total
eigenmode field [15,16].

4 Results and discussion

The computer code is written in Lahey Fortran
� 95/90/77 with support for Fortran 2003 and 2008 standards

and with all calculations performed in quadruple precision using a Windows 7 Professional operative system
implemented in a HP EliteBook 840 G3 laptop with Intel� CoreTM i7-6500 CPU @ 2.50 GHz and 16.0 GB
of RAM. Graphically, the results are presented by means of Matlab

�.

4.1 Material and vibration isolator dimension

The equilibrium density
∞

̺T0 ≈ 984 kg/m3 at reference temperature T0 = 298 K, volume expansion coefficient
is set to βrubber = 6.60 × 10−4 K−1 [3], and fractional free volume expansion coefficient is approximated
as �β ≈ [2/3]βrubber = 4.40 × 10−4 K−1 for the vibration isolator material applied in this study being
unfilled sulphur-cured standard Malaysian natural rubber, identical to that of Kari [18] and Kari et al. [19].
The applied material constants are μ∞0 = 8.25 × 105 N/m2, μν = 1.53 × 10−5 s, α = 0.657, △ = 276
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and a = 2.222 × 103, together with A1 = 5.940 and A2 = 151.6 K for T > 243 K, while the shift factor is
manually set for T ≤ 243 K, resulting in A1 = 7.679 and A2 = 151.6 K for T = 213 K, and in fractional

free volume of
∞

fT0 = 6.67 × 10−2 and
∞

f 213 K = 2.93 × 10−2. The material constants applied for chemical
ageing are mainly from Johlitz et al. [14], reading Esci = 1.05 × 105J mol−1, Eref = 7.37 × 104J mol−1,
τsci0 = 8.08 × 108 s and τref0 = 1.00 × 108 s, however extended with αsci = 0.5 and αref = 0.5, together with
maximum network link reformation possible q̂ref = 0.80, needed for the novel fractional-order differential
evolution equations developed in companion paper [18] and applied in this paper. The studied vibration isolator
radius r0 = 5.00 × 10−3 m and length l0 = 1.00 × 10−2 m.

4.2 Eigenvalue and dynamic stiffness evolution at physical ageing of vibration isolator

The applied temperature history is T (tph) = T0 + (213 − T0)h(tph) in order to study eigenvalue and dynamic
stiffness evolution at physical ageing, where h is Heaviside step function, while using the numerical procedure
specified in Appendix of companion paper [18] for evaluation of Eq. (8) with minimum step of � t = 10−14 s,
maximum relative tolerance error allowed set to ǫ = 10−8 and exponential coefficient in the auxiliary function

y213 K is selected to λ = −1/
∞
τ T0 with

∞
τ T0 = 2.95 × 10−9 s.

The resulting evolution of the complete set of the 64 first axial wave numbers (eigenvalues) kz,n applied in the
dynamic stiffness calculation, where n = 1, 2, . . . , 64, is shown in Fig. 2 displaying real and imaginary part of
axial wave numberℜkz,n andℑkz,n , respectively, versus the whole audible frequency range from 20 to 20,000 Hz
at physical ageing time 0+, 10−4 and 106 s. The complete 3D spectrum is shown at top of Fig. 2, while the
corresponding slice at frequency 10,000 Hz is shown to left in Fig. 2, together with shear and longitudinal wave
number kT and kL, respectively. Note that also −kz,n , n = 1, 2, . . . , 64, are used in the stiffness calculation,
thus making the total eigenmode number to be 128. In passing, it was noted during the simulations that
the difference between this stiffness solution and a solution with more eigenmodes, for example totally 256
eigenmodes, is negligible, thus verifying the solution accuracy and stiffness convergence regarding sufficient
number of eigenmodes. The reader is referred to Kari [16] regarding details over convergence properties of
the waveguide method applied to a similar vibration isolator although disregarding any ageing. Apparently,
the axial wave number spectrum is seemingly complex, displaying eigenvalue solutions to Eq. (14) in all four
quadrants of the complex plane while also counting −kz axial wave numbers. The number of propagating
eigenmodes at physical ageing time 0+ s grows rapidly, being 1 + 1 at 20 Hz, 4 + 4 at 10,000 Hz and 6 + 6
at 20,000 Hz, where x and y in x + y refer to number of propagating eigenmodes with real part of eigenvalue
being positive and negative, respectively. Formally, propagating eigenmodes do not exist for rubber and other
viscoelastic materials. However, propagating eigenmodes do formally exist for purely elastic materials with
no material damping. Whether an eigenmode is propagating or not is therefore determined from the cut-on
frequency for its elastic counterpart, derived by means of the formal substitution μ̂ ← ℜμ̂ in the dispersion
relation (14). On the contrary, the number of propagating eigenmodes at physical ageing time 10−4 and 106 s
is constant throughout the considered audible frequency range, that is, being 1+1 at 20 Hz, 1+1 at 10,000 Hz
and 1 + 1 at 20,000 Hz. Not surprisingly, the magnitude of shear modulus grows rapidly from physical ageing
time 0+ s to 10−4 and 106 s, as is readily shown in Fig. 5 of Kari [18], thus resulting in a rapid increase in
the cut-on frequency of the higher-order eigenmodes, being above the audible frequency range at physical
ageing time 10−4 and 106 s. However, there are always 1 + 1 continuously propagating eigenmodes with their
two eigenvalues starting from origin kz = 0 at vanishing frequency, showing continuously increasing real
part with increased frequency for the first eigenvalue (shown in Fig. 2) and increasing negative real part with
increased frequency for the second eigenvalue (not shown in Fig. 2), respectively, both being close to the
plane ℑkz = 0 throughout the considered audible frequency range. The shear wave number follows closely
the eigenvalue of the first continuously propagating eigenmode for lower frequencies and then close to the
eigenvalue of the second propagating eigenmode for higher frequencies. In passing, it is noted that the first
continuously propagating eigenmode at physical ageing time 0+ s approaches the Rayleigh wave, while the
second propagating eigenmode (lowest higher-order eigenmode) approaches the shear wave as their short
wavelength limits when frequency goes to infinity [10]. However, the longitudinal wave number is close to the
origin; not surprisingly, the magnitude of bulk modulus is significantly larger than the corresponding magnitude
of shear modulus due to the nearly incompressible material model, resulting in a significantly smaller magnitude
of the longitudinal wave number than the corresponding magnitude of the shear wave number. This is readily
visible for ageing time 0+ s, while the shear and longitudinal wave numbers are more clustered together close to
the origin kz = 0 at physical ageing time 10−4 and 106 s due to the rapid increase in shear modulus magnitude.
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Fig. 2 Evolution of real and imaginary part of axial wave number ℜkz,n and ℑkz,n , respectively, where n = 1, 2, . . . , 64, versus
the whole audible frequency range from 20 to 20,000 Hz, at an applied temperature history undergoing a sudden temperature
drop from equilibrium at +25 to −60 ◦C and evaluated at physical ageing time 0+, 10−4 and 106 s. The complete 3D spectrum
is shown above, while the corresponding slice at frequency 10,000 Hz is shown below, together with shear and longitudinal wave
number kT and kL, respectively

Moreover, a propagating eigenmode for purely elastic material has a purely real axial wave number, while
the non-propagating eigenmodes have non-vanishing imaginary parts. The latter wave numbers are possible
to split into complex and purely imaginary axial wave numbers; both eigenmodes represent near-fields, but
those for complex axial wave numbers also involve spatially oscillating factors. Furthermore, complex axial
wave numbers occur in fours, one in each of the four quadrants, obeying the additional symmetry k∗

z ↔ kz ,
in addition to the usual point symmetry with respect to origin (kz = 0), that is, −kz ↔ kz , where ∗ denotes
complex conjugate, whereas the real and imaginary axial wave numbers occur only in pairs (−kz ↔ kz).
Since energy dissipation in purely elastic material is impossible, a complex wave number must be augmented
with its dual from other quadrant. Extended to the material under study focus, that is, viscoelastic rubber, the
purely imaginary and complex axial wave numbers are clustered together into smoothly banana-shaped axial
wave number pattern in the complex plane; the larger the imaginary part is, the more frequency and physical
ageing time independent is the eigenvalue. Not surprisingly, the complex eigenvalue solution to the dispersion
relation (14) depends approximately only on radius of cylinder r and large eigenvalue order p ≫ 1 : p ∈ N

as kz ≈ [± loge(4pπ) ± 2pπ i]/2 r according to Zemanek [31]. The complex eigenvalues are approximately
overlapping at large values of p for physical ageing time 10−4 and 106 s; the small discrepancies are partly
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Fig. 3 Evolution of driving point stiffness magnitude |kD| and angle � kD versus the whole audible frequency range from 20
to 20,000 Hz, at an applied temperature history undergoing a sudden temperature drop from equilibrium at +25 to −60 ◦C and
evaluated at physical ageing time 0+, 10−9, 10−4, 101 and 106 s

due to different radius at those physical ageing times alongside with other approximations involved. However,
the required value of p to satisfyingly approximate the complex eigenvalues is very large for physical ageing
time 0+ s; merely valid only for complex eigenvalues well outside the important eigenvalues ±kz,n needed for
sufficiently accurate stiffness determination of the considered vibration isolator, where n = 1, 2, . . . , 64. This
is clearly seen in Fig. 2 where the complex eigenvalue pattern for physical ageing time 0+ s is positioned well
from the corresponding complex eigenvalue pattern for physical ageing time 10−4 and 106 s and for frequencies
above approximately 5000 Hz. Not surprisingly, the large number of propagating and close to be propagating
eigenmodes, for physical ageing time 0+ s, results in a somewhat jumbled pattern for the complex eigenvalues
in comparison to physical ageing time 10−4 and 106 s, where only the continuously propagating eigenmodes
are propagating and the cut-on frequency for lowest higher-order eigenmode is very high about 50,000 Hz,
thus far away from the audible frequency range.

The resulting evolution of driving point stiffness magnitude |kD| and angle � kD, where kD =
|kD| exp(i � kD), is shown in Fig. 3 versus the whole audible frequency range from 20 to 20,000 Hz at physi-
cal ageing time 0+, 10−9, 10−4, 101 and 106 s. Clearly, driving point stiffness magnitude is a plateau at the
low-frequency range for physical ageing time 0+ and 10−9 s and at an extended frequency range for physical
ageing time 101 and 106 s; the magnitude ratio between the latter and former curves being of the same order as
relaxation intensity △. Not surprisingly, the former curve portions are within the rubber region, while the latter
curve portions are within the glassy region. Furthermore, the wavelength of the propagating eigenmode within
the corresponding frequency ranges is significantly longer than the length of the vibration isolator, thus making
a lumped massless stiffness model suitable, essentially displaying a shear modulus proportional stiffness show-
ing neither resonances nor anti-resonances. However, driving point stiffness magnitude is gradually decreasing
from about 500 Hz for physical ageing time 0+ and 10−9 s, the decrease being slightly more pronounced for
0+ s curve, while approaching a damped stiffness trough at about 1200 Hz, interpretable as a resonance. For
higher frequencies, driving point stiffness magnitude is displaying damped stiffness peaks (anti-resonances)
and troughs (resonances) in alternating order for physical ageing time 0+ and 10−9 s. Likewise, the driving
point stiffness magnitude for physical ageing time 101 and 106 s is displaying a deep trough at about 18,300
Hz, the drop being more than four decades. Not surprisingly, shear modulus loss factor is less than 0.01 %
around that resonance frequency for physical ageing time 106 s, see Fig. 5 in Kari [18]. The driving point
stiffness curves for physical ageing time 101 and 106 s are almost overlapping; the only practical difference
is the depth of the stiffness trough and the low-frequency driving point stiffness angle where 106 s curve is
displaying about a decade smaller angle as compared to the 101 s curve. However, the latter difference is not
perceptible in Fig. 3 since both low-frequency driving point stiffness angles are very close to 0◦. The driving
point stiffness magnitude for physical ageing time 10−4 s is displaying a gradual increase in the low-frequency
range while displaying a very damped stiffness trough at about 17,400 Hz. The latter 10−4 s curve is mainly
within the transition region as is clearly seen in the corresponding driving point stiffness angle curve for
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Fig. 4 Evolution of transfer stiffness magnitude |kT| and angle � kT versus the whole audible frequency range from 20 to 20,000 Hz,
at an applied temperature history undergoing a sudden temperature drop from equilibrium at +25 to −60 ◦C and evaluated at
physical ageing time 0+, 10−9, 10−4, 101 and 106 s

physical ageing time 10−4 s, displaying a very large angle of more than 45◦ at 20 Hz, corresponding to a shear
modulus loss factor of more than 100% while using a suitable lumped stiffness model. In passing, it is noted
that the maximum shear modulus loss factor indeed is larger than 100% for the rubber material under study
focus, see Fig. 5 in Kari [18]. Finally, the driving point stiffness angle is restricted to be within 0 and 180◦ due
to physical reasons. Obviously, this restriction is clearly satisfied for the studied vibration isolator.

The resulting evolution of transfer stiffness magnitude |kT| and angle � kT, where kT = |kT| exp(i � kT), is
shown in Fig. 4 versus the whole audible frequency range from 20 to 20,000 Hz at physical ageing time 0+,
10−9, 10−4, 101 and 106 s. Essentially, transfer stiffness is displaying similar behaviour as the corresponding
driving point stiffness. However, stiffness peaks and troughs are generally not located at the same frequencies
nor is peak and trough order necessarily alternating. The latter statement is a result from dropping the stiffness
angle restriction to be within 0 and 180◦, a restriction not physically necessary for transfer stiffness angle and
obviously also not for the studied vibration isolator. In passing, it is noted that the general transfer stiffness
frequency dependence is coherent with previous simulations [19] and measurements [15].

In conclusion, driving point and transfer stiffness are undergoing a fast physical ageing for the studied
temperature history, displaying a large stiffness magnitude increase in order △ in the low-frequency range,
while the high-frequency stiffness, initially showing stiffness magnitude peaks and troughs, is transformed
into a high stiffness magnitude while displaying a sharp and deep driving point stiffness magnitude trough at
about 18,300 Hz. The physical stiffness ageing is merely completed within 10 s, although the physical ageing
process continues for a longer time, showing almost no stiffness change after 106 s. Similarly, eigenvalue
spectrum is undergoing a fast physical ageing for the studied temperature history, in particular displaying
a fast alteration of higher-order propagating eigenmodes into non-propagating eigenmodes with complex
eigenvalues in addition to moving the complex eigenvalue pattern into a smooth configuration which is less
frequency dependent. Likewise, the physical eigenvalue ageing is merely completed within 10 s, although the
physical ageing process continues for a longer time, showing almost no eigenvalue change after 106 s.

4.3 Eigenvalue and dynamic stiffness evolution at chemical ageing of vibration isolator

In order to study eigenvalue and dynamic stiffness evolution at chemical ageing, the vibration isolator is
exposed to a constant temperature of 25 ◦C while undergoing simultaneous and homogeneous molecular
network scission and reformation.

The resulting evolution of all 64 first axial wave numbers (eigenvalues) kz,n applied in the dynamic stiffness
calculation, where n = 1, 2, . . . , 64, is shown in Fig. 5 displaying real and imaginary part of axial wave number
ℜkz,n andℑkz,n , respectively, versus the whole audible frequency range from 20 to 20,000 Hz at chemical ageing
time 0, 108 and 1012 s. The complete 3D spectrum is shown at top of Fig. 5, while the corresponding slice at
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Fig. 5 Evolution of real and imaginary part of axial wave number ℜkz,n and ℑkz,n , respectively, where n = 1, 2, . . . , 64, versus
the whole audible frequency range from 20 to 20,000 Hz, at temperature 25 ◦C undergoing simultaneous molecular network
scission and reformation and evaluated at chemical ageing time 0, 108 and 1012 s. The complete 3D spectrum is shown above,
while the corresponding slice at frequency 10,000 Hz is shown below, together with shear and longitudinal wave number kT and
kL, respectively

frequency 10,000 Hz is shown to left in Fig. 5, together with shear and longitudinal wave number kT and kL,
respectively. Note again that also −kz,n , n = 1, 2, . . . , 64, are used in the stiffness calculation, thus making
the total eigenmode number to be 128. In passing, it was again noted during the simulations that the difference
between this stiffness solution and a solution with more eigenmodes, for example totally 256 eigenmodes,
is negligible, thus verifying the solution accuracy and stiffness convergence regarding sufficient number of
eigenmodes. Apparently, the number of propagating eigenmodes grows rapidly, being 1 + 1 at 20 Hz and
3 + 3 at 10,000 Hz at chemical ageing time 0, 108 and 1012 s, 5 + 5 at 20,000 Hz at chemical ageing time 0
and 108 s and, finally, 6 + 6 at 20,000 Hz at chemical ageing time 1012 s, where again x and y in x + y refer
to number of propagating eigenmodes with real part of eigenvalue being positive and negative, respectively.
Real parts of eigenvalue for the first continuously propagating eigenmode and of shear wave number are
larger for chemical ageing time 1012 s than those corresponding to chemical ageing time 0 s, which in turn are
larger than those corresponding to chemical ageing time 108 s. Not surprisingly, shear modulus magnitude for
chemical ageing time 1012 s is smaller than that corresponding to chemical ageing time 0 s, which in turn is
smaller than that corresponding to chemical ageing time 108 s at a specific frequency, see Fig. 9 in Kari [18].
Furthermore, the complex eigenvalue pattern is in general more jumbled and non-symmetric with respect to
plane ℑkz = 0 as compared to the complex wave pattern at physical ageing just studied. Not surprisingly, as the
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Fig. 7 Evolution of transfer stiffness magnitude |kT| and angle � kT versus the whole audible frequency range from 20 to 20,000 Hz,
at temperature 25 ◦C undergoing simultaneous molecular network scission and reformation and evaluated at chemical ageing
time 0, 106, 108, 1010 and 1012 s

number of propagating eigenmodes are large throughout the studied chemical ageing time range, thus chiefly
influencing the complex eigenvalue pattern. Moreover, longitudinal wave number for all chemical ageing time
0, 108 and 1012 s is clustered together and close to origin (kz = 0), mainly due to the nearly incompressible
material model applied in this study, resulting in a significantly larger bulk modulus magnitude compared to
shear modulus magnitude and thus significantly smaller longitudinal wave number magnitude than shear wave
number magnitude.

Finally, the resulting evolution of driving point stiffness magnitude |kD| and angle � kD is shown in Fig. 6
and transfer stiffness magnitude |kT| and angle � kT in Fig. 7, versus the whole audible frequency range from
20 to 20,000 Hz at chemical ageing time 0, 106, 108, 1010 and 1012 s. The low-frequency stiffness magnitude
is a plateau while displaying troughs (resonances) and peaks (anti-resonances) at higher frequencies. The low-
frequency stiffness magnitude for chemical ageing time 108 s is larger than that corresponding to chemical
ageing time 106 s, which in turn is larger than that corresponding to chemical ageing time 0 s, while the low-
frequency stiffness magnitude for chemical ageing time 1012 s is smaller than that corresponding to chemical
ageing time 1010 s, which in turn is smaller than that corresponding to chemical ageing time 0 s. Likewise,
the stiffness magnitude trough and peak frequencies for chemical ageing time 108 s are larger than those
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corresponding to chemical ageing time 106 s, which in turn are larger than those corresponding to chemical
ageing time 0 s, while the trough and peak frequencies for chemical ageing time 1012 s are smaller than those
corresponding to chemical ageing time 1010 s, which in turn are smaller than those corresponding to chemical
ageing time 0 s. This is not surprising, as shear modulus magnitude for chemical ageing time 108 s is larger than
that corresponding to chemical ageing time 106 s, which in turn is larger than that corresponding to chemical
ageing time 0 s at a specific frequency, and as shear modulus magnitude for chemical ageing time 1012 s is
smaller than that corresponding to chemical ageing time 1010 s, which in turn is smaller than that corresponding
to chemical ageing time 0 s, at a specific frequency, see Fig. 9 in Kari [18]. The stiffness magnitude trough
and peak frequency shifts are readily seen also in the stiffness angle subplots where the stiffness magnitude
troughs and peaks are manifested by +180◦ and −180◦ angle shifts, respectively, although smeared out due to
material damping and strong resonance and anti-resonance overlapping. It is finally noted that the driving point
stiffness angle is within the physically allowed range 0 to 180◦ regardless of frequency and chemical ageing
time, while the corresponding angle for transfer stiffness is frequently outside that range; not surprisingly, no
physical restriction range exists for the latter angle.

5 Conclusion

The developed waveguide model for dynamic stiffness of physically and chemically ageing rubber vibration
isolator within the audible frequency range is possible to apply in various applications. An example is to
investigate the stiffness alteration due to physical ageing under specific temperature histories. A second example
is to investigate the relative contribution to stiffness change from scission and reformation at chemical ageing.
A third example is to investigate the temperature influence on stiffness due to chemical ageing and, finally,
to investigate stiffness change due to simultaneous physical and chemically ageing including simultaneous
scission and reformation, the latter case being a more realistic environmental condition for vibration isolators in
practice compared to stiffness modelling assuming an eternally lasting virgin vibration isolator. An interesting
continuation of the work performed is to extend the model with oxygen diffusion resulting in a chemically
heterogeneous ageing of the vibration isolator, being an even more realistic case for vibration isolators in
practice.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

References

1. Bagley, R.L., Torvik, P.J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures.
AIAA J. 21, 741–748 (1983)

2. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986)
3. Brandrup, J., Immergut, E.H., Grulke, E.A.: Polymer Handbook, 4th edn. Wiley, New York (1999)
4. Cangialosi, D., Boucher, V.M., Alegría, A., Colmenero, J.: Physical aging in polymers and polymer nanocomposites: recent

results and open questions. Soft Matter 9, 8619–8630 (2013)
5. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13,

529–539 (1967)
6. Chree, C.: The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications.

Trans. Camb. Philos. Soc. 14, 250–309 (1889)
7. Coja, M., Kari, L.: Axial audio-frequency stiffness of a bush mounting—the waveguide solution. Appl. Math. Modell. 31,

38–53 (2007)
8. Fredette, L., Singh, R.: Estimation of the transient response of a tuned, fractionally damped elastomeric isolator. J. Sound

Vib. 382, 1–12 (2016)
9. Gaul, L.: Dynamical transfer behaviour of elastomer isolators; boundary element calculation and measurement. Mech. Syst.

Signal Process. 5, 13–24 (1991)
10. Graff, K.F.: Wave Motion in Elastic Solids (reprint). Dover Publications, New York (1991)
11. Harrison, M., Sykes, A.O., Martin, M.: Wave effects in isolation mounts. J. Acoust. Soc. Am. 24, 62–71 (1952)
12. Greiner, R., Schwarzl, F.R.: Thermal contraction and volume relaxation of amorphous polymers. Rheol. Acta 23, 378–395

(1984)
13. Johlitz, M.: On the representation of ageing phenomena. J. Adhes. 88, 620–648 (2012)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Dynamic stiffness of ageing vibration isolators in the audible frequency range 1059

14. Johlitz, M., Diercks, M., Lion, A.: Thermo-oxidative ageing of elastomers: a modelling approach based on finite strain theory.
Int. J. Plast. 63, 131–151 (2014)

15. Kari, L.: On the waveguide modelling of dynamic stiffness of cylindrical vibration isolators. Part I: The model, solution and
experimental comparison. J Sound. Vib. 244, 211–233 (2001)

16. Kari, L.: On the waveguide modelling of dynamic stiffness of cylindrical vibration isolators. Part II: The dispersion relation
solution, convergence analysis and comparison with simple models. J Sound. Vib. 244, 235–257 (2001)

17. Kari, L.: On the dynamic stiffness of preloaded vibration isolators in the audible frequency range: Modeling and experiments.
J. Acoust. Soc. Am. 113, 1909–1921 (2003)

18. Kari, L.: Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range.
Part 1: Constitutive equations. Continuum Mech. Thermodyn. (2017). doi:10.1007/s00161-017-0569-7

19. Kari, L., Eriksson, P., Stenberg, B.: Dynamic stiffness of natural rubber cylinders in the audible frequency range using wave
guides. Kaut. Gummi Kunstst. 54, 106–111 (2001)

20. Kim, S., Singh, R.: Multi-dimensional characterization of vibration isolators over a wide range of frequencies. J. Sound. Vib.
245, 877–913 (2001)

21. Kim, S., Singh, R.: Vibration transmission through an isolator modelled by continuous system theory. J. Sound. Vib. 248,
925–953 (2001)

22. Lee, J., Thompson, D.J.: Dynamic stiffness formulation, free vibration and wave motion of helical springs. J. Sound. Vib.
239, 297–320 (2001)

23. Miklowitz, J.: The theory of elastic waves and waveguides. In: North-Holland Series in Applied Mathematics and Mechanics,
vol. 22, pp. 1–618 (1978)

24. Odegard, G.M., Bandyopadhyay, A.: Physical aging of epoxy polymers and their composites. J. Polym. Sci. Part B Polym.
Phys. 49, 1695–1716 (2011)

25. Onoe, M.: Modified quotients of cylinder functions. Math. Comput. 10, 27–28 (1956)
26. Pochhammer, L.: Über die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen

Kreiszylinder. J. Reine Angew. Math. 81, 324–336 (1876)
27. Ungar, E.E., Dietrich, C.W.: High-frequency vibration isolation. J. Sound. Vib. 4, 224–241 (1966)
28. Vakakis, A.F., Paipetis, S.A.: Transient response of unidirectional vibration isolators with many degrees of freedom. J. Sound.

Vib. 99, 557–562 (1985)
29. Wollscheid, D., Lion, A.: Predeformation- and frequency-dependent material behaviour of filler-reinforced rubber: Experi-

ments, constitutive modelling and parameter identification. Int. J. Solids Struct. 50, 1217–1225 (2013)
30. Wollscheid, D., Lion, A.: The benxefit of fractional derivatives in modelling the dynamics of filler-reinforced rubber under

large strains: a comparison with the Maxwell-element approach. Comput. Mech. 53, 1015–1031 (2014)
31. Zemanek, J. Jr.: An experimental and theoretical investigation of elastic wave propagation in a cylinder. J. Acoust. Soc. Am.

51, 265–283 (1972)
32. Zhang, J., Richards, C.M.: Dynamic analysis and parameter identification of a single mass elastomeric isolation system using

a Maxwell-Voigt model. J. Vib. Acoust. 128, 713–721 (2006)
33. Zhu, S.-J., Weng, X.-T., Chen, G.: Modelling of the stiffness of elastic body. J. Sound. Vib. 262, 1–9 (2003)
34. Östberg, M., Kari, L.: Transverse, tilting and cross-coupling stiffness of cylindrical rubber isolators in the audible frequency

range–the wave-guide solution. J. Sound. Vib. 330, 3222–3244 (2011)
35. Östberg, M., Coja, M., Kari, L.: Dynamic stiffness of hollowed cylindrical rubber vibration isolators–The wave-guide solution.

Int. J. Solids Struct. 50, 1791–1811 (2013)

http://dx.doi.org/10.1007/s00161-017-0569-7

	Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range: Part 2—waveguide solution
	Abstract
	1 Introduction
	2 Vibration isolator
	3 Waveguides
	4 Results and discussion
	4.1 Material and vibration isolator dimension
	4.2 Eigenvalue and dynamic stiffness evolution at physical ageing of vibration isolator
	4.3 Eigenvalue and dynamic stiffness evolution at chemical ageing of vibration isolator

	5 Conclusion
	References


