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We analyze a periodic review stochastic inventory model in which demand depends on not only the current

selling price but also a memory-based reference price. Pricing and inventory decisions are made simultane-

ously at the beginning of each period. Assuming all shortages are backlogged, the objective is to maximize

the expected total discounted profit over either a finite horizon or an infinite horizon. In the finite horizon

case, we prove that a reference price dependent base-stock policy is optimal, and we analyze the firm’s

optimal price and base-stock level. In the infinite horizon case, we show that the reference price converges

to some steady state in the optimal trajectory and characterize this steady state.

1. Introduction

The impact of a price change on sales can be larger than expected. Back in 1951, the sales in new

cars changed from “fairly brisk” to “very slow” after a price hike (The News and Courier 1951).

A recent increase in price of Hersey’s chocolate also led to concerns in the company’s sales and

earnings in the short run (Nicholson 2014). The reason for the customer pushback after a price

hike may lie beyond commonly used static economic models (Kalyanaram and Winer 1995, Nasiry

and Popescu 2011). In repeat-purchase settings, consumers often develop their own ideas of a “fair

price”, also referred to as the reference price, after observing past prices of the product. If the

current selling price is lower than the reference price, consumers see it as a gain and hence are more

likely to make the purchase. Otherwise, they see it as a loss and would be less inclined to make

the purchase. This phenomenon is usually referred to as the reference price effect. Consumers are

loss-averse (loss-neutral) if demand is more responsive (equally responsive) to consumers’ perceived

losses than (as) their perceived gains.

There have been studies on how managers can take the reference effect into consideration to

make better pricing decisions. Examples include Greenleaf (1995), Kopalle et al. (1996), Fibich

1



Chen et al.: Dynamic Stochastic Inventory Management with Reference Price Effects
2 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

et al. (2003), Popescu and Wu (2007) and Nasiry and Popescu (2011). However, these papers do

not consider inventory decisions. At the same time, there is an extensive body of research on joint

pricing and inventory decisions under demand uncertainty (see Elmaghraby and Keskinocak 2003,

Chan et al. 2004 and Chen and Simchi-Levi 2012 for reviews). Examples include Federgruen and

Heching (1999), Chen and Simchi-Levi (2004a,b, 2006), Huh and Janakiraman (2008) and Song

et al. (2009). While the first stream of literature typically ignores demand uncertainty, the second

stream of literature often assumes that demand depends on the firm’s pricing strategy only through

the current price.

To our best knowledge, only a few papers have integrated reference price effects into inventory

models. Chen et al. (2009) analyze a joint dynamic pricing and economic lot sizing problem with

the reference price effect. They develop strongly polynomial time algorithms for a few special cases

of the problem, and propose a heuristic algorithm with error bound estimates for the general case.

Ahn et al. (2007) study a closely related model. They prove structural results for their model and

develop closed-form solutions and heuristics for various special cases. However, both of these two

papers do not consider demand uncertainty. Urban (2008) analyzes a single-period joint inventory

and pricing model with both reference price effect and demand uncertainty, and finds in numerical

studies that reference prices have a substantial impact on a firm’s profit. Gimpl-Heersink (2008)

considers a demand model similar to ours but focuses the analysis on one-period and two-period

settings with loss-neutral customers.

We study the joint inventory and pricing problem of a firm facing reference price effect and

loss-averse customers in a stochastic multi-period setting. After inferring the reference price and

confirming the initial inventory at the beginning of each period, the firm makes pricing and ordering

decisions simultaneously. Unused inventory at the end of a period is carried over to the next period,

and shortages are fully backlogged. The goal is to study the firm’s optimal decisions in the presence

of reference price effect and uncertainty in a dynamic setting. In particular, are base-stock policy

and list-price policy optimal? How do reference price and the intensity of reference price effect

affect the optimal decisions, and what is the impact of customers’ loss-aversion? Do the optimal

decisions converge to some steady states in the long-run? This paper aims to shed light on these

questions.

A technical challenge in addressing these questions is that the single-period expected revenue is

in general not concave and not smooth in the selling price and the reference price. To tackle this

challenge, we introduce a transformation technique to generate a modified revenue function that is

concave. This allows us to prove that a reference price dependent base-stock policy is optimal and

characterize the optimal price and base-stock level. For the infinite horizon model, we prove that

both the reference price and the base-stock level converge and characterize the steady state.
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The rest of this paper is organized as follows. We present the model in Section 2, and characterize

the firm’s optimal policy in Section 3. Section 4 extends our results to a more general demand

model. Finally, Section 5 concludes our paper. All the proofs are delegated to the appendix. In this

paper, the terms “increasing” and “decreasing” are used in a weak sense.

2. The Model

Consider a firm making inventory and pricing decisions over a planning horizon with T periods. At

the beginning of each period, the firm decides the price and the order quantity for that period. The

order is received immediately and incurs a per unit cost c. The price in each period, pt, is restricted

to a bounded interval P = [pmin, pmax], and we assume that pmin ≥ c to ensure the marginal profit

to be non-negative.

The expected demand dt depends on the price pt and the reference price rt in the same period.

In particular, the expected demand is given by

dt = (bt− apt) + η(rt− pt),

where bt > 0 represents the market size, a> 0 measures the sensitivity of demand with respect to the

selling price, and the difference rt−pt denotes consumers’ perceived gain when rt > pt and loss when

rt < pt. The reference price effect is given by η(z) = η+ max{0, z}+ η−min{0, z}, where the non-

negative parameters η− and η+ measure the sensitivities of demand associated with the perceived

loss and gain, respectively. While the market size bt may change over time, consumers’ response

to price and reference price (i.e., a and η±) are assumed to be time-independent. Our demand

model is similar to the ones in Greenleaf (1995) and Nasiry and Popescu (2011). One advantage

of this model is that it is much easier to calibrate when compared with more complex demand

models. In addition, different parameters in the model can be easily understood by managers and

practitioners. Consumers are usually called loss-averse if η− ≥ η+, loss seeking if η− ≤ η+ and loss

neutral if η− = η+. Prospect theory (Kahneman and Tversky 1979) postulates that loss aversion

behavior is more common than loss-seeking behavior. For this reason, we focus on the loss-averse

case, similar to Nasiry and Popescu (2011).

The reference price in a period is formed based on the prices observed by customers in all previous

periods. We adopt the exponentially smoothed adaptive expectations process (see, e.g., Mazumdar

et al. 2005) in which the reference price is a linear combination of past prices. Formally, given the

price and the reference price in period t, the reference price in period t+ 1 evolves according to

rt+1 = (1−α)pt +αrt,

where 0≤ α < 1 is called the memory factor or carryover constant. This reference price evolution

model is commonly used both in empirical studies (e.g., Kalyanaram and Little 1994, Greenleaf
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1995) and in analytical models (e.g., Popescu and Wu 2007). To avoid the trivial case where past

prices have no impact on demand, we assume that α < 1. The initial reference price is given by

r1 ∈P, and hence all rt belong to the interval P. To facilitate discussion, we denote r and q as the

current reference price (rt) and target reference price (rt+1) respectively, and we express price pt

and expected demand dt as functions of these reference prices, where

p(r, q) =
q−αr
1−α

, and dt(r, q) = bt− a
q−αr
1−α

+
η(r− q)

1−α
.

Furthermore, demand in each period t is stochastic and follows the additive model

Dt = dt(r, q) + εt,

where εt is a random variable with zero mean and independent across time. We assume that there

exists Dmin > 0 such that Dt ≥Dmin with non-zero probability for any r, q ∈P.

Define m± = η±/[(1 + α)a], which measures the relative strength of the reference price effect

when compared with the direct price effect. We make the following assumption.

Assumption 1. m+ ≤m− ≤m+ +
√

1 + 2m−.

Assumption 1 is not restrictive. Clearly, it is satisfied when customers are loss-neutral. When

customers are loss-averse, this condition is satisfied when m− ≤ 1 +
√

2, i.e., the reference price

effect is not much stronger than the direct price effect, which is consistent with the results from

many empirical studies, for example, Hardie et al. (1993).

Unsatisfied demand is fully backlogged and any excess inventory is carried over to the next

period. For an inventory level y at the end of period t, denote h0
t (y) as the associated inventory

holding cost when y > 0 and backlogging cost when y < 0. The objective of the firm is to find an

inventory and pricing policy to maximize the total expected discounted profit over the planning

horizon. Given the initial inventory level x and reference price r in period t≤ T , the profit-to-go

function v0t (x, r) at the beginning of period t satisfies the dynamic programming recursion

v0t (x, r) = maximize
s≥x,q:p(r,q)∈P

p(r, q)dt(r, q)− c(s−x)−Eh0
t (s− dt(r, q)− εt)

+ γEv0t+1(s− dt(r, q)− εt, q),

where 0≤ γ ≤ 1 is the discount factor, and decision variables s and q denote the inventory order-

up-to level and the target reference price respectively. Moreover, assume that the terminal value

v0T+1(x, r) equals cx. That is, any backlogged demand is satisfied and any leftover inventory incurs

reimbursement with the per unit cost/value c at the end of the planning horizon.
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To facilitate discussion, introduce vt(x, r) = v0t (x, r) − cx and y = s − dt(r, q) as the expected

leftover inventory for each period 1≤ t≤ T + 1. The above problem can be reformulated as

vt(x, r) = maximize
y,q

πt(r, q) +E[γvt+1(y− εt, q)−ht(y− εt)], (1)

subject to dt(r, q) + y≥ x, p(r, q)∈P,

where functions πt(r, q) and ht(y) defined below denote the expected net profit and the transformed

inventory holding and backlogging cost associated with the leftover inventory y, respectively.

πt(r, q) = [p(r, q)− c]dt(r, q), ht(y) = h0
t (y) + (1− γ)cy.

Similar to Federgruen and Heching (1999) and Chen and Simchi-Levi (2004a), we assume that ht(y)

is convex, lim|y|→∞ ht(y) =∞, and Eht(y − εt) is well-defined for any y. In the following, denote

[yt(x, r), qt(x, r)] as an optimal solution to problem (1), and st(x, r) = yt(x, r) + dt(r, qt(x, r)) and

pt(x, r) = p(r, qt(x, r)) as the optimal inventory order-up-to level and the optimal price in period

t, respectively. When there exist multiple optimal solutions, we always select the lexicographically

smallest one for convenience.

3. Main results

3.1. Finite Horizon Model

When there is no reference price effect, problem (1) becomes a special case of the model studied by

Federgruen and Heching (1999). The authors, following the standard approach, inductively show

that the dynamic programming problem is a concave maximization problem, and successfully prove

that the base-stock and list-price policy is optimal, i.e., an order is placed only when the initial

inventory level exceeds some threshold, and a higher initial inventory level leads to a lower price.

In our problem, the additional dimension in the state space due to the reference price r brings a

significant challenge to apply the method because πt(r, q) is not jointly concave in (r, q). This is

why Gimpl-Heersink (2008) fails to extend her theoretical results to multi-period models even for

the loss-neutral case.

To circumvent the challenge resulted from the lack of joint concavity, we introduce the trans-

formed profit-to-go function vλt (x, r) = vt(x, r)−λr2 for some λ≥ 0 (see the proof of Proposition 1

for an explicit expression of λ). From (1) we know that vλt (x, r) satisfies

vλt (x, r) = maximize
y,q

πλt (r, q) +E[γvλt+1(y− εt, q)−ht(y− εt)], (2)

subject to dt(r, q) + y≥ x, p(r, q)∈P,

where πλ(r, q) = πt(r, q)−λr2+γλq2 denotes the transformed expected one-period revenue function.

Observe that an optimal solution to problem (1) also solves problem (2), and vice verse.
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While πt(r, q) itself in problem (1) may not be jointly concave, we can properly select λ such

that πλt (r, q) is jointly concave. Specifically, we have the following results.

Proposition 1 (Concavity and Supermodularity of Transformed Problem). There

exists some λ≥ 0 such that πλt (r, q) is jointly concave and supermodular in (r, q) for each 1≤ t≤ T .

With the help of Proposition 1, we are ready to characterize vt(x, r) and the optimal ordering

policy.

Theorem 1 (Optimality of Base-stock Policy). vt(x, r) is decreasing in x and increasing in

r, and vλt (x, r) is jointly concave for some λ≥ 0. Moreover, a reference price dependent base-stock

policy is optimal.

Theorem 1 shows that the profit-to-go vt(x, r) increases in the reference price r and decreases

in the initial inventory x, and the transformed profit-to-go vλt (x, r) is jointly concave even though

vt(x, r) may not be. Furthermore, it also suggests that a base-stock policy is optimal, where the

base-stock level depends on the reference price r. That is, the optimal order-up-to inventory level

can be written as st(x, r) = max{x, st(r)} for some base-stock level st(r).

Next we study how the optimal price pt(x, r) depends on the initial inventory level x. In partic-

ular, we are interested to know whether list-price policy is still optimal. A widely used approach to

answer such a question is to employ Theorem 2.8.2, Topkis (1998) (see Lemma 1(c) in the Online

Supplement), which gives sufficient conditions to ensure the monotonicity of optimal solutions to

parametric maximization problems with supermodular objective functions. However, this approach

requires the feasible set to have a certain lattice structure, which unfortunately is not the case in

our problem. Instead, we apply a recently developed result of Chen et al. (2013) and Hu (2011),

which allows for non-lattice structures (see Lemma 2 in the Online Supplement) and enables us to

show the following proposition.

Proposition 2 (Optimality of List-Price Policy). The optimal price in period t, pt(x, r), is

decreasing in x when consumers are loss neutral (i.e., η+ = η−) or when the firm is myopic (i.e.,

t= T or γ = 0). However, pt(x, r) is not necessarily decreasing in x in general.

Proposition 2 shows that the list-price policy is optimal when consumers are loss-neutral or the

firm is myopic, but the list-price policy may not be optimal in general when consumers are loss-

averse. This is illustrated by Example 1 in the Online Supplement. The intuition is that, when

consumers are loss-averse, the negative impact of a price cut on future demand due to a lower

future reference price can be larger than its positive impact on the current demand. Thus, when

inventory level is high, the firm may raise the price to ensure that inventory not sold in the current

period can be sold faster in future periods.
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We now move to study how the optimal decisions depend on the reference price and the intensity

of reference price effect. As mentioned above, the optimal order-up-to inventory level can be written

as st(x, r) = max{x, st(r)} for some base-stock level st(r). In fact, we can express st(r) = yt(r) +

dt(r, qt(r)), where [yt(r), qt(r)] solves the problem below by relaxing the constraint dt(r, q) + y ≥ x

from (1):

maximize
y,q:p(r,q)∈P

{πt(r, q) +E[γvt+1(y− εt, q)−ht(y− εt)]} . (3)

The optimal price and the optimal target reference price have the form pt(x, r) = pt(r) and qt(x, r) =

qt(r) when x≤ st(r), according to the proof of Theorem 1. In other words, when the firm places an

order, the optimal decisions are characterized by the target reference price qt(r) and order-up-to

level st(r).

The next proposition study how qt(r) and st(r) depend on the reference price r.

Proposition 3 (Impact of Reference Price). For each 1≤ t≤ T , qt(r) is increasing in r, and

there exist [Q−t ,Q
+
t ]⊆ P such that r < qt(r) if r < Q−t , r = qt(r) if Q−t < r <Q+

t , and qt(r)> r if

r > Q+
t . Moreover, st(r) is increasing in r when consumers are loss neutral; and it is increasing

and then decreasing and then increasing in r when the firm is myopic. In general, st(r) does not

exhibit any specific monotonic pattern.

Proposition 3 shows two results. First, the target reference price is increasing in the initial

reference price, and there exists a region [Q−t ,Q
+
t ] such that the target reference price is always

closer to this region than the current reference price. Thus, even if the optimal price does not

necessarily increase or decrease in the reference price, the result tells us when a price markup (pt >

r) or a price markdown (pt < r) should be adopted. In particular, a price markup (or markdown)

should be implemented if the initial reference price is lower (or higher) than this region.

The second result is that, while a higher current-period reference price leads to a higher base-

stock level when consumers are loss-neutral, the base-stock level is not monotone in the reference

price when consumers are loss-averse even in the simple case where the firm is myopic. The reason

is that, the optimal price is equal to the current-period reference price when the current-period

price lies in the region [Q−t ,Q
+
t ], implying that the optimal price is increasing in the current-period

price. Thus, when the current-period price increases, the demand decreases and the base-stock level

also decreases. This does not happen when consumers are loss-neutral because the region [Q−t ,Q
+
t ]

reduces to a singleton in this case.

Next we consider the impact of the intensity of reference price effect.

Proposition 4 (Impact of Reference Price Effect). For any given r, qt(r) decreases in both

η− and η+.



Chen et al.: Dynamic Stochastic Inventory Management with Reference Price Effects
8 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Proposition 4 shows that a stronger reference price effect leads to a lower reference price. Thus,

a stronger reference price effect also leads to a lower price. Even though it can lead to a lower

demand in the future, this is compensated by the benefit of a higher demand in the current period

and a lower level of leftover inventory. The optimal base-stock level, however, may increase or

decrease with a more intensified reference price effect, as illustrated by Example 2 in the Online

Supplement, because the demand may increase or decrease in η− or η+ depending on whether there

is a perceived loss or perceived gain.

Other than the impact of the reference price effect, it is also interesting to study the impact of

demand uncertainty. As illustrated by Examples 2 and 3 in the Online Supplement the optimal

price and optimal base-stock level can be non-monotone in demand uncertainty, because higher

demand uncertainty increases the chances for both very high demand and very low demand.

3.2. Infinite Horizon Model

We now consider the infinite horizon setting with a discount factor 0<γ < 1 and stationary system

inputs (i.e., ht(x) = h(x), bt = b, and εt is identically distributed to ε for each t in the model). While

the finite horizon model is more applicable to products with shorter life cycles such as consumer

electronics, the infinite horizon model is more applicable to fast moving consumer goods with long

life cycles such as shampoo and conditioners. Additionally, a good understanding of infinite horizon

models may provide useful insights to facilitate the development of efficient heuristics for the finite

horizon setting.

By a routine technique in dynamic programming, we can show that the limit of vt(x, r) as t goes

to infinity exists and can be characterized by the following Bellman equation:

v(x, r) = maximize
y,q

π(r, q) +E[γv(y− ε, q)−h(y− ε)], (4)

subject to d(r, q) + y≥ x, p(r, q)∈P.

Similar to Theorem 1, we can prove the optimality of a reference price dependent base-stock

policy for problem (4). Let s(r) be the base-stock level associated with initial reference price r. A

sequence {(xt, rt)} is called a state path of problem (4) if for any t≥ 1, (yt, rt+1) solves problem (4)

when (x, r) = (xt, rt) and xt+1 = yt− εt, where εt is the realized demand uncertainty in period t.

We are interested in the asymptotic property of the state path of problem (4). Compared with a

classical joint inventory and pricing model, Bellman equation (4) has one more state variable r. This

added dimension of state space brings significant challenges. To circumvent the difficulty, we lay

out a brief roadmap of our analysis before moving on to the details. First, we will study a simplified

version of the problem where the firm is allowed to return the product to the manufacturer and
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obtain a full refund. We show that, in this simplified problem, the optimal ordering quantity can

be uniquely determined for any fixed reference price trajectory, which allows us to characterize the

optimal ordering policy first. Finally, we demonstrate how this simplified problem can be used to

characterize the state path and reference price trajectory for problem (4).

When the firm is allowed to return products to the manufacturer and obtain a full refund,

the inventory level after ordering and returning products is allowed to be lower than the initial

inventory level. Thus, the constraint d(r, q)+y≥ x in problem (4) disappears. The profit-to-go now

depends only on r, and if denote it as ṽ(r), then from problem (4),

ṽ(r) = maximize
q:p(r,q)∈P

π(r, q)−hm + γṽ(q), (5)

where hm = miny[Eh(y−ε)]. Define ym = arg miny[Eh(y−ε)]. It can be verified the target inventory

level after ordering/returning is s̃(r) = ym+d(r, q̃(r)), where q̃(r) solves problem (5) and the safety

stock ym is independent of r. Therefore, a state path {(x̃t, r̃t)} of problem (5) satisfies x̃t+1 = ym−εt
and r̃t+1 = q̃(r̃t) for all t≥ 1.

Observe that problem (5) is equivalent to the dynamic pricing problem without demand uncer-

tainty analyzed in Popescu and Wu (2007). Their results imply the stability and convergence of

{r̃t} in the case when returns are allowed. Specifically, {r̃t} monotonically converges to some inter-

val [R−,R+]⊆P in the sense that it decreasingly (increasingly) converges to R+ (R−) if r̃1 >R+

(r̃1 < R−), and satisfies r̃t = r̃1 for all t ≥ 1 if R− ≤ r̃1 ≤ R+. It is appropriate to point out that

R− =R+ in the loss-neutral case. Our next theorem shows that a state path of problem (4) coin-

cides with that of problem (5) after a finite number of periods and hence the reference price of

problem (4) also converges.

Theorem 2 (Convergence of Reference Price). For any state path {(xt, rt)} of problem (4),

there exists some finite τ depending on the sample path {εt} such that {(xt, rt) : t ≥ τ} is also a

state path of problem (5). Moreover, {rt} converges to some interval [R−,R+]⊆P.

While {rt} monotonically converges after some period τ , it is not necessarily monotone when

t ≤ τ due to the existence of demand uncertainty. This property is different from the case when

returns are allowed. However, the steady state reference price is the same as that in a model when

returns are allowed. This is because the inventory level will drop to below the base-stock level after

finite number of periods and will stay below the base-stock level (associated with any reference

price encountered). Thus, thereafter, the system in our model evolves exactly the same as the one

in the model allowing return.

Proposition 5 below further characterizes the optimal inventory policy in the long run.
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Proposition 5 (Long-Run Inventory Policy). Given any state path {(xt, rt)}, if t is suffi-

ciently large, then the expected inventory level is given by Ext = arg miny Eh(y− ε), which is inde-

pendent of rt, and the base-stock level is given by st =Ext + d(rt, rt+1). In addition, the base-stock

level s(r) is decreasing in r ∈ [R−,R+].

Proposition 5 shows that both the base-stock level and the safety stock converge in the long run.

In particular, the long-run base-stock level is decreasing in the reference price and the long-run

safety stock is independent of the reference price. The reason is that, the uncertainty involved in

the additive demand is independent of the price and the reference price, and can be fully subsumed

by inventory decisions. This is different from the case of a multiplicative demand uncertainty, as

we are going to see in Section 4. Moreover, under slightly more restrictive conditions, we can show

the base-stock level s(r) is increasing in r when r≤R− and r≥R+. (See Remark on Proposition

5 in the Online Supplement).

4. Extension: General Demand Uncertainty

In the previous section, we study the firm’s optimal pricing and inventory decisions when the

demand uncertainty follows the additive model. This section considers the case with more general

demand model when the multiplicative demand uncertainty term is involved, where the realized

demand is determined by

Dt = ξtdt(r, q) + εt. (6)

Similar to problem (1), given the initial inventory level x and reference price r, the profit-to-go

function vt(x, r) in period t is given by

vt(x, r) = maximize
d,s,q

[p(r, q)− c]d+E[γvt+1(s− ξtd− εt, q)−ht(s− ξtd− εt)], (7a)

subject to d= dt(r, q), s≥ x, p(r, q)∈P, (7b)

where the decision variable d represents the expected demand in period t.

In addition to the non-concavity of the objective function, another challenge of problem (7a) is

that its feasible set is not convex because dt(r, q) is a nonlinear function in the loss-averse case. To

circumvent the challenge, we need the following assumption for analytic tractability. Recall that

h0
t (y) = ht(y)− (1− γ)cy is the inventory holding and backlogging cost function.

Assumption 2. (pmin− γc)d−h0
t (−d) is increasing in d when d≥ 0.

Assumption 2 states that a higher demand always leads to a higher profit, even in the case when

the demand is backlogged and then satisfied in a future period. To understand this, consider the

case when an amount d of demand is backlogged in period t and then satisfied in period t+1. This
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generates an additional revenue no smaller than pmind and a backlogging cost of h0
t (−d) in period

t, as well as a discounted ordering cost γcd in period t+ 1.

Assumption 2 implies that the objective function of problem (7a) is increasing in d and hence

the constraint d= dt(r, q) in (7b) can be replaced by d≤ dt(r, q). With this assumption, we prove

the following result in the finite horizon setting.

Theorem 3. Under the general demand model (6) and Assumption 2, a reference price dependent

base-stock policy is optimal.

For the corresponding infinite horizon counterpart, the limit of vt(x, r) as t goes to infinity,

denoted by v(x, r), satisfies the Bellman equation:

v(x, r) = maximize
d,s,q

[p(r, q)− c]d+E[γv(s− ξd− ε, q)−h(s− ξd− ε)], (8)

subject to d= d(r, q), s≥ x, p(r, q)∈P.

To see the asymptotic property of the state path of problem (8), similar to the additive demand

model, we consider the problem when returns are allowed:

v̄(r) = maximize
q:p(r,q)∈P

π(r, q) +ϕ(d(r, q)) + γv̄(q), (9)

where ϕ(d) =−minsEh(s− ξd−ε). Denote by q̄(r) the optimal solution to problem (9). Moreover,

let s̄(r) = arg minsEh(s − ξd(r, q̄(r)) − ε) and ȳ(r) = s̄(r) − d(r, q̄(r)) be the associated optimal

target inventory level and safety stock, respectively.

Proposition 6 below gives a sufficient condition on the existence and stability of steady state

reference prices of problem (9). It then shows that a steady state reference price of problem (9) is

also that of problem (8).

Proposition 6. (a) If demand uncertainty is multiplicative, h(y) = h+ max{y,0}+h−max{−y,0}

for some h± ≥ 0, and pmin ≥ c+miny E[h(y−ξ)], then any reference price trajectory of problem

(9) monotonically converges to some interval [R−,R+]. Furthermore, when r ∈ [R−,R+], the

base-stock level s̄(r) is decreasing in r, and the safety stock ȳ(r) can be expressed by (b−ar)ȳm

for ȳm = arg miny Eh(y− ξ+Eξ).

(b) Given a steady state reference price r of problem (9) and any x ≤ s̄(r), if we start with the

state (x, r) in problem (8), then it is optimal to have the price equal to r and order up to s̄(r)

at every period. That is, r is also a steady state reference price of problem (8).

Unlike the case with additive demand uncertainty, the safety stock depends on the reference price

when multiplicative uncertainty is involved. In particular, it can be interpreted as the safety stock

in a newsvendor model with demand (b−ar)ξ. When ξ is continuously distributed with cumulative
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distribution function F (·), the safety stock is given by (b− ar)[F−1( h−

h−+h+
)−Eξ]. Thus, while the

safety stock can be increasing or decreasing in r depending on whether the base-stock level is below

or above the average demand, the base-stock level is always decreasing in r for r ∈ [R−,R+].

Notice that miny E[h(y− ξ)] in Proposition 6(a) can be interpreted as a measure of variability of

the random variable ξ, and the condition pmin ≥ c+miny E[h(y−ξ)] basically requires the variability

of ξ to be small. For example, when ξ is uniformly distributed over the interval [1− κ,1 + κ] for

some 0≤ κ≤ 1, and h(x) = h0|x| for some h0 ≥ 0, this condition reduces to κh0 ≤ 2(pmin− c).

When consumers are loss-neutral, the statements in Proposition 6 hold with R+ = R− even

without the conditions stated in the proposition. However, when consumers are loss-averse, it

remains an open question whether the state path of problem (8) will converge to a steady state

if the conditions do not hold. Unlike the additive demand case, we are not able to prove that the

inventory level will remain always below the base-stock level after a certain period and a state

path of problem (8) will coincide with that of problem (9) eventually. Nevertheless, similar to the

additive demand case, we do observe from our numerical study that an order will be placed at

every period after a finite number of periods and thus the reference price trajectory converges to a

steady state in the interval [R−,R+](See Section 4.3.2, Zhang 2010). In addition, the steady state

reference price is affected by demand uncertainties and inventory-related cost when multiplicative

uncertainty is involved(See Section 4.3.3, Hu 2011), which is quite different from the additive

demand case.

5. Discussions

We study a joint inventory and pricing model taking into account the reference price effect. Despite

the technical challenges resulted from the increase in the dimension of the dynamic program (due to

the reference price effect) and the non-smooth demand function (due to loss aversion), we develop a

transformation technique which allows us to characterize the optimal pricing and inventory policy

of the firm. We also study the state path of our model in the infinite horizon counterpart. We prove

that, after a finite number of periods, the state path coincides with the one when products can be

returned for a full refund. We focus on the additive demand model, and show that some results

can be extended to the case with a more general demand model. Our main results for the additive

demand model are summarized in Table 1.

The transformation technique developed in this paper can be extended to other demand mod-

els, and also to the case when the market consists of different segments with different memory

factors and different sensitivities to price and reference price. However, the conditions to ensure

joint concavity depend heavily on the form of the underlying demand model and are usually less

transparent.
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Table 1 Summary of Main Results

Base-stock List-Price Impact of Impact of Long-run
policy policy reference price reference reference price &

price effect base-stock level
Loss-neutral

Optimal
Optimal

qt(r) increases; and qt(r) decrease;

Converge
case st(r) increases and st(r) is
Loss-averse

Not optimal
qt(r) increases; and not monotone

case st(r) is not monotone in general

This paper should only be taken as an initial attempt at studying inventory and pricing models

with reference effects. Two extensions are particularly note-worthy. First, our discussion is based

on the assumption that unsatisfied demand is fully backlogged. Whether similar results hold in the

lost-sales case remains to be determined. Second, besides the impact of the reference price, other

types of reference effects also affect a firm’s decisions (see, for example, Yang et al. 2014a, Yang

et al. 2014b and the references therein). When considering joint pricing and inventory problems, the

impact of a reference fill rate is also worth investigating. This line of inquiry is pursued by Liu and

van Ryzin (2011) for the case of no demand uncertainty. When there is demand uncertainty, the

investigation becomes challenging because the reference fill-rate is a function of demand. Another

technical challenge is that the reference fill-rate is a kinked function of demand and the inventory

level. Thus, this problem deserves a separate study.
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Appendix: Proofs

Proof of Proposition 1

Because both (p− c)(bt− ap) and η(z) are concave, and η(z) is increasing, it can be verified that

πt(p+ z, p+αz) = (p− c)[bt− ap+ η(z)] is component-wise concave and supermodular in p and z.

Since p= q−αr
1−α and z = r−q

1−α , by Lemma 2(b), πt(r, q) is component-wise concave and supermodular.

Therefore πλt (r, q) = πt(r, q)−λr2 + γλq2 is also supermodular.

We next prove that under a less restrictive condition than Assumption 1,

m−−m+ ≤
√

1 + 2m−+
√

1 + 2m+, (10)

πλt (r, q) is jointly concave when λ= a(1+α)

2(1−α) (1 +m−−
√

1 + 2m−), i.e.,

λ= a(1+α)

2(1−α)

[
1 + η−

(1+α)a
−
√

1 + 2η−

(1+α)a

]
. (11)
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First observe that η(z) = min{η+z, η−z} by η+ ≤ η−. Thus, we can express πλt (p+ z, p+αz) =

min
{
π̄−t (p, z), π̄+

t (p, z)
}

, where

π̄±t (p, z) = (p− c)[bt− ap+ η±z]−λ(p+ z)2 + γλ(p+αz)2.

Note that both π̄±t (p, z) are quadratic and correspond to the Hessian matrices

∇π̄±t (p, z) =

[
−2[a+λ(1− γ)], η±− 2λ(1− γα)
η±− 2λ(1− γα), −2λ(1− γα2)

]
,

where the diagonal entries are non-positive by λ≥ 0 and 0≤ γ,α≤ 1. Furthermore, their determi-

nants can be expressed by ∆(λ;η±, γ), where

∆(λ;η, γ) =−4γ(1−α)2λ2 + 4
[
(1− γα2)a+ (1− γα)η

]
λ− η2.

It suffices to prove ∆(λ;η±, γ)≥ 0 for some λ≥ 0, which immediately ensures that both π̄±t (p, z)

are jointly concave in (r, q), and hence so is their minimum πλt (r, q). Observe that ∆(λ;η, γ) is

increasing in γ. We shall prove the stronger yet simpler result that both ∆(λ;η±,1)≥ 0 for some

λ≥ 0, where

∆(λ;η,1) =−4[(1−α)λ]2 + 4 [(1 +α)a+ η] (1−α)λ− η2.

Note that ∆(λ;η,1) is concave and quadratic in λ; moreover, it corresponds to the roots

λ±(η) = a(1+α)

2(1−α)

[
1 + η

(1+α)a
±
√

1 + 2η
(1+α)a

]
.

From the above expression, it is straightforward to verify that λ−(η−) ≥ λ−(η+), and λ−(η−) ≤

λ+(η+) if and only if inequality (10) holds. Thus, if select λ= λ−(η−), i.e., the one given in (11),

then we conclude ∆(λ;η−,1) = 0 and ∆(λ;η+,1)≥ 0. �

Proof of Theorem 1

The monotonicity of vt(x, r) in term of x is obvious because for problem (1), its objective is

independent of x and the feasible set shrinks as x increases. For the monotonicity of vt(x, r) in

term of r, denote by d0t (p, r) = bt− ap+ η(r− p) and reformulate problem (1) as

vt(x, r) = maximize
y,p

(p− c)d0t (p, r) +E[γvt+1(y− εt, αr+ (1−α)p)−ht(y− εt)],

subject to d0t (p, r) + y≥ x, p∈P.

For this problem, because p≥ pmin ≥ c and d0t (p, r) is increasing in r, its objective increases and its

feasible set expands as r increases. Therefore vt(x, r) is increasing in r.

We now prove the joint concavity of vλt (x, r) inductively. Suppose that it is true in period t+ 1,

which is trivial when t= T by vλT+1(x, r) =−λr2. In period t, by Proposition 1, convexity of ht and
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the inductive assumption, the objective function of problem (2) is jointly concave in (r, q, y). In

addition, because dt(r, q) is concave and p(r, q) is linear, the feasible set of problem (2) is convex

in (r, q, y, x). That is, (2) is a parametric concave maximization problem, implying that vλt (x, r)

is concave. Furthermore, because problem (1) has the same optimal solutions as problem (2), it

immediately follows the optimality of the inventory order-up-to level st(x, r) = max{x, st(r)} with

[st(r), qt(r)] solving problem (3). In addition, when x≤ st(r), an order is placed and the the target

reference price qt(x, r) = qt(r). �

Proof of Proposition 2

When consumers are loss-neutral, denote by η± = η and reformulate problem (1) as

vt(x, r) = maximize
s≥x,p∈P

{(p− c)[(bt + ηr)− (a+ η)p]−Eht(s+ (a+ η)p− (bt + ηr)− εt)}

+{γEvt+1(s− (bt + ηr) + (a+ η)p− εt, αr+ (1−α)p)}, (12)

For the objective function of problem (12), its first bracketed term is submodular in s and p by

convexity of ht(x) and Theorem 2.2.6, Simchi-Levi et al. (2014). Thus, pt(x, r) is decreasing in x

by Lemma 1(c) if we can further prove its second bracketed term is also submodular in s and p.

Observe that by letting A= a+η
1−α , we can express

vt+1(s+ (a+ η)p, (1−α)p) = vt+1(A(1−α)p+ s, (1−α)p).

From Lemma 1(a), it suffices to show the function vt+1 (Ar−x, r) is supermodular in (x, r).

In fact by similar to the proof of Theorem 1, we can inductively verify a stronger result that the

transformed profit-to-go function v̂t(Ar− x, r) = vt(Ar− x, r)− λ̂r2 is concave and supermodular

in (x, r) for λ̂= η(αa+η)

2(1−α)(a+η) . Recall that the expected demand in period t is given by d= bt− (a+

η)p+ηr. From the reference price evolution model q= αr+(1−α)p, price p= pt(d, q) and reference

price r= rt(d, q) in the period t can be reformulated by functions of d and q as below:

pt(d, q) =
−α(d− bt) + ηq

αa+ η
, and rt(d, q) =

(1−α)(d− bt) + (a+ η)q

αa+ η
.

Therefore the expected profit can be expressed by π̂t(d, q) = [pt(d, q)− c]d − λ̂[rt(d, q)]
2 + γλ̂q2.

Furthermore, it can be verified that ∂2
dqπ̂t(d, q) = 0, and

∂2
dπ̂t(d, q) =−2α(a+ η) + (1−α)η

(a+ η)(αa+ η)
, and ∂2

q π̂t(d, q) =−η
(

1− γ
1−α

+
a

αa+ η
+

γa

a+ η

)
.

That is, π̂t(d, q) is concave and supermodular. Suppose v̂t(Ar−x, r) is concave and supermodular

in (x, r), which is straightforward when t= T + 1 by λ̂≥ 0. By the definition of v̂t(x, r).

v̂t(Ar−x, r) = maximize
d,q

π̂t(d, q) +E[γv̂t+1(y− εt, q)−ht(y− εt)], (13a)

subject to rt(d, q) = r, d+ y≥Ar−x, pt(d, q)∈P. (13b)
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Replacing the decision variable y by Aq− y in the above problem,

v̂t(Ar−x, r) = maximize
d,q

π̂t(d, q) +E[γEv̂t+1(Aq− y− εt, q)−ht(Aq− y− εt)]

subject to rt(d, q) = r, Aq+ d− y≥Ar−x, pt(d, q)∈P,

where by rt(d, q) = r, the constraint Aq+d−y≥Ar−x is equivalent to x≥A[rt(d, q)−q]−d+y=

(1−α)a
αa+η

d+ y+ a+η
αa+η

(aq− b). Therefore by introducing some slack variable δ, we have that

v̂t(Ar−x, r) = maximize
d,q,δ

π̂t(d, q) +E[γv̂t+1(Aq− y− εt, q)−ht(Aq− y− εt)],

subject to rt(d, q) = r, (1−α)a
αa+η

d+ y+ a+η
αa+η

aq+ δ= x,

pt(d, q)∈P, δ≥− a+η
αa+η

b.

Since v̂t+1(Aq−y, q) is concave and supermodular in terms of q and y by the inductive assumption,

and so is −Eht(Aq− y− εt) by convexity of ht(x), it follows from Lemma 2(a) that v̂t(Ar− x, r)

as a function of x and r is concave and supermodular.

When the firm is myopic, i.e., γ = 0 or t= T , observe that p= pt(x, r) solves the problem

vt(x, r) = maximize
p∈P

{(p− c)[bt− ap+ η(r− p)]−Eht(x− [bt− ap+ η(r− p)]− εt)} .

Since the expected demand d = bt − ap+ η(r − p) is strictly decreasing in p, we can rewrite the

price p= p0t (r, d) as a function of r and d, where p0t (r, d) is strictly decreasing in d. In addition, the

above problem becomes

vt(x, r) = maximize
d

{
[p0t (r, d)− c]d−Eht(x− d− εt)

}
,

where objective function is supermodular in terms of x and d by convexity of ht and Proposition

2.2.5 and Theorem 2.2.6 in Simchi-Levi et al. (2014). Thus, its optimal solution, denoted by d0t (x, r),

is increasing in x, implying that pt(x, r) = p0t (r, d
0
t (x, r)) is decreasing in x.

In general, Example 1 in the Online Supplement shows pt(x, r) can be increasing in x. �

Proof of Proposition 3

For the monotonicity of qt(r), note that it solves the problem

maximize
q:p(r,q)∈P

πt(r, q) + max
y

E [γvt+1(y− εt, q)−ht(y− εt)] ,

where its objective function is supermodular in (r, q) by Proposition 1. Moreover, since p(r, q) is

linear, and it is decreasing in r and increasing in q, the set {(r, q) : p(r, q)∈P} forms a sublattice

by Example 2.2.7, Topkis (1998). Therefore qt(r) is increasing by Lemma 1(c).
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For the existences of Q±t , introduce zt(r) = r−qt(r)
1−α . If zt(r) is increasing in r, then we can select

Q−t = sup{r ∈P : zt(r)< 0} and Q+
t = inf {r ∈P : zt(r)> 0}, where Q−t = pmin when zt(pmin) ≥ 0,

and Q+
t = pmax when zt(pmax)≤ 0. Thus, it remains to show that the monotonicity of zt(r) in r.

For this purpose, notice that zt(r) solves the problem:

maximize
z:r−z∈P

{
π̄λt (r, z) +uλt (r− (1−α)z)

}
,

where π̄λt (r, z) = πλt (r, r− (1−α)z) and uλt (q) = maxy E
[
−ht(y− εt) + γvλt+1(y− εt, q)

]
. It can be

verified that the partial derivative of π̄λt (r, z) in r satisfies

∂rπ̄
λ
t (r, z) = η(z) + 2[a− γλ(1−α)]z+C0(r),

where C0(r) is some term depending only on r. When γ = 0, it is straightforward to see from the

above expression that ∂rπ̄
λ
t (r, z) is increasing in z. When γ > 0, by substituting the expression of λ

provided in (11), we can verify that it is increasing in z when Assumption 1 holds, implying π̄λt (r, z)

is supermodular in (r, z). Furthermore, because vλt+1(x, r) is jointly concave by Theorem 1, uλ(q) is

concave and hence uλt (r− (1−α)z) is supermodular in (r, z) by Theorem 2.2.6, Simchi-Levi et al.

(2014). Because {(z, r) : r− z ∈P} forms a sublattice in (r, z) by Example 2.2.7 in Topkis (1998),

we conclude from Lemma 1(c) that zt(r) is increasing in r.

We now characterize the reference price dependent base-stock level st(r). When consumers are

loss-neutral, following the notations in problem (13), consider the transformed profit-to-go function

v̂t(x, r) = vt(x, r)− λ̂r2. Observe that we can express v̂t(x, r) = max
s≥x

ût(s, r), where

ût(s, r) = maximize
d,q

π̂t(d, q) +E[γv̂t+1(y− εt, q)−ht(y− εt)], (14a)

subject to rt(d, q) = r, d+ y= s, pt(d, q)∈P. (14b)

To see the monotonicity of st(r) in r, suppose v̂t+1(x, r) is jointly concave and supermodular in

(x, r), which is trivial for t = T by λ̂ ≥ 0. It together with the concavity and supermodularity

of π̂t(d, q) ensures that the objective function in (14a) is jointly concave and supermodularity in

(d, q, y). Therefore ût(s, r) in (14) is concave and supermodular by Lemma 2(a). By lemma 1(c),

st(r) is increasing in r and v̂t(x, r) is also jointly concave and supermodular. Repeating this process

for all t= T,T − 1, · · · ,1, we conclude that st(r) is increasing in r for each t.

When the firm is myopic, i.e., γ = 0 or t= T , observe that [st(r), qt(r)] solves the problem

maximize
s,q:p(r,q)∈P

{[p(r, q)− c]dt(r, q)−Eht(s− dt(r, q)− εt)} .
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By the definition of Q−t and Q+
t , it leads no loss of optimality to let dt(r, q) = bt− a q−αr1−α + η−(r−q)

1−α

when r <Q−t , and dt(r, q) = bt− a q−αr1−α + η+(r−q)
1−α when r >Q+

t . Similar to the loss-neutral case dis-

cussed previously, we can prove that st(r) is increasing in r when r <Q−t and r >Q+
t , respectively.

When Q−t < r <Q
+
t , qt(r) = r and hence st(r) solves the problem

maximize
s

{(r− c)(bt− ar)−Eht(s+ ar− bt− εt)} .

Since the objective function is submodular in (s, r) by convexity of ht, we conclude that st(r) is

decreasing in r ∈ (Q−t ,Q
+
t ) by Lemma 1(a,c). �

Proof of Proposition 4

Since qt(r) = αr+(1−α)pt(r), it suffices to prove the monotonicity of pt(r) in η±. For this purpose,

notice that pt(r) solves the problem

maximize
p

{
π0
t (p, r) +ut(αr+ (1−α)p) : p∈ [pmin, pmax]

}
, (15)

where π0
t (p, r) = (p− c)[bt− ap+ η+ max{0, r− p}+ η−min{0, r− p}], and

ut(q) = max
y

E
[
−ht(y− εt) + γvλt+1(y− εt, q)

]
.

If we can prove π0
t (p, r) is submodular in (p, η−, η+), then pt(r) is decreasing in η− and η+ by

Lemma 1(c). However, one can easily verify that π0
t (p, r) is not submodular in (p, η−, η+) in general.

It means we cannot apply Lemma 1(c) to problem (15) directly.

To conquer this difficulty, we next show it leads no loss of optimality to restrict p in a subset of

[pmin, pmax] in problem (15), on which π0
t (p, r) is submodular in (p, η−, η+). Observe that vt+1(x, q)

and hence ut(q) are increasing in r by Theorem 1. Furthermore, if p < 1
2
(r+ c), then p < r by r≥ c.

It implies that

∂pπ
0
t (p, r) = (bt + ac− 2ap) + η+(r+ c− 2p)> bt− ar,

where bt − ar ≥ 0 because we assumed dt(p, r) ≥ 0 for any p, r ∈ [pmin, pmax]. Thus, the objective

function of problem (15) is increasing in p when p < 1
2
(r+c), implying pt(r) also solves the problem

maximize
p

{
π0
t (p, r) +ut(αr+ (1−α)p) : 1

2
(r+ c)≤ p≤ pmax

}
.

Reformulate π0
t (p, r) as below:

π0
t (p, r) = (p− c)(bt− ap) + η−min{0, (p− c)(r− p)}+ η+ max{0, (p− c)(r− p)}.

When p≥ 1
2
(r+ c), it is submodular in (p, η−, η+) because (p− c)(r− p) is decreasing in p. Thus,

pt(r) is decreasing in η− and η+ by Lemma 1(c). �
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Proof of Theorem 2

Given any state path {(xt, rt) : t≥ 1} of problem (4), suppose an order is place in period τ , where τ

is finite with probability 1 because the base-stock policy is optimal, and the probability ofDt ≥Dmin

is non-zero for some Dmin > 0 as assumed. Construct {(x̃t, r̃t) : t ≥ 1} such that (x̃t, r̃t) = (xt, rt)

when t≤ τ , and (x̃t, r̃t) = (ym − εt−1, q̃(rt−1)) when t > τ . That is, {(x̃t, r̃t) : t≥ 1} is a state path

of problem (5) after period τ .

Because εt are identically distributed and d(r, q) + εt is non-negative for any r, q ∈ P, x̃t =

ym−εt−1 < ym+d(r̃t, r̃t+1) = s̃(rt) for any t > τ . This inequality indicates that the initial inventory

level in period t + 1 is always below the target inventory level after period τ for problem (5).

Therefore orders are placed in all periods t > τ for the state path {(x̃t, r̃t) : t > τ} of problem (5).

The definition of v(x, r) implies that ṽ(r̃t) ≤ v(x̃t, r̃t) for any t > τ . On the other hand, by the

definitions of ṽ(r) and v(x, r), we also know that ṽ(r)≥ v(x, r) for any feasible (x, r). In summary,

v(x̃t, r̃t) = ṽ(r̃τ ) for any t > τ , implying that {(x̃t, r̃t) : t > τ} is also a state path of problem (5).

Moreover, because {r̃t} converges to some interval [R−,R+] by Theorem 4 of Popescu and Wu

(2007), we know so is the sequence {rt}. �

Proof of Proposition 5

In the proof of Theorem 2, we in fact proved xt = x̃t and rt = r̃t for sufficiently large t, where

{(x̃t, r̃t} is a state path of problem (5). Therefore Ext = Ex̃t = ym and st = s̃ = ym + d(rt, rt+1),

where recall that ym = arg miny Eh(y− ε).

For the monotonicity of s(r) in r ∈ [R−,R+], note that s(r) = ym + d(r, q̃(r)), where q̃(r) solves

problem (5). When r ∈ [R−,R+], q̃(r) = r and hence s(r) = ym + d(r, r) = ym + b− ar, which is

clearly decreasing in r. �

Proof of Theorem 3

The monotonicity of vt(x, r) can be proved similar to Theorem 1. For the concavity of vλt (x, r),

reformulate problem (7a) as below:

vλt (x, r) = maximize
s,q

π̄λt (r, q) +wt(s, d) + γEvλt+1(s− ξtd− εt, q), (16)

subject to d= dt(r, q), s≥ x, p(r, q)∈P,

where π̄λt (r, q) = [p(r, q)− pmin]dt(r, q) +λ(γq2− r2) and wt(s, d) = (pmin− c)d−Eht(s− ξtd− εt). It

should be pointed out that the joint concavity and supermodularity of πλt (r, q) can also be verified

from Proposition 1 if we replace all c by pmin in its proof.

We now inductively show the concavity of vλt (x, r). Suppose vλt+1(x, r) is concave, which is trivial

when t= T + 1. Then in period t, wt(s, d) is increasing in d by its definition and Assumption 2.
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Moreover, because vt+1(x, r) is decreasing in x, by ξt ≥ 0, the objective function of (16) is increasing

in d. It leads no loss of optimality to change the constraint d= dt(r, p) in (16) to d≤ dt(r, q), i.e.,

vλt (x, r) = maximize
s,q

πλt (r, q) +wt(s, d) + γEvλt+1(s− ξtd− εt, q),

subject to d≤ dt(r, q), s≥ x, p(r, q)∈P.

Note that the feasible set of the above problem is now convex because dt(r, q) is a concave function.

Since πλt (r, q) is jointly concave, and so is wt(s, d) by convexity of ht, we can conclude that vλt (x, r)

is also jointly concave; moreover, a reference price dependent base-stock policy is optimal. �

Proof of Proposition 6

(a) Let h̄m = miny Eh(y− ξ). By given conditions on h(x), we can express

ϕ(d) = maximize
s

[−Eh(s/d− ξ)]d=−h̄md,

Moreover, the objective function of problem (9) can be reformulated by

[p(r, q)− c− h̄m]d(r, q) + γv̄(q).

Similar to Proposition 1, it is supermodular in (r, q) when p(r, q)≥ c+ h̄m. By following a similar

argument in Section 5.2, Popescu and Wu (2007), we can conclude the convergence of any

reference price trajectory to some interval [R−,R+], where R± are the steady state reference

price associated with the problem with the reference price effects η±(r− p), respectively.

When r ∈ [R−,R+], s̄(r) solves the problem maxs[−Eh(s− (b−ar)− ε)], where its objective

function is submodular in (s, r) by convexity of h. Thus, s̄(r) is decreasing in r ∈ [R−,R+]

by Lemma 1(a,c). In addition, the safety stock ȳ(r) solves the problem maxy[−Eh(y + (1−

ξ)(b− ar))], as well as the problem maxy[−E(y/(b− ar) + 1− ξ) by b− ar= d(r, r)≥ 0. Hence

ȳ(r) = ȳm(b− ar) by the definition of ȳm.

(b) For problem (9), if x< s̄(r), by definitions of steady state reference price and target inventory

level, then the inventory level is raised to s̄(r) and the selling price is r. It leads to the initial

inventory level x̃ = s̄(r) − [ξd(r, r) + ε] and reference price r in next period, where clearly

x̃≤ s̄(r). Therefore starting from (x, r), an order is placed in each period. Similar to the proof

of Theorem 2 for the additive demand model, the corresponding state path is also a state path

of problem (8). Therefore r is also a steady state reference price of problem (8). �
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Online Supplement

Remark on Proposition 5

Proposition 5 in Section 3.2 shows that the long-run base-stock level s(r) is decreasing in r ∈

[R−,R+]. In fact, we can show it is increasing when r≤R− or r≥R+ under the following condition:

α(1+2m+)

α+(1+α)m+ +m− ≤m+ +
√

1 + 2m−, (17)

where recall that m± = η±/[(1 + α)a]. This condition is satisfied, for example, when α = 0 (i.e.,

customers use the price in the previous period as the reference price) or customers are loss-neutral.

To show that s(r) is increasing when r ≤ R− or r ≥ R+ under this condition, first recall that

we already proved s(r) = ym + d(r, q̃(r)), where q̃(r) solves the problem (5). It suffices to verify

d(r, q̃(r)) is increasing in r when r >R+ or r <R−.

Let ṽλ(r) = ṽ(r)−λr2 with λ given in (11). Then q̃(r) also solves the problem

ṽλ(r) = maximize
q:p(r,q)∈P

{
[p(r, q)− c]d(r, q)−λr2 + γλq2−hm

}
+ γṽλ(q).

First we show that ṽλ(r) is concave. Define ṽλ0 (r) = 0 and for any n≥ 0,

ṽλn+1(r) = maximize
q:p(r,q)∈P

[p(r, q)− c]d(r, q)−λr2 + γλq2−hm + γṽλn(q).

Notice that ṽλ(r) = lim
n→∞

ṽλn(r). Similar to the proof of Theorem 1, we can inductively show that all

ṽλn(r) are concave, implying that ṽλ(r) is concave, too.

1. When r >R+, q̃(r)< r by and hence q̃(r) solves the problem

maximize
q:p(r,q)∈P

[p(r, q)− c]d+(r, q)−λr2 + γλq2−hm + γṽλ(q),

where d+(r, q) = b− a q−αr
1−α + η+ r−q

1−α . Define q = q+(r, d) as the inverse function of d= d+(r, q)

in q for any given r, and p+(r, d) = p(r, q+(r, d)). It can be shown

q+(r, d) = 1−α
a+η+

b− 1−α
a+η+

d+ αa+η+

a+η+
r, p+(r, d) = 1

a+η+
b− 1

a+η+
d+ η+

a+η+
r.

Then d(r, q̃(r)) solves the problem

maximize
d:p+(r,d)∈P

π̃λ+(r, d)−hm + γṽλ(q+(r, d)), (18)

where π̃λ+(r, d) = [p+(r, d)− c]d−λr2 + γλ[q+(r, d)]2 is a clearly quadratic function. Moreover,

we can be verified that its mixed second derivative η+

a+η+
−2γλ (1−α)(αa+η+)

(a+η+)2
≥ 0 by (17) and the

definition of λ given in (11). Therefore π̃λ+(r, d) is supermodular in (r, d). In addition, since

ṽλ(q) is concave as proved, and the linear function q+(r, d) is increasing in r and decreasing in

d, we know that ṽλ(q+(r, d)) is also supermodular in (r, d). Thus, the objective function of (18)
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is supermodular in (r, d). Furthermore, because p+(r, d) increasing in r and decreasing in d, the

feasible set of problem (18) forms a sublattice in (r, d) by Example 2.2.7 in Topkis (1998). By

Lemma 1(c), the optimal solution d(r, q̃(r)) to problem (18), as well as s(r) = ym + d(r, q̃(r)),

is increasing in r when r <R−.

2. When r <R−, by a similar argument we can prove that s(r) in increasing in r if

m−+ α(1+2m−)

α+(1+α)m− ≤m−+
√

1 + 2m−,

which holds automatically because α(1+2m−)

α+(1+α)m− ≤ 1≤
√

1 + 2m−.

Numerical Examples

Here, we provide three examples. The first example shows that the optimal price pt(x, r) may not

always be decreasing in the initial inventory level x, the second one shows that the base-stock level

st(r) may be not monotone in the intensity of reference price effect or the magnitude of demand

uncertainty, and the third one shows the optimal price is not monotone in the magnitude of demand

uncertainty.

Example 1. Consider a 20-period instance with b = 10, a = 2, η+ = 0.2, η− = 1.2, α = 0.4, γ =

0.8, c= 0,P = [0,2.5], and εt identically and uniformly distributed on [−0.9,0.9]. In this case, the

optimal price pt(x, r) increases in x when x= 7.83.

Example 2. Suppose that pmin = c= 0, pmax = a= 1, bt = 3, η(x) = βx for some 0≤ β ≤ 1, ht(z) =

h+ max{z,0}+ h−max{−z,0} for some h± > 0, and the demand uncertainty εt is uniformly dis-

tributed on the interval [−κ,κ] for some 0<κ< 1. Then the demand in period t is

d0t (p, r) + εt = [3− (1 +β)p+βr] + ε≥ 1−κ> 0, ∀0≤ p, r≤ 1.

Moreover, we can verify that Eh(y−εt) is continuously differentiable with the derivative as follows:

∂yEh(y− εt) = 1
2
(h+−h−) + 1

2
(h+ +h−)max

[
−1,min

(
κ−1y,1

)]
. (19)

Observe that Eht(y− εt) achieves its minimum at ym = h−−h+
h−+h+

κ.

In the last period t= T , the problem becomes

vt(x, r) = maximize
p,y

p[3− (1 +β)p+βr]−Eht(y− εt),

subject to [3− (1 +β)p+βr] + y≥ x,0≤ p≤ 1.

By Theorem 1, the base-stock level st(r) = ym + [3− (1 +β)p0(r) +βr], where

p0(r) = arg max
p:0≤p≤1

{p[3− (1 +β)p+βr]}= min
{

3+βr
2(1+β)

,1
}
.
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By substituting the expressions of ym and p0(r),

st(r) = h−−h+
h−+h+

κ+ max
[
2−β(1− r), 1

2
(3 +βr)

]
.

From the above equation, we have the following observations:

1. st(r) is increasing in κ if h− ≥ h+; otherwise it is decreasing in κ.

2. st(r) is decreasing in β if 0≤ β ≤ 1
2−r ; otherwise it is increasing in β.

Example 3. Consider the instance specified in Example 2 with β = 1, h− = 1 and h+ = 3, where

the base-stock level becomes st(r) = 1
2
(3 + r−κ). For any x> st(r),

vt(x, r) = maximize
y,p

(3− 2p+ r)p−Eh(y− ε),

subject to (3− 2p+ r) + y= x,0≤ p≤ 1.

Eliminating the decision variable p by p= 1
2
[(y−x) + (3 + r)] gives us

vt(x, r) = maximize
y

1
2
(x− y)[(y−x) + (3 + r)]−Eh(y− εt),

subject to x− r− 3≤ y≤ x− r− 1.

Denote yt(x, r) as the optimal solution and f(y) be the objective function of the above problem.

Observe that st(r)<
1
2
(r+ 3) and

f ′(y) = (x− y)− 1
2
(r+ 5)− 2max

[
−1,min

(
κ−1y,1

)]
.

In the following, we show the close form of yt(x, r) when 1
2
(r+ 3)≤ x≤ r+ 3. For this purpose,

observe that for any 1
2
(r+ 3)≤ x≤ r+ 3, by 0<κ< 1 and 0≤ r≤ 1,

f ′(κ) = x−κ− 1
2
(r+ 3)− 3< 0<x+κ− 1

2
(r+ 3) + 1 = f ′(−κ).

In addition, by x− r− 3≤ 0 and x− r− 1≥ 1
2
(1− r)≥ 0,

f ′(x− r− 3) = 1
2
(r+ 1)− 2max

{
−1,min

[
κ−1(x− r− 3),1

]}
≥ 1

2
(r+ 1)> 0,

f ′(x− r− 1) = 1
2
(r− 3)− 2max

{
−1,min

[
κ−1(x− r− 1),1

]}
≤ 1

2
(r− 3)< 0.

Therefore some y ∈ [max(−κ,x− r − 3),min(κ,x− r − 1)] achieves the maximum of f(y). That

is, yt(x, r) is in fact the global maximizer of f(y) and can be determined by solving the equation

f ′(y) = (x− y)− 1
2
(3 + r)− 1− 2κ−1y= 0. That is,

yt(x, r) = [2x− (r+ 5)]/(2 + 4κ−1).

Obviously yt(x, r), as well as pt(x, r) = 1
2
[yt(x, r)−x+ (r+ 3)], is decreasing in κ for 1

2
(r+ 3)≤ x≤

1
2
(r+ 5) and increasing in κ for 1

2
(r+ 5)≤ x≤ r+ 3.
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Notes on Supermodular and Submodular Functions

Many results in this paper rely on properties of supermodular and submodular functions. We refer

to Topkis (1998) for more discussions on these functions. For convenience, some properties used

in this paper are summarized below. For simplicity, denote arg max
X

f(x) as the lexicographically

smallest maximizer of f(x) over X , and assume it is well-defined.

Lemma 1. (a) If a 2-dimensional function f(x, y) is supermodular, then so is −f(−x, y).

(b) If f(x) is increasing and convex, then xf(y+ z) is supermodular in terms of x, y and z.

(c) Given a sublattice S of <n+m and a supermodular function f(x, y), define

g(x) = maximize
y:(x,y)∈S

f(x, y), y(x) = arg maxy:(x,y)∈S f(x, y),

for any x∈ Sx = {x∈<n : (x, y)∈ S for some y ∈<m}. Then Sx forms a sublattice of <n, g(x)

is supermodular on Sx, and y(x) is increasing in x∈ Sx.

In Lemma 1, part (a) can be easily verified from the definition of supermodularity, part (b) is a

corollary of Proposition 2.2.5 in Simchi-Levi et al. (2014), and part (c) follows from Theorem 2.7.1

and Theorem 2.8.2 in Topkis (1998), respectively.

Lemma 2 below is recently developed by Chen et al. (2013). It establishes a preservation property

of supermodularity under optimization operations when the constraint set may not be a sublattice,

and a sufficient condition to preserve supermodularity under linear transformation.

Lemma 2. (a) Given a closed convex sublattice S ⊆ <n, a concave and supermodular function g

defined on S, and a non-negative 2× n matrix A, if the following function is well-defined on

Sx = {Ay : y ∈ S}:

f(x) = maximize
y

{g(y) :Ay= x, y ∈ S} ,

then Sx forms a closed convex sublattice of <2, and f(x) is concave and supermodular on Sx.

(b) Given a 2-dimensional function g, if it is component-wise concave and supermodular, then so

is the function g(a11x1− a12x2, a22x2− a21x1) for any aij ≥ 0.


