
Dynamic Structure in Software Architectures

Jeff Magee and Jeff Kramer

Department of Computing

Imperial College of Science, Technology and Medicine

180 Queen's Gate, London SW7 2BZ, UK

jnm,jk@doc.ic.ac.uk

Abstract

Much of the recent work on Architecture Description
Languages (ADL) has concentrated on specifying

organisations of components and connectors which are
static. When the ADL specification is used to drive system

construction, then the structure of the resulting system in

terms of its component instances and their interconnection

is fixed. This paper examines ADL features which permit
the description of dynamic software architectures in which

the organisation of components and connectors may change

during system execution.

The paper outlines examples of language features which
support dynamic structure. These examples are taken from

Darwin, a language used to describe distributed system

structure. An operational semantics for these features is
presented in the n-calculus, together with a discussion of

their advantages and limitations. The paper discusses some
general approaches to dynamic architecture description

suggested by these examples.

1 Introduction

Software architecture is intended to describe "..the structure

of the components of a program~system, their
interrelationships, and principles and guidelines governing

their design and evolution over time [8]. It is a critical
design concern when bridging the gap between

requirements and implementations [7,8,9,10,25,28].

Architectural Description Languages (ADLs) are notations

for expressing and representing architectural designs and
styles. They describe the high level structure of a system in
terms of components and component interactions, often
referred to as structural models. To date, much of this work

has concentrated on providing precise descriptions of
connectors which provide the "glue" for combining

components into systems[9,10] and accommodating diverse
connector types [2,28]. As exemplified by UniCon[28], they

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage the copyright notice the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGSOFT'96 CA, USA
© 1996 ACM 0-89791-797-9/96/0010...$3.50

describe the overall system structure by declaring a static set
of component instances and connectors.

For a number of years we have been involved in developing

configuration specification languages for use in the design
and construction of complex and scalable distributed

systems [15,17,18]. These languages have much in common

with ADLs in describing a system as a configuration of

connected component instances. They differ mainly in

restricting connectors to those compatible with distribution

[3,26]. Darwin, the latest in a line of configuration

languages, is a declarative language which is intended to be
a general purpose notation for specifying the structure of

distributed systems composed from diverse components
using diverse interaction mechanisms. It deliberately

divides the description of structure from that of computation

and interaction in order to provide a clear separation of
concerns. Darwin supports software composition [24]

through the description of generic software architectures
which can be elaborated and instantiated to form specific

executable architectures. It is currently being used in the

context of the Regis system[19] which supports multiple
interaction primitives and in the Sysman project[6] with
CORBA[29] which uses remote object invocation for

component interaction. Darwin's declarative property has
facilitated the provision of an operational semantics and the
ability to reason about structural aspects such as the
correctness of the distributed algorithm used for the

elaboration of Darwin software [20].

Darwin can be used to specify static system structures in

much the same way as UniCon. Unlike UniCon, through the
use of conditional and replicator constructs, Darwin allows
parameters to determine the system structure at initialisation

time. UniCon fixes structure in the specification. Further,
Darwin has features which permit the description of

dynamic structures which evolve as execution progresses.
Structural evolution includes changes in both the bindings
(connections) between components and the set of

component instances. These structural changes can be

expressed without violating the declarative nature of
Darwin, thereby facilitating both a semantic description and

reasoning. This paper concentrates on Darwin's dynamic

features to act as a focus for discussion of general
approaches to the specification of dynamic software

architectures. The motivation is to widen the scope of
applicability of ADLs and thereby gain the associated

benefits for dynamic and evolving architectures. The paper
describes two specific techniques used in Darwin to capture

dynamic structures, lazy instantiation and direct dynamic

instantiation. In addition, dynamic binding is discussed with

respect to open systems and abstract services. The r~-
calculus[21] is used to specify these dynamic constructs.

This builds on earlier work which developed a n-calculus

model for the static aspects of Darwin and demonstrated the
correctness of the elaboration of Darwin programs[20]. The

~-calculus is used here to ensure that the dynamic constructs

are compatible with the existing elaboration scheme. It is
used to give an operational semantics to Darwin constructs,

and is not intended for direct consumption by the system

architects who are the target users of Darwin.

The next section gives a brief overview of Darwin. A more
comprehensive description may be found in [19,20]. Section
3 outlines how the basic static features of Darwin are given
an operational semantics in the n-calculus. The remaining

sections extend this operational specifiation to capture the
dynamic aspects of Darwin. Section 4 describes lazy

instantiation, a way of describing structures in which the

size can vary dynamically within a constrained pattern.
Section 5 describes direct dynamic instantiation which

permits unconstrained structural evolution. Section 6

outlines open systems binding which permits the
specification of interactions with external systems. Section

7. describes the role of dynamic binding. The paper

concludes with some general observations and conclusions

on specifying dynamic structures.

2 Darwin

Darwin allows distributed programs to be specified as a

hierarchic construction of components. Composite
component types are constructed from the primitive
computational components and these in turn can be

configured into more complex composite types.
Components interact by accessing services. Each inter-
component interaction is represented by a binding between

a required service and a provided service. Darwin has both a
graphical and textual representation. The Darwin

specification of a system architecture is used as a framework
for structuring behavioural specifications during design and
analysis and is used directly to drive system building during

construction.

2.1 Components & Services

Darwin views components in terms of both the services they
provide to allow other components to interact with them and

the services they require to interact with other components.
For example, the component of figure 1 is a filter

component which provides a single service prev and

requires two services next and output. The diagrammatic
convention used here is that filled-in circles represent
services provided by a component and empty circles

represent services required by a component. The type of the
service is specified in angle brackets. In the example, the

interaction mechanism used to implement the service is a

port which accepts messages of type int. Darwin does not

interpret service type information. Service type information
is either interpreted by the underlying behaviour

specification formalism used during design and analysis[4]
or, as in the example, denotes a communication mechanism

supported by the underlying distributed platform used in

building an implementation. In the Regis system[19], this
information is used to directly select the correct

communication code. In addition to a number of predefined

communication classes, Regis permits users to define their

own. When used with a more conventional distributed
platforms such as CORBA[29] based systems, the service

type names an IDL specification which is the used to
generate the correct client and server stubs.

~p : f i l ter

rev n e x t

o u t p u t

©

component filter {
provide prey <port,int>;
require next <port,int>,

ou tpu t <port,int>;
}

Figure I - component type f i l ter

In general, a component may provide many services and

require many services. It should be noted that the names of

required and provided services are local to the component
type specification. A component does not need to know the
global names of external services or where they are to be
found in the distributed environment. Components may thus
be specified, implemented and tested independently of the
rest of the system of which they will form a part. We call

this property context independence. It permits the reuse of
components during construction (through multiple

instantiation) and simplifies replacement during

maintenance.

2.2 Instantiation & Binding

The primary purpose of the Darwin configuration language
is to allow system architects to construct composite
component types from both instances of basic
computational components and other composite

components. The resulting system is a hierarchically

structured composite component which when elaborated at
execution time results in a collection of concurrently

(potentially distributed) executing computational

component instances. Composite components and systems
are thus formed in Darwin by declaring instances of

components and binding the services required by one

4

component to the services provided in another as shown in
figure 2 for a simple client server system.

A binding is only legal if the service type of the requirement
matches the service type of the provision. As noted before,
Darwin only manages service types, it does not interpret

them so the matching predicate must be supplied by the
system being used to specify service type. In the current

Darwin toolset the default is to do a simple name

equivalence test. Many requirements may be bound to a
single service provision (many-to-one), however, a service

requirement may only be bound to a single service

provision. The problem of using Darwin to describe
architectures using multicast is dealt with later in the paper.

Ii'C,ien
c o m p o n e n t Server {

p r o v i d e p;
}

c o m p o n e n t Client {
r e q u i r e r;

}

~ p : S e r v e r 1

c o m p o n e n t System {
i n s t

A:Client;
B:Server;

b i n d
A.r -- B.p;

}

Figure 2 - Client Server configuration

2.3 G u a r d e d a n d r e p l i c a t e d c o n f i g u r a t i o n s

The example of figure 3 defines a variable length pipeline of
filter instances in which the input of each instance is bound

to it predecessors output. The length of the pipeline is
determined by a parameter to the composite component
which is substituted at elaboration time of the Darwin
configuration program.

The pipeline component type is implemented by an array of

filter instances dimensioned by the array declaration. The

replicator construct foral l range declares the actual
instances and their bindings. Each instance must be declared
explicitly since they may have different parameter values
(although not in this example). The guard construct when

expression, only includes associated bindings and instances
in an elaborated system if the associated expression
evaluates to true.

Requirements which cannot be satisfied inside the
component can be made visible at a higher level by binding
them to an interface requirement as has been done in the
example for filter F[n-1] requirement next which is bound

to output. Similarly services provided internally which are
required outside are bound to an interface service provision
e.g. input -- F[O].prev. Since an interface requirement

represents an external provision, it is consistent that many
internal requirements may be bound to an interface
requirement e.g. F[k].output -- output.

. . . . a ~ . ~ ~ . . .] ~ ~

.................................... " L%~,~ ~~;~ ~ ~'~

c o m p o n e n t pipeline (int n) {
p r o v i d e input;
r e q u i r e output;

array F[nl:filter;
forall k:0. .n-i {

i n s t Flk];
bind F[kl.output -- output:
when k<n-1 b i n d

F[k].next -- F[k+ 1].prev;
}

b i n d
input -- F[O].prev;
F[n-1].next-- output;

}

Figure 3 - composite component type pipeline

This section has given an outline of the basic features of
Darwin needed to define static architectures. Darwin also

permits recursively defined components and allows
component types as parameters so that template component
types can be defined[19]. However, in this paper we

concentrate on the dynamic aspects of Darwin and only a
minimal set of the static features have been covered as a
necessary basis for discussing the dynamic constructs.

3 n-calculus model for Darwin

In the following, an operational specification for the main

static aspects of Darwin is given in the n-calculus[21]. The
correspondence between the treatment of names in the n-
calculus and the management of services in Darwin leads to
an elegant and concise n-calculus model of Darwin's
operational semantics[20]. For the reader unfamiliar with n-
calculus, a brief overview of the notation used here may be
found in the Appendix.

Note that the separation of concerns - structure from
computation and interaction - facilitates the provision of an
operational semantics for Darwin as a "pure" structural

language. We avoid consideration of the interactions (cf.
connectors [2]) and/or components (cf. CHAM [12] or LTS
[4] models), but focus on services and binding. This does
not preclude specification of the interaction and/or
computation, but allows us to modularise our approach. This
focus is matched by that of the n-calculus. Furthermore, as

we will see later, it facilitates the specification of the

dynamic aspects of architecture in Darwin.

3.1 Provide & Require

Provide - The declaration of a provided service, provide p,

in Darwin is modelled in the re-calculus as the agent

PROV(p,s) which is accessed by the Darwin name p and

manages the service s as shown below:

I °,
p r o v i d e p;

PROV(p, s) dee !(p(x).Ycs)

where

s - service reference

x - location at which s is required

p - access name

The service s is simply the name or reference to a service

which must be implemented by a component. Darwin is not

concerned with how the service s is implemented, it is

concerned with placing s where it is required by other

components which use the service. The agent PROV thus

receives the location x at which the service is required and

sends s to that location. Since there may be more than one

client of the service, the agent PROV is defined to be a

replicated process (!) which will repeatedly send out the

service reference each time a location is received.

Require - The declaration of a required service, require r, is

modelled by the agent REQ(r,o) which is accessed by the

Darwin name r and which manages the location o at which

the service is required. Again, Darwin is not concerned with

how a client component uses a service, it must ensure that a

reference to the service is placed at some location in the

client component. The REQ agent receives the access name

to a PROV agent and sends the location o to that agent. A

requirement in Darwin may only be bound to a single

service and so the agent REQ sends out the location o

precisely once as show below:

r e q u i r e r;

REQ(r, o) de-f- r(y).~o

where

o- location at which service is required

y - name of service provider

r - access name

3.2 Binding & Components

Bind - The binding construct in Darwin is modelled in the

re-calculus by the BIND agent which simply sends the

access name of the PROV agent to the REQ agent.

r p
© II

bind r -- p;

BIND(r, p) de_f_ ~p

where

r - name of requirement

p - name of provision

Initially, we will ignore the fact that PROV and REQ agents

are always contained within a component and examine the

effect of binding on these agents. Firstly, the composition o f

REQ and BIND:

Substituting definitions:

REQ(r, o) I BIND(r, p) -- r(y).~o I Pp

Communication along r: ---> p o (1)

In other words, the composition of a REQ agent with a

BIND agent produces a binding request of the form f ro , in

which the location at which the service name is required o is

sent along the access channel p o f the PROV agent. When

composed with the PROV agent, the binding request results

in a binding as follows:

Using ! P - = P I ! P :

fio l PROV(p, s) - ~o l p(x).Ycs l PROV(p, s)

Communication along p: ---> bs I PROV(p, s) (2)

The result of composing a REQ, PROV and BIND agent is

thus the binding 5s in which the name of the service s is

sent to the place o where it is required. The PROV agent

remains to allow further bindings.

Components - Each primitive component is represented by

an agent which is a composition o f the PROV and REQ
agents which manage its service requirements and

provisions and the agents which define its behaviour. A

primitive component is simply a component which has no

Darwin defined substructure of components. The Server
component type of figure 2 is represented by the g-calculus

agent:

Server(p) de-f- - (vs) (PROV(p, s) lServer'(s)) .

in which Server' represents the user implemented behaviour

of the Server component which realises the services s.

6

Similarly, the Client component type is represented by the

agent:

Client(r) de-f- (vo) (REQ(r , o) I Client '(o))

The configuration of the System component of figure 2 can

now be represented by the parallel composition of a Client,
Server and BIND agent:

Systernde==_ f

(va r, b p) (Cl ient(ar) I Server(b p) I B IND(a r, b p))

. (3)

This can be reduced using (1) & (2) to demonstrate that the

correct binding between client and server is made:

----> (vo, s, b p)(OS [Client ' (o) I Server(b p))

The term 5s sends the service s to the required location o.

Before the client can use the service it must perform an

input action. A possible definition for Client' would be:

Client ' (o) de-f- (vx) (o(x) .Cl ient")

The client server system then reduces to:

---> (VS, b p)((vx)Cl ien t"{ s / x } I Server(b p))

which is the desired result of an instance of the server

component executing in parallel with a client component in

which every occurrence of the local name x has been

replaced with the name s, the reference to the required

service.

Interface requirements and provision such as those used in

figure 3 require an extension to the ~-calculus model for

Darwin developed in the above. However, this is not

necessary for the following discussion of the dynamic

features of Darwin and consequently will be omitted. A

complete n-calculus model for the static elements of Darwin

may be found together with a general correctness proof for

the elaboration of Darwin configuration descriptions may be

found in [20].

4 Lazy instantiation

Darwin provides two main mechanisms for describing

dynamic structures which can evolve at run-time as opposed

to static structures which are defined at instantiation/

elaboration time. The first of these is lazy instantiation in

which the component providing a service is not instantiated

until a user of that service attempts to access the service.
The combination of lazy instantiation with recursion allows

the description of potentially unbounded structures as

shown in the example of figure 4.

component lazypipe {
provide input;
require output;
inst

H:fllter;
T:dy~ lazypipe;

bind
input -- H.prev;
H.next -- T.input;
H.output -- output;
T .output -- output ;

}

Figure 4 - Lazy instantiation example

The program of figure 4 generates a pipeline of filter
components. Initially a single instance H of the filter
component is instantiated. The next requirement of this

instance H is bound to the input provision of the instance T

(i .e.H.next -- T.input) which is again a pipeline. T is not

immediately instantiated since it is declared lazy by the

keyword dyn. When the H instance attempts to access the

service provided through T.input the instantiation of T is

triggered along with the bind actions for the requirements of

T (i.e.T.output -- output). The pipeline of filter instances is

thus extended as required. Consequently, while the structure

of the pipeline is fixed as in figure 3, the size of the pipeline

can increase at runtime while that of figure 3 is determined

at initialisation by its parameter. In this simple example,

there is no guarantee that the elaboration process will

terminate. Instances are created as required by computation.

Lazy instantiation is modelled by using a dummy provision

to which the clients of a server are initially bound. This

dummy provision, in response to a binding request, returns

the name of a prefix which, when communication is

initiated, triggers instantiation of the lazy instance and its

associated bindings. For example, consider the system of

figure 2 with lazy instantiation of the server component:

hlst
A:Client;
B: dyn Server;

bind A.r -- B.p;

7

The n-calculus model for this system becomes:

(va r, b p, d)(Client(at)

I PROV(d, bp) I bp(y).(bpy I Server(bp)) I BIND(a r, d))

in which the Client is bound to the dummy provision d (cf.

specification (3)). This reduces to:

--> (V b p, o)(S b p l Client'(o) I bp(y) .(bpylServer(bp)))

where o is the location at which the client requires the

service as in section 2. Note that instantiation of the Server

component is guarded by the prefix bp(y) and that the

binding returned to the client is the name of this prefix. In a

more complex system, the prefix would also guard the

binding actions for the requirements of the lazy instantiated

component. In addition, the component may have more than

one provision which triggers instantiation, in which case the

prefix becomes a sum of alternative actions. To deal with

lazy instantiation, the Client must perform a more complex

action than simply inputting the binding by the action o(x) .

The Client must decide if the binding is to a lazy service and

if so perform what is in effect a rebind. Thus Client'

becomes:

Client'(o) de_f_

o(x) .LAZY(x, t, f) I (t.Yco.o(x).Client" + f .Client")

The agent LAZY outputs the signal true (t) or false(t)

depending on whether or not x names a lazily instantiated

service. Definition of this agent is not trivial since names in

~-calculus are primitive entities which have no structure.

Consequently, LAZY must maintain the finite set of all

names which refer to services and the finite set of all names

which refer to lazy services to make a decision. A more

satisfactory solution, and one which closely models the

current Darwin implementation, is to give service names a

structure and encode the lazy property in this structure. This

can easily be achieved in the polyadic r~-calculus[22] but it

is beyond the scope of this paper.

The combination of lazy instantiation and recursion can be

used to describe a wide range of commonly occurring

distributed parallel processing structures (e.g. search trees,

combining trees, divide & conquer). The advantage of this

technique of specifying dynamic structure is that the

configuration description is a precise specification which

describes the potential structure at execution time. The

components used in the structure need not be aware of
whether they are being used in a statically or lazily

elaborated structure. Lazy instantiation by itself is

commonly found in distributed systems, where to save
resources, servers are only created on demand (e.g. Unix

Netd).

The limitation of this technique is that it is not possible to

describe structures with cyclic bindings, for example, a ring

of filter components. Inserting a new component into a ring

requires breaking an existing ring interconnection by

deleting an existing binding. Introducing an unbind or

rebind operation into Darwin would make it an imperative

rather than a declarative notation in which system structure

would depend on the elaboration sequence of the Darwin

description. In addition, rebinding without coordination

between components could cause undesirable application

side effects arising from trying to change a binding while it

is being used for interaction. Imperative reconfiguration in

which the system is directed to change structure is handled

at a management level of systems using Darwin[6].

Essentially, as discussed later, a managed system exports

rebinding services which control access to existing bindings

and synchronise change with component interaction.

trace

tnd

component comexec [
require t race <event bs ta tus>;

ou tpu t <port smsg>;
provide c o m m a n d <port comT>;

l n s t

M:master;
S :sensoralloc;

b ind
M.create -- dFa badge;
badge. t race -- trace;
badge . sensor -- S.alloc;
badge .ou tpu t -- output ;
badge . command -- M.newcom;
c o m m a n d -- M.command;

Figure 5 - Direct dynamic instantiation example

5 Direct dynamic instantiation

Lazy instantiation permits a structure to evolve according to

a fixed pattern. Direct dynamic instantiation permits the

definition of structures which can evolve in an arbitrary

way. Of course, much less of the runtime structure is

captured in the Darwin program. In practice, we have found

that dynamic instantiation can be used in a way which

balances flexibility at run-time with the advantages of

retaining a structural description.

Figure 5 is an example taken from an infrared Active Badge

location system [11] implemented using Darwin and Regis

[19]. The comexec component forms part of the badge

management server which runs on a local area network and

uses a set of fixed infrared tranceivers to communicate with

the mobile badges. Comexec has a supervisor-worker

architecture and is responsible for sending commands to

badges. Commands activate paging signals (audible and

visual) on the active badge. A badge worker component is

created to deal with each new request received by comexec

to send a command to an active badge. This badge
component deals with locating the physical badge, reserving

the nearest transceiver to transmit the infrared command

and implements a protocol to ensure that commands are

reliably executed. The master supervisor component M is

responsible for creating badge components. It has a

requirement for a dynamic instantiation service (dyn) which

passes a single parameter of type int as shown below in the

Darwin interface specification for master.

component m a s t e r {
require create <dyn int>;
.

The master's requirement is satisfied in the configuration

program of figure 5 by binding it to the component type

badge prefixed by the keyword dyn. i .e.M.create -- dyn

badge. Note that in figure 5, bindings are specified for the

component type badge rather than for instances of this type

as is usual. These type specific bindings serve to define the

environment in which the dynamically created instances of

badge will execute. The interfaces for dynamically created

components types may only usefully declare a requirement
for services. Since dynamically created instances are

essentially anonymous, it would not be possible withio

Darwin to declare bindings to services they provide. This

would otherwise result in the potentially ambiguous

situation of requiring a service from multiple providers.

Dynamically created components may provide services,

however, access to these services is achieved by passing

service references in messages to form bindings

dynamically. These bindings cannot be captured by the

Darwin program.

Dynamic instantiation is modelled in the re-calculus by a

PROV agent which supplies the name of the instantiation
service. This instantiation service triggers one of the copies

of a replicated process. As an example of modelling

dynamic instantiation, we will again use the client-server

system of figure 2 and modify it so that Client components

can be created dynamically through the service d:

provide d <dyn>;
inst B:Server;

bind
d -- d y n client;

client.r -- B.p;

The re-calculus model for this system is shown below. The

PROV agent will return the name m in response to a binding

request. A client which performs the action ~ will cause a

new replica of the Client component to be instantiated

together with its associated bind action. In general, the
_ - >

action would be mx where ~c represents the vector of

parameters for the newly instantiated component.

(Vbp, d, m)(Server(bp) I

PROV(d, m) I !(m.(vr)(Client(r) I BIND(r, bp))))

Note that the way in which a component is instantiated,

statically or dynamically, does not change the definition of

that component.

6 Open systems binding

It is intended that systems constructed using Darwin
interwork with external systems in an open systems

environment. Darwin, as described so far, has a closed

namespace which would not permit services implemented

inside a system to be externally accessed. Consequently,
Darwin has the facility both to export service names into an

external namespace with an associated external name and to

import names from an external namespace. Bindings

achieved by export and import are orthogonal to the inter-

component and hierarchical bindings used to express

Darwin structures. Consequently, exported and imported
services are not drawn at the boundary of a component but

are depicted as in figure 6.

The example program of figure 6 includes the comexec
component described earlier into a composite component

which constitutes the badge system management server.

This server exports a set of services with associated external

names (in quotes). Exports are bound to a service provided

internally (e.g. where -- L.where). Darwin components may

also import external services. For example, the statement

import w@ "badge/where", would return a reference to the
where service exported by an instance of badgeman.
Internal requirements may be bound to imports.

component b a d g e m a n {
export

where @ "badge/where",
location @ "badge/location",
t race @ "badge/ t race" ,
c o m m a n d @ "badge /command" ;

l n s t
S:sensomet(3);
L:locate;
C:comexee;

bind
where -- L.where;
location -- L.location;
t race -- L.trace;
c o m m a n d -- C.command;
S . sensout -- L.input;
C .ou tpu t -- S.sensin;
C.trace -- L.trace;

}

Figure 6 - Exporting services

Modelling the Darwin export construct in n-calculus is

reasonably straight forward. The Darwin statement export e

@ n is modelled as follows:

EXPORT(e, n)dee (vo)(REQ(e, o) 1 o(x).REG(n, x)) .

The EXPORT agent consists of a REQ agent in parallel with
REG. The REG agent encapsulates the details of registering

the service in a nameserver with the extemal name n. When

a provided service is bound to the export, the resulting

binding hs will reduce the EXPORT agent to REG(n,s).

Exports behave in the same way as requirements during

binding and elaboration.

The g-calculus model for import i @ n is complicated by

the fact that we do not wish elaboration of all or part of a

Darwin program to be suspended while an external service

reference is fetched from a nameserver. Consequently, the

definition of IMPORT uses the lazy instantiation

mechanism described in section 4. Requirements are

initially bound to a dummy provision i.

IMPOR T(i, n) ded

(vd)(PROV(i, d) I

d(y).(~ly l (vz)LUP(n, z) I z(s).PROV(d, s)))

An attempt to use the service represented by the IMPORT
agent triggers the LUP agent which looks up the reference

to an external service with the name n. When it gets the

service name, LUP performs the action ~s which enables

the agent PROV to return the service name s in response to

binding requests. Imports behave in the same way as

provisions during binding and elaboration.

The set of exported and imported services provide a clear

specification of the boundary between a system specified in

Darwin and the external environment in which it exists.

Both lazily and dynamically instantiated components may

import and export services allowing this interface with the

environment to be changed dynamically over time.

7 Dynamic Binding

7.1 Interaction specific binding

Components interact or communicate using the bindings to

services computed by the elaboration of the Darwin

program. The binding patterns established by Darwin are

many-to-one in that one or more requirements for a service

may be bound to the provider of that service. However, for

some component interaction mechanisms, further binding
may be required. This is not part of Darwin and may be

treated orthogonally to the elaboration model developed in

the foregoing. However, the r~-calculus may be used to

model this additional binding process.

©

c

Figure 7 - Event interaction mechanism

10

An example of extended binding is found in the Regis event
distribution mechanism which allows the provider of an
event service to transmit information to many receivers as
shown in figure 7. This requires a one-to-many binding

which is constructed by the event mechanism using the
Darwin many-to-one binding. Darwin gives each client of
the event service the name of that service s. To enable the

receipt of event information messages, the client sends the

name of a private channel y to the event service (~y)

together with the event class the client is interested in. The

event service maintains a set of the private channel names of

enabled clients. It then uses this set to send information
message (with the selected event class Eclass) to clients.
Component interaction mechanisms may thus easily extend

the binding supported by Darwin.

7 .2 A b s t r a c t S e r v i c e s

Direct dynamic instantiation permits sets of anonymous

components to be created at runtime and in addition,
through type specific bindings, it permits the definition of
the service environment for these components. If these

components wish to interact directly then they can exchange
service references through a third party component. The
disadvantage is that, as mentioned above, the Darwin

description does not capture these bindings. A limited

solution to allow dynamically instantiated components to
interact directly exists in Darwin for the case of group

communication as shown in Figure 8.

component group {
provide newMember;
service G;
bind

Member.r -- G;
newMember -- d y a member;

}

Figure 8 - Group Service

Member components may be created dynamically via the
service newMernber. They interact directly via the abstract
service G which in an implementation becomes a group
address for multicast communication.

8 Discussion and Conclusions

The paper has described two techniques for capturing

dynamic structure in Darwin, an architectural description
language for distributed systems. The first, lazy instantiation
(figure 9a), is restricted in its application to situations where
the designer can predict precisely the way system structure

will evolve during execution. These structures must have
acyclic bindings and have in practice been found to be
mainly useful in the domain of parallel processing. The

second technique, direct dynamic instantiation (figure 9b),

allows arbitrary structures but permits the context or

environment of the components to be precisely captured in
the structural description. These two techniques are

motivated by our desire to retain a declarative notation and

to capture as much as is possible of the structure of a system

in this notation while realising that for some systems, the

system structure at runtime must be determined by data
input at runtime. In addition, we have discussed support for
dynamic binding both inside and outside Darwin.

a) Lazy Instantiation

I ~ I1:T1 J tdgger [. . . . i ;~T2" "

J binding :

b) Dynamic Instantiation

I t~N creation ; -'~1~
I 1 :T1 : . ' 2 !

binding

c) Association

i'" i t , "i

~ potentla~ , ,

".-. ' b i n d i n g " /

Figure 9 - Summary of Dynamic Structure in

Darwin

Rapide [16] is one of the few architectural languages which
also supports dynamic architectures, providing facilities for
both dynamic connections and instantiation of components.

Although there are many similarities in its structural aspects
(architectural sublanguage), it is an event based language
aimed at prototyping systems for examination of properties
such as synchronisation and timing. As such, it is expected
to execute and produce representative event patterns for the
particular application. With Darwin we have deliberately

11

focused purely on the structural aspects and aimed to

provide a language for both specifying and constructing
distributed applications.

Retaining the declarative property for an ADL is important
we believe in simplifying the analysis and possible
transformation of architectures. However, it is critical in an

ADL intended for use in construction of distributed
systems. In particular, it permits concurrent and
decentralised elaboration which is essential if ADLs are to

be applied to large systems. An imperative ADL would
impose strict ordering requirements on elaboration.

However, where the architecture of a system must change in

response to external influence at runtime then some

imperative constructs are required. How do we retain the

benefits of a declarative notation while permitting such
change?

Meta-level Configuration

Those parts of the system that are fixed can be specified in

the usual way in the Darwin language using direct dynamic
instantiation mechanism to specify those parts of the system

which depend on factors not determinable when the system

is created. However, direct dynamic instantiation may be

driven by interpreting a Darwin script at runtime. The
structure of the interpreter and the services it can access is

thus specified by the original Darwin specification. The

structure of the overall system is this original Darwin
specification plus the set of meta-level Darwin

specifications which the original system executes as a result
of either internal or external reconfiguration events. These
reconfiguration events capture the imperative quality of

change while the system specification remains declarative.
Others, such as the reconfiguration plans of Clipper [1] and
the reconfiguration actions of Durra [3], describe a similar

use of imperative commands in response to system events,

though with less support for maintaining the integrity of the
system than that which we propose.

The execution of a meta-level Darwin specification may
require the deletion of both components and bindings

created by a previous specification. Previous work has
identified an approach which minimises the disruption to a
system while such change is accomplished [14]. This meta-

level approach has been used in a prototype management
system for distributed applications [6] in which the
configuration manager is essentially a Darwin interpreter.

This configuration manager uses generic direct dynamic
instantiation and third party rebinding services to construct
and modify applications. The instantiation service is generic

in the sense that the type of component to be created is a
parameter to the service.

Constrained Configuration

In some cases, where the timescale of dynamic change ~s
short and the structure of connected components changes as
a result of the computation being performed by the system,

the meta-level configuration approach may exhibit too high

a resource overhead. It may thus not be possible to describe
the exact structure of the system at each stage of its
evolution. In this case, it is possible using structural

constraints to capture more of the structure in the
specification than that currently provided by the direct
dynamic instantiation technique. For example, a
configuration constraint can specify an upper bound on the
number of dynamically created instances. As shown in

figure 9c, we can constrain the potential bindings between
components by declaring the allowed associations between

the requirements and provisions of component types.
Association is used here to mean that an actual binding may

occur at runtime. It is similar to the association concept

found in class diagrams e.g. OMT[29]. In general,

configuration constraints can limit both the number and type
of dynamically created instances and the possible bindings

between these instances. An earlier experiment used Prolog

to specify constraints on Conic configurations [30].
Constraints did not play a part in the construction of a

system from its architectural specification, however they

were used to ensure that implementations conformed to
their specification as in [23]. Others, such as the Raven
configuration management system [5], have shown that

constraints can be useful for recognising valid structures

and for performing repairs.

In conclusion...

This paper has described our approach and the associated
rationale for using a declarative ADL, Darwin, for
distributed software architectures. In particular, we have
concentrated on the dynamic features of Darwin, using it to

illustrate some of the possibilities and problems of
supporting constrained and unconstrained structural

evolution, including open systems. We have tried to be
precise in the features we have defined, providing an

operational semantics in the n-calculus. Although the design
and use of Darwin has been aimed at distributable software,

we believe that the underlying concepts of components and
binding forming the primitives of a "pure" structural

language, independent of the interaction mechanisms
between components, is more general and can be applied to
more conventional program structures.

Acknowledgments

The authors would like to acknowledge discussions with
our colleagues in the Distributed Software Engineering
Section Group during the formulation of these ideas. We
gratefully acknowledge the EPSRC (Grant Ref: GR/J52693)
and the CEC (Framework IV ARES Project) for their
financial support.

12

References

[1] B. Agnew, C. Hofmeister, J. Purtilo, Planning for Change: a
Reconfiguration Language for Distributed Systems,
Distributed Systems Engineering Journal, Vol. 1, No. 5., pp
313-322.

[2] R. Allan, D. Garlan, Formalizing Architectural Connection,
Proc. of 16th International Conference on Software
Engineering, Sorrento, May 1994.

[3] M. Barbacci, C. Weinstock, D, Doubleday, M. Gardner and
R Lichota, Durra: a structure description language for
developing distributed applications, IEE Software
Engineering Journal, Vol. 8, No. 2, March 1993, pp 83-94

[4] S.C. Cheung, J. Kramer, An Integrated Method for Effective
Behaviour Analysis of Distributed Systems, Proc. of 16th
International Conference on Software Engineering,
Sorrento, May 1994, pp 309-322.

[5] T. Coatta and G. Neufeld, Distributed Configuration
Management using Composite Objects and Constraints,
Distributed Systems Engineering Journal, Vol. 1, No. 5., pp
294-303.

[6] S. Crane, N. Dulay, H. Foss/t, J. Kramer, J. Magee, M.
Sloman, K. Twidle, Configuration Management for
Distributed Systems, Proc. of the IFIP/IEEE International
Symposium on Integrated Network Management (ISINM
95), Santa Barbara, May 1995, Chapman and Hall 1995.

[7] D. Garlan and D. Perry, Software Architecture: Practice,
Potential and Pitfalls (Panel Introduction), Proc. of 16th
International Conference on Software Engineering,
Sorrento, May 1994, pp 363-354.

[8] D. Garlan, First International Workshop on Architectures
for Software Systems: Workshop Summary, ACM, SIGSOFT
Software Engineering Notes, SEN 1995.

[9] D. Garlan and D.E. Perry, Introduction to the Special Issue
on Software Architecture, IEEE Transactions on Software
Engineering, 21 (4), April 1995, pp 269-274.

[10] D. Garlan, M Shaw, An Introduction to Software
Architecture, in Advances in Software Engineering and
Knowledge Engineering, Vol. I, ed. Ambriola and Tortora,
World Scientific Publishing Co., 1993.

[11] Hatter A., Hopper A., A Distributed Location System for the
Active Office, IEEE Network, Jan./Feb. 1994, pp. 62-70.

[12] P. Inverardi, A.L. Wolf, Formal Specification and Analysis of
Software Architectures using the Chemical Abstract
Machine Model, IEEE Transactions on Software
Engineering, 21 (4), April 1995, pp 373-386.

[13] Keng Ng, Jeff Kramer, Jeff Magee and Naranker Dulay, The
Software Architect's Assistant - A Visual Environment for
Distributed Programming, Proceedings of Hawaii
International Conference on System Sciences (HICSS-28),
January 1995.

[14] J. Kramer and J. Magee, The Evolving Philosophers
Problem: Dynamic Change Management, IEEE
Transactions on Software Engineering, 16(11), 1990, pp
1293-1306.

[15] J. Kramer, J. Magee, M.Sloman, N.Dulay, Configuring
Object-Based Distributed Programs in REX, lEE Software
Engineering Journal, Vol. 7, 2, March 1992, pp 139-149.

[16] D.C. Luckham et al., Specification and Analysis of Software
Architecture using Rapide, IEEE Transactions on Software
Engineering, 21 (4), April 1995, pp 336-355.

[17] J. Magee, J. Kramer and M. Sloman, Constructing
Distributed Systems in Conic, IEEE Transactions on
Software Engineering, 15 (6), 1989.

[18] J. Magee, N. Dulay and J. Kramer, Structuring Parallel and
Distributed Programs, IEE Software Engineering Journal,
Vol. 8, No. 2, March 1993, pp73-82.

[19] J.Magee, N. Dulay, J. Kramer, Regis: A Constructive
Development Environment for Distributed Programs,
Distributed Systems Engineering Journal, Vol. 1, No. 5., pp
304-312.

[20] J.Magee, N. Dulay, S. Eisenbach and J. Kramer, Specifying
Distributed Software Architectures, Proc. of 5th European
Software Engineering Conference, ESEC '95, Barcelona,
September 1995.

[21] R.Milner, J. Parrow, and D.Walker, A calculus of mobile
processes, Parts 1 and H, Journal of Information and
Computation, Vol. 100, ppl-40 and pp41-77, 1992.

[22] R. Milner, The polyadic zr-calculus: a tutorial, in Logic and
Algebra of Specification, ed. EL. Bauer, W. Brauer and H.
Schwichttenberg, Springer Verlag, 1993, pp203-246.

[23] N.H. Minsky, Law-governed systems. The lEE Software
Engineering Journal, September 1991.

[24] O.Nierstrasz and T.D.Meijler, Research Directions in
Software Composition, ACM Computing Surveys, Vol. 27,
No. 2, June 1995, pp 262-264.

[25] D.E. Perry, A.L. Wolf, Foundations for the study of Software
Architectures, ACM SIGSOFT, Software Engineering
Notes, 17 (4), 1992, pp 40-52.

[26] J.M. Purtilo, The POLYL1TH Software Bus, ACM
Transactions on Programming Languages 4, pp 151-174.

[27] J. Rumbagh, M. Blaha, W. Premerlani, E Eddy, W.
Lorenson, Object-Oriented Modelling and Design, Prentice-
Hall Internation Editions, 1991

[28] M. Shaw et al., Abstractions for Software Architecture and
Tools to Support Them, IEEE Transactions on Software
Engineering, 21 (4), April 1995, pp 314-335.

[29] The Common Object Request Broker: Architecture and
Specification, Object Management Goup, Document OMG
91.12.1, December 1991.

[30] A.J. Young, and J. N. Magee, A Flexible Approach to
Evolution of Reconfigurable Systems, Proc. of 1st lEE Int.
Workshop on Configurable Distributed Systems, London,
March 1992, pp 152-163.

13

Append ix -The ~ -calculus

The ~-calculus[11] is an elementary calculus for describing

and analysing concurrent systems with evolving

communicat ion structure. In this paper, we use the simple

monadic form. A system in the n-calculus is a collection of

independent processes which communicate via channels.

Channels or links are referred to by name. Names are the

most primitives entity in the calculus, they have no

structure. There are an infinite number of names,

represented here by lowercase letters. Processes are built

from names as follows:

A : : = Ycz.P Output the name z along the

ac t ion link named x then execute pro-

t e r m s cess P.

x (y) . P

P : : = A I + . . . + A n
~rms

P11 P2

(v y) P

!P

Input a name, call it y, along the

link named x and then execute

P (binds all free occurrences of

y in P).

Alternative action n >0, execute

one of A. When n =0 the sum is

written as 0 and means stop.

Composition, Pl and '°2 exe-

cute concurrently. The opera-

tion is commutative and

associative.

Restriction, introduces a new

name y with scope P (binds all

free occurrences of y in P).

Replication, provide any num-

ber of copies of P. It satisfies

the equation !P = P I !P .

Recursion can be coded as rep-

lication and so need not be

included as a separate method

for building processes. Recur-

sion will be used when it makes

examples clearer.

Computat ion in the ~-calculus is expressed by the following

reduction rule:

(. . . + x (y) . P 1 + . . .)1

(. . . + x z .P 2 + . . .) -'-> P I { Z / Y } I P2

Sending z along channel x reduces the left hand side to P1 I

P2with all free occurrences o f y in P1 replaced by z. The

following is a simple example of applying the reduction

rule:

Ycz.O I x (y) .y (s) .O ~ z(s).O

For reasons of conciseness, we will omit the stop process 0

in an agent and write z(s) in place of z(s).O

1/4

