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Summary

We propose a novel framework for estimating the time-varying covariation
among stocks. Our work is inspired by asset pricing theory and associated
developments in Financial Index Models. We work with a family of highly
structured dynamic factor models that seek the extraction of the latent struc-
ture responsible for the cross-sectional covariation in a large set of financial
securities. Our models incorporate stock specific information in the estima-
tion of commonalities and deliver economically interpretable factors that are
used both, as a vehicle to estimate large time-varying covariance matrix, and
as a potential tool for stock selection in portfolio allocation problems. In an
empirically oriented, high-dimensional case study, we showcase the use of our
methodology and highlight the flexibility and power of the dynamic factor
model framework in financial econometrics.

Keywords and Phrases: Dynamic factor models; Financial index
models; Portfolio selection; Sparse factor models; Structured
loadings.

Carlos M. Carvalho is Assistant Professor of Econometrics and Statistics, University of
Chicago Booth School of Business. Hedibert F. Lopes is Associate Professor of Econometrics
and Statistics, University of Chicago Booth School of Business. Omar Aguilar is Head of
Portfolio Management at Financial Engines. The authors would like to thank Robert
McCulloch for the helpful discussions throughout this project. Carvalho would like to
acknowledge the support of the Donald D. Harrington Fellowship Program and the IROM
department at The University of Texas at Austin.



2 C.M. Carvalho, H.F. Lopes and O. Aguilar

1. INTRODUCTION

The understanding of co-movements among stock returns is a central element in
asset pricing research. Knowledge of this covariation is required both to academics
seeking to explain the economic nature and sources of risk and to practitioners
involved in the development of trading strategies and asset portfolios. This leads
to a vast literature dedicated to the estimation of the covariance matrix of stock
returns; a challenging problem due to complex dynamic patterns and to the rapid
growth of parameters as more assets are considered.

Since the proposal of the Capital Asset Pricing Model (CAPM) by Sharpe (1964)
and the Arbitrage Pricing Theory (APT) of Ross (1976), Financial Index Models
became a popular tool for asset pricing. These models assume that all systematic
variation in the return of financial securities can be explained linearly by a set of
market indices, or risk factors, leading to a highly structured covariance matrix. In
financial terms, the implication is that equity risk is multidimensional but priced
efficiently through a set of indices so that the only source of additional expected
return is a higher exposure to one of these risk factors.

The appeal of index models is two-fold: (i) it leads to tractable and parsimonious
estimates of the covariances and (ii) it is economically interpretable and theoreti-
cally justified. It follows that the task of estimating a large covariance matrix got
simplified to the task of identifying a set of relevant risk factor. This is an empirical
question usually guided by economic arguments leading to factors that represent
macro-economic conditions, industry participation, etc. A very large body of lit-
erature is dedicated to selecting and testing the indices - we refer the reader to
Cochrane (2001) and Tsay (2005).

In a series of papers, Fama and French (FF) identified a significant effect of
market capitalization and book-to-price ratio into expected returns. This has lead
to the now famous Fama-French 3 factor model where, besides the market, two
indices are built as portfolios selected on the basis of firms’ size and book-to-price
ratio. This is perhaps the most used asset pricing model in modern finance research
and it relates to many trading strategies based on “growth” and “value” stocks. An
additional index based on past performance information (momentum) was proposed
by Cahart (1997) and can also be considered a “default” factor these days.

The fact that size, book-to-price and momentum are relevant to explain covari-
ation among stocks is exploited in two common ways:

• as individual regressors in a multivariate linear model;

• as ranking variables used to construct portfolios that are used as indices.

The first approach follows the ideas of Rosenberg and McKibben (1973) and it is
known as the BARRA strategy (after the company BARRA, Inc. founded by Barr
Rosenberg). The second is initially proposed by Fama and French (1993).

Taking the view that Financial Index Models are an appropriate choice for the
purpose of covariance estimation and asset allocation, we develop a dynamic factor
model framework that contextualizes the current ideas behind these 4 aforemen-
tioned factors. Our approach will encompass both the BARRA and Fama-French
strategies in a simple yet flexible modeling set up. Part of the innovation is to
propose a framework where variable specific information can be used in modeling
the latent structure responsible for common variation. From a methodological view-
point, our models can be seen as a “structured” extension of current factor model
ideas as developed in Aguilar and West (2000), West (2003), Lopes and West (2004),
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Lopes, Salazar and Gamerman, (2008) and Carvalho, et al., (2008). On the applied
side our goal is to propose a model-based strategy that creates better Financial
Index Models, help deliver better estimates of time-varying covariances and lead to
more effective portfolios.

We start in section 2 by introducing the general modeling framework. In Section
3 we define the specific choices defining the different index models. Section 4 explores
a case study where the different specifications are put to the test in financial terms.
Finally, in Section 5 we discuss the connections of our approach with the current
factor model literature and explore future uses of the ideas presented here.

2. GENERAL FRAMEWORK

The general form of an Index Model assumes that stock returns are generated fol-
lowing:

rt = αt + Btft + ǫt (1)

where ft is a vector of common factors at time t, Bt is a matrix of factor loadings
(or exposures) and ǫt is a vector of idiosyncratic residuals. If V ar(ft) = Θt and
V ar(ǫt) = Φt the model in (1) implies that

V ar(rt) = BtΘtB
′

t + Φt.

When the number of factors is much smaller than the number of stocks, the above
form for the covariance matrix of returns is represented by a relatively small set
of parameters as the only source of systematic variation are the chosen indices.
Assuming further that the factors are observable quantities the problem is essentially
over as one is only left with a simple dynamic regression model and in fact, most of
the literature will follow a “rolling window” approach based on OLS estimates (see
Tsay, 2005, chapter 9).

In our work, we take a dynamic, model-based perspective and assume that at
time t we observe the vector (rt, xt, Zt) where:

• rt is a p-dimensional vector of stock returns;

• Zt is a p × k matrix of firm specific information; and

• xt is the market return (or some equivalent measure).

We represent Index Models as defined by the dynamic factor model framework:

rt = αt + βtxt + Ztft + ǫt (2)

where βt is a p-dimensional vector of market loadings, ǫt is the vector of idiosyncratic
residuals, and ft is a k-dimensional vector of common factors. Our notation clearly
separates the one factor that is observed (the market) from the rest of the factors
that are latent (ft). In all model specifications, we assume that each element of
both αt and βt follow a first-order dynamic linear model (West and Harrison, 1997)
and that ǫt is defined by a set of independent stochastic volatility models (Jacquier,
Polson and Rossi, 1994; Kim, Shephard and Chib, 1998). Finally, we assume that

ft ∼ N(0,Θt)

where Θt is diagonal with dynamics driven by univariate stochastic volatility models.
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Figure 1: Illustration summarizing the idea of structuring the loadings with
observed variables present in our proposed framework. The red circles represent

observable variables.

Defining the factor loadings. One last element remains to be defined and it is in
the core of the different model specifications considered: the (p×k) matrix of factor
loadings Zt. Through Zt, company specific information will be used to help uncover
relevant latent structures representing the risk factors. Before getting to the specific
definitions of Zt it is worth noting that many previously proposed models are nested
in the form of (2). For example, taking βt = 0 and fixing the loading through time
gets us to the factor stochastic volatility models of Aguilar and West (2000) and
Pitt and Shephard (1999). Letting the loadings vary in time with a DLM leads to
the model considered in Lopes, Aguilar and West (2000) and Lopes and Carvalho
(2007).

3. MODEL SPECIFICATIONS

3.1. Dynamic CAPM

We start with the simplest alternative in the proposed framework. Let Zt = 0 for
all t and the dynamic CAPM follows:

rt = αt + βtxt + ǫt

αi,t ∼ N(αi,t−1, τ
2
αi

)

βi,t ∼ N(βi,t−1, τ
2
βi

)

ǫi,t ∼ SV Model

with independent dynamics for αt, βt and ǫt across i, for i = 1, . . . , p. This is also
the model with a very simple implementation strategy where conditional on the
market, all the estimation is done in parallel for all p components in the vector of
returns. Due to its historical relevance, this dynamic version of the CAPM will serve
as the benchmark for comparing the alternative specifications.

3.2. Dynamic BARRA

If we now set Zt = Zt we get a dynamic version of the BARRA approach where
the loadings are deterministically specified by the company-specific variables Zt.
Following the ideas of Fama and French (1996) and Carhart (1997), Zt would have
3 columns with measures of market capitalization (size), book-to-price ratio and
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momentum. The model follows:

rt = αt + βtxt + Ztft + ǫt

αi,t ∼ N(αi,t−1, τ
2
αi

)

βi,t ∼ N(βi,t−1, τ
2
βi

)

ft ∼ N(0, Θt)

ǫi,t ∼ SV Model

This model is jointly estimated as the common factors ft are now latent. This is
still a somewhat standard model as it is a version of the models in Aguilar and
West (2000) and Lopes and Carvalho (2007) where some factors are given (xt) and
their loadings have to be estimated and some time-varying loadings are given (Zt)
and their factor scores are unknown. It is important to highlight that by fixing the
loadings at Zt we force the latent factors to embed the information in the firm specific
characteristics leading to set of latent factors with a direct economic interpretation
as “size”, “book-to-market” and “momentum” factors.

3.3. Sparse Dynamic BARRA

Having the different firm-specific characteristics directly defining the factors might
be problematic due to potentially large amount of noise contained in these variables.
The use of portfolios suggested by Fama and French (1993) was originally an attempt
to filter out the relevant information contained in firm specific information about the
underlying risk factors defining the covariation of equity returns. In our proposed
framework this problem could be mitigated by additional structure in Zt. For
example, we can take the view that due to excessive noise, some elements of Zt

should not play a role at a given time so that the corresponding element in Zt

would be set to zero. The introduction of sparsity in the loadings matrix of a factor
model, as an attempt to regularize the estimation of factors in large dimensional
problems, first appears in West (2003) and got further explored in Carvalho et al.
(2008) and Frühwirth-Schnatter and Lopes (2010). We extend their approach to the
time-varying loadings set-up of the dynamic BARRA by modeling the loadings of
factor j at time t as:

Zij,t =



Zij,t w.p. πj,t

0 w.p. 1 − πj,t

where πj,t are the inclusion probabilities associated with factor j and are usually
modeled with a beta prior. Again, this is a fairly straightforward model to estimate.
Given Zt we are back to a dynamic stochastic volatility factor model whereas, con-
ditional on all remaining unknowns, each elements of Zj,t requires a draw from
a simple discrete mixture. Altought simple, the reader should be reminded that
fitting such models to high-dimensional problems is computationally intensive and
require careful coding as standard statistical packages are not up to the tasks. As
an example, in the p = 350 dimensional case study presented below, each MCMC
iteration requires, among other things, 703 filter-forward backward-sampling steps
and sampling 1,050 elements of Zt. As a side note, given the conditionally Gaussian
structure of the models, efficient sequential Monte Carlo algorithms are available
and very attractive for the on-line sequential application of the proposed framework
(see Aguilar and West, 2000 and Carvalho, Johannes, Lopes and Polson, 2010).
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3.4. Dynamic Fama-French

Fama and French (1996) and Carhart (1997) define factors as portfolios built by
sorting stocks based on their individual characteristics. The implied 4 factor model
(3 factors plus the market) is by far the most successful empirical asset pricing
model in modern finance. More specifically, the SMB (small minus big) factor is
defined by ranking the stocks according to their market capitalization and building a
value weighted portfolio with the returns of the firms below the median market cap,
minus the returns of the firms above the median. The idea behind this construction
is motivated by the observation that small firms seem to earn larger average returns
relative to the prediction of the CAPM (also know as “growth” effect).

The HML (high minus low) factor is defined by ranking the stocks according to
their book-to-price ratio and building a value weighted portfolio with the returns
of the highest 30% book-to-price firms minus the returns on the lowest 30%. The
intuition here is that “value” stocks have market value that are small relative to
their accounting value and therefore tend to present higher than expected (by the
CAPM) returns.

Finally, Carhart’s momentum factor (MOM) starts by ranking stocks according
to some measure of past performance and building equal weighted portfolios with
the returns of the 30% top performers minus the returns on the 30% bottom past
performers. Again, the idea arises from the observation that stock prices are mean
reverting and therefore past losers with present higher than expected returns (see
Jegadeesh and Titman, 1993).

We borrow these ideas and adapt their construction to our dynamic factor frame-
work. To this end we use the dynamic BARRA set up of Section 3.2 and define Zt

following the directions above. This means that, at each time point, the loadings
matrix takes values defined by the sorting variables size, book-to-price and momen-
tum. In detail, the first column of Zt takes values “+ market value” for small
companies and “- market value” for large companies (as defined by the median at
time t). The second column takes values “+ market value” for companies in the
top 30% of book-to-price, “- market value” for companies in the bottom 30% and 0
otherwise. The final column is defined with +1 for the top 30% past performers, -1
for the bottom 30% and 0 otherwise.

Extending the specification of Section 3.3 is immediate and would serve the
similar purpose of regularization. In addition it is a model-based alternative to
sorts and ad-hoc cut-offs for inclusion in each factor. In that spirit, we could define
the Sparse Dynamic Fama-French model in the same manner as in Section 3.3 but
with the potential values of Zt defined according to the instructions of Fama, French
and Carhart.

3.5. Probit-Sparse Dynamic Factor Models

In this final specification we modify the sparse specification (either BARRA or Fama-
French) so that to model the inclusion probabilities as a function of individual firm
characteristics. By doing so we allow for different relationship forms between firm
characteristics and their association with a latent risk factor. Once again, let

Zij,t =



θij,t w.p. πij,t

0 w.p. 1 − πij,t,

but now,
πij,t = probit(γj + φjWij,t).
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In the above, θij,t is whatever chosen value to the loadings when variable i is involved
with factor j. In the BARRA set up that could be the stock specific information
Zt or the simple transformations in the Fama-French context. Wij,t is the variable
that carries information of whether or not stock i and factor j are related. This
definition provides yet additional flexibility in using firm specific information in
building systematic risk factors. Instead of using sorts or assuming that inclusion
in a factor is exchangeable a priori across firms, this model is more informative
and allow for more complex relationships to be uncovered. This is also a very
useful context for the use of informative priors in relating variables to factors and
for exploring non-linear relationships with polynomials and related transformations
inside the probit link. One example, that relates directly to the Fama-French sorting,
takes Wj to be a measure of distance from the median size company and assume
that it is believed a priori that φj > 0. That would imply that the larger (or smaller)
a company is the more likely it is to participate in the associated factor.
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Figure 2: Case Study. Market β’s of Dow Chemical, Apple, Goldman Sacks
and Bank of America for all models. The horizontal red line represents the OLS
estimate of β in a simple linear regression.

Although very appropriate to the applied context discussed here it is important
to notice that the idea of using additional information in modeling factor loadings
is much more general and widely applicable. Our ideas are inspired by the work of
Lopes, Salazar and Gamerman (2008) where priors for factor loadings were informed
by spatial locations. In section 4 a simulated example showcases the potential
relevance of this approach in uncovering important latent structures responsible for
common variation.
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4. EXAMPLES

4.1. Case Study: 350 stocks

Our case study focuses on a set of 350 stocks in the U.S. market (part of the Russel
1000 index). From October 2000 to December 2009 we work with weekly returns
and use size, book-to-price and momentum as stock specific information. An overall
value-weighted index (from CRSP) is used as market returns. Due to the preliminary
nature of this work we selected our variables to avoid missing data problems. This
example serves as a test ground for the models and we hope to extend this analysis
to the entire population of stocks in the near future.
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Figure 3: Case Study. Eigenvalues of the covariance matrix of standardized
residuals from each model: Dynamic CAPM, Dynamic BARRA, Dynamic Fama-

French, Sparse Dynamic BARRA and Sparse Dynamic Fama-French. Absence of
residual covariation would imply a eigenvalue of 1.

Five models were considered in the initial analysis: (i) Dynamic CAPM, (ii)
Dynamic BARRA, (iii) Dynamic Fama-French, (iv) Sparse Dynamic BARRA and
(v) Sparse Dynamic Fama-French. Figure 2 shows the posterior means of the market
βt’s for four companies in all models. The first thing to take notice is the clear
dynamic nature of β – a fact that is ignored in a variety of empirical and theoretical
work where OLS estimates (like the one presented in the figure) are used. It is also
interesting to notice that the path of β’s is very similar in all models leading to the
conclusion that the market information is essentially orthogonal to the information
contained in individual firm characteristics (at least in relation to the factors they
create). This empirical fact has been observed in several articles in the finance
literature and is discussed in detail by Cochrane (2001). In other words, our different
factor models are seeking to uncover the latent structure left after the CAPM does
its job.

A summary of the remaining unexplained linear “structure” in the residuals ap-
pears in Figure 3 where we compare the first eigenvalue of the standardized residual
covariance matrix of each model. No residual structure would imply an eigenvalue
of 1. It is important to remember that all models other than the Dynamic CAPM
are of the same complexity and try to explain covariation with 4 factors. As ex-
pected, the simplest model, i.e., the Dynamic CAPM, leaves the most structure
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behind while the Sparse Dynamic Fama-French picks up the most common varia-
tion among stocks. This is the first indication that our initial conjecture that not all
stocks should be playing a role in determining the underlying factor associated with
firm characteristics might be a relevant one. By simply zeroing out some elements
of Zt we ended up extracting factors better able to explain common variation, at
least under this simple measure.

Table 1: Bayes Factors in relation to the benchmark Dynamic CAPM.

Model log(BF)
Dynamic BARRA -267.59
Dynamic Fama-French -102.55
Sparse Dynamic BARRA 343.50

Sparse Dynamic Fama-French 473.44

A more relevant overall comparison of the performance of the models is presented
in Table 1 where an approximate measure of the log Bayes Factor in relation to the
Dynamic CAPM is presented (See Lopes and West, 2004). The evidence in favor
of the Sparse BARRA and Sparse Fama-French specification is overwhelming while
the simple Dynamic CAPM seems to be a better alternative than both the Dynamic
BARRA and Dynamic Fama-French. Once again, this indicates that firm specific
information can be helpful in uncovering relevant underlying structure but a simple
ad-hoc definition of the loadings is not sufficient. The Sparse Dynamic BARRA
and Sparse Dynamic Fama-French are our first attempt in trying to improve the
modeling of the loadings and their results are so far promising.
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Figure 4: Case Study. Posterior means of the factor scores. The rows represent
the “size”, “book-to-price” and “momentum” factors.
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Figure 5: Case Study. Scatter plots of factor scores from the Dynamic BARRA

and Sparse Dynamic BARRA model specifications. In red, the 0-1 line.
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Figure 6: Case Study. Scatter plots of factor scores from the Dynamic Fama-
French and Sparse Dynamic Fama-French model specifications.

To better understand the results in the different specifications it is worth ex-
amining the factor scores a little closer. Figure 4 shows the posterior means for
all 3 latent factors in all models. It is clear that the ft’s are very different at a
first glance as different values of Zt have a tremendous impact in the estimation of
ft. This is indeed the case when comparing the factors from the Dynamic BARRA
and Dynamic Fama-French. A second look however, shows that the results from
the Dynamic BARRA and Dynamic Fama-French are quite related to their sparse
counterparts. Figures 5 and 6 display scatter plots of the absolute value of each of
the 3 factor scores in both sparse and non-sparse models. They are clearly linearly
related but the results from the Dynamic BARRA are overly shrunk towards zero
due to excessive noise in the loadings. The regularization exert by the sparse rep-
resentation is able to better identify time periods where just a subset of stocks are
really associated with the size, book-to-price and momentum effects leading to risk
factors that are better able to explain covariation.
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Table 2: Inclusion Probabilities: “Overall” stands for the overall average of the
posterior means of πj,t for each factor j. “Peak Dates” refer to the average for

the time periods when we identify a big disparity between the factor scores obtained
in the sparse versus non-sparse model specifications. In the Sparse Fama-French
model, we don’t observe the shrinkage effect in the Book-to-Market factor hence the
N/A values.

Overall “Peak Dates”
Size (BARRA) 0.5890 0.2501
Book-to-Market (BARRA) 0.5789 0.3718
Momentum (BARRA) 0.5971 0.3816
Size (FF) 0.5952 0.4025
Book-to-Market (FF) N/A N/A
Momentum (FF) 0.5886 0.2697

This point is emphasized by Table 2 where we summarize and compare the
overall estimates of the inclusion probabilities πj,t relative to their values when
factors scores are overly shrunk by the non-sparse models. The clear reduction
in the probabilities implies that only a smaller subset of stocks share covariation
through the characteristics based factors. Recall that the differences in the Bayes
Factor between the Dynamic BARRA and Fama-French and their sparse versions
are enormous even though the difference in their latent factor scores is somewhat
subtle.
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Figure 7: Illustrative example. The left panel shows the relationship of the

loadings in factor 2 with the explanatory variable Z. The right panel plots the
estimates of the loadings with or without the information in Z.

Finally, Figure 11 shows the growth in estimation risk as a function of dimen-
sion (p) and the conclusion is simple: the larger the problem, the higher the impor-
tance of appropriately using the information in Z.

To explore the financial effects of the different models, we build minimum vari-
ance portfolios based on the sequence of estimates of the covariance matrices of
returns. This comparison is useful as it isolates the impact of the covariance ma-
trix in investment decisions as the optimization solution only involves its inverse.
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Figure 8: Case Study. The estimated risk ratio of the returns obtained from
minimum variance portfolios from the different models relative to the Dynamic
CAPM. The volatility of the returns associated with each strategy was estimated
via a stochastic volatility model.

Figure 8 displays the series of risk ratios of each portfolio vis-a-vis the benchmark
portfolio constructed by the Dynamic CAPM. Once again the observation is that
the Sparse Dynamic BARRA and Sparse Dynamic Fama-French provide a signifi-
cant improvement over the Dynamic CAPM as, for most time points, it results in a
less volatile investment option.
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Figure 9: Case Study. The estimated risk ratio of the returns obtained from

minimum variance portfolios in the Sparse Dynamic Fama-French relative to the
Sparse Dynamic Barra. The volatility of the returns associated with each strategy
was estimated via a stochastic volatility model.

4.2. An Illustration

We close this example with an illustration of the overall improvement of the proposed
models relative to what we commonly see in many asset pricing articles. Figure 9
presents boxplots of the percentage of variation explained by the models (essentially
a R2 like measure) for each return series. The red boxplots refer to the standard
regression-based CAPM, BARRA and Fama-French while their green counterparts
are obtained from our proposed models. It is clear that the time-varying framework
provides potentially relevant improvements and, once again, their sparse versions
appear on top.
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Figure 10: Illustrative example. Errors in the estimation of factor scores over
100 simulations.
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The y-axis represents the reduction in mean squared error of factor scores when
the information about Z is used relative to a simple sparse factor model.
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Figure 12: Case Study. Boxplots of the percentage of variation explained by
each model for all stocks. The red plots are based on simple linear regressions
whereas the green represent the proposed model-based strategy. The blue plot refers
to the better performing model, i.e, the Sparse-Dynamic BARRA.

Our initial conjecture is somewhat validated by the performance of the sparse
version of the BARRA and Fama-French specifications in the case study. At this
point we have not been able to make use of the more complex and potentially
interesting Probit Sparse Factor Model, as presented in Section 3.5, in modeling
stock returns. To illustrate its potential, we now present a simulation exercise
where we make use of a non-linear, non-dynamic version of the probit model.

We simulate data with different dimensions (p = 30, 50, 100 and 1000) using
the loadings structure depicted in Figure 7 and sample size fixed at n = 50. In
all examples, one “external” variable Z is associated in a non-linear fashion with
the probability of inclusion in factor 2 (all models are defined with 2 factors) and a
polynomial linear predictor was used in the probit model. The structure in Figure 7
leads to the conclusion that the probability association of a variable with factor 2 is
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a non-linear function of Z as the values of the loadings are only significantly away
from zero for variables with a large absolute value of Z.

Posterior means of the estimated loadings in a p = 30 dimensional example are
also displayed in Figure 7. It is clear that trying to estimate the loadings without
the information in Z is possible but leads to over shrinkage of the large elements of
the loadings. This is a simple consequence of having only one parameter defining
the inclusion probability which promotes an “averaging” effect to the baseline of
inclusion. Small changes in the loadings may imply big changes in the estimation
of factor scores and significant differences in the practical use of the model (as
evidenced by the case study presented above). A summary of the estimation error
associated with the factor scores appears in Figure 10 where it can be seen that the
errors are much larger relatively when the information about Z is ignored.

5. CONCLUSIONS

We have focused on the use of a general dynamic factor model framework for the
estimation of Financial Index Models where firm specific information is used to help
uncover the relevant latent structure responsible for stock co-movements. Our con-
clusions are still preliminary but the case study demonstrates that small modeling
modifications can lead to significant differences in the practical output of the mod-
els. This is our first attempt in exploring more carefully, from a statistical point of
view, the very influential ideas related to the work of Fama and French. Building
on this framework we hope to study additional, more complex, specifications that
will hopefully lead to better performing covariance estimates and improved trading
strategies. Moreover, by extending our approach to the entire set of stocks in the
market we will be able to deliver more relevant factor scores that can be used as a
tool in asset pricing models.

Finally, it is our view that the framework introduced here is more general than
the financial problems discussed. Factor models are common place in many areas
of scientific exploration and the ability to incorporate “external” information in the
estimation of the latent structure can lead to more precise models of covariation.
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DISCUSSION

MENDOZA, MANUEL (Instituto Tecnológico Autónomo de México, Mexico)

Let me start by thanking the authors for a nice and readable paper. They have
taken us one step further along a fascinating road which started more than 40 years
ago with Sharpe’s paper. Explaining how the returns of assets in a financial market
behave, as the authors have reminded us, is not only a matter of academic interest
but also has enormous practical relevance since it is the basis for portfolio selection
and, hence, the design of investment strategies. In this sense, research leading to a
sound, adaptative and feasible model, able to accurately forecast returns within a
reasonable time horizon, may well cause the authors to become not only prominent
scholars, but also very wealthy. Under these circumstances, my first comment is
that, just in case, we should keep an eye on these colleagues.

On a more technical note, I would like to recall that Sharpe’s Capital Asset
Pricing Model (CAPM), as well as other similar models, were originally proposed as
theoretical explanations of a financial phenomenon rather than statistical tools for
prediction. In fact, the CAPM asserts that –under equilibrium conditions– for each
risky asset the expected return in excess over the risk-free asset must be proportional
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to the expected return in excess over the same risk-free asset for the market portfolio.
Thus,

(E(r) − r0) = β (E(rM ) − r0)

where the coefficient β may change with the risky asset. The above mentioned
equilibrium conditions involve, for example, the existence of a common pure rate of
interest available for all investors as well as the homogeneity of expectations among
investors. With respect to these hypotheses, we may quote Sharpe (1964): “Needless
to say, these are highly restrictive and undoubtedly unrealistic assumptions”. Despite
this, when there are p risky assets in the market, and taking the CAPM for granted, a
multivariate regression model has been adopted to explain the p-dimensional vector
of returns in terms of the univariate return rM ,

r = α + β rM + ǫ ; rt = (r1, ..., rp).

Consequently, the vector of expected returns (E(r) = µ) takes the form α +
β E(rM ), and the corresponding p× p covariance matrix V is given by ββtσ2

M + Σ,
where Σ = diag(σ2

1 , ..., σ2
p). Thus, the problem of estimating the p(p−1)/2 different

elements of V is reduced to the estimation of β, σ2
M and σ2

1 , ..., σ2
p. This simplification

is highly relevant since, for a portfolio Q =
Pp

i=1
kiai, the expected return is given

by E(rQ) = ktµ, whereas the variance (risk) is V ar(rQ) = ktV k and, in accordance
with Markowitz (1952), the portfolio selection problem is solved if the investor
minimizes ktV k for a fixed ktµ, or maximizes ktµ for a fixed ktV k. In any case, an
estimate or forecast for the covariance matrix V of the future returns is required,
and thus reduction from p(p − 2)/2 to 2p parameters is essential.

Empirical applications of the regression model associated to the CAPM have
shown that it is a rather poor statistical model (see Fama and French, 2004, for a
recent discussion on this issue) and, as a natural consequence, some other models
have been suggested as alternatives. In the regression setting, Rosenberg and McK-
ibben (1973) explored the improvement of CAPM when other explanatory variables,
apart from the market portfolio return, are included. Specifically, they used infor-
mation from the firm associated to each asset. This approach may be reasonable in
terms of prediction accuracy but it is not appropriate if the objective is to keep a
low dimensional structure for the covariance matrix of returns (covariances among
the p firms must be taken into account). Alternatively, in a number of papers, Fama
and French, used the information from the firms to create ad hoc portfolios whose
returns were then used as additional factors in a modified CAPM (see Fama and
French 1993, 1996a and 1996b, for instance). They showed, with real data examples,
that their model provided better forecasts than CAPM and, more importantly, al-
lowed them to estimate the returns covariance matrix through a rather small number
of parameters. The basic structure of this model is

r = α + β rM + γ rA + δ rB + ǫ

where A and B are ad hoc portfolios explaining variations in the returns that CAPM
is unable to describe. Only a few years later, Pitt and Shephard (1999) and Aguilar
and West (2000) introduced a Bayesian Dynamic Factor Model,

yt = θt + Xtft + ǫt,

where yt is the vector of returns, ft is a q-dimensional vector (q << p) of latent
factors and Xt is a p × q unknown matrix of loadings. In particular, Aguilar and
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West (2000) illustrate the model with some examples where the loadings matrix
does not change with time. The innovation in this model is twofold. First, instead
of defining some specific portfolios as factors explaining the common variation of
the returns in the market, a set of latent factors is included. Second, the linear
structure is assumed to be dynamic. I am not an economist but I might guess that
the latter is, by far, the most relevant generalization from a theoretical point of
view, since it allows the model to recognize that the equilibrium condition may not
be reached in the market. Lopes and Carvalho (2007) explored this model in a more
general situation with time varying loadings and jumps in the autoregressive model
they used for the log-volatilities of the latent factors. In particular, for the loadings,
those authors propose a first-order autoregressive evolution structure.

Now, in the paper we discuss here, Carvalho, Lopes and Aguilar introduce an
even more general structure,

rt = αt + βtxt + Ztft + ǫt,

where rt is a p-vector of returns, xt is the market return, ft is a q-vector of latent
factors, and Zt is a p × q time-varying matrix of loadings which is assumed to be
given and defined as a function of observable data (the information used by Fama
and French to build their ad hoc portfolios, for example). In addition, this model
includes a random mechanism to decide, at each period of time, which factors have
zero loadings. This is the idea of sparsity as introduced by West (2003) in connection
to gene expression analysis. This an interesting model. Instead of replacing the
market portfolio by a set of latent factors, it takes both sources of information into
account. It is worth noticing that the dynamic nature of βt, while introducing
flexibility in the relationship between the return rt and xt, does not change the
structure of the market portfolio (the relative weights in the linear combination of
assets defining xt remain fixed). On the other hand, the dynamic loadings matrix Zt

allows the relative weights for the factors to change over time. Moreover, the sparsity
mechanism makes it possible to temporarily suppress the influence of a factor on a
particular asset. This is a very general structure and includes as particular instances,
among many others, dynamic counterparts of the CAPM (DCAPM), the model by
Rosenberg and McKibben (DRM) and the three-factor model of Fama and French
(DFF), as well as sparse versions of both, DRM and DFF (SDRM and SDFF).

One of the issues that deserves special attention when an elaborated structure
like this is considered is that of identifiability. This topic has been addressed in
the past (Aguilar and West 2000 and West 2003, for example) for some models
of this type, but none of them involves simultaneously explanatory variables and
latent factors. In addition, the sparse specification, specially when the inclusion
probabilities are assumed to be function of the individual firm characteristics, might
also require some constraints. It would be very helpful to see an extensive discussion
of these topics.

The authors present a particular case study to show the type of results that
can be obtained with their model. A real data set with p = 350 assets is analyzed
and five models are considered (DCAPM, DRM, DFF, SDRM and SDFF) where the
number of factors is q = 1, 4, 4, 4 and 4, respectively. There are several aspects of the
analysis which are not completely clear to me. For instance, what are the specific
prior distributions used in this example? For the sparse models, what is the prior
used for πj,t? In close relation with this, how is this prior updated? More specifically,
what is the conditional independence structure of the posterior distribution? Are
these probabilities related to other parameters in the model a posteriori?
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The authors show the evolution of the β parameters over time for four companies
in all models (Figure 2). I wonder, is this a general pattern in this example? If the
dynamic version of the CAPM is better than DRM and DFF (although with a
penalized criterion), I would expect more evidence against market equilibrium. In
particular, I would expect to see something similar to the trends found in Lopes
and Carvalho (2007) for the exchange rates example, where clearly the equilibrium
condition for the market is not reached. In any case, is the pattern shown in Figure
2 shared, in general, by the other 346 firms? Do you have an interpretation for the
scatter plot you get for the book-to-price factor scores in the case of the FF model
(sparse vs non-sparse)? It is rather intriguing.

According to the specific model comparison procedure used in this example, the
sparse models SDBM and SDFF are the best ranked models but, what can the
authors tell us about their predictive abilities? This is a basic question if the results
are to be used to design an investment strategy.

In a more general setting, although related to the results in the case study, I
would like to know how an investment strategy could be developed on the basis of
this model if the time-varying loadings, {Zt}, are treated as given. More specifically,
how is the covariance matrix of a future vector of returns, rT+1, estimated if it
depends on ZT+1, which is assumed to be given but depends on the future firms
information for which the model does not include an evolution component?

Let us recall again that CAPM was proposed as a theoretical explanation for
the way financial markets behave, whereas the model proposed by the authors, as
well as many of its predecessors, is an empirical structure whose aim is to accurately
forecast the returns within a reasonable period of time for investment purposes. In
this sense, I think this paper clearly illustrates the existence of two approaches to the
portfolio selection problem. One uses an asset pricing model and thus involves some
elements of financial theory. On the other hand, we have what Pástor (2000) calls
the ‘data-based’ approach. Basically, this paper follows the second approach, and
although the proposed model is rather general, it could be interesting to explore even
more general and robust alternatives. In this direction, there is a huge amount of
literature showing that returns as well as other financial data do not follow a normal
distribution and several heavy-tails alternatives have been considered. In relation
to this, is it possible to use another, more general distribution for the returns in
this model (elliptical, for example)? See Hamada and Valdes (2008) for a related
discussion. More in accordance with the new times, could this model be generalized
to a semiparametric version?

Finally, it is worth noting that the CAPM has been extended in many ways.
Some of these extensions remove the assumptions of a common pure rate of interest
available for all investors and the homogeneity of expectations among investors. It
so happens, however, that for most of these extensions no single portfolio of risky
assets is optimal for every investor (see Perold 2004, for a related discussion). Maybe
these ideas from financial theory could be used to propose more powerful statistical
models for portfolio selection.

REPLY TO THE DISCUSSION

First we would to thank Prof. Mendoza for his kind works, encouraging comments
and for clearly placing out work in the context of the financial literature regarding
the CAPM and related models. One of our main goals with this paper was to
translate the empirical versions of a few widely used asset-pricing models into an
overarching statistical framework. We can only agree with your closing statements
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and say that this is only the beginning of our efforts in tackling this problem, and
in that sense, your suggestions are much appreciated.

It follows the reply to a some of your specific comments:

Identifiability. You are absolutely correct that identifiability is a potential issue
in factor analysis. The decomposition of common variation into a matrix of factor
loadings and a vector of factor scores allows many solutions and identifiability con-
straints are generally applied to the loadings matrix. In our set up, however, we are
fixing the values of the elements in Zt (for all t) and therefore we avoid any potential
problem. To be sure, modifications of our approach might require additional iden-
tifiability conditions and we point the reader to the solutions proposed in Aguilar
and West (2000) and Lopes and Carvalho (2007).

Priors. In all models we have used conditionally conjugate priors for all param-
eters. They are inverse-gamma for variances, betas for the inclusion probabilities
and normals for all other coefficients. Whenever possible we used standard, weak-
informative priors and made sure to access the sensitivity of our analysis to these
choices. A few parameters, however, require more informative priors – in particular
the variances in the evolution of the log volatilities are known to require informative
priors (see for example Kim, Shephard and Chib1998).

Inclusion Probabilities. The update of the factor inclusion probabilities πj,t are
very simple due the form of the model. Conditionally on the indicators of whether
or not a variable is associated with a factor, i.e., if the factor loading in not zero,
the posterior for πj,t is simple a beta distribution updated as usual. This step is
exactly as it appears in West (2003).

Dynamic β’s. We do observe that the β’s for all 346 firms seem to have a
dynamic nature. It is hard to illustrate this point in some many dimensions and
it is perhaps harder to, in our framework, formally test the market-equilibrium
hypothesis. This point is very relevant and we will attempt to address this question
as we move forward with our research.

Figure 6. Yes, the second panel of Figure 6 is indeed puzzling! Our best guess for
this result (which is very robust and holds with difference choices of priors) is that,
by following the FF strategy, the values of factor loadings for both the “size” and
“book-to-price” (when they are not zero) are the same. Therefore, by not imposing
the zeros and trying to find its configurations we believe that these two factors are
almost redundant. That would explain the clustering of factor scores near the origin.
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