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Abstract 

Much of the recent work on Architecture Description 
Languages (ADL) has concentrated on specifying 

organisations of components and connectors which are 
static. When the ADL specification is used to drive system 

construction, then the structure of the resulting system in 

terms of its component instances and their interconnection 

is fixed. This paper examines ADL features which permit 
the description of dynamic software architectures in which 

the organisation of components and connectors may change 

during system execution. 

The paper outlines examples of language features which 
support dynamic structure. These examples are taken from 

Darwin, a language used to describe distributed system 

structure. An operational semantics for these features is 
presented in the n-calculus, together with a discussion of 

their advantages and limitations. The paper discusses some 
general approaches to dynamic architecture description 

suggested by these examples. 

1 Introduction 

Software architecture is intended to describe "..the structure 

of the components of a program~system, their 
interrelationships, and principles and guidelines governing 

their design and evolution over time [8]. It is a critical 
design concern when bridging the gap between 

requirements and implementations [7,8,9,10,25,28]. 

Architectural Description Languages (ADLs) are notations 

for expressing and representing architectural designs and 
styles. They describe the high level structure of a system in 
terms of components and component interactions, often 
referred to as structural models. To date, much of this work 

has concentrated on providing precise descriptions of 
connectors which provide the "glue" for combining 

components into systems[9,10] and accommodating diverse 
connector types [2,28]. As exemplified by UniCon[28], they 
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describe the overall system structure by declaring a static set 
of component instances and connectors. 

For a number of years we have been involved in developing 

configuration specification languages for use in the design 
and construction of complex and scalable distributed 

systems [ 15,17,18]. These languages have much in common 

with ADLs in describing a system as a configuration of 

connected component instances. They differ mainly in 

restricting connectors to those compatible with distribution 

[3,26]. Darwin, the latest in a line of configuration 

languages, is a declarative language which is intended to be 
a general purpose notation for specifying the structure of 

distributed systems composed from diverse components 
using diverse interaction mechanisms. It deliberately 

divides the description of structure from that of computation 

and interaction in order to provide a clear separation of 
concerns. Darwin supports software composition [24] 

through the description of generic software architectures 
which can be elaborated and instantiated to form specific 

executable architectures. It is currently being used in the 

context of the Regis system[19] which supports multiple 
interaction primitives and in the Sysman project[6] with 
CORBA[29] which uses remote object invocation for 

component interaction. Darwin's declarative property has 
facilitated the provision of an operational semantics and the 
ability to reason about structural aspects such as the 
correctness of the distributed algorithm used for the 

elaboration of Darwin software [20]. 

Darwin can be used to specify static system structures in 

much the same way as UniCon. Unlike UniCon, through the 
use of conditional and replicator constructs, Darwin allows 
parameters to determine the system structure at initialisation 

time. UniCon fixes structure in the specification. Further, 
Darwin has features which permit the description of 

dynamic structures which evolve as execution progresses. 
Structural evolution includes changes in both the bindings 
(connections) between components and the set of 

component instances. These structural changes can be 

expressed without violating the declarative nature of 
Darwin, thereby facilitating both a semantic description and 

reasoning. This paper concentrates on Darwin's dynamic 

features to act as a focus for discussion of general 
approaches to the specification of dynamic software 

architectures. The motivation is to widen the scope of 
applicability of ADLs and thereby gain the associated 



benefits for dynamic and evolving architectures. The paper 
describes two specific techniques used in Darwin to capture 

dynamic structures, lazy instantiation and direct dynamic 

instantiation. In addition, dynamic binding is discussed with 

respect to open systems and abstract services. The r~- 
calculus[21] is used to specify these dynamic constructs. 

This builds on earlier work which developed a n-calculus 

model for the static aspects of Darwin and demonstrated the 
correctness of the elaboration of Darwin programs[20]. The 

~-calculus is used here to ensure that the dynamic constructs 

are compatible with the existing elaboration scheme. It is 
used to give an operational semantics to Darwin constructs, 

and is not intended for direct consumption by the system 

architects who are the target users of Darwin. 

The next section gives a brief overview of Darwin. A more 
comprehensive description may be found in [19,20]. Section 
3 outlines how the basic static features of Darwin are given 
an operational semantics in the n-calculus. The remaining 

sections extend this operational specifiation to capture the 
dynamic aspects of Darwin. Section 4 describes lazy 

instantiation, a way of describing structures in which the 

size can vary dynamically within a constrained pattern. 
Section 5 describes direct dynamic instantiation which 

permits unconstrained structural evolution. Section 6 

outlines open systems binding which permits the 
specification of interactions with external systems. Section 

7. describes the role of dynamic binding. The paper 

concludes with some general observations and conclusions 

on specifying dynamic structures. 

2 Darwin 

Darwin allows distributed programs to be specified as a 

hierarchic construction of components. Composite 
component types are constructed from the primitive 
computational components and these in turn can be 

configured into more complex composite types. 
Components interact by accessing services. Each inter- 
component interaction is represented by a binding between 

a required service and a provided service. Darwin has both a 
graphical and textual representation. The Darwin 

specification of a system architecture is used as a framework 
for structuring behavioural specifications during design and 
analysis and is used directly to drive system building during 

construction. 

2.1 Components & Services 

Darwin views components in terms of both the services they 
provide to allow other components to interact with them and 

the services they require to interact with other components. 
For example, the component of figure 1 is a filter 

component which provides a single service prev and 

requires two services next and output. The diagrammatic 
convention used here is that filled-in circles represent 
services provided by a component and empty circles 

represent services required by a component. The type of the 
service is specified in angle brackets. In the example, the 

interaction mechanism used to implement the service is a 

port which accepts messages of type int. Darwin does not 

interpret service type information. Service type information 
is either interpreted by the underlying behaviour 

specification formalism used during design and analysis[4] 
or, as in the example, denotes a communication mechanism 

supported by the underlying distributed platform used in 

building an implementation. In the Regis system[19], this 
information is used to directly select the correct 

communication code. In addition to a number of predefined 

communication classes, Regis permits users to define their 

own. When used with a more conventional distributed 
platforms such as CORBA[29] based systems, the service 

type names an IDL specification which is the used to 
generate the correct client and server stubs. 

~p : f i l ter  

rev  n e x t  

o u t p u t  

© 

component filter { 
provide prey <port,int>; 
require next  <port,int>, 

ou tpu t  <port,int>; 
} 

Figure I - component  type f i l ter 

In general, a component may provide many services and 

require many services. It should be noted that the names of 

required and provided services are local to the component 
type specification. A component does not need to know the 
global names of external services or where they are to be 
found in the distributed environment. Components may thus 
be specified, implemented and tested independently of the 
rest of the system of which they will form a part. We call 

this property context independence. It permits the reuse of 
components during construction (through multiple 

instantiation) and simplifies replacement during 

maintenance. 

2.2 Instantiation & Binding 

The primary purpose of the Darwin configuration language 
is to allow system architects to construct composite 
component types from both instances of basic 
computational components and other composite 

components. The resulting system is a hierarchically 

structured composite component which when elaborated at 
execution time results in a collection of concurrently 

(potentially distributed) executing computational 

component instances. Composite components and systems 
are thus formed in Darwin by declaring instances of 

components and binding the services required by one 
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component to the services provided in another as shown in 
figure 2 for a simple client server system. 

A binding is only legal if the service type of the requirement 
matches the service type of the provision. As noted before, 
Darwin only manages service types, it does not interpret 

them so the matching predicate must be supplied by the 
system being used to specify service type. In the current 

Darwin toolset the default is to do a simple name 

equivalence test. Many requirements may be bound to a 
single service provision (many-to-one), however, a service 

requirement may only be bound to a single service 

provision. The problem of using Darwin to describe 
architectures using multicast is dealt with later in the paper. 

Ii'C,ien  
c o m p o n e n t  Server { 

p r o v i d e  p; 
} 

c o m p o n e n t  Client { 
r e q u i r e  r; 

} 

~ p : S e r v e r  1 

c o m p o n e n t  System { 
i n s t  

A:Client; 
B:Server; 

b i n d  
A.r -- B.p; 

} 

Figure 2 - Client Server configuration 

2.3 G u a r d e d  a n d  r e p l i c a t e d  c o n f i g u r a t i o n s  

The example of figure 3 defines a variable length pipeline of 
filter instances in which the input of each instance is bound 

to it predecessors output. The length of the pipeline is 
determined by a parameter to the composite component 
which is substituted at elaboration time of the Darwin 
configuration program. 

The pipeline component type is implemented by an array of 

filter instances dimensioned by the array declaration. The 

replicator construct foral l  range declares the actual 
instances and their bindings. Each instance must be declared 
explicitly since they may have different parameter values 
(although not in this example). The guard construct when 

expression, only includes associated bindings and instances 
in an elaborated system if the associated expression 
evaluates to true. 

Requirements which cannot be satisfied inside the 
component can be made visible at a higher level by binding 
them to an interface requirement as has been done in the 
example for filter F[n-1] requirement next which is bound 

to output. Similarly services provided internally which are 
required outside are bound to an interface service provision 
e.g. input -- F[O].prev. Since an interface requirement 

represents an external provision, it is consistent that many 
internal requirements may be bound to an interface 
requirement e.g. F[k].output -- output. 

. . . .  a ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ ~ . . . ]  ............... ~ . . . . . . . . . . . .  ~ . . . . . .  

.................................... " .... L%~,~ . . . . . . .  ~~;~ ~ ~'~ ..... 

c o m p o n e n t  pipeline (int n) { 
p r o v i d e  input; 
r e q u i r e  output;  

array  F[nl:filter; 
forall  k:0. .n-i  { 

i n s t  Flk]; 
bind  F[kl.output -- output:  
when  k<n-1 b i n d  

F[k].next -- F[k+ 1].prev; 
} 

b i n d  
input  -- F[O].prev; 
F[n-1].next--  output;  

} 

Figure 3 - composite component type pipeline 

This section has given an outline of the basic features of 
Darwin needed to define static architectures. Darwin also 

permits recursively defined components and allows 
component types as parameters so that template component 
types can be defined[19]. However, in this paper we 

concentrate on the dynamic aspects of Darwin and only a 
minimal set of the static features have been covered as a 
necessary basis for discussing the dynamic constructs. 

3 n-calculus model for Darwin 

In the following, an operational specification for the main 

static aspects of Darwin is given in the n-calculus[21]. The 
correspondence between the treatment of names in the n- 
calculus and the management of services in Darwin leads to 
an elegant and concise n-calculus model of Darwin's 
operational semantics[20]. For the reader unfamiliar with n- 
calculus, a brief overview of the notation used here may be 
found in the Appendix. 

Note that the separation of concerns - structure from 
computation and interaction - facilitates the provision of an 
operational semantics for Darwin as a "pure" structural 

language. We avoid consideration of the interactions (cf. 
connectors [2]) and/or components (cf. CHAM [12] or LTS 
[4] models), but focus on services and binding. This does 
not preclude specification of the interaction and/or 
computation, but allows us to modularise our approach. This 
focus is matched by that of the n-calculus. Furthermore, as 



we will see later, it facilitates the specification of  the 

dynamic aspects of  architecture in Darwin. 

3.1 Provide & Require 

Provide - The declaration of  a provided service, provide p, 

in Darwin is modelled in the re-calculus as the agent 

PROV(p,s) which is accessed by the Darwin name p and 

manages the service s as shown below: 

I °, 
p r o v i d e  p; 

PROV(p,  s) dee !(p(x).Ycs) 

where 

s - service reference 

x - location at which s is required 

p - access name 

The service s is simply the name or reference to a service 

which must be implemented by a component. Darwin is not 

concerned with how the service s is implemented, it is 

concerned with placing s where it is required by other 

components which use the service. The agent PROV thus 

receives the location x at which the service is required and 

sends s to that location. Since there may be more than one 

client of  the service, the agent PROV is defined to be a 

replicated process (!) which will repeatedly send out the 

service reference each time a location is received. 

Require - The declaration of  a required service, require r, is 

modelled by the agent REQ(r,o) which is accessed by the 

Darwin name r and which manages the location o at which 

the service is required. Again, Darwin is not concerned with 

how a client component uses a service, it must ensure that a 

reference to the service is placed at some location in the 

client component. The REQ agent receives the access name 

to a PROV agent and sends the location o to that agent. A 

requirement in Darwin may only be bound to a single 

service and so the agent REQ sends out the location o 

precisely once as show below: 

r e q u i r e  r; 

REQ(r, o) de-f- r(y).~o 

where 

o- location at which service is required 

y - name of  service provider 

r -  access name 

3.2 Binding & Components 

Bind - The binding construct in Darwin is modelled in the 

re-calculus by the BIND agent which simply sends the 

access name of  the PROV agent to the REQ agent. 

r p 
© II 

bind r -- p; 

BIND(r, p) de_f_ ~p 

where 

r - name of  requirement 

p - name of  provision 

Initially, we will ignore the fact that PROV and REQ agents 

are always contained within a component and examine the 

effect of  binding on these agents. Firstly, the composition o f  

REQ and BIND: 

Substituting definitions: 

REQ(r, o) I BIND(r, p) -- r(y).~o I Pp 

Communication along r: ---> p o  . . . . . . . . . .  (1) 

In other words, the composition of  a REQ agent with a 

BIND agent produces a binding request of  the form f ro ,  in 

which the location at which the service name is required o is 

sent along the access channel p o f  the PROV agent. When 

composed with the PROV agent, the binding request results 

in a binding as follows: 

Using ! P - = P I ! P  : 

fio l PROV(p,  s) - ~o l p(x).Ycs l PROV(p,  s) 

Communication along p: ---> bs I PROV(p,  s) . . . .  (2) 

The result of  composing a REQ, PROV and BIND agent is 

thus the binding 5s in which the name of  the service s is 

sent to the place o where it is required. The PROV agent 

remains to allow further bindings. 

Components  - Each primitive component is represented by 

an agent which is a composition o f  the PROV and REQ 
agents which manage its service requirements and 

provisions and the agents which define its behaviour. A 

primitive component is simply a component which has no 

Darwin defined substructure of  components. The Server 
component type of  figure 2 is represented by the g-calculus 

agent: 

Server(p) de-f- - (vs ) (PROV(p,  s) lServer'(s))  . 

in which Server' represents the user implemented behaviour 

of  the Server component which realises the services s. 
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Similarly, the Client component type is represented by the 

agent: 

Client(r)  de-f- ( vo ) (REQ(r ,  o) I Client '(o))  

The configuration of the System component of figure 2 can 

now be represented by the parallel composition of a Client, 
Server and BIND agent: 

Systernde==_ f 

(va  r, b p) ( Cl ient(  ar) I Server(  b p) I B IND(a  r, b p) ) 

. . . . . . . . . . . . . .  ( 3 )  

This can be reduced using (1) & (2) to demonstrate that the 

correct binding between client and server is made: 

----> (vo, s, b p)( OS [ Client ' (o)  I Server(  b p) ) 

The term 5s sends the service s to the required location o. 

Before the client can use the service it must perform an 

input action. A possible definition for Client' would be: 

Client ' (o)  de-f- (vx) (o(x) .Cl ient")  

The client server system then reduces to: 

---> (VS, b p)( (vx)Cl ien t"{  s / x }  I Server(  b p) ) 

which is the desired result of an instance of the server 

component executing in parallel with a client component in 

which every occurrence of the local name x has been 

replaced with the name s, the reference to the required 

service. 

Interface requirements and provision such as those used in 

figure 3 require an extension to the ~-calculus model for 

Darwin developed in the above. However, this is not 

necessary for the following discussion of the dynamic 

features of Darwin and consequently will be omitted. A 

complete n-calculus model for the static elements of Darwin 

may be found together with a general correctness proof for 

the elaboration of Darwin configuration descriptions may be 

found in [20]. 

4 Lazy instantiation 

Darwin provides two main mechanisms for describing 

dynamic structures which can evolve at run-time as opposed 

to static structures which are defined at instantiation/ 

elaboration time. The first of these is lazy instantiation in 

which the component providing a service is not instantiated 

until a user of that service attempts to access the service. 
The combination of lazy instantiation with recursion allows 

the description of potentially unbounded structures as 

shown in the example of figure 4. 

component lazypipe { 
provide input;  
require output;  
inst 

H:fllter; 
T:dy~ lazypipe; 

bind 
input  -- H.prev; 
H.next  -- T.input;  
H.output  -- output;  
T .output  -- output ;  

} 

Figure 4 - Lazy instantiation example 

The program of figure 4 generates a pipeline of  filter 
components. Initially a single instance H of the filter 
component is instantiated. The next requirement of this 

instance H is bound to the input provision of the instance T 

(i .e.H.next -- T.input) which is again a pipeline. T is not 

immediately instantiated since it is declared lazy by the 

keyword dyn. When the H instance attempts to access the 

service provided through T.input the instantiation of T is 

triggered along with the bind actions for the requirements of 

T (i.e.T.output -- output). The pipeline of  filter instances is 

thus extended as required. Consequently, while the structure 

of the pipeline is fixed as in figure 3, the size of the pipeline 

can increase at runtime while that of figure 3 is determined 

at initialisation by its parameter. In this simple example, 

there is no guarantee that the elaboration process will 

terminate. Instances are created as required by computation. 

Lazy instantiation is modelled by using a dummy provision 

to which the clients of a server are initially bound. This 

dummy provision, in response to a binding request, returns 

the name of a prefix which, when communication is 

initiated, triggers instantiation of the lazy instance and its 

associated bindings. For example, consider the system of 

figure 2 with lazy instantiation of the server component: 

hlst 
A:Client; 
B: dyn  Server; 

bind A.r -- B.p; 

7 



The n-calculus model for this system becomes: 

(va  r, b p, d)( Client(at) 

I PROV(d,  bp) I bp(y).(bpy I Server(bp)) I BIND(a r, d)) 

in which the Client is bound to the dummy provision d (cf. 

specification (3)). This reduces to: 

--> ( V b p, o )( S b p l Client'(o) I bp(y) .(bpylServer(bp)))  

where o is the location at which the client requires the 

service as in section 2. Note that instantiation of the Server 

component is guarded by the prefix bp(y) and that the 

binding returned to the client is the name of this prefix. In a 

more complex system, the prefix would also guard the 

binding actions for the requirements of the lazy instantiated 

component. In addition, the component may have more than 

one provision which triggers instantiation, in which case the 

prefix becomes a sum of alternative actions. To deal with 

lazy instantiation, the Client must perform a more complex 

action than simply inputting the binding by the action o(x) . 

The Client must decide if the binding is to a lazy service and 

if so perform what is in effect a rebind. Thus Client' 

becomes: 

Client'(o) de_f_ 

o(x) .LAZY(x,  t, f )  I (t.Yco.o(x).Client" + f .Client") 

The agent LAZY outputs the signal true (t) or false(t) 

depending on whether or not x names a lazily instantiated 

service. Definition of this agent is not trivial since names in 

~-calculus are primitive entities which have no structure. 

Consequently, LAZY must maintain the finite set of all 

names which refer to services and the finite set of all names 

which refer to lazy services to make a decision. A more 

satisfactory solution, and one which closely models the 

current Darwin implementation, is to give service names a 

structure and encode the lazy property in this structure. This 

can easily be achieved in the polyadic r~-calculus[22] but it 

is beyond the scope of this paper. 

The combination of lazy instantiation and recursion can be 

used to describe a wide range of commonly occurring 

distributed parallel processing structures (e.g. search trees, 

combining trees, divide & conquer). The advantage of this 

technique of specifying dynamic structure is that the 

configuration description is a precise specification which 

describes the potential structure at execution time. The 

components used in the structure need not be aware of 
whether they are being used in a statically or lazily 

elaborated structure. Lazy instantiation by itself is 

commonly found in distributed systems, where to save 
resources, servers are only created on demand (e.g. Unix 

Netd). 

The limitation of this technique is that it is not possible to 

describe structures with cyclic bindings, for example, a ring 

of filter components. Inserting a new component into a ring 

requires breaking an existing ring interconnection by 

deleting an existing binding. Introducing an unbind or 

rebind operation into Darwin would make it an imperative 

rather than a declarative notation in which system structure 

would depend on the elaboration sequence of the Darwin 

description. In addition, rebinding without coordination 

between components could cause undesirable application 

side effects arising from trying to change a binding while it 

is being used for interaction. Imperative reconfiguration in 

which the system is directed to change structure is handled 

at a management level of  systems using Darwin[6]. 

Essentially, as discussed later, a managed system exports 

rebinding services which control access to existing bindings 

and synchronise change with component interaction. 

trace 

tnd 

component comexec [ 
require t race <event bs ta tus>;  

ou tpu t  <port  smsg>; 
provide c o m m a n d  <port comT>; 

l n s t  

M:master;  
S :sensoralloc; 

b ind  
M.create -- dFa  badge; 
badge. t race  -- trace; 
badge . sensor  -- S.alloc; 
badge .ou tpu t  -- output ;  
badge . command  -- M.newcom; 
c o m m a n d  -- M.command;  

Figure 5 - Direct dynamic instantiation example 



5 Direct dynamic instantiation 

Lazy instantiation permits a structure to evolve according to 

a fixed pattern. Direct dynamic instantiation permits the 

definition of structures which can evolve in an arbitrary 

way. Of course, much less of the runtime structure is 

captured in the Darwin program. In practice, we have found 

that dynamic instantiation can be used in a way which 

balances flexibility at run-time with the advantages of 

retaining a structural description. 

Figure 5 is an example taken from an infrared Active Badge 

location system [11] implemented using Darwin and Regis 

[19]. The comexec component forms part of the badge 

management server which runs on a local area network and 

uses a set of fixed infrared tranceivers to communicate with 

the mobile badges. Comexec has a supervisor-worker 

architecture and is responsible for sending commands to 

badges. Commands activate paging signals (audible and 

visual) on the active badge. A badge worker component is 

created to deal with each new request received by comexec 

to send a command to an active badge. This badge 
component deals with locating the physical badge, reserving 

the nearest transceiver to transmit the infrared command 

and implements a protocol to ensure that commands are 

reliably executed. The master supervisor component M is 

responsible for creating badge components. It has a 

requirement for a dynamic instantiation service (dyn) which 

passes a single parameter of type int as shown below in the 

Darwin interface specification for master. 

component  m a s t e r  { 
require create <dyn int>; 
. . . . . . . . . . . . . . . . . . . . . . . . .  

The master's requirement is satisfied in the configuration 

program of figure 5 by binding it to the component type 

badge prefixed by the keyword dyn. i .e.M.create -- dyn 

badge. Note that in figure 5, bindings are specified for the 

component type badge rather than for instances of this type 

as is usual. These type specific bindings serve to define the 

environment in which the dynamically created instances of 

badge will execute. The interfaces for dynamically created 

components types may only usefully declare a requirement 
for services. Since dynamically created instances are 

essentially anonymous, it would not be possible withio 

Darwin to declare bindings to services they provide. This 

would otherwise result in the potentially ambiguous 

situation of requiring a service from multiple providers. 

Dynamically created components may provide services, 

however, access to these services is achieved by passing 

service references in messages to form bindings 

dynamically. These bindings cannot be captured by the 

Darwin program. 

Dynamic instantiation is modelled in the re-calculus by a 

PROV agent which supplies the name of the instantiation 
service. This instantiation service triggers one of the copies 

of a replicated process. As an example of modelling 

dynamic instantiation, we will again use the client-server 

system of figure 2 and modify it so that Client components 

can be created dynamically through the service d: 

provide d <dyn>; 
inst  B:Server; 

bind 
d -- d y n  client; 

client.r -- B.p; 

The re-calculus model for this system is shown below. The 

PROV agent will return the name m in response to a binding 

request. A client which performs the action ~ will cause a 

new replica of the Client component to be instantiated 

together with its associated bind action. In general, the 
_ - >  

action would be mx where ~c represents the vector of 

parameters for the newly instantiated component. 

(Vbp, d, m)(Server(bp) I 

PROV(d, m) I !(m.(vr)( Client(r) I BIND(r, bp) ) ) ) 

Note that the way in which a component is instantiated, 

statically or dynamically, does not change the definition of 

that component. 

6 Open systems binding 

It is intended that systems constructed using Darwin 
interwork with external systems in an open systems 

environment. Darwin, as described so far, has a closed 

namespace which would not permit services implemented 

inside a system to be externally accessed. Consequently, 
Darwin has the facility both to export service names into an 

external namespace with an associated external name and to 

import names from an external namespace. Bindings 

achieved by export and import are orthogonal to the inter- 

component and hierarchical bindings used to express 

Darwin structures. Consequently, exported and imported 
services are not drawn at the boundary of a component but 

are depicted as in figure 6. 

The example program of figure 6 includes the comexec 
component described earlier into a composite component 

which constitutes the badge system management server. 

This server exports a set of services with associated external 

names (in quotes). Exports are bound to a service provided 

internally (e.g. where -- L.where). Darwin components may 

also import external services. For example, the statement 

import w@ "badge/where", would return a reference to the 
where service exported by an instance of badgeman. 
Internal requirements may be bound to imports. 



component b a d g e m a n  { 
export 

where  @ "badge/where",  
location @ "badge/location",  
t race @ "badge/ t race" ,  
c o m m a n d  @ "badge /command" ;  

l n s t  
S:sensomet(3);  
L:locate; 
C:comexee; 

bind 
where -- L.where; 
location -- L.location; 
t race -- L.trace; 
c o m m a n d  -- C.command;  
S . sensout  -- L.input; 
C .ou tpu t  -- S.sensin;  
C.trace -- L.trace; 

} 

Figure 6 - Exporting services 

Modelling the Darwin export  construct in n-calculus is 

reasonably straight forward. The Darwin statement export  e 

@ n is modelled as follows: 

EXPORT(e, n)dee (vo)(REQ(e, o) 1 o(x).REG(n, x)) . 

The EXPORT agent consists of a REQ agent in parallel with 
REG. The REG agent encapsulates the details of registering 

the service in a nameserver with the extemal name n. When 

a provided service is bound to the export, the resulting 

binding hs will reduce the EXPORT agent to REG(n,s). 

Exports behave in the same way as requirements during 

binding and elaboration. 

The g-calculus model for import i @ n is complicated by 

the fact that we do not wish elaboration of all or part of a 

Darwin program to be suspended while an external service 

reference is fetched from a nameserver. Consequently, the 

definition of IMPORT uses the lazy instantiation 

mechanism described in section 4. Requirements are 

initially bound to a dummy provision i. 

IMPOR T(i, n) ded 

(vd)(PROV(i,  d) I 

d(y).( ~ly l (vz)LUP(n, z) I z(s).PROV(d, s) ) ) 

An attempt to use the service represented by the IMPORT 
agent triggers the LUP agent which looks up the reference 

to an external service with the name n. When it gets the 

service name, LUP performs the action ~s which enables 

the agent PROV to return the service name s in response to 

binding requests. Imports behave in the same way as 

provisions during binding and elaboration. 

The set of exported and imported services provide a clear 

specification of the boundary between a system specified in 

Darwin and the external environment in which it exists. 

Both lazily and dynamically instantiated components may 

import and export services allowing this interface with the 

environment to be changed dynamically over time. 

7 Dynamic Binding 

7.1 Interaction specific binding 

Components interact or communicate using the bindings to 

services computed by the elaboration of the Darwin 

program. The binding patterns established by Darwin are 

many-to-one in that one or more requirements for a service 

may be bound to the provider of that service. However, for 

some component interaction mechanisms, further binding 
may be required. This is not part of Darwin and may be 

treated orthogonally to the elaboration model developed in 

the foregoing. However, the r~-calculus may be used to 

model this additional binding process. 

© 

c 

Figure 7 - Event interaction mechanism 
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An example of extended binding is found in the Regis event 
distribution mechanism which allows the provider of an 
event service to transmit information to many receivers as 
shown in figure 7. This requires a one-to-many binding 

which is constructed by the event mechanism using the 
Darwin many-to-one binding. Darwin gives each client of 
the event service the name of that service s. To enable the 

receipt of event information messages, the client sends the 

name of a private channel y to the event service (~y)  

together with the event class the client is interested in. The 

event service maintains a set of the private channel names of 

enabled clients. It then uses this set to send information 
message (with the selected event class Eclass) to clients. 
Component interaction mechanisms may thus easily extend 

the binding supported by Darwin. 

7 .2  A b s t r a c t  S e r v i c e s  

Direct dynamic instantiation permits sets of anonymous 

components to be created at runtime and in addition, 
through type specific bindings, it permits the definition of 
the service environment for these components. If these 

components wish to interact directly then they can exchange 
service references through a third party component. The 
disadvantage is that, as mentioned above, the Darwin 

description does not capture these bindings. A limited 

solution to allow dynamically instantiated components to 
interact directly exists in Darwin for the case of group 

communication as shown in Figure 8. 

component group { 
provide newMember; 
service G; 
bind 

Member.r  -- G; 
newMember -- d y a  member;  

} 

Figure 8 - Group Service 

Member components may be created dynamically via the 
service newMernber. They interact directly via the abstract 
service G which in an implementation becomes a group 
address for multicast communication. 

8 Discussion and Conclusions 

The paper has described two techniques for capturing 

dynamic structure in Darwin, an architectural description 
language for distributed systems. The first, lazy instantiation 
(figure 9a), is restricted in its application to situations where 
the designer can predict precisely the way system structure 

will evolve during execution. These structures must have 
acyclic bindings and have in practice been found to be 
mainly useful in the domain of parallel processing. The 

second technique, direct dynamic instantiation (figure 9b), 

allows arbitrary structures but permits the context or 

environment of the components to be precisely captured in 
the structural description. These two techniques are 

motivated by our desire to retain a declarative notation and 

to capture as much as is possible of the structure of a system 

in this notation while realising that for some systems, the 

system structure at runtime must be determined by data 
input at runtime. In addition, we have discussed support for 
dynamic binding both inside and outside Darwin. 

a) Lazy Instantiation 

I ~ I1:T1 J tdgger [ . . . .  i ;~T2"  " . . . . .  

J binding : . . . . . . . . . . . . . . . . . .  ... 

b) Dynamic Instantiation 

I t~N creation ; ........ -'~1~ . . . . . . . . .  
I 1 :T1  : . '  2 ! 

binding 

c) Association 

i'" .... i t ,  . . . . . . . . . . . . . . . . .  "i 

~ potentla~ , , 

".-. . . . . . . . . . . . . . . . . .  ' b i n d i n g  " . . . . . . . . . . . . . . . . . . .  / 

Figure 9 - Summary of Dynamic Structure in 

Darwin 

Rapide [16] is one of the few architectural languages which 
also supports dynamic architectures, providing facilities for 
both dynamic connections and instantiation of components. 

Although there are many similarities in its structural aspects 
(architectural sublanguage), it is an event based language 
aimed at prototyping systems for examination of properties 
such as synchronisation and timing. As such, it is expected 
to execute and produce representative event patterns for the 
particular application. With Darwin we have deliberately 
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focused purely on the structural aspects and aimed to 

provide a language for both specifying and constructing 
distributed applications. 

Retaining the declarative property for an ADL is important 
we believe in simplifying the analysis and possible 
transformation of architectures. However, it is critical in an 

ADL intended for use in construction of distributed 
systems. In particular, it permits concurrent and 
decentralised elaboration which is essential if ADLs are to 

be applied to large systems. An imperative ADL would 
impose strict ordering requirements on elaboration. 

However, where the architecture of a system must change in 

response to external influence at runtime then some 

imperative constructs are required. How do we retain the 

benefits of a declarative notation while permitting such 
change? 

Meta-level Configuration 

Those parts of the system that are fixed can be specified in 

the usual way in the Darwin language using direct dynamic 
instantiation mechanism to specify those parts of the system 

which depend on factors not determinable when the system 

is created. However, direct dynamic instantiation may be 

driven by interpreting a Darwin script at runtime. The 
structure of the interpreter and the services it can access is 

thus specified by the original Darwin specification. The 

structure of the overall system is this original Darwin 
specification plus the set of meta-level Darwin 

specifications which the original system executes as a result 
of either internal or external reconfiguration events. These 
reconfiguration events capture the imperative quality of 

change while the system specification remains declarative. 
Others, such as the reconfiguration plans of Clipper [1] and 
the reconfiguration actions of Durra [3], describe a similar 

use of imperative commands in response to system events, 

though with less support for maintaining the integrity of the 
system than that which we propose. 

The execution of a meta-level Darwin specification may 
require the deletion of both components and bindings 

created by a previous specification. Previous work has 
identified an approach which minimises the disruption to a 
system while such change is accomplished [14]. This meta- 

level approach has been used in a prototype management 
system for distributed applications [6] in which the 
configuration manager is essentially a Darwin interpreter. 

This configuration manager uses generic direct dynamic 
instantiation and third party rebinding services to construct 
and modify applications. The instantiation service is generic 

in the sense that the type of component to be created is a 
parameter to the service. 

Constrained Configuration 

In some cases, where the timescale of dynamic change ~s 
short and the structure of connected components changes as 
a result of the computation being performed by the system, 

the meta-level configuration approach may exhibit too high 

a resource overhead. It may thus not be possible to describe 
the exact structure of the system at each stage of its 
evolution. In this case, it is possible using structural 

constraints to capture more of the structure in the 
specification than that currently provided by the direct 
dynamic instantiation technique. For example, a 
configuration constraint can specify an upper bound on the 
number of dynamically created instances. As shown in 

figure 9c, we can constrain the potential bindings between 
components by declaring the allowed associations between 

the requirements and provisions of component types. 
Association is used here to mean that an actual binding may 

occur at runtime. It is similar to the association concept 

found in class diagrams e.g. OMT[29]. In general, 

configuration constraints can limit both the number and type 
of dynamically created instances and the possible bindings 

between these instances. An earlier experiment used Prolog 

to specify constraints on Conic configurations [30]. 
Constraints did not play a part in the construction of a 

system from its architectural specification, however they 

were used to ensure that implementations conformed to 
their specification as in [23]. Others, such as the Raven 
configuration management system [5], have shown that 

constraints can be useful for recognising valid structures 

and for performing repairs. 

In conclusion... 

This paper has described our approach and the associated 
rationale for using a declarative ADL, Darwin, for 
distributed software architectures. In particular, we have 
concentrated on the dynamic features of Darwin, using it to 

illustrate some of the possibilities and problems of 
supporting constrained and unconstrained structural 

evolution, including open systems. We have tried to be 
precise in the features we have defined, providing an 

operational semantics in the n-calculus. Although the design 
and use of Darwin has been aimed at distributable software, 

we believe that the underlying concepts of components and 
binding forming the primitives of a "pure" structural 

language, independent of the interaction mechanisms 
between components, is more general and can be applied to 
more conventional program structures. 
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Append ix  -The ~ -calculus 

The ~-calculus[11] is an elementary calculus for describing 

and analysing concurrent systems with evolving 

communicat ion structure. In this paper, we use the simple 

monadic form. A system in the n-calculus is a collection of  

independent processes which communicate via channels. 

Channels or links are referred to by name. Names are the 

most primitives entity in the calculus, they have no 

structure. There are an infinite number of  names, 

represented here by lowercase letters. Processes are built 

from names as follows: 

A : : =  Ycz.P Output the name z along the 

ac t ion  link named x then execute pro- 

t e r m s  cess P. 

x ( y ) . P  

P : : =  A I + . . . + A  n 
~rms 

P11 P2 

( v y ) P  

!P 

Input a name, call it y, along the 

link named x and then execute 

P (binds all free occurrences of 

y in  P). 

Alternative action n >0, execute 

one of A. When n =0 the sum is 

written as 0 and means stop. 

Composition, Pl and '°2 exe- 

cute concurrently. The opera- 

tion is commutative and 

associative. 

Restriction, introduces a new 

name y with scope P (binds all 

free occurrences of y in P). 

Replication, provide any num- 

ber of copies of P. It satisfies 

the equation !P = P I !P . 

Recursion can be coded as rep- 

lication and so need not be 

included as a separate method 

for building processes. Recur- 

sion will be used when it makes 

examples clearer. 

Computat ion in the ~-calculus is expressed by the following 

reduction rule: 

( . . .  + x ( y ) . P  1 + . . . )1 

( . . .  + x z .P  2 + . . . )  -'-> P I { Z / Y }  I P2 

Sending z along channel x reduces the left hand side to P1 I 

P2with all free occurrences o f y  in P1 replaced by z. The 

following is a simple example of  applying the reduction 

rule: 

Ycz.O I x (y ) .y (s ) .O ~ z(s).O 

For reasons of  conciseness,  we will omit  the stop process 0 

in an agent and write z(s) in place of  z(s).O 
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