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This work addresses the evaluation of the stress and electric field concentrations around a circular hole in a functionally
graded piezoelectric plane subjected to anti-plane elastic SH-wave and in-plane time-harmonic electric load. All material
parameters vary exponentially along a line of arbitrary orientation in the plane of the piezoelectric material under con-
sideration. The computational tool is a non-hypersingular traction based boundary integral equation method (BIEM). The
kernel functions used in the BIEM are exact fundamental solutions that have been derived in previous work by the authors.

Numerical solutions for the stress and electric field concentration factors (SCF and EFCF, respectively) around the
perimeter of the hole are obtained. The simulation demonstrates the efficiency of the computational approach and its
potential to reveal in an adequate way the dynamic stress and electric field distribution around the hole. Presented are
results showing their dependence on various system parameters as e.g. the electro-mechanical coupling, the type of the
dynamic load and its characteristics, the wave-hole and wave-material interaction and the magnitude and direction of the
material inhomogeneity.

c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Functional graded piezoelectric materials (FGPM) are the next generation of high performance multifunctional materials.
Their structural integrity is becoming increasingly important as their use is extended to new frontiers. Due to their in-
trinsic electro-mechanical coupling, piezoelectrics are widely used in intelligent and advanced structures with integrated
self-monitoring and online control capabilities. The structural integrity of FGPM subjected to different type of mechanical
and electrical stresses in service can fail due to defects such as cracks, holes, inclusions, sharp corners, joints, delamination
and porosity, arising during their manufacture. These defects present regions of high stress and electric field concentra-
tions and may initiate a sudden mechanical failure or dielectric breakdown. Therefore, it is of great interest to study the
electromechanical behaviour of piezoelectric solid with defects. It is a well known fact that brittle failure originates very
often from stress concentration areas around holes. Thus, a great deal of research has been conducted to determine stress
concentration factors in solids with holes. The first stress concentration study around a circular hole in an infinite elastic
isotropic homogeneous plane under uniaxial static stress was done by Kirsch [20] which has been followed by many similar
investigations, see Savin [38]. Corresponding dynamic stress concentration studies around circular holes were done later,
see Kupradze [22], Eringen and Suhubi [12], Miklowicz [29], Baron and Matthews [3, 5], Baron and Parnes [4], Pao [33],
Lee and Trifunac [24], Pao and Mow [34], Kundu and Bostrom [21], Liu and Han [25], Manolis [28]. As far as the subject
of this study are FGPMs, we will restrict the short overview mainly to piezoelectric materials (PEM).

Analytical solutions for static problems of piezoelectric solids with defects have been presented in Deeg [8], Sosa [41],
Pak [31,32], Chung and Ting [6], Sosa and Khutoryansky [42]. The problem of piezoelectric solid with an elliptic cavity is
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considered in Sosa and Khutoryansky [42]. A circular and elliptic piezoelectric inclusion embedded in an infinite piezoelec-
tric matrix is analyzed in Pak [31] and Pak [32], where a closed form solution is obtained for the anti-plane case. Various
authors have solved the static anti-plane piezoelectric elliptic inclusion problem, see Chung and Ting [6], Jiang et al. [19],
Meguid and Zhong [30]. A general static solution is provided in Sosa [41] in terms of complex potentials, with emphasis
being placed on stress concentrations in the vicinity of circular and elliptical holes. The interactions of electro-elastic fields
with voids and cracks contained in a piezoelectric solid under static load are addressed both in closed form and numerically
in Perez-Aparicio et al. [35]. In the work by Wang [44] a solution was developed for an infinite, piezoelectric medium con-
taining a piezoelectric ellipsoidal inclusion. In Shindo et al. [39] the dynamic theory of linear anti-plane piezoelectricity is
applied to investigate the scattering of horizontally polarized shear waves by a circular piezoelectric inclusion in an infinite
piezoelectric matrix subjected to an in-plane electric load. More recently, Fang et al. [13–15] studied the dynamic stresses
induced by a circular cavity in a semi-infinite functionally graded material. In specific, in Fang [15] the electro-elastic
field and dynamic stress around a cavity embedded in a graded piezoelectric layer bonded to a homogeneous piezoelectric
substrate are investigated by analytical methods. Generally, the most used analytical and semi-analytical methods for stress
concentration factor calculations are the wave function expansion, matched asymptotic expansion, integral transforms and
singular integral equation methods. However, the application of analytical methods for the analysis of piezoelectric solids
with defects suffers from a number of drawbacks. The most important is the inflexibility since by analytical methods only
a very restricted class of problems can be treated (e.g. an elliptic void/inclusion with an axis parallel to the polarization,
infinite domains, single void/inclusion homogeneous materials, etc.). A review of the literature reveals that there is a lack
of numerical studies of piezoelectric problems allowing more complex mechanical, geometrical, physical, and loadings
properties.

It is well known that among numerical methods the BIEM has many advantages for problems which are discussed here.
However, due to the lack of fundamental solutions for anisotropic, coupled and inhomogeneous solids, the BIEM results
in the field are very scarce. Lee [23], Xu and Rajapakse [46], and Liu and Fan [26] applied the BIEM to treat the static
problem for a homogeneous piezoelectric solid with a hole. The paper of Xu and Rajapakse [46] considers coupled elastic
and electric fields in piezoelectric solids with different types of defects. The stress concentration induced by the existence
of multiple holes, cracks and inclusions and their mutual interactions was studied by Hwu and Liao [18].

Most of the references discussed above are for the static problems and for homogeneous piezoelectrics, see [6, 26, 32,
35, 42, 46]. There is still a lack of results for dynamic problems [27, 40, 41] and more specifically for dynamic problems of
functionally graded piezoelectric solids [15] with holes. The present work aims to contribute to the gap’s closing by studying
numerically the stress and electric field distribution around a hole in an inhomogeneous piezoelectric plane under incident
SH-wave and in-plane time-harmonic electrical loading. The analysis is an extension of previous results of the authors,
see Rangelov et al. [36] and Dineva et al. [11], where the anti-plane and in-plane crack problem in functionally graded
piezoelectric solids have been analyzed by using the BIEM. For this purpose the authors derived fundamental solutions in
closed form for certain classes of smoothly inhomogeneous piezoelectric materials of quadratic, exponential and sinusoidal
type.

The paper is organized as follows: the problem statement is given in Sect. 2. The non-hypersingular traction based BIE
formulation of the problem is presented in Sect. 3. The numerical solution procedure and a series of results, including their
interpretation, are discussed in Sect. 4, while some conclusions are drawn in Sect. 5.

2 Basic equations

2.1 Anti-plane deformation

Consider an infinite transversely isotropic functionally graded piezoelectric material with its axis of symmetry and poling
axis both along the x3 axis of an Cartesian coordinate system Ox1x2x3. A single circular hole H of radius c and center (0, 0)
is embedded in the plane x3 = 0. The mechanical load is given by (shear) SH waves with a circular frequency ω, polarized
in Ox3 direction and propagating in the plane x3 = 0 under the incident angle θ with respect to the x1 axis, see Fig. 1.
Additionally, an in-plane electric load with the same frequency ω may be applied. The only non-vanishing displacements are
the anti-plane mechanical displacement u3(x, t) and the in-plane electrical displacements Dj(x, t), j = 1, 2, x = (x1, x2).
In this case the field equations in absence of body forces consist of the constitutive equations

σ13 = c44s13 − e15E1,

σ23 = c44s23 − e15E2,
(1)

D1 = e15s13 + ε11E1,

D2 = e15s23 + ε11E2,
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112 P. Dineva et al.: Dynamic behaviour of a functionally graded piezoelectric solid with a hole

the strain-displacement and electric field-potential relations

si3 = u3,i, Ei = −Φ,i, (2)

and the balance equations

σi3,i = ρu3,tt, Di,i = 0. (3)

Here σi3, si3, Ei, φ are the stress tensor, strain tensor, electric field vector, and electric potential, respectively, where
i = 1, 2. Subscript commas denote partial differentiation and the summation convention over repeated indices is invoked.
Since we assume that the mass density ρ, the shear stiffness c44, the piezoelectric e15 and the dielectric permittivity ε11 vary
in arbitrary direction α in the plane x3 = 0, the field equations must be regarded as a system with non-constant coefficients.

x
2

x
1

c

tJ=0

A

C

a

Fig. 1 A hole with radius c in a piezoelectric plane with direction of material inho-
mogeneity α subjected to incident plane SH wave with incident angle θ. The location
of the observer point is defined by angle γ.

By introducing the notation of the generalized displacement uJ = (u3, Φ), J = 3, 4, the field equations may be written
in the compact form

σiJ,i = ρJKuK,tt, J, K = 3, 4, (4)

where

ρJK =

{
ρ, J = K = 3,

0, J = 4 or K = 4,
σiJ =

{
σij , J = 3,

Di, J = 4,
σiJ = CiJKluK,l,

(5)

Ci33l =

{
c44, i = l,

0, i �= l,
Ci34l =

{
e15, i = l,

0, i �= l,
Ci44l =

{
−ε11, i = l,

0, i �= l.

The interaction of an incident wave with the hole induces scattered waves. The total wave field at a given field point can
be written as the sum of the incident (in) and the scattered (sc) wave field which both must fulfill the wave equation (4):
uJ = uin

J + usc
J , σiJ = σin

iJ + σsc
iJ . The boundary condition along the boundary S of the hole is

tJ |S = 0, (6)

where the total generalized traction is expressed by Cauchy’s formula tJ = σiJni, with n = (n1, n2) being the outward
normal to S. The condition (6) implies that the boundary of the hole is free of mechanical traction as well as of surface
charges, i.e. the hole is electrically impermeable. In the case of a circular hole in a piezoelectric material this assumption is
reasonable [31].

2.2 The type and characteristics of material inhomogeneity

In the following we assume that the mass density ρ and material parameters CiJKl vary in the same manner exponentially
with vector position x. Thus, introducing the function h(x) = e2〈a,x〉, where 〈., .〉 denotes the scalar product in R2 i.e.
〈a, x〉 = (a1x1 + a2x2), the parameters can be written as

c44(x) = c0
44h(x), e15(x) = e0

15h(x), ε11(x) = ε0
11h(x), ρ(x) = ρ0h(x), (7)

and correspondingly CiJKl(x) = C0
iJKlh(x). Here the material constants c0

44, e0
15, ε0

11, and ρ0 are the reference constants,
i.e. the material characteristics in the homogeneous case. The inhomogeneity parameter, the vector a can be written in polar
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coordinates as a = r(cos α, sin α), where α and r =
√

a2
1 + a2

2 are the direction and the magnitude of the inhomogeneity
gradient. Note that for a = 0, i.e. h = 1, the material is homogeneous.

We will study the time-harmonic solutions uJ(x, ω) of the BVP (4), (6). Therefore, suppressing in the following the
common multiplier eiωt, Eq. (4) becomes

σiJ,i + ρJK ω2uK = 0, J, K = 3, 4, (8)

This equation constitutes a system of partial differential equations with variable coefficients that govern the wave propaga-
tion in a smoothly inhomogeneous piezoelectric plane. Let us introduce the smooth change of functions

uJ(x, ω) = e−〈a,x〉UJ(x, ω). (9)

and suppose that UJ(x, ω) satisfies Sommerfeld-type condition at infinity, more specifically

U3 = o(|x|−1), U4 = o(e−|a||x|) for |x| → ∞. (10)

Condition (10) ensures uniqueness of the scattering field usc
J for a given incident field uin

J . Following Akamatsu and
Nakamura [1] it can be proved that the boundary value problem (BVP) (4), (6) admits continuous differentiable solutions.

Following the approach developed in [10,28,36] for the solution of mechanical problems of functionally graded materials
and applying the smooth transform (9) to (8) we obtain the following system with constant coefficients for UJ(x, ω)

C0
iJKlUK,il + (ρ0

JKω2 − C0
iJKi|a|2)UK = 0. (11)

Eliminating U4 by inserting the second equation of (11) into the first one, the reduced wave equation

ΔU3 + k2U3 = 0 (12)

for U3 is obtained, where Δ = ∂2
11 + ∂2

22 is the Laplace operator and k2 = ω2ρ0/a0 − |a|2, a0 = c0
44 + (e0

15)
2/ε0

11.
Introducing a critical frequency by ω2

0 = |a|2a0/ρ0 the following three cases with respect to the frequency ω of the applied
load must be distinguished:

1. ω > ω0, in this case k2 > 0,
2. ω = ω0, in this case k2 = 0,
3. ω < ω0, in this case k2 < 0.

From the mechanical point of view the 3rd case characterizes a simple vibration while in case 2 the system behaves
statically, i.e. stationary wave propagation does not occur in these cases. Only case 1 characterizes wave propagation
phenomena, see [7]. Thus, the type of the dynamic behavior of exponentially inhomogeneous materials is governed by
the frequency of the applied dynamic load and the inertial and electro-elastic properties of the piezoelectric material. The
present study focuses on case 1 and in what follows, for fixed inhomogeneity magnitude r = |a|, the frequency ω of the
applied load is assumed to be greater than the critical frequency ω0.

2.3 Electro-mechanical load

As already mentioned, the mechanical load is given by time harmonic SH wave propagating in the plane x3 = 0 under
incident angle θ with respect to the x1 axis. The generalized displacement um

J and traction tmJ fields due to this load satisfy
the wave equation (8). Denoting η = (η1, η2) with η1 = cos θ, η2 = sin θ, applying the smooth transformation to the
displacement vector and using the solution of Eq. (11), the following expressions for the incident wave are obtained

um
3 = e−〈x,a+ikη〉, um

4 =
e0
15

ε0
11

e−〈x,a+ikη〉. (13)

Here the superscript m indicates the mechanical load. The induced traction tmJ along the boundary S of the hole is

tm3 = −a0〈a + ikη, n〉e〈x,a−ikη〉, tm4 = 0. (14)

Additionally an incident time-harmonic pure electric in-plane load along S is applied which is described by

ue
3 = 0, φ = −E0〈x, η〉. (15)
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The corresponding traction teJ along the boundary S of the hole is

te3 = −e0
15E0〈n, η〉, te4 = ε0

11E0〈n, η〉. (16)

In the case of a homogeneous solid, i.e. |a| = 0 and a wave with an incidence angle θ = 0, formulae (13)–(16) are
the same as in Shindo et al. [39]. It also should be mentioned that although the wave propagation direction θ and the
inhomogeneity direction α in our case are two independent parameters, only the relative direction θ − α is finally of
importance. This is due to the specific type of wave loading (plane SH wave) and anisotropy (transversely isotropic). Thus,
without loss of generality, the inhomogeneity direction could have been chosen as fixed in an arbitrary direction, e.g. α = 0
leaving θ as the only free parameter. This has not been done in this investigation in view of generalizations of the method
to other loading cases and types of anisotropy.

The total incident generalized displacement and traction fields are

uin
J = um

J + ue
J , tinJ = tmJ + teJ . (17)

One way to solve numerically the BVP (8), (6) is to transform it into the equivalent integro-differential equation along
the boundary of the hole S. This will be done by the use of the fundamental solution of the wave equation (8) within the
framework of the non-hypersingular traction BIEM.

3 BIEM formulation and fundamental solution

As can be seen from the governing equation (8), the solution of wave motion problems in inhomogeneous media involves
the solution of partial differential equations with variable coefficients. The key role played by the fundamental solution
in a BIEM is to reduce a given BVP into a system of BIE through the usage of reciprocal theorem. The BVP formulated
in Sect. 2 in this work is described by a system of non-hypersingular traction based BIEs on the boundary S of the hole.
This formulation was proposed for the first time by Zhang and Gross [47] for cracked homogeneous isotropic, purely
elastic infinite anti-plane solids. In a series of works (see, Gross et al. [16, 17], Dineva et al. [9], Rangelov et al. [37])
this method was developed further and applied for the solution of dynamic in-plane and anti-plane crack problems for
homogeneous anisotropic piezoelectric infinite and finite solids. The same approach was used successfully to study plane
fracture problems of inhomogeneous piezoelectric solids, see Rangelov et al. [36], Dineva and Rangelov [10], and Dineva
et al. [11].

For uJ , u∗
JK , where u∗

JK is the fundamental solution of (4), we apply the Green’s formula in the domain ΩR \ Ωε, ΩR

is a circular domain with large radius R and Ωε is a small neighborhood of the hole. Applying the representation formulae
for the generalized displacement gradient uK,l, see [45] an integro-differential equation on ∂ΩR ∪ ∂Ωε is obtained. Using
the condition (10) integrals over ∂ΩR go to 0 for R → ∞. Taking the limit ε → 0, i.e. x → S and using the boundary
condition (6), i.e. tsc

J = −tinJ on S, the following system of non-hypersingular traction BIE describes the posed problem:

− 1
2
tinJ (x) = CiJKl(x)ni(x)

∫
S

[(σ∗
ηPK(x, y, ω)uP,η(y, ω) − ρQP ω2u∗

QK(x, y, ω)uP (y, ω))δλl

(18)

−σ∗
λPK(x, y, ω)uP,l(y, ω)]nλ(y)dS − CiJKl(x)ni(x)

∫
S

u∗
PK,l(x, y, ω)tinP (y, ω)dS, x ∈ S.

Here, u∗
QK is the fundamental solution of (8) and σ∗

iJQ = CiJKlu
∗
KQ,l is the corresponding stress. Furthermore, x and y

denote the position vector of the observation point and source point, respectively. Eq. (18) constitutes a system of integro-
differential equations for the unknown generalized displacements uJ on the boundary S of the hole. From this solution, the
generalized displacement uJ and traction tJ of the scattered wave field at each point in the inhomogeneous piezoelectric
domain R2\H can be determined by using the corresponding representation formulae. These solutions, for example, can
be used in the field of nondestructive evaluation of materials.

In order to solve the system (18) it is necessary to know the fundamental solutions for displacement and traction and
their derivatives. The fundamental solution of (8) is defined as solution of the equation

σ∗
iJM,i + ρJKω2u∗

KM = −δJMδ(x, ξ), (19)

where x = (x1, x2), ξ = (ξ1, ξ2), δ is Dirac’s function and δJM is the Kronecker symbol. The fundamental solution was
derived in Rangelov et al. [36] and is shortly given here for the sake of completeness of the description.

First with a suitable transformation of the displacement vector, Eq. (19) is transformed into an equation with constant
coefficients. The second step is to apply the Radon transform and to obtain a system of ordinary differential equations. This
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system of differential equations is decoupled via linear algebra tools. The third step is to apply the inverse Radon transform
and to find the fundamental solution. In the first step the smooth transformation

u∗
KM = h−1/2U∗

KM (20)

applied to (19) gives (compare Sect. 2.2)

C0
iJKiU

∗
KM,ii + [ρ0

JKω2 − C0
iJKia

2
i ]U

∗
KM = h−1/2(ξ)δJMδ(x, ξ). (21)

To solve Eq. (21) we use the Radon transform, see Zayed [48]. In R2 it is defined for the set f ∈ 	 of rapidly decreasing
C∞ functions as f̂(s, m) = R[f(x)] =

∫
〈m,x〉=s

f(x)dx =
∫

f(x)δ(s − 〈m, x〉)dx with the inverse transform f(x) =
1

4π2

∫
|m|=1 K(f̂(s, m)|s=〈m,x〉dm, K(f̂) =

∫ ∞
−∞

∂σ f̂(σ,m)
s−σ dσ. Applying the Radon transform to both sides of Eq. (21) we

get with pJK = C0
iJKia

2
i

[C0
iJKim

2
i ∂

2
s + (ρ0

JKω2 − pJK)]Û∗
KM = −h−1/2(ξ)δJM δ(s − 〈ξ, m〉). (22)

These are two systems of two linear second order ordinary differential equations. Following Vladimirov [43], their solutions
are obtained as

Û∗
33 = h−1/2(ξ)

i

2ka0
eik|s−τ |, Û∗

34 = h−1/2(ξ)
i

2ka0

e0
15

ε0
11

eik|s−τ |,

(23)

Û∗
43 = Û∗

34, Û∗
44 = h−1/2(ξ)

[
i

2ka0

(
e0
15

ε0
11

)2

eik|s−τ | +
1

2ε0
11|a|

e|a| |ε−r|
]

.

In order to obtain the fundamental solution we finally have to apply the inverse Radon transform to Û∗
KJ . Since the functions

Û∗
KJ are linear combinations of the terms eiq|s−τ | and eq|s−τ |, for the first part of the inverse Radon transform the following

formulas

K(eiq|s−τ |) = −iq{iπeiqβ − 2[ci(qβ) cos(qβ) + si(qβ) sin(qβ)]}|β=|s−τ | ,
(24)

K(eq|s−τ |) = q{2[chi(qβ) cosh(qβ) − shi(qβ) sinh(qβ)]}|β=|s−τ |

are used. Here ci(η) = − ∫ ∞
η

cos t
t dt, si(η) = − ∫ ∞

η
sin t

t dt are the cosine integral and sine integral functions and chi(η) =
− ∫ η

0
cosh t−1

t dt + ln η + C, shi(η) = − ∫ η

0
sinh t

t dt are the hyperbolic cosine and sine integral functions with C being
Euler’s constant, see Bateman and Erdelyi [2].

After having obtained Û∗
KJ by completing the inverse Radon transforms, the final form of the fundamental solution is

derived by the smooth transformation (20). Using the properties of hyperbolic and trigonometric integral functions for small
arguments and the properties of the function h, we obtain the asymptotic behaviour of the fundamental solution. When the
field point x → ξ, the continuity of the function h implies that h(x) = h(ξ) + O(|x − ξ|). Thus, we get

u∗as
JK = h−1(ξ)U∗as

JK = h−1bJK ln |x − ξ| ,
(25)

σ∗as
iJM = CiJKlu

∗as
JK,l = C0

iJKl

[
− 1

2
h−1(ξ)h,l(ξ)bJK ln |x − ξ| + ηMKl

1
|x − ξ|

]
,

where bJK and ηMKl depend on elastic, dielectric, piezoelectric constants, and density, but not on the frequency.
To make the BIEM analysis tractable, the focus is limited on a special class of smoothly inhomogeneous materials in

which material properties vary in the same proportion. This idealization results in ratios (such as wave speeds) that are
macroscopically constant. The mechanical, the electrical, and piezoelectric properties of the electromechanical continuum
are considered for a class of functional forms for which the fundamental solution of the considered wave equation can be
derived in an efficient analytical form. In our opinion it is worth to use such an idealization because obtained solutions reveal
some new effects of the material inhomogeneity and its influence on the stress and electric field concentration. Additionally
these results are useful for benchmarks of more complex mechanical models and more effective computational tools.
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4 Numerical results

4.1 Numerical solution procedure

The numerical treatment of the boundary-value problem consists of the following steps: (a) evaluation of the singular
behavior of the fundamental solutions, their derivatives, and their near and far-field asymptotics; (b) discretization mesh
preparation: the displacement and traction are approximated by parabolic shape functions; (c) evaluation of the singular-
ities of the kernels of the integrals obtained after discretization: they are at least Cauchy principal value (CPV) integrals;
(d) solution of all obtained regular and singular integrals and their validation: the regular integrals are computed employing
the Gaussian quadrature scheme for one-dimensional integrals and Monte Carlo integration scheme for two-dimensional
integrals where integration is done over the boundary element and over the unit circumference which is involved in the
2D fundamental solution, see Gross et al. [16]. All singular integrals and integrals with logarithmic singularity are solved
analytically for a small neighborhood of the source point, using the approximation of the fundamental solution for a small
argument, and numerically for the remaining part of the boundary element; (e) assembly of the system of equations and
formation of the matrix of the complex algebraic system; (f) solution of the complex algebraic system of equations; (g)
post processing, i.e. back substitution of the boundary solutions in order to obtain additional results: the displacement and
traction of the scattered wave field, and by this the total field, can be determined in the whole domain by the corresponding
representation formula. Knowing the total stress field, the generalized SCF is computed. As a result of the physical phe-
nomena like wave diffraction and scattering, the stresses near the hole are different, in some regions essentially higher than
the stresses at the same point produced by undisturbed waves, a phenomenon known as dynamic stress concentration. Fol-
lowing Pao and Mow [34] for the pure elastic case and Fang [15], Shindo et al. [39] for the piezoelectric case, the dynamic
SCF and electric field concentration factor (EFCF) along the perimeter of a circular hole is defined as the ratio of the stress
and electric field amplitude along the circumference to the maximum amplitude of the incident stress at the same point.

The normalized dynamic SCF |σγθ/τ0| and the normalized dynamic EFCF |e15Eγθ/τ0| are calculated by using the
following formulae:

σθγ = −σ1 sin(θ − γ) + σ2 cos(θ − γ), σi = σi3 + σin
i3 ,

(26)

Eθγ = −E1 sin(θ − γ) + E2 cos(θ − γ), Ei =
e0
15

e02
15 + c0

44ε
0
11

(−e0
15σi + c0

44Di), Di = σi4 + σin
i4 .

Here τ0 is the amplitude of the maximal shear stress of the incident plane SH-wave, i.e. τ0 = iω
√

a0ρ0 and a0 is defined
in Sect. 2.2, see also Fig. 1, γ is the angle of the observation point and θ is the angle of the incident wave.

For the calculations, presented in the following, meshes of 10 quadratic boundary elements have been used. In general,
BIEM mesh discretization issues such as mesh density and the element size are controlled by the well-known accuracy
condition λ/l ≥ 10, where l is the length of a boundary element and λ is the shear wavelength.

4.2 Validation study

To the author’s best knowledge there are no results available for SCF computation concerning a circular hole in an ex-
ponentially inhomogeneous piezoelectric plane subjected to time-harmonic anti-plane mechanical and in-plane electrical
load. Therefore, the present non-hypersingular, traction-type BIEM and its numerical realization can only be validated by
comparison with results from the literature for homogeneous materials. This easily can be done by setting the inhomogene-
ity function h in the developed program code to h(x) = 1. Two examples from the literature are chosen which have been
solved by using the analytical wave function expansion method. The first refers to a circular hole embedded in a homoge-
neous piezoelectric plane which is loaded by a mechanical SH wave, propagating in positive Ox1 direction in conjunction
with a time-harmonic electrical in-plane load E1 = E0e−iωt and E2 = 0 [39]. The respective reference material data
of lead zirconate titanate (PZT-4) piezoceramic are given in Table 1. A dimensionless frequency is introduced, defined as

Ω = c
√

ρ0

c0
44

ω. Furthermore, a parameter E∗ = E0
e0
15
τ0

is used, where E0 is the amplitude of the applied electrical load,

to normalize appropriately the amplitude of the applied electrical field by the amplitude of the maximal shear stress of the
incident SH-wave. The value of E∗ is chosen to be 0.0,±0.5 and 1.0. Figs. 2 and 3 show a comparison of the results for
the normalized generalized concentration field (GCF) – SCF and EFCF versus normalized frequency Ω at the observation
point A(0, c) for all four values of E∗. As can be seen, the BIEM results agree very well with those of Shindo et al. [39].
The difference of both results is below 7%, indicating a high accuracy of the obtained solution.

As second test example serves the solution for a circular hole in a homogeneous isotropic purely elastic plane, loaded by
an incident SH-wave, propagating in Ox1 direction [34]. The results in Fig. 4a are obtained by using the same numerical
scheme and the same program code. They show the SCF at point A(0, c) on account of an incident plane SH-wave with
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Table 1 Reference properties of the piezoelectric material.

Material Elastic stiffness Piezoelectric coefficient Dielectric constant Density

c0
44 (1010 N/m2) e0

15 (C/m2) ε0
11 (10−10 C/Vm) ρ0 (103 kg/m3)

PZT-4 2.56 12.7 64.6 7.5
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Fig. 2 (online colour at: www.zamm-journal.org) Dynamic SCF at ob-
server point A(0, c) versus normalized frequency Ω of the incident plane
SH-wave with incident angle θ = 0 for different electromechanical
loads E∗.
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Fig. 3 (online colour at: www.zamm-journal.org) Dynamic EFCF at ob-
server point A(0, c) versus normalized frequency Ω of the incident plane
SH-wave with incident angle θ = 0 for different electromechanical loads E∗.

incident angle θ = 00. It can be seen that the BIEM solutions are very close to those obtained by Pao and Mow [34].
The same results are shown in Fig. 4b, where the angular distribution of the SCF along the hole is drawn for three fixed
normalized frequencies Ω = 0.1, Ω = 1.0, and Ω = 2.0.

4.3 Simulation results

The aim of the parametric study conducted here is to show how the stress and electrical field concentration factors are influ-
enced by some key parameters like: (a) the frequency, the wave propagation direction and the type of the electromechanical
load; (b) the inherent properties of the functional graded piezoelectric materials like anisotropy and electro-mechanical
coupling; (c) the location of the observer where the stress and electric field concentration is measured; (d) the magnitude
and the direction of the material inhomogeneity. Note that in all figures the condition Ω > Ω0 is satisfied where Ω0 = rc is
the critical dimensionless frequency, see Sect. 2.2.
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Fig. 4 (online colour at: www.zamm-journal.org) Dynamic SCF in the case of incident plane SH-wave with incident angle θ = 0: (a)
at observer point γ = π/2, i.e. A(0, c) versus normalized frequency Ω; (b) for angular distribution γ at fixed frequencies Ω.
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Fig. 5 (online colour at: www.zamm-journal.org) Material
properties variation along vertical direction in the case of in-
homogeneity magnitude rc = 0.2; 0.3 and inhomogeneity di-
rection α = π/2 (stiffening model) or α = 3π/2 (softening
model): (a) elastic; (b) piezoelectric; (c) dielectric.

The FGPM under consideration is the piezoceramic PZT-4 with the reference material properties given in Table 1. For
chosen inhomogeneity directions α = π/2 or α = 3π/2 and a hole radius c = 5 mm, the variation of the material properties
along the vertical x2 axis is shown in Fig. 5 for the dimensionless inhomogeneity parameters rc = 0.2 and rc = 0.3. We
consider the following specific cases: material stiffening along the Ox1-axis when α = 0, i.e. a1 > 0, a2 = 0, material
softening along the Ox1-axis in the case of α = π, i.e. a1 < 0, a2 = 0; material stiffening along the Ox2-axis when
α = π/2, i.e. a1 = 0, a2 > 0 and material softens along the Ox2-axis when α = 3π/2, i.e. a1 = 0, a2 < 0.

Figs. 6a,b present SCF and EFCF at observer points A(0, c) and C(c, 0) versus normalized frequency of the incident
wave with incidence angle θ = 0, inhomogeneity direction α = π/2 or α = 3π/2 (i.e. along the Ox2-axis) and inhomo-
geneity parameter rc = 0.0, 0.1, 0.2. This is the case of pure mechanical load, i.e. E∗ = 0. The stiffening and softening
models are considered. It is first observed that the basic shape of SCF and EFCF curve in homogeneous case is preserved in
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a) b)

Fig. 6 (online colour at: www.zamm-journal.org) Dynamic GCF at observer points A(0, c) and C(c, 0) versus normalized frequency
Ω of the incident SH-wave with incident angle θ = 0 at different inhomogeneity parameters rc and α = π/2, 3π/2 for E∗ = 0, i.e.
pure mechanical load: (a) SCF; (b) EFCF.

the presence of inhomogeneity. Next, we see that the exponentially softening and stiffening inhomogeneous models yield
different numerical values for dynamic stress and electric field concentrations. There is a shift of the maximum to the higher
frequencies with increasing of the value rc. The SCFs and the EFCFs at observer A(0, c) are much greater than at C(c, 0).
The electro-mechanical coupling and dynamic overshooting phenomena are visible from these figures.

Figs. 7a,b describes analogous scenario like those in Figs. 6a,b but with the inhomogeneity direction α = 0 or α = π,
i.e. along the Ox1-axis. A comparison between results in Figs. 6, 7 show that the inhomogeneity effect is stronger when
the inhomogeneity is along the Ox2 axis, although even in the Figs. 7a,b the sensitivity of the stress and electric field
concentrations to different stiffening and softening models can be seen. At Ω = 0.53 the maximum of the curves shows the
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Fig. 7 (online colour at: www.zamm-journal.org) Dynamic GCF at observer points A(0, c) and C(c, 0) versus normalized frequency
Ω of the incident plane SH-wave with incident angle θ = 0 for different inhomogeneity parameters rc and α = 0, π at E∗ = 0, i.e. pure
mechanical load: (a) SCF; (b) EFCF.

www.zamm-journal.org c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



120 P. Dineva et al.: Dynamic behaviour of a functionally graded piezoelectric solid with a hole

0

0.4

0.8

1.2

1.6

2

2.4

2.8

0 1 2 3 4 5 6

p. A, rc=0.1 p. A, rc= 0.2 p. A, rc=0.3

p. C, rc=0.1 p. C, rc=0.2 p. C, rc=0.3

m

�� /� 0I I

0

0.4

0.8

1.2

1.6

0 1 2 3 4 5 6

p. A, rc=0.1 p. A, rc= 0.2 p. A, rc=0.3

p. C, rc=0.1 p. C, rc=0.2 p. C, rc=0.3

m

e15E�� /�0II

a) b)

Fig. 8 (online colour at: www.zamm-journal.org) Dynamic GCF at observer points A(0, c) and C(c, 0) versus inhomogeneity direction
α = m π

6
in the case of incident SH-wave with incident angle θ = 0 for different inhomogeneity parameters rc, at for the normalized

frequency Ω = 1.1 and at E∗ = 0, i.e. pure mechanical load: (a) SCF; (b) EFCF.

dynamic overshoot and this frequency is not shifted when the material inhomogeneity is involved, in contrast to the case
when inhomogeneity direction is along Ox2-axis, see Figs. 6a,b.

As far as the proposed methodology can take into consideration the lateral inhomogeneity, the sensitivity of the stress
and electric field concentrations to the inhomogeneity direction can be seen in Figs. 8a,b, where the wave with a fixed
frequency Ω = 1.1 propagates along the Ox1-axis and the inhomogeneity parameter is rc = 0.1, 0.2, 0.3. Figs. 9a,b are
analogous but for the propagating wave along the Ox2-axis. A comparison of the results in Figs. 8, 9 reveals that more
sensitive to the direction of the material inhomogeneity are the cases when the wave propagates along the vertical axis
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Fig. 9 (online colour at: www.zamm-journal.org) Dynamic GCF at observer points A(0, c) and C(c, 0) versus inhomogeneity direction
α = m π

6
in the case of incident plane SH-wave with incident angle θ = π/2 for different inhomogeneity parameters rc, at normalized

frequency Ω and at E∗ = 0, i.e. pure mechanical load: (a) SCF; (b) EFCF.
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Fig. 10 (online colour at: www.zamm-journal.org) Dynamic SCF versus normalized frequency Ω of incident plane SH-wave with
incident angle θ = 0 for inhomogeneity direction α = 0 (stiffening model) or α = π (softening model) at E∗ = 0.5 and at observer
points: (a) A(0, c); (b) B(0,−c); (c) C(c, 0); (d) D(−c, 0).

and when the inhomogeneous parameter rc is higher. Also, SCFs and EFCFs at point A(0, c) are much greater than those
at point C(c, 0) in Figs. 8a,b. Conversely, the stress concentration is stronger at C(c, 0 than in A(0, c) on Figs. 9a,b. The
maximal values of SCFs and EFCFs are obtained for inhomogeneity direction in the interval α ∈ [π/3, 2π/3].

In order to measure the influence of the electric load on the generalized field of stress concentration near the hole,
the results obtained at E∗ = 0.5 are shown in Figs. 10, 11 at different values of the inhomogeneity parameter rc =
0.05, 0.1, 0.2. In Figs. 10, 11 the wave propagation direction and inhomogeneity direction are along Ox1 axis. Figs. 10,
11 demonstrate convincingly that the dynamic stress and electric field concentrations can be considered as a complex
result of different physical phenomena and their mutual internal interaction. These physical phenomena are: (a) wave-hole
interaction; (b) wave-material interaction taking into consideration its anisotropy, inhomogeneity and electro-mechanical
coupling that leads to the appearance and shifting of the resonance frequencies; (c) type and characteristics of the applied
electromechanical load (pure mechanical, pure electrical and hybrid electro-mechanical); (d) coupled essence of the electro-
mechanical nature of the piezoceramics. Due to the complex wave field around the hole the place of the observer where we
measure the stress and electric field concentration is very important, compare Figs. 10a,b and Figs. 10c,d or Figs. 11a,b and
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Fig. 11 (online colour at: www.zamm-journal.org) Dynamic EFCF versus normalized frequency Ω of incident plane SH-wave with
incident angle θ = 0 for inhomogeneity direction α = 0 (stiffening model) or α = π (softening model) at E∗ = 0.5 and at observer
points: (a) A(0, c); (b) B(0,−c); (c) C(c, 0); (d) D(−c, 0).

Figs. 11c,d. It can be seen that the material inhomogeneity effect change the character of the SCF and EFCF curves for the
cases of softening and stiffening material, see Fig. 10c and Fig. 11d. Note that this observer points are on the Ox1-axis that
in this case coincides with the material inhomogeneity direction.

It can be seen that the peak values of the dynamic stress and electric field concentration factor for functionally graded
materials are different than that for the homogeneous material. So, the conclusion is that the defect driving force can be
reduced by using the concept for the FGM and the idea to replace the homogeneous materials with smoothly inhomogeneous
one in the new smart structure technologies works.

5 Conclusion

Two-dimensional dynamic anti-plane problem of a piezoelectric plane weakened with a circular hole is described by a
system of non-hypersingular traction based BIEs. The numerical approach is based on the frequency dependent funda-
mental solution of the wave equation of exponentially inhomogeneous anisotropic piezoelectric material. The material
properties vary exponentially with two spatial variables. The derivation of the fundamental solution is obtained by using an

c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org



ZAMM · Z. Angew. Math. Mech. 91, No. 2 (2011) / www.zamm-journal.org 123

appropriate algebraic transformation to the displacement vector and the properties of the Radon transform. The validated
numerical scheme and the implemented software provides the electro-mechanical displacements along the hole boundary,
the stress concentration factors near the hole and the scattered generalized displacement and traction in any point of the
inhomogeneous piezoelectric plane.

The simulation results show conclusively that stress and electric field concentration near the hole in a functionally
graded piezoelectric material is a complex result of the inter play of many key factors as: (a) the type of the material
inhomogeneity and its magnitude and direction; (b) the type and properties of the electromechanical load; (c) the coupled
nature of the electro-mechanical continuum; (d) the mutual disposition of the axis of material symmetry, the axis of material
inhomogeneity, the polling axis, the wave polarization axis, and the direction of the wave propagation; (e) the location of
the observer where the stress concentration factor is evaluated; (f) the relation between the inhomogeneity magnitude and
the size of the hole.

The near-field results can be applied in computational fracture mechanics, while the information for the scattered wave
field can be used for development of new efficient non-destructive test methods for monitoring the integrity and reliability of
the multifunctional materials and smart structures based on them. The knowledge of the scattered wave field can be used as a
basis for solution of inverse identification problems for the location and geometry of cracks. The proposed methodology can
easily be extended to the problem of inclusions (one or more) in piezoelectric matrix with direct application to mechanics of
composite materials and estimation of effective electromechanical properties in the case of randomly distributed inclusions.
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