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Abstract

The suffix array SA[1 . . n] of a text T of length n is a permutation of {1, . . . , n} describing
the lexicographical ordering of suffixes of T , and it is considered to be among of the most
important data structures in string algorithms, with dozens of applications in data compression,
bioinformatics, and information retrieval. One of the biggest drawbacks of the suffix array is
that it is very difficult to maintain under text updates: even a single character substitution can
completely change the contents of the suffix array. Thus, the suffix array of a dynamic text is
modelled using suffix array queries, which return the value SA[i] given any i ∈ [1 . . n].

Prior to this work, the fastest dynamic suffix array implementations were by Amir and Boneh.
At ISAAC 2020, they showed how to answer suffix array queries in Õ(k) time, where k ∈ [1 . . n]

is a trade-off parameter, with Õ(n
k )-time text updates. In a very recent preprint [arXiv, 2021],

they also provided a solution with O(log5 n)-time queries and Õ(n2/3)-time updates.
We propose the first data structure that supports both suffix array queries and text updates

in O(polylog n) time (achieving O(log4 n) and O(log3+o(1) n) time, respectively). Our data
structure is deterministic and the running times for all operations are worst-case. In addition to
the standard single-character edits (character insertions, deletions, and substitutions), we support
(also in O(log3+o(1) n) time) the “cut-paste” operation that moves any (arbitrarily long) substring
of T to any place in T . To achieve our result, we develop a number of new techniques which are
of independent interest. This includes a new flavor of dynamic locally consistent parsing, as well
as a dynamic construction of string synchronizing sets with an extra local sparsity property; this
significantly generalizes the sampling technique introduced at STOC 2019. We complement our
structure by a hardness result: unless the Online Matrix-Vector Multiplication (OMv) Conjecture
fails, no data structure with O(polylog n)-time suffix array queries can support the “copy-paste”
operation in O(n1−ε) time for any ε > 0.

1 Introduction

For a text T of length n, the suffix array SA[1 . . n] stores the permutation of {1, . . . , n} such that
T [SA[i] . . n] is the ith lexicographically smallest suffix of T . The original application of SA [MM93]
was to solve the text indexing problem: construct a data structure such that, given a pattern P [1 . .m]
(typically with m� n), can quickly count (and optionally list) all occurrences of P in T . Since the
sought set of positions occupies a contiguous block SA[b . . e) (for some b, e ∈ [1 . . n+ 1]) and since,
given j ∈ [1 . . n], we can in O(m) time check if the value SA[j] is before, inside, or after this block,
the indices b and e can be computed in O(m log n) time with binary search. If b < e, we can then
report all occurrences of P in T at the extra cost of O(e− b). Soon after the discovery of SA it was
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realized that a very large set of problems on strings is essentially solved (or at least becomes much
easier) once we have a suffix array (often augmented with the LCP array [MM93, KLA+01]). The
textbook of Gusfield [Gus97] lists many such problems including:

• finding repeats (e.g., MaximalRepeats, LongestRepeatedFactor, TandemRepeats);
• computing special subwords (e.g., MinimalAbsentWord, ShortestUniqueSubstring);
• sequence comparisons (e.g., LongestCommonSubstring, MaximalUniqueMatches); and
• data compression (e.g., LZ77Factorization, CdawgCompression).

This trend continues in more recent textbooks [Ohl13, MBCT15, Nav16], with the latest suffix array
representations (such as FM-index [FM05], compressed suffix array [GV05], and r-index [GNP20])
as central data structures. There are even textbooks such as [ABM08] solely dedicated to the
applications of suffix arrays and the closely related Burrows–Wheeler transform (BWT) [BW94].

The power of suffix array comes with one caveat: It is very difficult to maintain it for a text
undergoing updates. For example, for T = bn (symbol b repeated n times) we have SAT = [n, . . . , 2, 1],
whereas for T ′ = bn−1c (obtained from T with a single substitution), it holds SAT ′ = [1, 2, . . . , n],
i.e., the complete reversal. Even worse, if n = 2m+ 1 and T ′′ = bmabm (again, a single substitution),
then SAT ′′ = [m+1, n,m, n− 1,m− 1, . . . ,m+ 2, 1], i.e., the near-perfect interleaving of two halves
of SAT . In general, even a single character substitution may permute SA in a very complex manner.
Thus, if one wishes to maintain the suffix array of a dynamic text, its entries cannot be stored in
plain form but must be obtained by querying a data structure. The quest for such dynamic suffix
array is open since the birth of suffix array nearly three decades ago. We thus pose our problem:

Problem 1.1. Can we support efficient SA queries for a dynamically changing text?

Previous Work One of the first attempts to tackle the above problem is due to Salson, Lecroq,
Léonard, and Mouchard [SLLM10]. Their dynamic suffix array achieves good practical performance
on real-world texts (including English text and DNA sequences), but its update takes Θ(n) in the
worst-case. A decade later, Amir and Boneh [AB20] proposed a structure that, for any parameter
k ∈ [1 . . n], supports SA and SA−1 queries in Õ(k) time and character substitutions in Õ(nk ) time.
This implies the first nontrivial trade-off for the dynamic suffix array, e.g., Õ(

√
n)-time operations.

Very recently, Amir and Boneh [AB21] described a dynamic suffix array that supports updates
(insertions and deletions) in the text in Õ(n2/3) time and SA queries in O(log5 n) time. They also
gave a structure that supports substitutions in Õ(n1/2) time and SA−1 queries in O(log4 n) time.

A separate line of research focused on the related problem of dynamic text indexing introduced by
Gu, Farach, and, Beigel [GFB94]. This problem aims to design a data structure that permits updates
to the text T and pattern searches (asking for all occurrences of a given pattern P in T ). As noted
in [AB20], the solution in [GFB94] achieves Õ(

√
n)-time updates to text and Õ(m

√
n+ occ log n)

pattern search query (where occ is the number of occurrences of P in T ). Sahinalp and Vishkin [SV96]
then proposed a solution based on the idea of locally consistent parsing that achieves O(log3 n)-time
update and O(m + occ + log n) pattern searching time. The update time was later improved by
Alstrup, Brodal, and Rauhe [ABR00] to O(log2 n log log n log∗ n) at the expense of the slightly slower
query O(m+ occ + log n log logn). This last result was achieved by building on techniques for the
dynamic string equality problem proposed by Mehlhorn, Sundar, and Uhrig [MSU97]. This was
improved in [GKK+15] to O(log2 n)-time update and O(m+ occ)-time search. A slightly different
approach to dynamic text indexing, based on dynamic position heaps was proposed in [EMOW11]. It
achieves O(m log n+occ) amortized search, but its update take Θ(n) time in the worst case. There is
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also work on dynamic compressed text indexing. Chan, Hon, Lam, and Sadakane [CHLS07] proposed
an index that uses O(1

ε (nH0(T )+n)) bits of space (where H0(T ) is the zeroth order empirical entropy
of T ), searches in O(m log2 n(logε n + log σ) + occ log1+ε n) time (where σ is the alphabet size),
and performs updates in O(

√
n log2+ε n) amortized time, where 0 < ε ≤ 1. Recently, Nishimoto, I,

Inenaga, Bannai, and Takeda [NII+20] proposed a faster index for a text T with LZ77 factorization
of size z. Assuming for simplicity z log n log∗ n = O(n), their index occupies O(z log n log∗ n) space,
performs updates in amortized O((log n log∗ n)2 log z) time (in addition to edits, they also support
the “cut-paste” operation that moves a substring of T from one place to another), and searches in
O
(
mmin

{
log logn log log z

log log logn ,
√

log z
log log z

}
+ log z logm log∗ n(log n+ logm log∗ n) + occ log n

)
time.

We point out that although the (compressed) dynamic text indexing problem [GFB94, NII+20]
discussed above is related to dynamic suffix array, it is not the same. Assuming one accepts
additional log factors, the dynamic suffix array problem is strictly harder : it solves dynamic
indexing (by simply adding binary search on top), but no converse reduction is known; such a
reduction would compute values of SA in O(polylog n) time using searches for short patterns. Thus,
the many applications of SA listed above cannot be solved with these indexes. Unfortunately, due
to lack of techniques, the dynamic suffix array problem has seen very little progress; as noted by
Amir and Boneh [AB20], “(. . . ) although a dynamic suffix array algorithm would be extremely
useful to automatically adapt many static pattern matching algorithms to a dynamic setting, other
techniques had to be sought”. They remark, however, that “Throughout all this time, an algorithm
for maintaining the suffix tree or suffix array of a dynamically changing text had been sought”.
To sum up, until now, the best dynamic suffix arrays have been those of [AB20], taking Õ(k)
time to answer SA and SA−1 queries and Õ(nk ) time for substitutions, and [AB21], taking Õ(n2/3)

time for insertions/deletions and O(log5 n) time for SA queries, or Õ(n1/2) time for substitutions
and O(log4 n) time for SA−1 queries. No solution with polylog n-time queries and updates (even
amortized or expected) was known, not even for character substitutions only.

Our Results We propose the first dynamic suffix array with all operations (queries and updates)
taking only O(polylog n) time. Our data structure is deterministic and the complexities of both
queries and updates are worst-case. Thus, we leap directly to a solution satisfying the commonly
desired properties on the query and update complexity for this almost thirty-years old open problem.
In addition to single-character edits, our structure supports the powerful “cut-paste” operation,
matching the functionality of state-of-the-art indexes [ABR00, NII+20]. More precisely, our structure
supports the following operations (the bounds below are simplified overestimates; see Theorem 10.16):

• We support SA queries (given i ∈ [1 . . n], return SA[i]) in O(log4N) time.
• We support SA−1 queries (given j ∈ [1 . . n], return SA−1[j]) in O(log5N) time.
• We support updates (insertion and deletion of a single symbol in T as well as the “cut-paste”

operation, moving any block of T to any other place in T ) in O(log3N(log logN)2) time.

Here, N = nσ is the product of the current text length and the size of the alphabet Σ = [0 . . σ).
The above result may leave a sense of incompleteness regarding further updates such as “copy-

paste”. We show that, despite its similarity with “cut-paste”, supporting this operation in the dynamic
setting is most likely very costly. More precisely, we prove that, unless the Online Matrix-Vector
Multiplication (OMv) Conjecture [HKNS15] fails, no data structure that supports SA or SA−1

queries in O(polylog n) time can support the “copy-paste” operation in O(n1−ε) time for any ε > 0.1

1In fact, we prove a more general result that the product of time needed to support SA/SA−1 queries and copy-
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Technical Contributions To achieve our result, we develop new techniques and significantly
generalize several existing ones. Our first novel technique is the notion of locally sparse synchronizing
sets. String synchronizing sets [KK19] have recently been introduced in the context of efficient
construction of BWT and LCE queries for “packed strings” (where a single machine word stores
multiple characters). Since then, they have found many other applications [ACI+19, CKPR21,
KK20, KK21, AJ22]. Loosely speaking (a formal definition follows in Section 2), for any fixed τ ≥ 1,
a set S ⊆ [1 . . n] is a τ -synchronizing set of string T ∈ Σn if S samples positions of T consistently
(i.e., whether i ∈ [1 . . n] is sampled depends only on the length-Θ(τ) context of i in T ) and does
not sample positions inside highly periodic fragments (the so-called density condition). In all prior
applications utilizing synchronizing sets, the goal is to ensure that S is sparse on average, i.e., that
the size |S| is minimized. In this paper, we prove that at the cost of increasing the size of |S| by a
mere factor O(log∗(τσ)), we can additionally ensure that S is also locally sparse (see Lemma 9.3).
We then show that such S can be maintained dynamically using a new construction of S from the
signature parsing (a technique introduced in [MSU97] and used, for example, in [ABR00, NII+20]).
The crucial benefit of local sparsity is that any auxiliary structure that depends on the length-Θ(τ)
contexts of positions in S, including S itself, can be updated efficiently. Another result of independent
interest is the first dynamic construction of string synchronizing sets. For this, we internally represent
some substrings of T using the abstraction of dynamic strings [ABR00, SV94, MSU97, GKK+18].
The problem with all existing variants of dynamic strings, however, is that they rely on representing
the strings using a hierarchical representation whose only goal is to ensure the string shrinks by a
constant factor at each level. This, however, is not sufficient for our purpose: in order to satisfy the
density condition for the resulting synchronizing set, we also need the expansions of all symbols at
any given level to have some common upper bound on the expansion length. The notion of such
“balanced” parsing is known [SV94, BGP20], but has only been implemented in static settings. We
show the first variant of dynamic strings that maintains a “balanced” parsing at every level, and
consequently lets us dynamically maintain a locally sparse string synchronizing set.

The mainstay among data structures for pattern matching or SA queries is the use of (typically
2D) orthogonal range searching [Cha88]. Example indexes include nearly all indexes based on
LZ77 [ANS12, BGG+15, BEGV18, CEK+21, GGK+14, Kär99, KN13, NII+20], context-free gram-
mars [BLR+15, CN11, CNP21, GGK+12, MNKS13, TTS14, TKN+20], and some recent BWT-based
indexes [KK21, MNN20, CHS+15]. Nearly all these structures maintain a set of points corresponding
to some set of suffixes of T (identified with their starting positions P ⊆ [1 . . n]) ordered lexicographi-
cally. The problem with adapting this to the dynamic setting is that once we modify T near the end,
the order of (potentially all) elements in P changes. We overcome this obstacle as follows. Rather
than on sampling of suffixes, we rely on log n levels of sampling of substrings (identified by the
set Sk of the starting positions of their occurrences) of length roughly 2k, where k ∈ [0 . . blog nc)
implemented using dynamic locally sparse synchronizing sets. With such structure, we can efficiently
update the sets Sk and the associated geometric structures, but we lose the ability to compare
suffixes among each other. In Section 6, we show that even with such partial sampling, we can still
implement SA queries. In log n steps, our query algorithm successively narrows the range of SA to
contain only suffixes prefixed with T [SA[i] . .SA[i] + `), while also maintaining the starting position
of some arbitrary suffix in the range, where ` = 2k is the current prefix length. In the technical

paste operation cannot be within O(n1−ε) for any ε > 0. Thus, the trade-off similar to the one achieved by Amir
and Boneh [AB20] (Õ(n

k
)-time query and Õ(k)-time update) may still be possible for a dynamic suffix array with

copy-pastes; we leave proving such upper bound as a possible direction for future work.
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overview, we sketch the main ideas of this reduction, but we remark that the details of this approach
are nontrivial and require multiple technical results (see, e.g., Section 6.3.2–6.3.8).

Finally, we remark that, even though (as noted earlier), dynamic suffix array is a strictly harder
problem that text indexing (since one can be reduced to the other, but not the other way around),
our result has implications even for the text indexing problem. The existing dynamic text indexes
with fast queries and updates (such as [GKK+15, NII+20]) can only list all k occurrences of any
pattern. One however, cannot obtain the number of occurrences (which is the standard operation
supported by most of the static indexes [NM07]) in time that is always bounded by O(m polylog n)
(since k can be arbitrarily large).2 Our dynamic suffix array, on the other hand, implements counting
seamlessly: it suffices to perform the standard binary search [MM93] over SA for the pattern P ,
resulting in the endpoints of range SA[b . . e) of suffixes of T prefixed with P , and return e− b.

Related Work Chan, Hon, Lam, and Sadakane [CHLS07] introduced a problem of indexing text
collections, which asks to store a dynamically changing collection C of strings (under insertions
and deletions of entire strings) so that pattern matching queries on C can be answered efficiently.
Although the resulting data structures are also called dynamic full-text indexes [MN08] or dynamic
suffix trees [RNO08], we remark that they are solving a different problem that what, by analogy to
dynamic suffix array, we would mean by “dynamic suffix tree”. Observe that we cannot simulate the
insertion of a symbol in the middle of T using a collection of strings. Maintaining symbols of T as a
collection of length-1 strings will not work because the algorithms in [CHLS07, MN08, RNO08] only
report occurrences entirely inside one of the strings. Since the insertion of a string S of length m into
C takes Ω(m) time in [CHLS07, MN08, RNO08] (similarly for deletion), one also cannot efficiently
use C to represent the entire text T as a single element of C.

Tangentially related to the problem of text indexing is the problem of sequence representa-
tion [NN14], where we store a string S[1 . . n] under character insertions and deletions and support
the access to S, rank(i, c) (returning |{j ∈ [1 . . i] : S[j] = c}|) and select(i, c) (returning the ith
occurrence of c in S). A long line of research, including [MN08, GN09, HM10, NS14], culminated with
the work of Navarro and Nekrich, who achieved O(log n/ log log n) time for all operations (amortized
for updates), while using space close to nH0(S), where H0 is the zeroth order empirical entropy.

Finally, there is a line of research focusing on storing a text T under updates so that we can
support efficient longest common extension queries LCET (i, j) that return the length of the longest
common prefix of T [i . . |T |] and T [j . . |T |]. The research was initiated with the seminal work
in [MSU97, ABR00] (recently improved in [GKK+18]). More recently, a solution working in the
compressed space (achieving similar runtimes as the index in [NII+20]) was proposed in [NII+16].

2 Preliminaries

A string is a finite sequence of characters from some set Σ called the alphabet. We denote the length
of a string S as |S|. For any index i ∈ [1 . . |S|],3 we denote the ith character of S as S[i]. A string
of the form S[i . . j) = S[i]S[i+ 1] . . . S[j − 1], where i ≤ i ≤ j ≤ |S|+ 1 is called a fragment of S. If
S is known, we will encode S[i . . j) in O(1) space as a pair (i, j). Prefixes and suffixes are of the

2Efficient counting for indexes relying on orthogonal range searching is a technically challenging problem that has
been solved only recently for the static case [CEK+21]. It is possible that these ideas can be combined with [NII+20],
but the result will nevertheless be significantly more complicated than counting using the suffix array.

3For i, j ∈ Z, denote [i . . j] = {k∈Z : i ≤ k ≤ j}, [i . . j) = {k∈Z : i ≤ k < j}, and (i . . j] = {k∈Z : i < k ≤ j}.
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form S[1 . . j) and S[i . . |S|], respectively. By S we denote the reverse of S, i.e., S = S[|S|] . . . S[2][1].
The concatenation of two strings U and V is denoted UV or U · V . Moreover, Sk =

⊙k
i=1 S is the

concatenation of k copies of S; note that S0 = ε is the empty string. An integer p ∈ [1 . . |S|] is a
called a period of S if S[1 . . |S| − p] = S[1 + p . . |S|]; we denote the shortest period of S as per(S).
We use � to denote the order on Σ, extended to the lexicographic order on Σ∗ (the set of strings over
Σ) so that U, V ∈ Σ∗ satisfy U � V if and only if either U is a prefix of V , or U [1 . . i) = V [1 . . i)
and U [i] ≺ V [i] holds for some i ∈ [1 . .min(|U |, |V |)].

a
aababa
aababababaababa
aba
abaababa
abaababababaababa
ababa
ababaababa
abababaababa
ababababaababa
ba
baababa
baababababaababa
baba
babaababa
babaababababaababa
bababaababa
babababaababa
bbabaababababaababa

T [SA[i] . . n]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

i

19
14
5
17
12
3
15
10
8
6
18
13
4
16
11
2
9
7
1

SA[i]

Figure 1: A list of all sorted suffixes
of T = bbabaababababaababa along
with the suffix array.

Throughout, we consider a string (called the text) T of length
n ≥ 1 over an integer alphabet Σ = [0 . . σ). We assume that
T [n] = $ (where $ = min Σ) and $ does not occur in T [1 . . n).

The suffix array SA[1 . . n] of T is a permutation of [1 . . n]
such that T [SA[1] . . n] ≺ T [SA[2] . . n] ≺ · · · ≺ T [SA[n] . . n], i.e.,
SA[i] is the starting position of the lexicographically ith suffix of
T ; see Fig. 1 for an example. The inverse suffix array ISA[1 . . n]
is the inverse permutation of SA, i.e., ISA[j] = i holds if and
only if SA[i] = j. By lcp(U, V ) (resp. lcs(U, V )) we denote the
length of the longest common prefix (resp. suffix) of U and V .
For j1, j2 ∈ [1 . . n], we let LCET (j1, j2) = lcp(T [j1 . .], T [j2 . .]).

The rotation operation rot(·), given a string S ∈ Σ+, moves
the last character of S to the front so that rot(S) = S[|S|] ·
S[1 . . |S| − 1]. The inverse operation rot−1(·) moves the first
character of S to the back so that rot−1(S) = S[2 . . |S|] · S[1].
For an integer s ∈ Z, the operation rots(·) denotes the |s|-time
composition of rot(·) (if s ≥ 0) or rot−1(·) (if s ≤ 0). Strings
S, S′ are cyclically equivalent if S′ = rots(S) for some s ∈ Z.

We use the word RAM model of computation [Hag98] with
w-bit machine words, where w ≥ log n.

Definition 2.1 (τ -synchronizing set [KK19]). Let T ∈ Σn be a string and let τ ∈ [1 . . bn2 c] be a
parameter. A set S ⊆ [1 . . n− 2τ + 1] is called a τ -synchronizing set of T if it satisfies the following
consistency and density conditions:

1. If T [i . . i+ 2τ) = T [j . . j + 2τ), then i ∈ S holds if and only if j ∈ S (for i, j ∈ [1 . . n− 2τ + 1]),
2. S ∩ [i . . i+ τ) = ∅ if and only if i ∈ R(τ, T ) (for i ∈ [1 . . n− 3τ + 2]), where

R(τ, T ) := {i ∈ [1 . . |T | − 3τ + 2] : per(T [i . . i+ 3τ − 2]) ≤ 1
3τ}.

In most applications, we want to minimize |S|. The density condition imposes a lower bound
|S| = Ω(nτ ) for strings of length n ≥ 3τ − 1 that do not contain highly periodic substrings of length
3τ − 1. Hence, in the worst case, we cannot hope to improve upon the following bound.

Theorem 2.2 ([KK19, Proposition 8.10]). For every T ∈ Σn and τ ∈ [1 . . bn2 c], there exists a
τ -synchronizing set S of size |S| = O

(
n
τ

)
. Such S can be deterministically constructed in O(n) time.

3 Technical Overview

We derive our dynamic suffix array gradually. We start (Sections 4 and 5), by introducing the auxiliary
tools. In the first part of the paper (Section 6) we prove that if we have Θ(log n) synchronizing sets
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for values of τ spanning across the whole range [1 . . n], and we can support some set of queries (stated
as “assumptions”) concerning either positions in those synchronizing sets, gaps across successive
elements, or their length-Θ(τ) contexts in T , then we can support SA queries on T . In the second
part of the paper (Sections 7 to 10) we then show how to satisfy these assumptions for text supporting
update operations. This approach lets us separate the clean (combinatorial) details concerning SA
queries from (more algorithmic and technical) details concerning the maintenance of the underlying
synchronizing sets and the associated structures. This also lets us for now treat T as well as each
synchronizing sets as static, since the reduction works for any collection of such sets, and thus if
after the update these sets (and the associated structures) change, the query algorithm is unaffected.

We start with an overview of Section 6. Let ` ≥ 1. For any j ∈ [1 . . n], we define

Occ`(j) = {j′ ∈ [1 . . n] : T∞[j′ . . j′ + `) = T∞[j . . j + `)},
RangeBeg`(j) = |{j′ ∈ [1 . . n] : T [j′ . . n] ≺ T [j . . n] and LCET (j, j) < `}|, and
RangeEnd`(j) = RangeBeg`(j) + |Occ`(j)|.

For the motivation of the above names, note that viewing P := T∞[j . . j + `) as a pattern, we have
{SA[i] : i ∈ (RangeBeg`(j) . .RangeEnd`(j)]} = {i ∈ [1 . . n] : T∞[i . . i+ |P |) = P}.

Moreover, for any j ∈ [1 . . n], we define

Pos`(j) = {j′ ∈ [1 . . n] : T [j′ . . n] ≺ T [j . . n] and LCET (j′, j) ∈ [` . . 2`)} and
Pos′`(j) = {j′ ∈ [1 . . n] : T [j′ . . n] � T [j . . n] and LCET (j′, j) ∈ [` . . 2`)}.

We denote the size of Pos`(j) and Pos′`(j) as δ`(j) = |Pos`(j)| and δ′`(j) = |Pos′`(j)|. Note that by def-
inition, (RangeBeg2`(j),RangeEnd2`(j)) = (RangeBeg`(j)+δ`(j),RangeBeg`(j)+δ`(j)+ |Occ2`(j)|)
and (RangeBeg2`(j),RangeEnd2`(j)) = (RangeEnd`(j)− δ′`(j)− |Occ2`(j)|,RangeEnd`(j)− δ′`(j)).

The main idea of our algorithm is as follows. Suppose that we have obtained some j ∈ Occ16(SA[i])
and (RangeBeg16(SA[i]),RangeEnd16(SA[i])) (Assumption 6.1). Then, for q = 4, . . . , dlog ne − 1,
denoting ` = 2q, we compute (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])) and some j′ ∈ Occ2`(SA[i]),
by using as input some position j ∈ Occ`(SA[i]) and the pair (RangeBeg`(SA[i]),RangeEnd`(SA[i])),
i.e., the output of the earlier step. This lets us compute SA[i], since eventually we obtain some
j′ ∈ Occ2dlogne(SA[i]), and for any k ≥ n, Occk(SA[i]) = {SA[i]}, i.e., we must have j′ = SA[i].

Our goal is to show how to implement a single step of the above process. Let ` ∈ [16 . . n) and i ∈
[1 . . n]. Suppose that we are given (RangeBeg`(SA[i]),RangeEnd`(SA[i])) and some j ∈ Occ`(SA[i])
as input. We aim to show that under specific assumptions about the ability to perform some queries,
we can compute some j′ ∈ Occ2`(SA[i]) and the pair (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])).

Let τ := b `3c. Our algorithm works differently, depending on whether it holds SA[i] ∈ R(τ, T )
or SA[i] ∈ [1 . . n] \ R(τ, T ). Thus, we first need to efficiently implement this check. Observe that
whether or not it holds j ∈ R(τ, T ) depends only on T [j . . j + 3τ − 1). Therefore, by 3τ − 1 ≤ `,
if j ∈ Occ`(SA[i]) then SA[i] ∈ R(τ, T ) holds if and only if j ∈ R(τ, T ). Consequently, given any
j ∈ Occ`(SA[i]), using Assumption 6.3 we can efficiently check if SA[i] ∈ R(τ, T ) (such SA[i] is called
periodic) or SA[i] ∈ [1 . . n] \ R(τ, T ) (i.e., the position SA[i] is nonperiodic).

The Nonperiodic Positions Assume SA[i] ∈ [1 . . n] \ R(τ, T ). We proceed in two steps. First,
we show how to compute |Pos`(SA[i])| and |Occ2`(SA[i])| assuming we have some j′ ∈ Occ2`(SA[i]).
By the earlier observation about δ(SA[i]) = |Pos`(SA[i])| and the definition of Occ2`(SA[i]), this
gives us the pair (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])). We then explain how to find j′.
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Let j′ ∈ Occ2`(SA[i]). Observe that by T∞[j′ . . j′ + 2`) = T [SA[i] . .SA[i] + 2`), we have
|Pos`(SA[i])| = |Pos`(j

′)|, |Occ2`(SA[i])| = |Occ2`(j
′)|, and j′ 6∈ R(τ, T ). We can thus focus on

computing |Pos`(j
′)| and |Occ2`(j

′)|. Let S be any τ -synchronizing set of T . First, observe that
by j′ 6∈ R(τ, T ), the position s′ = succS(j′) satisfies s′ − j′ < τ . Thus, by the consistency of S and
3τ ≤ `, all j′′ ∈ Pos`(j

′) share a common offset δS = s′− j′ such that j′′+ δS = min(S∩ [j′′ . . j′′+ τ))
and hence the relative lexicographical order between T [j′′ . . n] and T [j′ . . n] is the same as between
T [j′′ + δS . . n] and T [j′ + δS . . n]. Hence, to compute |Pos`(j

′)| it suffices to count s′′ ∈ S that are:

1. Preceded in T by the string T [j′ . . s′), and
2. For which it holds T [s′′ . . n] ≺ T [s′ . . n] and LCET (s′′, s′) ∈ [`− δS . . 2`− δS).

Observe, that for any q ≥ 2`, Condition 1 is equivalent to position s′′ having a reversed left
length-q context in the lexicographical range [X . .X ′), where X = T [j′ . . s′) and X ′ = Xc∞

(where c = max Σ), and Condition 2 is equivalent to position s′′ having a right length-q context in
[Y . . Y ′), where Y = T∞[s′ . . j′ + `) and Y ′ = T∞[s′ . . j′ + 2`) (Lemma 6.7). Consequently, the only
queries needed to compute |Pos`(j

′)| are succS(j′) and generalized range queries on a set of points
P = {(T∞[s′ − q . . s′), T∞[s′ . . s′+q)) : s′ ∈ S}. Since τ = b `3c and ` ≥ 16, it suffices to choose q = 7τ
to satisfy q ≥ 2`. Thus, under Assumption 6.5, we can efficiently compute |Pos`(j

′)| = |Pos`(SA[i])|.
The intuition for |Occ2`(j

′)| is similar, except we observe that Condition 2 is that s′′ satisfies
T∞[s′′ . . j′′ + 2`) = T∞[s′ . . j′ + 2`), which is equivalent to s′′ having a right length-q context in
[Y ′ . . Y ′c∞). Thus, we can also count such s′′ (and consequently, compute |Occ2`(SA[i])|) using P.

The above reductions are proved in Lemmas 6.10 and 6.11 and lead to the following result.

Proposition 3.1. Under Assumption 6.5, assuming SA[i] ∈ [1 . . n] \ R(τ, T ), given a position
j′ ∈ Occ2`(SA[i]), we can efficiently compute |Pos`(SA[i])| and |Occ2`(SA[i])|.

It remains to show how to find some j′ ∈ Occ2`(SA[i]). For this, observe that if we sort
all j′′ ∈ Occ`(SA[i]) by their right length-2` context in T∞ then for the kth position j′′ in this
order we have T∞[j′′ . . j′′ + 2`) = T∞[SA[b+ k] . .SA[b+ k] + 2`), since SA(b . . e] also contains all
j′′ ∈ Occ2`(SA[i]) sorted by their length-2` right context, although potentially in a different order.
Note, however, that j′ ∈ Occ2`(SA[i]) only requires T∞[j′ . . j′ + 2`) = T∞[SA[i] . .SA[i] + 2`). Thus,
the ability to find the kth element in the sequence of all j′′ ∈ Occ`(SA[i]) sorted by T∞[j′′ . . j′′ + 2`)
(with ties resolved arbitrarily) is all we need to compute j′. Note now that to show a common offset
δS above, we only used the fact that suffixes shared a prefix of length at least 3τ . Thus, by 3τ ≤ `,
here we also have that all j′′ ∈ Occ`(SA[i]) share a common offset δS = succS(SA[i])− SA[i] such
that j′′ + δS = min(S ∩ [j′′ . . j′′ + τ)). Consequently, to find j′ we take some q ≥ 2` and:

1. First, letting δS = succS(SA[i])−SA[i], we compute the number m of positions s′ ∈ S that have
their reversed left length-q context in the range [X . .X ′) (where X = T [SA[i] . .SA[i] + δS) and
X ′ = Xc∞) and their right length-q context in [ε . . Y ) (where Y = T∞[SA[i] + δS . .SA[i] + `)).

2. Then, for any k ∈ [1 . . |Occ`(SA[i])|], the (m + k)th element in the sequence of all s′ ∈ S
sorted by the length-2` right context which simultaneously has its left length-q context in
[X . .X ′), satisfies T∞[s′ − δS . . s′ − δS + 2`) = T∞[SA[b+ k] . .SA[b+ k] + 2`). In particular,
the position s′ for k = i− b satisfies T∞[s′ − δS . . s′ − δS + 2`) = T∞[SA[i] . .SA[i] + 2`), i.e.,
s′ − δS ∈ Occ2`(SA[i]). Thus, finding j′ reduces to a range selection query on P.

The above reduction is proved in Lemma 6.14. One last detail is that we need X, Y , and δS.
We note, however, that they all depend only on T∞[SA[i] . .SA[i] + `), and thus can be computed
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Figure 2: Example showing the sets Pos`(SA[i]), Poslow` (SA[i]), Posmid
` (SA[i]), and Poshigh` (SA[i]). Note, that

|Pos`(SA[i])| = |Poslow` (SA[i])|+ |Posmid
` (SA[i])| − |Poshigh` (SA[i])| (see Lemma 6.23). The suffix T [SA[i] . . n]

is highlighted in bold. The sets Occ`(SA[i]) and Occ2`(SA[i]) and marked with blue and red (respectively).

using j ∈ Occ`(SA[i]) (which we have as input). We have thus proved the following result, which
combined with Proposition 3.1 concludes the description of the SA query for nonperiodic SA[i].

Proposition 3.2. Under Assumption 6.5, assuming SA[i] ∈ [1 . . n] \ R(τ, T ), given a position
j ∈ Occ`(SA[i]) and the pair (RangeBeg`(SA[i]),RangeEnd`(SA[i])), we can efficiently find some
j′ ∈ Occ2`(SA[i]).

The Periodic Positions Assume SA[i] ∈ R(τ, T ). The standard way to introduce structure
among periodic positions (see, e.g., [KK19]) is as follows. Observe that if j, j + 1 ∈ R(τ, T ), then
per(T [j . . j+3τ−1)) = per(T [j+1 . . j+1+3τ−1)). This implies that any maximal block of positions
in R(τ, T ) defines a highly periodic fragment of T (called a “run”) with an associated period p. To
compare runs, we “anchor” each run T [j . . j′) by selecting some H ∈ Σ+, called its root, so that
T [j . . j′) is a substring of H∞ and no nontrivial rotation of H is selected for other runs. Every
run T [j . . j′) can then be uniquely written as T [j . . j′) = H ′HkH ′′, where k ≥ 1 and H ′ (resp. H ′′)
is a proper suffix (resp. prefix) of H. The value k is called the exponent of j. We finally classify
type(j)=− 1 if T [j′]≺T [j′ − p] and type(j) = +1 otherwise, where p = |H|.

The first major challenge in the periodic case is selecting roots efficiently. An easy solution in
the static case (e.g. [KK19, KK21]) is to choose the lexicographically smallest rotation of H (known
as the Lyndon root). This seems very difficult in the dynamic case, however. We instead show a
construction that exploits the presence of symmetry-breaking component in the signature parsing
(i.e., the deterministic coin tossing [CV86]) to develop a custom computation of roots (Section 8.10).

Denote b = RangeBeg`(SA[i]) and e = RangeEnd`(SA[i]). Observe that all i′ ∈ (b . . e] with
type(SA[i′]) < 0 precede those with type(SA[i′]) > 0. Moreover, exp(SA[i′]) among those with
type(SA[i′]) < 0 (resp. type(SA[i′]) > 0) is increasing (resp. decreasing) as we increase i′; see also
Lemma 6.7. This structure of the periodic block has led to relatively straightforward processing
of periodic positions in previous applications (e.g., the BWT construction in [KK19]), where the
positions were first grouped by the type, and then by the exponent. In our case, however, we need
to exclude the positions with very small and very large exponents. We thus employ the following
modification to the above scheme: Rather than computing |Pos`(SA[i])| in one step, we prove
(Lemma 6.23) that it can be expressed as a combination of three sets, Poslow

` (SA[i]) (containing
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exponents “truncated” at length `), Poshigh
` (SA[i]) (where truncation occurs for length 2`), and

Posmid
` (SA[i]) (all exponents in between); see Fig. 2 for an example. We then compute the following

values: the type type(SA[i]), the size |Poslow
` (SA[i])|, the exponent exp(SA[i]), the size |Posmid

` (SA[i])|,
a position j′ ∈ Occ2`(SA[i]), the size |Poshigh

` (SA[i])|, and the size |Occ2`(SA[i])|. See the proof of
Proposition 6.53 for the high-level algorithm and Sections 6.3.3 to 6.3.8 for the implementation of
subsequent steps. Finally, we derive |Pos`(SA[i])|, which equals |Poslow

` (SA[i])|+ |Posmid
` (SA[i])| −

|Poshigh
` (SA[i])|, if type(SA[i]) = −1, and the values RangeBeg2`(SA[i]) = RangeBeg`(SA[i]) +

|Pos`(SA[i])| as well as RangeEnd2`(SA[i]) = RangeBeg2`(SA[i]) + |Occ2`(SA[i])|. The case of
type(SA[i]) = +1 is symmetric: we then compute |Pos′`(SA[i])| instead of |Pos`(SA[i])|.

Dynamic Text Implementation In the second part of the paper (Sections 7 to 10), we develop
a data structure that maintains a dynamic text (subject to updates listed below) and provides
efficient implementation of the auxiliary queries specified in the four assumptions of Section 6.

Definition 3.3. We say that a dynamic text over an integer alphabet Σ (with $ = min Σ) is a data
structure that maintains a text T ∈ Σ+ subject to the following updates:

initialize(σ): Given the alphabet size σ, initialize the data structure, setting T := $;
insert(i, a): Given i ∈ [1 . . |T |] and a ∈ Σ \ {$}, set T := T [1 . . i) · a · T [i . . |T |].
delete(i): Given i ∈ [1 . . |T |), set T := T [1 . . i) · T (i . . |T |].
swap(i, j, k): Given i, j, k ∈ [1 . . |T |] with i ≤ j ≤ k, set T := T [1 . . i) · T [j . . k) · T [i . . j) · T [k . . |T |].

Observe that our interface does not directly support character substitutions; this is because
substitute(i, a) can be implemented as delete(i) followed by insert(i, a). Moreover, note that the
interface enforces the requirement of Section 6 that {i ∈ [1 . . |T |] : T [i] = $} = {|T |}.

Various components of our data structure, described in Section 10, maintain auxiliary information
associated to individual positions of the text T (such as whether the position belongs to a synchro-
nizing set). Individual updates typically alter the positions of many characters in T (for example,
insertion moves the character at position j to position j + 1 for each j ∈ [i . . |T |]), so addressing the
characters by their position is volatile. To address this issue, we use a formalism of labelled strings,
where each character is associated to a unique label that is fixed throughout character’s lifetime.
This provides a clean realization of the concept of pointers to characters, introduced in [ABR00]
along with O(log n)-time conversion between labels (pointers) and positions.

The main challenge that arises in our implementation of a dynamic text is to maintain synchro-
nizing sets. As for the succS queries alone, we could generate synchronizing positions at query time.
Nevertheless, Assumption 6.5 also entails supporting range queries over a set of points in one-to-one
correspondence with the synchronizing positions, we cannot evade robust maintenance.

Dynamic Synchronizing Sets By the consistency condition in Definition 2.1, whether a position
j belongs to a synchronizing set S is decided based on the right context T [j . . j + 2τ). This means
that the entire synchronizing set can be described using a family F ⊆ Σ2τ such that j ∈ S if and
only if T [j . . j + 2τ) ∈ F . The construction algorithms in [KK19] select such F adaptively (based
on the contents of T ) to guarantee that |S| is small. In a dynamic scenario, we could either select F
non-adaptively and keep it fixed; or adaptively modify F as the text T changes.

The second approach poses a very difficult task: the procedure maintaining F does not know the
future updates, yet it needs to be robust against any malicious sequence of updates that an adversary
could devise. This is especially hard in the deterministic setting, where we cannot hide F from the
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adversary. Thus, we aim for non-adaptivity, which comes at the price of increasing the synchronizing
set size by a factor of O(log∗(στ)). On the positive side, a non-adaptive choice of F means that
S only undergoes local changes; for example, a substitution of T [i] may only affect S ∩ (i− 2τ . . i].
Moreover, since F yields small synchronizing sets for all strings, this is in particular true for all
substrings T [i . . j), whose synchronizing sets are in one-to-one correspondence with S ∩ [i . . j − 2τ ].
This means that S is locally sparse and that each update incurs O(log∗(στ)) changes to S.

The remaining challenge is thus to devise a non-adaptive synchronizing set construction. Al-
though all existing constructions are adaptive, Birenzwige, Golan, and Porat [BGP20] provided
a non-adaptive construction of a related notion of partitioning sets. While partitioning sets and
synchronizing sets satisfy similar consistency conditions, the density condition of synchronizing sets
is significantly stronger, which is crucial for a clean separation between periodic and nonperiodic
positions. Thus, in Section 9, we strengthen the construction of [BGP20] so that it produces
synchronizing sets. This boils down to ‘fixing’ the set in the vicinity of positions in R(τ, T ).

Dynamic Strings over Balanced Signature Parsing Unfortunately, the approach of [BGP20]
only comes with a static implementation. Thus, we need to dive into their techniques and provide an
efficient dynamic implementation. Their central tool is a locally consistent parsing algorithm that
iteratively parses the text using deterministic coin tossing [CV86] to determine phrase boundaries.
Similar techniques have been used many times (see e.g. [SV94, SV96, MSU97, ABR00, NII+20]),
but the particular flavor employed in [BGP20] involves a mechanism that, up to date, has not been
adapted to the dynamic setting. Namely, as subsequent levels of the parsing provide coarser and
coarser partitions into phrases, the procedure grouping phrases into blocks (to be merged in the next
level) takes into account the lengths of the phrases, enforcing very long phrases to form single-element
blocks. This trick makes the phrase lengths much more balanced, which is crucial in controlling the
context size that governs the local consistency of the synchronizing sets derived from the parsing.

In Section 7, we develop balanced signature parsing : a version of signature parsing (originating
the early works on dynamic strings [MSU97, ABR00]) that involves the phrase balancing mechanism.
Then, in Section 8, we provide a dynamic strings implementation based on the balanced signature
parsing. The main difference compared to the previous work [MSU97, ABR00, GKK+18] stems from
the fact that the size of the context-sensitive part of the parsing (that may change depending on
the context surrounding a given substring) is bounded in terms of the number of individual letters
rather than the number of phrases at the respective level of the parsing. Due to this, we need to
provide new (slightly modified) implementations of the basic operations (such as updates and longest
common prefix queries). However, we also benefit from this feature, obtaining faster running times
for more advanced queries, such as the period queries (which we utilize in Section 9 to retrieve
R(τ, T )) compared to solutions using existing dynamic strings implementations [CKW20].

4 Generalized Range Counting and Selection Queries

In this section we introduce generalized range counting and selection queries. The generalization lies
in the fact that the “coordinates” of points can come from any ordered set. In particular, coordinates
of points in some of our structures will be elements of Z+ or Σ∗ (i.e., the strings over alphabet Σ).
Furthermore, the points in our data structures are labelled with distinct integer identifiers; we allow
multiple points with the same coordinates, though.

The section is organized as follows. We start with the definition of range counting/selection
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queries. In the following two sections (Sections 4.1 and 4.2), we present two data structures supporting
efficient range counting/selection queries over instances that will be of interest to us.

Let X and Y be some linearly ordered sets (we denote the order on both sets using ≺ or �). Let
P ⊆ X ×Y ×Z be a finite set of points with distinct integer labels. We define the notation for range
counting and range selection queries as follows.

Range counting query r-countP(Xl, Xu, Yu): Given Xl, Xr∈X and Yu∈Y, return |{(X,Y, `) ∈
P : Xl � X ≺ Xr and Y ≺ Yu}|. We also let r-countinc

P (Xl, Xr, Yu) = |{(X,Y, `) ∈ P : Xl �
X ≺ Xr and Y � Yr}| and r-countP(Xl, Xr) = |{(X,Y, `) ∈ P : Xl � X ≺ Xr}|.

Range selection query r-selectP(Xl, Xu, r): Given Xl, Xu ∈ X and r ∈ [1 . . r-countP(X`, Xr)],
return any ` ∈ r-selectP(Xl, Xu, r) := {` : (X,Y, `) ∈ P, Xl � X ≺ Xr, and Y = Yu}, where
Yu ∈ Y is such that r ∈ (r-countP(Xl, Xr, Yu) . . r-countinc

P (Xl, Xr, Yu)].

Theorem 4.1. Suppose that the elements of X and Y can be compared in O(t) time. Then, there is
a deterministic data structure that maintains a set P ⊆ X × Y × [0 . . 2w) of size n, with insertions
in O((t+ log n) log n) time and deletions in O(log2 n) time so that range queries are answered in
O((t+ log2 n) log n) time.

Proof. The set P is stored in a data structure of [LW82] (see also [WL85, Cha88]) for dynamic range
counting queries; this component supports updates and queries in O(log2 n) assuming O(1)-time
comparisons. As for range selection queries, we resort to binary search with range counting queries
as an oracle (the universe searched consists of the second coordinates of all points in P). Thus, range
selection queries cost O(log3 n) time.

In order to substantiate the assumption on constant comparison time, we additionally maintain
P in two instances of the order-maintenance data structure [DS87, BFG+17], with points (X,Y, `)
ordered according to X in the first instance and according to Y in the second instance (ties are
resolved arbitrarily). This allows for O(1)-time comparisons between points in P. The overhead
for deletions is O(1), but insertions to the order-maintenance structure require specifying the
predecessor of the newly inserted element; we find the predecessor in O(t log n) time using binary
search. Similarly, at query time, we temporarily add the query coordinates (Xl, Xr, and, if specified,
Yu) to the appropriate order-maintenance structure, also at the cost of an extra O(t log n) term in
the query time.

4.1 A String-String Instance

Definition 4.2. Let T ∈ Σn. For any q ∈ Z+ and any set P ⊆ [1 . . n], we define

Pointsq(T,P) = {(T∞[p− q . . p), T∞[p . . p+ q), p) : p ∈ P}.

In other words, Pointsq(T,P) represents the collection of string-pairs (X,Y ) composed of reversed
length-q left context and a length-q right context (in T∞) of every p ∈ P, and for any (X,Y, `) ∈
Pointsq(T,P), the label ` ∈ P is the underlying position. Equivalently, Pointsq(T,P) can be
interpreted as a set of labelled points (X,Y, `) with coordinates X,Y and an integer label `. The
order among strings on the X = Σ∗ and Y = Σ∗ axis is the lexicographical order.

Next, we define the problem of supporting range counting/selection queries on Pointsq(T,P) for
some special family of queries that can be succinctly represented as substrings of T∞ or T∞.
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Problem 4.3 (String-String Range Queries). Let T ∈ Σn, q ∈ [1 . . 3n], and P ⊆ [1 . . n] be a set
satisfying |P| = m. Denote P = Pointsq(T,P) and c = max Σ. Provide efficient support for the
following queries:

1. Given i ∈ [1 . . n] and ql, qr ∈ [0 . . 2n], return r-countP(Xl, Xu, Yl) and r-countP(Xl, Xu, Yu),
where Xl = T∞[i− ql . . i), Xu = Xlc

∞, Yl = T∞[i . . i+ qr), and Yu = Ylc
∞, and

2. Given i∈ [1 . . n], ql ∈ [0 . . 2n], and r∈ [1 . . r-countP(Xl, Xu)] (where Xl =T∞[i− ql . . i) and
Xu = Xlc

∞), return some position p ∈ r-selectP(Xl, Xu, r).

4.2 An Int-String Instance

Definition 4.4. Let T ∈ Σn, q ∈ Z+, and suppose that P ⊆ [1 . . n] × Z≥0 contains pairs with
distinct first coordinates. We define

Pointsq(T,P) = {(d, T∞[p . . p+ q), p) : (p, d) ∈ P}.

In other words, Pointsq(T,P) represents the collection of pairs (X,Y ) composed of an integer
X = d and a length-q right context (in T∞) of position p for every (p, d) ∈ P. The label of each
point is set to p; the assumption on P guarantees that points have distinct labels. Equivalently,
Pointsq(T,P) can be interpreted as a set of labelled points from X × Y × Z, where the coordinates
of each point (X,Y, `) ∈ P are an integer X, and a string Y , whereas the label is `. We use the
standard order on X = Z+ and the lexicographic order on Y = Σ∗.

Next, we define the problem of efficiently supporting range counting and selection queries on
Pointsq(T,P) for some restricted family of queries that can be succinctly represented as substrings
of T∞.

Problem 4.5 (Int-String Range Queries). Let T ∈ Σn, q ∈ [1 . . 3n], and P ⊆ [1 . . n] × [0 . . n] be
a set of size |P| = m. Denote P = Pointsq(T,P) and c = max Σ. Provide efficient support for the
following queries:

1. Given i ∈ [1 . . n], x ∈ [0 . . n], and qr ∈ [0 . . 2n], return r-countP(x, n, Yl), r-countP(x, n, Yu),
and r-countP(x, n), where Yl = T∞[i . . i+ qr), Yu = Ylc

∞, and
2. Given x ∈ [0 . . n] and r ∈ [1 . . r-countP(x, n)], return some position p ∈ r-selectP(x, n, r).

5 Modular Constraint Queries

Let I ⊆ Z2
≥0 × Z be a finite set of integer intervals (represented by endpoints) with distinct integer

labels (we allow multiple intervals with the same endpoints). We define the modular constraint
counting and modular constraint selection queries as follows:

Modular constraint count query mod-countI(h, r, q): Given h ∈ Z+, r ∈ [0 . . h) and q ∈ Z≥0,
return

∑
(b,e,`)∈I |{j ∈ [b . . e) : j mod h = r and b jhc ≤ q}|. As a notational convenience, we

define mod-countI(h, r) =
∑

(b,e,`)∈I |{j ∈ [b . . e) : j mod h = r}|.
Modular constraint selection query mod-selectI(h, r, c): Given h ∈ Z+, r ∈ [0 . . h) and c ∈

[1 . .mod-countI(h, r)], return (the unique) positive integer q satisfying the condition c ∈
(mod-countI(h, r, q − 1) . .mod-countI(h, r, q)].

We extend the above notation to sets of labelled one-sided intervals (identified for simplicity
with integers) as follows. For any finite set Q ⊆ Z≥0 × Z of coordinates labelled with distinct
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integer labels (we allow equal coordinates), we define mod-countQ(h, r, q) := mod-countI(h, r, q),
mod-countQ(h, r) := mod-countI(h, r), and mod-selectQ(h, r, c) := mod-selectI(h, r, c), where I =
{(0, e, `) : (e, `) ∈ Q}.

Proposition 5.1. Let h ∈ [0 . . 2w). There is a deterministic data structure that maintains a set of
labelled coordinates Q ⊆ [0 . . 2w)× Z of size |Q| = n so that updates (insertions and deletions in Q)
and modular constraint counting queries (returning mod-countQ(h, r, q), given any r ∈ [0 . . h) and
q ∈ Z≥0) take O(log2 n) time.

Proof. Observe that for any e ∈ Z≥0, letting x := e mod n and y := b ehc, it holds

|{j ∈ [0 . . e) : j mod h = r and b jhc ≤ q}| = min(y, q) + δ, (5.1)

where δ = 1 if and only if r ≤ x and y ≤ q. The basic idea is to maintain two data structures, each
responsible for computing the aggregate value (summed over all coordinates in Q) of one of the
terms on the right-hand side of Eq. (5.1). The key property of this separation is that computing the
sum of the first terms does not depend on the query argument r, and hence can be reduced to a
prefix sum query. On the other hand, the second term for each integer in Q contributes either zero
or one to the total sum, and hence can be reduced to an orthogonal range counting query.

Denote Q = {(e1, `1), . . . , (ek, `k)}, where e1 ≤ · · · ≤ ek. For any i ∈ [1 . . k], let xi = ei mod h
and yi = b eih c. Denote S = ((y1, `1), . . . , (yk, `k)) and P = {(xi, yi, `i) : i ∈ [1 . . k]}. Then, by
Eq. (5.1), if we let j ∈ [0 . . k] be the largest integer satisfying max{y1, . . . , yj} < q, it holds

mod-countQ(h, r, q) =

k∑
i=1

min(yi, q) +
∣∣{i ∈ [1 . . k] : r ≤ xi < h and yi ≤ q}

∣∣
=

j∑
i=1

yi + q(k − j) + r-countP(r, h, q+1).

To compute the first two terms, we store elements (yi, `i) of S using a balanced binary search
tree (e.g., an AVL tree [AVL62]) ordered by yi. A node vi corresponding to (yi, `i) is augmented
with the value

∑
j∈J(vi)

yj , where J(vi) contains all j ∈ [1 . . k] such vj is in the subtree rooted in
vi. Given such representation of S, we can compute j together with

∑j
i=1 yi in O(log n) time. To

compute the third term, we apply Theorem 4.1 for P. The query takes O(log2 n) time.
To insert or delete a labelled coordinate (v, `) ∈ [0 . . 2w)×Z from Q, we first compute x = v mod h

and y = b vhc. Adding/deleting (y, `) from the first component of our structure is straightforward and
takes O(log n) time. The extra values in each node can be computed using the information stored in
the node and its children, and thus can be maintained during rotations. By Theorem 4.1, insertions
and deletions on the second structure take O(log2 n) time.

Corollary 5.2. Let h, n ∈ [0 . . 2w). There is a deterministic data structure that maintains a set of
labelled intervals I ⊆ [0 . . n)2 × Z of size |I| ≤ n so that updates (insertions and deletions in I) take
O(log2 n) time and modular constraint counting (resp. selection) queries are answered in O(log2 n)
(resp. O(log3 n)) time.

Proof. We keep two instances of the structure from Proposition 5.1, one for the set of labelled
coordinates Q− containing left endpoints of intervals in I and one for the set Q+ of right endpoints.
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Given any r ∈ [0 . . h) and q ∈ Z≥0, we return mod-countI(h, r, q) = mod-countQ+(h, r, q) −
mod-countQ−(h, r, q) in O(log2 n) time. The select query on I is implemented in O(log3 n) time by
using binary search (in the range [0 . . n)) and modular constraint counting queries.

Updates simply insert/delete the left (resp. right) endpoint of the input interval into the structure
for Q− (resp. Q+). By Proposition 5.1, each update to I takes O(log2 n) time.

6 SA Query Algorithm

Let T ∈ Σn. In this section we show that under some small set of assumptions about the ability to
perform queries on string synchronizing sets [KK19], we can perform SA queries (i.e., returning the
value SA[i], given any position i ∈ [1 . . n]) for T .

Let ` ≥ 1. For any j ∈ [1 . . n], we define

Occ`(j) = {j′ ∈ [1 . . n] : T∞[j′ . . j′ + `) = T∞[j . . j + `)},
RangeBeg`(j) = |{j′ ∈ [1 . . n] : T [j′ . . n] ≺ T [j . . n] and LCET (j, j) < `}|, and
RangeEnd`(j) = RangeBeg`(j) + |Occ`(j)|.

For the motivation of the above names, note that viewing P := T∞[j . . j + `) as a pattern, we have
{SA[i] : i ∈ (RangeBeg`(j) . .RangeEnd`(j)]} = {i ∈ [1 . . n] : T∞[i . . i+ |P |) = P ]}.

Moreover, for any j ∈ [1 . . n], we define

Pos`(j) = {j′ ∈ [1 . . n] : T [j′ . . n] ≺ T [j . . n] and LCET (j′, j) ∈ [` . . 2`)} and
Pos′`(j) = {j′ ∈ [1 . . n] : T [j′ . . n] � T [j . . n] and LCET (j′, j) ∈ [` . . 2`)}.

We denote the size of Pos`(j) and Pos′`(j) as δ`(j) = |Pos`(j)| and δ′`(j) = |Pos′`(j)|. Then, it
holds (RangeBeg2`(j),RangeEnd2`(j)) = (RangeBeg`(j) + δ`(j),RangeBeg`(j) + δ`(j) + |Occ2`(j)|),
(RangeBeg2`(j),RangeEnd2`(j)) = (RangeEnd`(j)− δ′`(j)− |Occ2`(j)|,RangeEnd`(j)− δ′`(j)).

Assumption 6.1. For any i ∈ [1 . . n], we can compute some j ∈ Occ16(SA[i]) and the pair
(RangeBeg16(SA[i]),RangeEnd16(SA[i])) in O(t) time.

The main idea of our algorithm to compute SA[i] is as follows. Suppose that we have obtained
some j ∈ Occ16(SA[i]) and (RangeBeg16(SA[i]),RangeEnd16(SA[i])) using Assumption 6.1. Then,
for q = 4, . . . , dlog ne − 1, we compute (RangeBeg2q+1(SA[i]), (RangeEnd2q+1(SA[i])) and some
j′ ∈ Occ2q+1(SA[i]), by using as input some position j ∈ Occ2q(SA[i]) and the pair of integers
(RangeBeg2q(SA[i]),RangeEnd2q(SA[i])), i.e., the output of the earlier step. This algorithm lets
us compute SA[i], since eventually we obtain some j′ ∈ Occ2dlogne(SA[i]), and for any k ≥ n,
Occk(SA[i]) = {SA[i]}, i.e., the final computed position must satisfy j′ = SA[i]. To implement the
above strategy, we now need to present a query algorithm parameterized by any ` ≥ 16 that, given
i ∈ [1 . . n] along with some j ∈ Occ`(SA[i]) and the pair (RangeBeg`(SA[i]),RangeEnd`(SA[i])) as
input, returns some j′ ∈ Occ2`(SA[i]) and the pair (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])).

Let us now fix some ` ∈ [16 . . n). For any τ ∈ Z+ we define

R(τ, T ) := {i ∈ [1 . . |T | − 3τ + 2] : per(T [i . . i+ 3τ − 2]) ≤ 1
3τ}. (6.1)

The rest of this section is organized into fours subsections. In the first three subsections, we
show that under three assumptions (Assumptions 6.3, 6.5, and 6.21) about the ability to per-
form some queries in a black-box manner, given any index i ∈ [1 . . n] along with some position
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j ∈ Occ`(SA[i]) and the pair of integers (RangeBeg`(SA[i]),RangeEnd`(SA[i])) as input, we can
efficiently compute some j′ ∈ Occ2`(SA[i]) and the pair (RangeBeg2`(SA[i]),RangeEnd2`(SA[i]))
as output. In the first of these three subsections (Section 6.1) we show the algorithm to effi-
ciently determine if the query position i ∈ [1 . . n] satisfies SA[i] ∈ R(b `3c, T ). In Section 6.2
(resp. Section 6.3) we then present the query algorithm to efficiently compute some position
j′ ∈ Occ2`(SA[i]) and the pair (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])) from j ∈ Occ2`(SA[i])
and (RangeBeg`(SA[i]),RangeEnd`(SA[i])) for the case SA[i] ∈ [1 . . n] \ R(b `3c, T ) (resp. SA[i] ∈
R(b `3c, T )). All steps of the query algorithms are put together in Section 6.4.

Remark 6.2. Note that this section only presents a reduction of SA query to some other queries. To
obtain the data structure for SA queries, we need to still prove that such queries can be implemented,
i.e., that Assumptions 6.1, 6.3, 6.5, and 6.21 can be satisfied with some small query time t. We will
prove this in later sections, and for now focus only on showing the reduction.

6.1 The Index Core

Assume ` ∈ [16 . . n). In this section, we show that if for any i ∈ [1 . . n] we can efficiently check if
i ∈ R(b `3c, T ) (Assumption 6.3), then given any j ∈ Occ`(SA[i]) we can equally efficiently determine
if SA[i] ∈ R(b `3c, T ) (i.e., if SA[i] is a periodic position) or SA[i] ∈ [1 . . n] \ R(b `3c, T ) (such SA[i] is
called a nonperiodic position).

Assumption 6.3. For any i ∈ [1 . . n], we can in O(t) time check if i ∈ R(τ, T ), where τ = b `3c.

Proposition 6.4. Let i ∈ [1 . . n]. Under Assumption 6.3, given any position j ∈ Occ`(SA[i]), we
can in O(t) time compute a bit indicating whether SA[i] ∈ R(b `3c, T ) holds.

Proof. Let τ = b `3c. Observe that for any j ∈ [1 . . n − 3τ + 2], j ∈ R holds if and only if
per(T [i . . i+3τ−1)) ≤ 1

3τ . In other words, j ∈ R(τ, T ) depends only on the substring T [j . . j+3τ−1).
Therefore, by 3τ − 1 ≤ ` and j ∈ Occ`(SA[i]), SA[i] ∈ R(τ, T ) holds if and only if j ∈ R(τ, T ).

6.2 The Nonperiodic Positions

Let τ = b `3c. In this section, we show that assuming that for some τ -synchronizing set S we
can efficiently perform succS queries (with succS(i) := min{j ∈ S ∪ {|T | − 2τ + 2 : j ≥ i} for
any i ∈ [1 . . n− 2τ + 1]), and support some string-string range queries (Assumption 6.5), given a
position i ∈ [1 . . n] satisfying SA[i] ∈ [1 . . n] \ R(τ, T ), along with some j ∈ Occ`(SA[i]) and the pair
(RangeBeg`(SA[i]),RangeEnd`(SA[i])) as input, we can efficiently compute some j′ ∈ Occ2`(SA[i])
and the pair (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])).

Assumption 6.5. For some τ -synchronizing set S of T (where τ = b `3c) the queries succS(i) (where
i ∈ [1 . . n− 3τ + 1] \ R(τ, T )) and the string-string range queries (Problem 4.3) for text T , integer
q = 7τ , and the set of positions P = S can be supported in O(t) time.

Remark 6.6. Note that by ` < n and 3τ ≤ `, the value q = 7τ ≤ 2`+τ < 3n in the above assumption
satisfies the requirement of Problem 4.3.

The section is organized into four parts. First, we present combinatorial results showing how to
reduce LCE queries and prefix conditions to substring inequalities (Section 6.2.1). Next, we show
how under Assumption 6.5 to combine the properties of synchronizing sets with these reductions to

16



compute the cardinalities of sets Pos`(j) and Occ2`(j) (Section 6.2.2). Then, in Section 6.2.3, we
show how under the same assumptions to efficiently compute some j′ ∈ Occ2`(SA[i]). Finally, in
Section 6.2.4, we put everything together.

6.2.1 Preliminaries

We start with a combinatorial result that shows the three fundamental reductions. In the first and
second, we show an equivalence between LCE queries for suffixes of T and comparisons of substrings
of T . These results will be used to derive the characterization of the set Pos`(j) and its components.
In the third reduction we show an equivalence, where LCE queries are replaced with substring
equalities. This will be used to characterize the set Occ2`(j).

Lemma 6.7. Let j ∈ [1 . . n] and c = max Σ. Then:

1. If 0 ≤ `1 < `2 ≤ `3 then for any j′ ∈ [1 . . n], T [j′ . . n] ≺ T [j . . n] and LCET (j, j′) ∈ [`1 . . `2)
holds if and only if T∞[j . . j + `1) � T∞[j′ . . j′ + `3) ≺ T∞[j . . j + `2).

2. If 0 ≤ `1 ≤ `2 then for any j′ ∈ [1 . . n], T [j′ . . n] � T [j . . n] or LCET (j, j′) ≥ `1 holds if and
only of T∞[j′ . . j′ + `2) � T∞[j . . j + `1).

3. If 0 ≤ `1 ≤ `2 then for any j′ ∈ [1 . . n], T∞[j′ . . j′ + `1) = T∞[j . . j + `1) holds if and only if
T∞[j . . j + `1) � T∞[j′ . . j′ + `2) ≺ T∞[j . . j + `1)c∞.

Proof. 1. Assume T [j′ . . n] ≺ T [j . . n] and LCET (j, j′) ∈ [`1 . . `2). By `1 ≤ `3, this implies
T∞[j . . j + `1) = T∞[j′ . . j′ + `1) � T∞[j′ . . j′ + `3). To show the second condition, denote
` = LCET (j, j′). From T [j′ . . n] ≺ T [j . . n] we obtain j 6= j′. Thus, by the uniqueness of T [n] =
$ in T , we must have T [j′ . . j′ + `) = T [j . . j + `) and T [j′ + `] ≺ T [j + `], or equivalently,
T [j′ . . j′ + ` + 1) ≺ T [j . . j + ` + 1). By ` + 1 ≤ `3 and ` + 1 ≤ `2, and since appending symbols
at the end of the distinct equal-length substrings does not change their lexicographical order, we
obtain T∞[j′ . . j′ + `3) ≺ T∞[j . . j + `2).

To show the opposite implication, assume T∞[j . . j + `1) � T∞[j′ . . j′ + `3) ≺ T∞[j . . j + `2).
First, note that j 6= j′, since otherwise, by `2 ≤ `3, T∞[j . . j+`2) would be a prefix of T∞[j′ . . j′+`3)
and hence T∞[j′ . . j′ + `3) � T∞[j . . j + `2). Denote ` = LCET (j, j′). By j 6= j′ and the uniqueness
of T [n] = $, we have max(j + `, j′ + `) ≤ n. Suppose ` < `1 and consider two cases:

• If T [j + `] ≺ T [j + `] then T [j′ . . j′ + ` + 1) � T [j . . j + ` + 1), which by ` + 1 ≤ `3 and
`+ 1 ≤ `2 implies T∞[j′ . . j′ + `3) � T∞[j . . j + `2), contradicting the assumption.

• On the other hand, if T [j + `] � T [j′ + `], then by ` + 1 ≤ `1 and ` + 1 ≤ `3 we obtain
T∞[j . . j + `1) � T∞[j′ . . j′ + `3).

Therefore, we must have ` ≥ `1. Next, we note that T∞[j′ . . j′ + `3) ≺ T∞[j . . j + `2) implies
T∞[j′ . . j′ + `2) ≺ T∞[j . . j + `2), which in turn gives ` < `2. Thus, it remains to show T [j′ . . n] ≺
T [j . . n]. For that it suffices to notice that knowing ` ∈ [`1 . . `2), the assumption T [j′ + `] � [j + `]
implies T∞[j′ . . j′+`+1) � T∞[j . . j+`+1), which in turn implies T∞[j′ . . j′+`3) � T∞[j . . j+`2),
contradicting the assumption.

2. Assume that it holds T [j′ . . n] � T [j . . n] or LCET (j, j′) ≥ `1. Let us first assume T [j′ . . n] �
T [j . . n]. If j′ = j, then by `1 ≤ `2 we obtain T∞[j′ . . j′ + `2) � T∞[j′ . . j′ + `1) = T∞[j . . j + `1).
Let us thus assume j 6= j′ and let ` = LCET (j, j′). By j 6= j′ and the uniqueness of T [n] = $, we
have max(j + `, j′ + `) ≤ n. Consider two cases:

• If ` ≥ `1, then it holds T∞[j′ . . j′ + `2) � T∞[j′ . . j′ + `1) = T [j′ . . j′ + `1) = T [j . . j + `1) =
T∞[j . . j + `1), i.e., we obtain the claim.
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• Otherwise, (i.e., ` < `1), by T [j′ . . n] � T [j . . n], we must have T [j′ + `] � T [j + `]. Thus,
T [j′ . . j′+`+1) � T [j . . j+`+1). Appending `1− (`+1) symbols after the mismatch does not
change the other between suffixes. Thus, T∞[j′ . . j′ + `2) � T∞[j′ . . j′ + `1) � T∞[j . . j + `1).

Let us now assume LCET (j, j′) ≥ `1. Then we obtain T∞[j′ . . j′ + `2) � T∞[j′ . . j′ + `1) =
T [j′ . . j′ + `1) = T [j . . j + `1) = T∞[j . . j + `1).

To show the opposite implication, assume T∞[j′ . . j′ + `2) � T∞[j . . j + `1). If j = j′, then
we immediately obtain the claim, since T [j′ . . n] � T [j . . n]. Let us thus assume j 6= j′ and let
` = LCET (j, j′). By the uniqueness of T [n] = $, it holds max(j + `, j′ + `) ≤ n. If ` ≥ `1, then we
obtain the claim. Let us thus assume ` < `1. Then, T [j′ + `] 6= T [j′ + `]. If T [j′ + `] ≺ T [j + `],
then T [j′ . . j′ + `+ 1) ≺ T [j . . j + `+ 1). Appending symbols after the mismatch does not change
the other between suffixes. Thus, this implies T∞[j′ . . j′ + `2) ≺ T∞[j . . j + `1), contradicting the
assumption. Thus, we must have T [j′ + `] � T [j′ + `]. This implies T [j′ . . n] � T [j . . n].

3. Assume T∞[j′ . . j′ + `1) = T∞[j . . j + `1). Then, by `1 ≤ `2, we first obtain T∞[j . . j + `1) =
T∞[j′ . . j′+ `1) � T∞[j′ . . j′+ `2). On the other hand, by c = max Σ, T∞[j′ . . j′+ `2) = T∞[j′ . . j′+
`1) · T∞[j′ + `1 . . j

′ + `2) � T∞[j . . j + `1) · c`2−`1 ≺ T∞[j . . j + `1) · c∞.
To show the opposite implication, assume T∞[j . . j + `1) � T∞[j′ . . j′ + `2) ≺ T∞[j . . j + `1)c∞.

If j′ = j, then we immediately obtain the claim. Let thus assume j 6= j′ and denote ` = LCET (j, j′).
By the uniqueness of T [n] = $, we then have max(j + `, j′ + `) ≤ n. Suppose ` < `1 and let us
consider two cases:

• If T [j + `] ≺ T [j′ + `], then we have T [j . . j + `+ 1) ≺ T [j′ . . j′ + `+ 1), which by `+ 1 ≤ `1
implies T∞[j . . j+`1) ≺ T∞[j′ . . j′+`1). Thus, in turn, by `1 ≤ `2, implies T∞[j . . j+`1)c∞ ≺
T∞[j′ . . j′ + `2), contradicting our assumption.

• On the other hand, if T [j + `] � T [j + `], then T [j . . j + ` + 1) � T [j′ . . j′ + ` + 1), which
by ` + 1 ≤ `1 implies T∞[j . . j + `1) � T∞[j′ . . j′ + `1). This in turn, by `1 ≤ `2, implies
T∞[j . . j + `1) � T∞[j′ . . j′ + `2), contradicting the assumption.

We have thus proved ` ≥ `1, i.e., T∞[j . . j + `1) = T∞[j′ . . j′ + `1).

Corollary 6.8. For every j ∈ [1 . . n] and ` ∈ Z+, we have RangeBeg`(j) = |{j′ ∈ [1 . . n] :
T∞[j′ . . j′ + `) ≺ T∞[j . . j + `)}| and RangeEnd`(j) = |{j′ ∈ [1 . . n] : T∞[j′ . . j′ + `) � T∞[j . . j +
`)}| = RangeBeg`(j) + |Occ`(j)|.

6.2.2 Computing the Size of Pos`(j) and Occ2`(j)

Let j ∈ [1 . . n] \ R(τ, T ). In this section, we show how under Assumption 6.5 to efficiently compute
the values |Pos`(j)| and |Occ2`(j)|.

The section is organized as follows. First, we present two combinatorial results (Lemmas 6.10
and 6.11) characterizing the sets Pos`(j) and Occ2`(j) using the string synchronizing set S. We then
use these characterizations to prove a formula for the cardinality of these sets (Lemma 6.12). We
conclude with Proposition 6.13 showing how under Assumption 6.5, to utilize this formula to quickly
compute values |Pos`(j)| and |Occ2`(j)| given position j.

Remark 6.9. Before formally characterizing sets Pos`(j) and Occ2`(j), we first provide some intuition.
By j 6∈ R(τ, T ), the position s = succS(j) satisfies s − j < τ . Thus, by the consistency of S and
3τ ≤ `, all j′ ∈ Pos`(j) share a common offset δS = s− j such that j′ + δS = min(S ∩ [j′ . . j′ + τ))
and hence the relative lexicographical order between T [j′ . . n] and T [j . . n] is the same as between
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T [j′ + δS . . n] and T [j + δS . . n]. Consequently, it suffices to only consider positions in S. Then,
computing |Pos`(j)| reduces to finding those s′ ∈ S that are:

1. Preceded in T by the string T [j . . s), and
2. For which it holds T [s′ . . n] ≺ T [s . . n] and LCET (s′, s) ∈ [`− δS . . 2`− δS).

For any q ≥ 2`, the above Condition 1 is equivalent to position s′ having a reversed left length-
q context in the lexicographical range [X . .X ′), where X = T [j . . s) and X ′ = Xc∞ (where
c = max Σ), and Condition 2 is equivalent to position s′ having a right length-q context in [Y . . Y ′),
where Y = T∞[s . . j + `) and Y ′ = T∞[s . . j + 2`). Thus, counting such s′ can be reduced to
a two-dimensional weighted orthogonal range counting query on a set of points having length-q
substrings of T∞ or T∞ as coordinates (see Section 4). Crucially, since τ = b `3c and ` ≥ 16, it
suffices to choose q = 7τ to guarantee q ≥ 2`, and we will later see that q = O(τ) is the crucial
property of this reduction that lets us generalize the index to the dynamic case.

The intuition for the computation of |Occ2`(j)| is similar, except we observe that Condition 2 is
that s′ satisfies T∞[s′ . . j′ + 2`) = T∞[s . . j + 2`), which is equivalent to s′ having a right length-q
context in [Y ′ . . Y ′c∞). Thus, we can count such s′ (and consequently, compute |Occ2`(j)|), using
the same set of two-dimensional points as in the computation of |Pos`(j)|.
Lemma 6.10. Let j ∈ [1 . . n− 3τ + 1] \ R(τ, T ) and s = succS(j). Let X ∈ Σ∗ and Y, Y ′ ∈ Σ+ be
such that X = T [j . . s), T∞[j . . j+`) = XY , and T∞[j . . j+2`) = XY ′. Then, for any j′ ∈ [1 . . n],
letting s′ = j′ + |X|, it holds

j′ ∈ Pos`(j) if and only if s′ ∈S, Y �T∞[s′ . . s′ + 7τ)≺Y ′, and T∞[s′−|X| . . s′) = X.

Proof. Note that by the uniqueness of T [n] = $, it holds per(T [n− 3τ + 2 . . n]) = 3τ − 1 and hence
S ∩ [n− 3τ + 2 . . n− 2τ + 2) 6= ∅. Thus, by j < n− 3τ + 2, s = succS(j) is well-defined. Moreover,
by j 6∈ R(τ, T ), it holds S ∩ [j . . j + τ) 6= ∅. Therefore, we have |X| = s− j < τ ≤ `, and hence the
strings Y and Y ′ (of length `− |X| and 2`− |X|, respectively) are well-defined and nonempty.

Let j′ ∈ Pos`(j), i.e., T [j′ . . n] ≺ T [j . . n] and LCET (j, j′) ∈ [` . . 2`). This implies j 6= j′ and
T [j′ . . j′ + `) = T [j . . j + `). Therefore, by ` − (s − j) ≥ ` − τ ≥ 2τ and the consistency of the
string synchronizing set S (Definition 2.1) applied for positions j1 = j + t and j2 = j′ + t, where
t ∈ [0 . . |X|), we obtain succS(j′)− j′ = succS(j)− j, or equivalently, succS(j′) = j′ + (s− j) = s′.
Thus, it holds s′ ∈ S. Next, by T [j′ . . j′ + `) = T [j . . j + `) and |X| < τ ≤ `, it holds LCET (j, j′) =
|X| + LCET (s, s′). Thus, LCET (s, s′) ∈ [` − |X| . . 2` − |X|). By Item 1 in Lemma 6.7 (with
parameters `1 = |Y | = `− |X|, `2 = |Y ′| = 2`− |X|, and `3 = 7τ) and 2` ≤ 7τ (holding for ` ≥ 16),
this implies Y � T∞[s′ . . s′ + 7τ) ≺ Y ′. Finally, the equality T∞[j′ . . j′ + `) = T∞[j . . j + `) = XY
implies T∞[s′ − |X| . . s′) = T∞[j′ . . s′) = X.

For the opposite implication, assume s′ ∈ S, Y � T∞[s′ . . s′+7τ) ≺ Y ′, and T∞[s′−|X| . . s′) = X.
By Item 1 in Lemma 6.7 (with the same parameters as above) and 2` ≤ 7τ , this implies T [s′ . . n] ≺
T [s . . n] and LCET (s, s′) ∈ [`− |X| . . 2`− |X|). Since T [j . . s) = X and by s ∈ S we have s < n, X
does not contain the symbol $, and hence j′ ≥ 1. Thus, T∞[j′ . . s′) = X implies T [j . . s) = T [j′ . . s′),
and consequently, T [j′ . . n] ≺ T [j . . n] and LCET (j, j′) = |X| + LCET (s, s′) ∈ [` . . 2`). Thus,
j′ ∈ Pos`(j).

Lemma 6.11. Let j ∈ [1 . . n − 3τ + 1] \ R(τ, T ), s = succS(j), and d ∈ [` . . 2`]. Let X ∈ Σ∗ and
Y, Y ′ ∈ Σ+ be such that X = T [j . . s), T∞[j . . j+`) = XY , and T∞[j . . j+d) = XY ′. Then, for
any j′ ∈ [1 . . n], letting s′ = j′ + |X| and c = max Σ, it holds

j′ ∈ Occd(j) if and only if s′ ∈S, Y ′�T∞[s′ . . s′ + 7τ)≺Y ′c∞, and T∞[s′−|X| . . s′) = X.
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Proof. Similarly as in Lemma 6.10, we first observe that by j < n− 3τ + 2, succS(j) is well-defined.
Moreover, by j 6∈ R(τ, T ), it holds S∩ [j . . j + τ) 6= ∅. Therefore, |X| = s− j < τ ≤ `, and hence the
strings Y and Y ′ (of length `− |X| and d− |X|, respectively) are well-defined and nonempty.

Let j′ ∈ Occd(j), i.e., T∞[j′ . . j′ + d) = T∞[j . . j + d). To show s′ ∈ S, we consider two cases. If
j = j′ then s′ = s ∈ S holds by definition. Otherwise, by T∞[j . . j + d) = T∞[j′ . . j′ + d) and the
uniqueness of T [n] = $, we must have T [j . . j + `) = T [j′ . . j′+ `). Thus, by `− (s− j) ≥ `− τ ≥ 2τ
and the consistency of S (applied as in the proof of Lemma 6.10) for j1 = j + t and j2 = j′ + t,
where t ∈ [0 . . |X|), we obtain succS(j′) = s′. Thus, s′ ∈ S. Next, by T∞[s′ . . j′ + d) = T∞[s . . j + d)
and d ≤ 2` ≤ 7τ , we obtain from Item 3 in Lemma 6.7 (with parameters `1 = |Y ′| = d− |X| and
`2 = 7τ) that Y ′ � T∞[s′ . . s′ + 7τ) ≺ Y ′c∞. Finally, T∞[j′ . . j′ + `) = T∞[j . . j + `) = XY implies
T∞[s′ − |X| . . s′) = T∞[j′ . . s′) = X, i.e., the third condition.

For the opposite implication, assume s′ ∈ S, Y ′ � T∞[s′ . . s′ + 7τ) ≺ Y ′c∞, and T∞[s′ −
|X| . . s′) = X. By Item 3 in Lemma 6.7 (with the same parameters as above) and d ≤ 2` ≤ 7τ , this
implies T∞[s′ . . j′ + d) = T∞[s . . j + d). Combining this with the assumption T∞[j′ . . s′) = X =
T∞[j . . s), we obtain T∞[j′ . . j′ + d) = T∞[j . . j + d), i.e., j′ ∈ Occd(j).

Lemma 6.12. Let j ∈ [1 . . n− 3τ + 1] \ R(τ, T ) and s = succS(j). Let X ∈ Σ∗ and X ′, Y, Y ′ ∈ Σ+

be such that X = T [j . . s), X ′ = Xc∞ (with c = max Σ), T∞[j . . j+`) = XY , and T∞[j . . j+2`) =
XY ′. Then, letting q = 7τ and P = Pointsq(T, S), it holds:

1. |Pos`(j)| = r-countP(X,X ′, Y ′)− r-countP(X,X ′, Y ) and
2. |Occ2`(j)| = r-countP(X,X ′, Y ′c∞)− r-countP(X,X ′, Y ′).

Proof. 1. By Lemma 6.10, we can write Pos`(j) = {s′ − |X| : s′ ∈ S, Y � T∞[s′ . . s′ + 7τ) ≺
Y ′, and T∞[s′−|X| . . s′) = X}. On the other hand, by Definition 4.2 and the definition of the
rcount query, we have:

r-countP(X,X ′, Y ) = |{s′ ∈ S : T∞[s′ . . s′+7τ) ≺ Y and X � T∞[s′−7τ . . s′) ≺ X ′}|
= |{s′ ∈ S : T∞[s′ . . s′+7τ) ≺ Y and X is a prefix of T∞[s′−7τ . . s′)}|
= |{s′ ∈ S : T∞[s′ . . s′+7τ) ≺ Y and T∞[s′−|X| . . s′) = X}|.

Analogously, r-countP(X,X ′, Y ′) = |{s′ ∈ S : T∞[s′ . . s′+7τ) ≺ Y ′ and T∞[s′−|X| . . s′) = X}|.
Since any position s′ ∈ S that satisfies T∞[s′ . . s′ + 7τ) ≺ Y also satisfies T∞[s′ . . s′ + 7τ) ≺
Y ′, we obtain r-countP(X,X ′, Y ′) − r-countP(X,X ′, Y ) = |{s′ ∈ S : Y � T∞[s′ . . s′+7τ) ≺
Y ′ and T∞[s′−|X| . . s′) = X}|. The cardinality of this set is clearly the same as the earlier
set characterizing Pos`(j). Thus, r-countP(X,X ′, Y ′)− r-countP(X,X ′, Y ) = |Pos`(j)|.

2. By Lemma 6.11, we have Occ2`(j) = {s′ − |X| : s′ ∈ S, Y ′ � T∞[s′ . . s′ + 7τ) ≺
Y ′c∞, and T∞[s′−|X| . . s′) = X}. On the other hand, by Definition 4.2 and the definition of
rcount, we have r-countP(X,X ′, Y ′) = |{s′ ∈ S : T∞[s′ . . s′+7τ) ≺ Y ′ and T∞[s′−|X| . . s′) = X}|
and r-countP(X,X ′, Y ′c∞) = |{s′ ∈ S : T∞[s′ . . s′+7τ) ≺ Y ′c∞ and T∞[s′−|X| . . s′) = X}|. Since
any position s′ ∈ S that satisfies T∞[s′ . . s′ + 7τ) ≺ Y ′ also satisfies T∞[s′ . . s′ + 7τ) ≺ Y ′c∞,
we thus obtain r-countP(X,X ′, Y ′c∞) − r-countP(X,X ′, Y ′) = |{s′ ∈ S : Y ′ � T∞[s′ . . s′+7τ) ≺
Y ′c∞ and T∞[s′−|X| . . s′) = X}|. The cardinality of this set is clearly the same as the earlier set
characterizing Occ2`(j). Thus, r-countP(X,X ′, Y ′c∞)− r-countP(X,X ′, Y ′) = |Occ2`(j)|.

Proposition 6.13. Under Assumption 6.5, given a position j ∈ [1 . . n] \ R(τ, T ), we can compute
|Pos`(j)| and |Occ2`(j)| in O(t) time.
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Proof. We first check if j > n−3τ+1. If yes, then by the uniqueness of T [n] = $, it holds |Occ`(j)| = 1.
By Occ2`(j) 6= ∅, Occ2`(j) ⊆ Occ`(j), we can therefore return |Pos`(j)| = 0 and |Occ2`(j)| = 1.
Let us thus assume j ≤ n− 3τ + 1 and recall from the proof of Lemma 6.10 that then succS(j) is
well-defined. Using Assumption 6.5 we compute s = succS(j). Let X ∈ Σ∗ and X ′, Y, Y ′ ∈ Σ+ be
such that X = T [j . . s), X ′ = Xc∞, T∞[j . . j+`) = XY , and T∞[j . . j+2`) = XY ′. Then:

1. By Lemma 6.12, we have |Pos`(j)| = r-countP(X,X ′, Y ′) − r-countP(X,X ′, Y ) (where P =
Points7τ (T,S)) which under Assumption 6.5 we can efficiently compute using the query
arguments (i, ql, qr) = (s, s − j, 2` − (s − j)) and then with arguments (i, ql, qr) = (s, s −
j, ` − (s − j)) (see Problem 4.3). By j 6∈ R(τ, T ) and the density property of S, we have
s− j < τ ≤ ` < n. On the other hand, qr ≤ 2`− (s− j) ≤ 2` < 2n. Thus, the arguments ql
and qr of both queries satisfy the requirements in Problem 4.3.

2. By Lemma 6.12, we also have |Occ2`(j)| = r-countP(X,X ′, Y ′c∞)− r-countP(X,X ′, Y ′) (where
P is defined as above), which under Assumption 6.5 we can compute using the query arguments
(i, ql, qr) = (s, s− j, 2`− (s− j)) (see Problem 4.3). As noted above, these arguments satisfy
the requirements in Problem 4.3.

By Assumption 6.5, the query takes O(t) time in total.

6.2.3 Computing a Position in Occ2`(SA[i])

Assume that i ∈ [1 . . n] satisfies SA[i] ∈ [1 . . n] \ R(τ, T ). In this section, we show how under
Assumption 6.5, given the index i along with values RangeBeg`(SA[i]), RangeEnd`(SA[i]), and some
position j ∈ Occ`(SA[i]), to efficiently compute some position j′ ∈ Occ2`(SA[i]).

The section is organized as follows. First, we present a combinatorial result (Lemma 6.14)
that reduces the computation of j′ ∈ Occ2`(SA[i]) to a generalized range selection query (see
Section 4). We then use this reduction to present the query algorithm for the computation of some
j′ ∈ Occ2`(SA[i]) in Proposition 6.15.

Lemma 6.14. Assume i ∈ [1 . . n] is such that SA[i] ∈ [1 . . n − 3τ + 1] \ R(τ, T ). Denote b =
RangeBeg`(SA[i]), d = |Occ`(SA[i])|, and s = succS(SA[i]). Let X ∈ Σ∗ and X ′, Y ∈ Σ+ be such
that X = T [SA[i] . . s), X ′ = Xc∞ (with c = max Σ), and T∞[SA[i] . .SA[i]+`) = XY . Let also
P = Points7τ (T,S), m = r-countP(X,X ′, Y ), and m′ = r-countP(X,X ′). Then, m + d ≤ m′.
Moreover:

1. For δ ∈ [1 . . d], any position p ∈ r-selectP(X,X ′,m+ δ) satisfies T∞[p− |X| . . p− |X|+ 2`) =
T∞[SA[b+ δ] . .SA[b+ δ] + 2`).

2. For δ = i− b, any position p ∈ r-selectP(X,X ′,m+ δ) satisfies p− |X| ∈ Occ2`(SA[i]).

Proof. Note that by the uniqueness of T [n] = $, it holds per(T [n − 3τ + 2 . . n]) = 3τ − 1 and
hence S ∩ [n − 3τ + 2 . . n − 2τ + 2) 6= ∅. Thus, by SA[i] < n − 3τ + 2, s = succS(SA[i]) is
well-defined. Denote q = |S|. Let (aj)j∈[1. .q] be a sequence containing all positions p ∈ S ordered
according to the string T∞[p . . p + 7τ). In other words, for any j, j′ ∈ [1 . . q], j < j′ implies
T∞[aj . . aj + 7τ) � T∞[aj′ . . aj′ + 7τ). Note, that the sequence (aj)j∈[1. .q] is not unique. Since
{aj : j ∈ [1 . . q]} = S, it holds |{aj − |X| : j ∈ [1 . . q] and T∞[aj − |X| . . aj) = X}| = |{j ∈ [1 . . q] :
T∞[aj − |X| . . aj) = X}| = |{p ∈ S : T∞[p− |X| . . p) = X}| = m′, where the last equality follows
by Item 3 of Lemma 6.7 and the definition of r-countP(X,X ′) (see Section 4.1). Moreover, by
the same argument (utilizing the definition of r-countP(X,X ′, Y ) instead of r-countP(X,X ′)), we
have |{aj − |X| : j ∈ [1 . . q], T∞[aj − |X| . . aj) = X and T∞[aj . . aj + 7τ) ≺ Y }| = |{j ∈ [1 . . q] :
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T∞[aj − |X| . . aj) = X and T∞[aj . . aj + 7τ) ≺ Y }| = m. On the other hand, observe that by
Lemma 6.11, for any j ∈ [1 . . n], it holds j ∈ Occ`(SA[i]) if and only if j+ |X| ∈ S, T∞[j . . j+ |X|) =
X, and Y � T∞[j + |X| . . j + |X| + 7τ) ≺ Y c∞. In other words, Occ`(SA[i]) = {aj − |X| :
j ∈ [1 . . q], T∞[aj − |X| . . aj) = X, and Y � T∞[aj . . aj + 7τ) ≺ Y c∞}. The latter set (whose
cardinality is equal to d) is clearly a subset of {aj − |X| : j ∈ [1 . . q] and T∞[aj − |X| . . aj) = X}
(whose cardinality, as shown above, is equal to m′). Thus, d ≤ m′. On the other hand, the set
{aj − |X| : j ∈ [1 . . q], T∞[aj − |X| . . aj) = X, and T∞[aj . . aj + 7τ) ≺ Y } (whose cardinality,
as shown above, is m) is also clearly a subset of {aj − |X| : j ∈ [1 . . q] and T∞[aj − |X| . . aj) =
X} (whose cardinality is m′). Thus, m ≤ m′. Since j ∈ [1 . . q] cannot simultaneously satisfy
T∞[aj . . aj + 7τ) ≺ Y and Y � T∞[aj . . aj + 7τ), these subsets are disjoint. Hence, m+ d ≤ m′.

1. As shown above, |{j ∈ [1 . . q] : T∞[aj − |X| . . aj) = X}| = m′. Let (bj)j∈[1. .m′] be a
subsequence of (aj)j∈[1. .q] containing all elements of {aj : j ∈ [1 . . q] and T∞[aj − |X| . . aj) = X}
(in the same order as they appear in the sequence (aj)j∈[1. .q]). Our proof consists of three steps:

(i) Let j ∈ [1 . .m′]. We start by showing that bj ∈ r-selectP(X,X ′, j). Let Q,Q′ be such that
Q = T∞[bj − 7τ . . bj) and Q′ = T∞[bj . . bj + 7τ). Let

rbeg = |{at : t ∈ [1 . . q], T∞[at − |X| . . at) = X, and T∞[at . . at + 7τ) ≺ Q′}| and
rend = |{at : t ∈ [1 . . q], T∞[at − |X| . . at) = X, and T∞[at . . at + 7τ) � Q′}|.

If t ∈ [1 . . q] satisfies T∞[at − |X| . . at) = X, then at ∈ {b1, . . . , bm}. Moreover, since for
any t, t′ ∈ [1 . .m], t < t′ implies T∞[bt . . bt + 7τ) � T∞[bt′ . . bt′ + 7τ), any t ∈ [1 . . q] that
additionally satisfies T∞[at . . at + 7τ) ≺ T∞[bj . . bj + 7τ), also satisfies at ∈ {b1, . . . , bj−1}.
Thus, rbeg < j. On the other hand, every t ∈ [1 . . j] satisfies T∞[bt − |X| . . bt) = X and
T∞[bt . . bt + 7τ) � T∞[bj . . bj + 7τ). Thus, j ≤ rend. Altogether, j ∈ (rbeg . . rend]. Recall
now the definition P = Points7τ (T, S) (Definition 4.4) and note that by Item 3 of Lemma 6.7,
it holds rbeg = r-countP(X,X ′, Q′) and rend = r-countinc

P (X,X ′, Q′). We thus obtain that
j ∈ (r-countP(X,X ′, Q′) . . r-countinc

P (X,X ′, Q′)]. On the other hand, (Q,Q′, bj) ∈ P and
T∞[bj − |X| . . bj) = X, so bj ∈ r-selectP(X,X ′, j) holds as claimed.

(ii) Let j ∈ [1 . .m′]. We will now show that, for any p ∈ r-selectP(X,X ′, j), it holds T∞[p −
|X| . . p+ 7τ) = T∞[bj − |X| . . bj + 7τ). By Item (i) and the definition of r-selectP(X,X ′, j),
the assumption p ∈ r-selectP(X,X ′, j) implies T∞[p . . p+ 7τ) = T∞[bj . . bj + 7τ). Moreover,
letting Q be such that Q = T∞[p− |X| . . p), it also implies X � Q ≺ X ′. Thus, by Item 3 of
Lemma 6.7, p is preceded by X in T . Since by definition of (bj)j∈[1. .m′], the position bj is also
preceded by X in T , we obtain T∞[p− |X| . . p+ 7τ) = T∞[bj − |X| . . bj + 7τ).

(iii) We are now ready to prove the main claim. As observed above, Occ`(SA[i]) = {aj − |X| :
j ∈ [1 . . q], T∞[aj − |X| . . aj) = X, and Y � T∞[aj . . aj + 7τ) ≺ Y c∞}. Note, that since the
positions k in the sequence (aj)j∈[1. .q] are sorted by T∞[k . . k+ 7τ), we can simplify the second
condition. Denoting jskip = |{j ∈ [1 . . q] : T∞[aj . . aj + 7τ) ≺ Y }|, we have

Occ`(SA[i]) =
{
aj − |X| : j∈(jskip. .q], T

∞[aj−|X|. .aj)=X,
and T∞[aj . .aj+7τ)≺Y c∞

}
.

Let us now estimate |{j ∈ [1 . . jskip] : T∞[aj − |X| . . aj) = X}|. Any j in this set satisfies
j ∈ [1 . . q], T∞[aj − |X| . . aj) = X, and T∞[aj . . aj + 7τ) ≺ Y . Earlier we observed that the
number of such j is precisely m. Combining this fact with the above formula for Occ`(SA[i])
and the definition of (bj)j∈[1. .m′], we have Occ`(SA[i]) = {bj − |X| : j ∈ (m. .m + d]}.
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On the other hand, b + d = RangeBeg`(SA[i]) + |Occ`(SA[i])| = RangeEnd`(SA[i]). Thus,
Occ`(SA[i]) = {SA[j] : j ∈ (b . . b+ d]}. We now observe:

• Let j1, j2 ∈ (m. .m + d] and assume j1 < j2. Since the elements of (bj) occur in the
same order as in (aj), and positions p in (aj) are sorted by T [p . . p+ 7τ), it follows that
T∞[bj1 . . bj1 + 7τ) � T∞[bj2 . . bj2 + 7τ). On the other hand, by definition of (bj), both
positions bj1 and bj2 are preceded in T by the string X. Thus, T∞[bj1 − |X| . . bj2 + 7τ) �
T∞[bj2 − |X| . . bj2 + 7τ).

• On the other hand, by definition of lexicographical order, for any j1, j2 ∈ [1 . . d], the
assumption j1 < j2 implies T∞[SA[b+j1] . .SA[b+j1]+|X|+7τ) � T∞[SA[b+j2] . .SA[b+
j2] + |X|+ 7τ).

We have thus shown that both sequences SA[b+1], . . . ,SA[b+d] and bm+1−|X|, . . . , bm+d−|X|
contain the same set of positions Occ`(SA[i]) ordered according to the length-(|X|+ 7τ) right
context in T∞. Therefore, regardless of how ties are resolved in each sequence, for any
δ ∈ [1 . . d], we have

T∞[SA[b+ δ] . .SA[b+ δ] + |X|+ 7τ) = T∞[bm+δ − |X| . . bm+δ + 7τ).

To finalize the proof of the claim, take any p ∈ r-selectP(X,X ′,m+δ). By Item (ii), for j = m+δ,
we have T∞[p−|X| . . p+7τ) = T∞[bm+δ−|X| . . bm+δ+7τ) = T∞[SA[b+δ] . .SA[b+δ]+|X|+7τ).
In particular, by 0 ≤ |X| and 2` ≤ 7τ , we obtain 2` ≤ |X|+7τ and T∞[p−|X| . . p−|X|+2`) =
T∞[SA[b+ δ] . .SA[b+ δ] + 2`), i.e., the claim.

2. Applying Item 1 for δ = i − b, we conclude that any p ∈ r-selectP(X,X ′,m + δ), satisfies
T∞[p−|X| . . p−|X|+ 2`) = T∞[SA[b+ δ] . .SA[b+ δ] + 2`) = T∞[SA[i] . .SA[i] + 2`), i.e., p−|X| ∈
Occ2`(SA[i]).

Proposition 6.15. Let i ∈ [1 . . n] be such that SA[i] ∈ [1 . . n] \ R(τ, T ). Under Assumption 6.5,
given the values i, RangeBeg`(SA[i]), RangeEnd`(SA[i]), and some j ∈ Occ`(SA[i]) as input, we
can compute some j′ ∈ Occ2`(SA[i]) in O(t) time.

Proof. We first calculate |Occ`(SA[i])| = RangeEnd`(SA[i]) − RangeBeg`(SA[i]) using the input
arguments. If |Occ`(SA[i])| = 1, then by Occ2`(SA[i]) 6= ∅ and Occ2`(SA[i]) ⊆ Occ`(SA[i]) we
must have RangeBeg2`(SA[i]) = RangeBeg`(SA[i]), RangeEnd2`(SA[i]) = RangeEnd`(SA[i]) and
Occ2` = {j}. Thus, we return j′ := j. Let us thus assume |Occ`(SA[i])| > 1, and observe that by the
uniqueness of T [n] = $, this implies SA[i], j ∈ [1 . . n−3τ+1]. Moreover, by 3τ−1 ≤ `, j ∈ Occ`(SA[i]),
and SA[i] 6∈ R(τ, T ), we also have j 6∈ R(τ, T ). Therefore, as noted in the proof of Lemma 6.10,
succS(j) is well-defined and using Assumption 6.5 we can compute s = succS(j) in O(t) time. Let
X ∈ Σ∗ and X ′, Y ∈ Σ+ be such that X = T [j . . s), X ′ = Xc∞, and T∞[j . . j+`) = XY (where
c = max Σ). Observe now that by j ∈ Occ`(SA[i]), we have T∞[j . . j + `) = T∞[SA[i] . .SA[i] + `).
We also have 3τ − 1 ≤ `. Thus, by the consistency condition of S (Definition 2.1), for any t ∈ [0 . . τ),
SA[i] + t ∈ S holds if and only if j + t ∈ S. Recall, however, that we assumed SA[i] 6∈ R(τ, T ),
i.e., S ∩ [SA[i] . .SA[i] + τ) 6= ∅. Therefore, denoting s′ = succS(SA[i]), it holds s′ − SA[i] = s− j.
Consequently, it holds T∞[SA[i] . . s′) = T∞[j . . s) = X and T∞[s′ . .SA[i] + `) = T∞[s . . j + `) = Y .
We can thus apply Lemma 6.14 without knowing the values of SA[i] or s′ (we only need to know
|X| and the starting position of some occurrence of XY in T ). First, using Item 1 of Problem 4.3
with the query arguments (i, ql, qr) = (s, s − j, ` − (s − j)) we compute in O(t) time (which is
possible under Assumption 6.5) the value m := r-countP(X,X ′, Y ) (the arguments satisfy the
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requirements of Problem 4.3 since ql = s− j < τ ≤ ` < n and qr = `− (s− j) ≤ ` < n). We then
calculate δ = i − RangeBeg`(SA[i]) and using Item 2 of Problem 4.3 with the query arguments
(i, ql, r) = (s, j − s,m+ δ) we compute in O(t) time some position p ∈ r-selectP(X,X ′,m+ δ) (the
arguments satisfy the requirements of Problem 4.3 by the argument as above). By Lemma 6.14, we
then have p− ql ∈ Occ2`(SA[i]). In total, we spend O(t) time.

6.2.4 The Data Structure

By combining the above results, we obtain that under Assumption 6.5, given an index i ∈ [1 . . n]
satisfying SA[i] ∈ [1 . . n] \ R(τ, T ), along with RangeBeg`(SA[i]), RangeEnd`(SA[i]) and some
j ∈ Occ`(SA[i]) as input, we can efficiently compute (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])) and
some j′ ∈ Occ2`(SA[i]).

Proposition 6.16. Let i ∈ [1 . . n] be such that SA[i] ∈ [1 . . n] \ R(τ, T ). Under Assumption 6.5,
given the index i along with values RangeBeg`(SA[i]), RangeEnd`(SA[i]), and some position j ∈
Occ`(SA[i]), we can compute (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])) and some j′ ∈ Occ2`(SA[i])
in O(t) time.

Proof. First, using Proposition 6.15, we compute some j′ ∈ Occ2`(SA[i]). This takes O(t) time and
all the required values (i, RangeBeg2`(SA[i]), RangeEnd`(SA[i]), and some j ∈ Occ`(SA[i])) are
given as input. We now observe that since for j′ we have T∞[j′ . . j′ + 2`) = T∞[SA[i] . .SA[i] + 2`),
we have j′′ ∈ Occ2`(SA[i]) if and only if j′′ ∈ Occ2`(j

′). Thus, Occ2`(SA[i]) = Occ2`(j
′). On the

other hand, by Item 1 of Lemma 6.7, we have j′′ ∈ Pos`(SA[i]) if and only if T∞[SA[i] . .SA[i] +
`) � T∞[j′′ . . j′′ + 2`) ≺ T∞[SA[i] . .SA[i] + 2`), i.e., whether j′′ ∈ Pos`(SA[i]) depends only on
T∞[SA[i] . .SA[i] + 2`). Thus, j′ ∈ Occ2`(SA[i]) implies Pos`(SA[i]) = Pos`(j

′). Therefore, in the
second step of the query, using Proposition 6.13 we compute in O(t) time the values

δ`(SA[i]) := |Pos`(j
′)| = |Pos`(SA[i])| and

m := |Occ2`(j
′)| = |Occ2`(SA[i])|.

Letting b = RangeBeg`(SA[i]), it then holds (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])) = (b +
δ`(SA[i]), b+ δ`(SA[i]) +m). In total, the query takes O(t) time.

6.3 The Periodic Positions

In this section, we show that assuming we can compute basic characteristic of periodic positions and
perform some int-string range and modular constraint queries (Assumption 6.21), given any position
i ∈ [1 . . n] satisfying SA[i] ∈ R(b `3c, T ), along with some position j ∈ Occ`(SA[i]) and the pair
(RangeBeg`(SA[i]),RangeEnd`(SA[i])) as input, we can efficiently compute some j′ ∈Occ2`(SA[i])
and the pair (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])).

The section is organized into nine parts. First (Section 6.3.1) we recall the standard definitions
and notation for string synchronizing sets [KK19], that we will use to formalize the combinatorial
properties used in our algorithms and then present a main assumption that we will use throughout
this section. Next (Section 6.3.2), we formulate the main idea of the algorithm by describing three sets
Poslow

` (SA[i]), Posmid
` (SA[i]), and Poshigh

` (SA[i]), which play a central role in the SA query algorithm,
and prove the combinatorial result showing how their sizes relate to the size of Pos`(SA[i]). The
following six sections (Section 6.3.3–Section 6.3.8) describe the individual steps of the query algorithm
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in the order in which are used (with some minor exceptions). In Section 6.3.9 we put everything
together to obtain the algorithm that computes the pair (RangeBeg2`(SA[i]),RangeEnd2`(SA[i]))
and some j′ ∈ Occ2`(SA[i]) for i ∈ [1 . . n] satisfying SA[i] ∈ R.

6.3.1 Preliminaries

In this section, we define preliminary concepts used for answering SA queries for periodic positions.
The section is organized as follows. First, we recall basic definitions and notation for periodic

positions in string synchronizing sets. We then recall two results characterizing blocks of periodic
positions in lexicographical order (Lemma 6.18) and in text order (Lemma 6.19). We conclude with
the central assumption that we will use all through the section.

Definition 6.17. A function f : Σ+ → Σ+ is said to be necklace-consistent if it satisfies the following
conditions for every S, S′ ∈ Σ+:

1. The strings f(S) and S are cyclically equivalent.
2. If S and S′ are cyclically equivalent, then f(S) = f(S′).

Let S ∈ Σ+ and τ ∈ Z+, and let f be some necklace-consistent function. For any X ∈ Σ+,
we define rootf (X) := f(X[1 . . p]), where p = per(X).4 For any position j ∈ R(τ, S), we then let
rootf (τ, S, j) = rootf (S[j . . j + 3τ − 1)). We denote Rootsf (τ, S) = {rootf (τ, S, j) : j ∈ R(τ, S)}.
Next, we define the run-decomposition. For any j ∈ R(τ, S), let e(τ, S, j) := min{j′ ∈ [j . . n] : j′ 6∈
R(τ, S)}+ 3τ − 2. By [KK19, Fact 3.2], for j ∈ R(τ, S), the substring S[j . . e(τ, S, j)) is the longest
prefix of S[j . . n] that has a period |rootf (τ, S, j)|. Moreover, by definition of root, letting p =
|rootf (τ, S, j)|, there exists s ∈ [0 . . p) such that S[j+s . . j+s+p) = rootf (τ, S, j)). Thus, for every
j ∈ R(τ, S), we can write S[j . . e(τ, S, j)) = H ′HkH ′′, where H = rootf (τ, S, j), and H ′ (resp. H ′′) is
a proper suffix (resp. prefix) of H. Note that there is always only one way to write S[j . . e(τ, S, j)) in
this way, since the opposite would contradict the synchronization property of primitive strings [CHL07,
Lemma 1.11]. In other words, for any fixed f , the run-decomposition in unique. We denote
headf (τ, S, j) = |H ′|, expf (τ, S, j) = k, and tailf (τ, S, j) = |H ′′|. For j ∈ R(τ, S, j), we let
type(τ, S, j) = +1 if e(τ, S, j) ≤ |S| and S[e(τ, S, j)] � S[e(τ, S, j)− p] (where p = |rootf (τ, S, j)|),
and type(τ, S, j) = −1 otherwise.5 For any j ∈ R(τ, S) and t ≥ 3τ − 1, we define expcut

f (τ, S, j, t) :=

min(expf (τ, S, j), b t−s|H| c) and ecut
f (τ, S, j, t) := j + s+ expcut

f (τ, S, j, t)|H|, where s = headf (τ, S, j)

and H = rootf (τ, S, j). We denote efull
f (τ, S, j) := ecut

f (τ, S, j, n), elow
f (τ, S, j) := ecut

f (τ, S, j, `), and
ehigh
f (τ, S, j) := ecut

f (τ, S, j, 2`). Observe that it holds efull
f (τ, S, j) = j + s+ expf (τ, S, j)|H|.

We will repeatedly refer to the following subsets of R(τ, S). First, we denote R−(τ, S) =
{j ∈ R(τ, S) : type(τ, S, j) = −1} and R+(τ, S) = R(τ, S) \ R−(τ, S). For any H ∈ Σ+ and
s ∈ Z≥0, we then let Rf,H(τ, S) = {j ∈ R(τ, S) : rootf (τ, S, j) = H}, R−f,H(τ, S) = R−(τ, S) ∩
Rf,H(τ, S), R+

f,H(τ, S) = R+(τ, S) ∩ Rf,H(τ, S), Rf,s,H(τ, S) = {j ∈ Rf,H(τ, S) : headf (τ, S, j) = s},
R−f,s,H(τ, S) = R−(τ, S) ∩ Rf,s,H(τ, S), and R+

f,s,H(τ, S) = R+(τ, S) ∩ Rf,s,H(τ, S).
The following two lemmas establish the basic properties of periodic positions. First, we show

that for any necklace-consistent f , the set of positions Rf,s,H(τ, T ) occupies a contiguous block in the
4Note that this definition of root generalizes the original definition [KK19], in which f(S) always returned the

lexicographically minimal string that is cyclically equivalent with S. Such function is clearly necklace-consistent.
5Although the string rootf (τ, S, j) depends on the function f , the value |rootf (τ, S, j)| = per(S[j . . j + 3τ − 1))

does not. Thus, it is correct to drop f in the notation for type(τ, S, j).
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SA of T and describe the structure of such lexicographical block. The following lemma was proved
in [KK21, Lemma 3.5], but for completeness, we provide its proof in Appendix A.

Lemma 6.18. Let S ∈ Σk, τ ∈ Z+, and let f be any necklace-consistent function. If j ∈ Rf,s,H(τ, S)
then for any j′ ∈ [1 . . k], LCES(j, j′) ≥ 3τ − 1 holds if and only if j′ ∈ Rf,s,H(τ, S). Moreover, if
j′ ∈ Rf,s,H(τ, S), then:

1. If type(τ, S, j) = −1 and type(τ, S, j′) = +1, then S[j . .] ≺ S[j′ . .],
2. If type(τ, S, j) = type(τ, S, j′) = −1 and e(τ, S, j)− j < e(τ, S, j′)− j′, then S[j . .] ≺ S[j′ . .],
3. If type(τ, S, j) = type(τ, S, j′) = +1 and e(τ, S, j)− j > e(τ, S, j′)− j′, then S[j . .] ≺ S[j′ . .].

The key to the efficient computation of δ`(j) is processing of the elements of R(τ, S) in blocks
(note that here by “blocks” we mean blocks of positions in text order, as opposed to blocks in
lexicographical order (i.e., in the suffix array) considered in the previous lemma). The starting
positions of these blocks are defined as

R′(τ, S) := {j ∈ R(τ, S) : j − 1 /∈ R(τ, S)}. (6.2)

We also let R′−(τ, S) = R−(τ, S) ∩ R′(τ, S), R′+(τ, S) = R+(τ, S) ∩ R′(τ, S), R′−f,H(τ, S) = R′(τ, S) ∩
R−f,H(τ, S), and R′+f,H(τ, S) = R′(τ, S) ∩ R+

f,H(τ, S). For any H ∈ Σ+ we also denote:

E−f,H(τ, S) := {(efull
f (τ, S, j)− j, efull

f (τ, S, j)) : j ∈ R′−f,H(τ, S)}.

The set E+
f,H(τ, S) is defined analogously, but with R′−f,H(τ, S) replaced by R′+f,H(τ, S). The next

lemma justifies our strategy. As with the previous lemma, this is a standard result characterizing
periodic positions of string synchronizing sets and was proved in [KK21, Lemma 3.6] for the original
definition of root. For completeness, in Appendix A we provide its minimally modified proof adapting
it to the more general version of root used in this paper.

Lemma 6.19. Let S ∈ Σ+, τ ∈ Z+, and assume that f is a necklace-consistent function. For any
position j ∈ R(τ, S) \ R′(τ, S) it holds

• rootf (τ, S, j−1) = rootf (τ, S, j),
• e(τ, S, j−1) = e(τ, S, j), and
• type(τ, S, j−1) = type(τ, S, j).

Definition 6.20. For any j ∈ R(τ, S), denote Ij(τ, S) = (b+ 1, e+ 1, j), where e = efull
f (τ, S, j)− j,

t = e(τ, s, j)− j − 3τ + 2, and b = e− t. Let H ∈ Σ+. We define

I−f,H(τ, S) := {Ij(τ, S) : j ∈ R′−f,H(τ, S)},
I+
f,H(τ, S) := {Ij(τ, S) : j ∈ R′+f,H(τ, S)}.

We have now defined all the necessary notation to express the assumption that we will use in the
rest of this section.

Assumption 6.21. For τ = b `3c, some necklace-consistent function f , and any H ∈ Σ+, the
following queries on text T can be supported in O(t) time:

1. Given any j ∈ R(τ, T ), return |rootf (τ, T, j)|, headf (τ, T, j), and e(τ, T, j).
2. Range queries (Problem 4.5) on Points7τ (T,E−f,H(τ, T )) and Points7τ (T,E+

f,H(τ, T )).
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3. Modular constraint queries (Section 5) on I−f,H(τ, T ) and I+
f,H(τ, T ).

The string H for queries 2. and 3. is specified by some i, p ∈ [1 . . n] such that H = T [i . . i+ p).

The above notation was introduced in the general form, because it is needed in the section
implementing Assumption 6.21 which supports these queries for collections of strings. For the rest
of the section, we define root(j), head(j), exp(j), expcut(j, t), tail(j), e(j), efull(j), elow(j), ehigh(j),
ecut(j, t), and type(j) as a shorthand for, respectively, rootf (τ, S, j), headf (τ, S, j), expf (τ, S, j),
expcut

f (τ, S, j, t), tailf (τ, S, j), e(τ, S, j), efull
f (τ, S, j), elow

f (τ, S, j), ehigh
f (τ, S, j), ecut

f (τ, S, j, t), and
type(τ, S, j) with S = T , τ = b `3c, and f being some necklace-consistent function (recall that T is
the main text defined globally all through the paper).

We also define R, R−, R+, RH , R−H , R+
H , Rs,H , R−s,H , R+

s,H , R′, R′−, R′+, R′−s,H , R′+s,H , E
−
H ,

E+
H , I

−
H , I

+
H , and Roots as a shorthand notation for, respectively, the corresponding sets R(τ, S),

R−(τ, S), R+(τ, S), Rf,H(τ, S), R−f,H(τ, S), R+
f,H(τ, S), Rf,s,H(τ, S), R−f,s,H(τ, S), R+

f,s,H(τ, S), R′(τ, S),
R′−(τ, S), R′+(τ, S), R′−f,s,H(τ, S), R′+f,s,H(τ, S), E−f,H(τ, S), E+

f,H(τ, S), I−f,H(τ, S), I+
f,H(τ, S), and

finally Rootsf (τ, S) with S = T , τ = b `3c, and f being some necklace-consistent function.

6.3.2 Decomposition of Pos

Let j ∈ R−. In this section we introduce the three sets Poslow
` (j), Posmid

` (j), and Poshigh
` (j) playing

a central role in the SA query algorithm (positions j ∈ R+ are processed symmetrically; the details
are provided in the proof of Proposition 6.53).

The section is organized as follows. First, we define Poslow
` (j), Posmid

` (j), and Poshigh
` (j). We

then prove the central combinatorial result (Lemma 6.23) of the SA query, showing how the size
δ`(j) = |Pos`(j)| relates to the sizes of the other three sets.

Definition 6.22. Assume H ∈ Roots, s ∈ [0 . . |H|), and j ∈ R−s,H . Denote k1 := expcut(j, `) =

min(exp(j), b `−s|H| c) and k2 := expcut(j, 2`) = min(exp(j), b2`−s
|H| c). We define

Poslow
` (j) = {j′ ∈ R−s,H : exp(j′) = k1 and (T [j′ . . n] � T [j . . n] or LCET (j, j′) ≥ `)},

Posmid
` (j) = {j′ ∈ R−s,H : exp(j′) ∈ (k1 . . k2]}, and

Poshigh
` (j) = {j′ ∈ R−s,H : exp(j′) = k2 and (T [j′ . . n] � T [j . . n] or LCET (j, j′) ≥ 2`)}.

We denote δlow
` (j) = |Poslow

` (j)|, δmid
` (j) = |Posmid

` (j)|, and δhigh
` (j) = |Poshigh

` (j)|.

Lemma 6.23. For any j ∈ R−, it holds δ`(j) = δlow
` (j) + δmid

` (j)− δhigh
` (j).

Proof. By definition, it holds Poslow
` (j)∩Posmid

` (j) = ∅. On the other hand, by definition, we also have
Pos`(j)∩Poshigh

` (j) = ∅. The main strategy of the proof is to show the equality Poslow
` (j)∪Posmid

` (j) =

Pos`(j) ∪ Poshigh
` (j). Since both elements of the equation are disjoint unions, this implies

δlow
` (j) + δmid

` (j) = |Poslow
` (j)|+ |Posmid

` (j)| = |Poslow
` (j) ∪ Posmid

` (j)|

= |Pos`(j) ∪ Poshigh
` (j)| = |Pos`(j)|+ |Poshigh

` (j)|

= δ`(j) + δhigh
` (j),
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which yields the claim. It thus remains to show Poslow
` (j) ∪ Posmid

` (j) = Pos`(j) ∪ Poshigh
` (j). Let

H ∈ Roots and s ∈ [0 . . |H|) be such that j ∈ R−s,H . Before we move on to proving the main equality,
we observe that since for any j′ ∈ Pos`(j), it holds LCET (j, j′) ≥ ` ≥ 3τ −1, by Lemma 6.18, it holds
j′ ∈ Rs,H and type(j′) = −1. Thus, we can equivalently write Pos`(j) = {j′ ∈ R−s,H : T [j′ . . n] ≺
T [j . . n] and LCET (j, j′) ∈ [` . . 2`)}.

We first show the inclusion Poslow
` (j) ∪ Posmid

` (j) ⊆ Pos`(j) ∪ Poshigh
` (j). Let us first take a

position j′ ∈ Poslow
` (j). Observe that it holds k1 ≤ k2. We consider two cases:

• If k1 < k2, or equivalently, min(exp(j), b `−s|H| c) < min(exp(j), b2`−s
|H| c) then b `−s|H| c < exp(j) and

hence k1 = b `−s|H| c < exp(j). Therefore, since for j′ we have type(j′) = type(j) = −1 and
e(j′)− j′ = s+ exp(j′)|H|+ tail(j′) = s+ k1|H|+ tail(j′) < s+ (k1 + 1)|H| ≤ s+ exp(j)|H| ≤
s+exp(j)|H|+tail(j) = e(j)−j, we obtain from Item 2 of Lemma 6.18 that T [j′ . . n] ≺ T [j . . n].
Thus, by definition of Poslow

` (j) we must also have LCET (j, j′) ≥ `. On the other hand, by
j, j′ ∈ Rs,H and e(j′)− j′ < e(j)− j, we have T [j . . j + t) = T [j′ . . j′+ t) (where t = e(j′)− j′)
and T [j′ + t] 6= T [j′ + t− |H|] = T [j + t− |H|] = T [j + t]. Thus, LCET (j, j′) = e(j′)− j′ =
s + k1|H| + tail(j′) = s + b `−s|H| c|H| + tail(j′) ≤ ` + tail(j′) < ` + τ < 2`. We thus proved
T [j′ . . n] ≺ T [j . . n] and LCET (j, j′) ∈ [` . . 2`), i.e., j′ ∈ Pos`(j).

• If k1 = k2, then it suffices to consider two subcases. If T [j′ . . n] � T [j . . n] or LCET (j, j′) ≥ 2`,
then we immediately obtain j′ ∈ Poshigh

` (j). The other possibility is that T [j′ . . n] ≺ T [j . . n]
and LCET (j, j′) < 2`. Combining this with LCET (j, j′) ≥ ` (from the definition of Poslow

` (j)),
we obtain j′ ∈ Pos`(j).

We have thus proved that Poslow
` (j) ⊆ Pos`(j) ∪ Poshigh

` (j). Next, we show Posmid
` (j) ⊆ Pos`(j) ∪

Poshigh
` (j). Consider j′ ∈ Posmid

` (j). If k1 = k2, the claim follows trivially, since Posmid
` (j) = ∅.

Let us thus assume k1 < k2. As noted above, this implies k1 = b `−s|H| c < exp(j). Then, by
exp(j′) > k1, we obtain e(j′) − j′ = s + exp(j′)|H| + tail(j′) ≥ s + (k1 + 1)|H| = (s + |H|) +
b `−s|H| c|H| ≥ (s + |H|) + (` − s − |H|) = `. Similarly, by b `−s|H| c < exp(j), we have e(j) − j =

s+ exp(j)|H|+ tail(j) ≥ s+ (b `−s|H| c+ 1)|H| ≥ `. Thus, by definition of run-decomposition, we obtain
LCET (j, j′) ≥ min(e(j)− j, e(j′)− j′) ≥ `. Recall now that we have exp(j′) ∈ (k1 . . k2]. Consider
now two cases:

• Let exp(j′) = k2. If T [j′ . . n] � T [j . . n] or LCET (j, j′) ≥ 2`, then we immediately obtain
j′ ∈ Poshigh

` (j). The remaining case is T [j′ . . n] ≺ T [j . . n] and LCET (j, j′) < 2`. Combining
with the above observation LCET (j, j′) ≥ `, we obtain j′ ∈ Pos`(j).

• Let exp(j′) ∈ (k1 . . k2). We will show that it holds j′ ∈ Pos`(j). By exp(j′) < k2 =
min(exp(j), b2`−s

|H| c), it follows in particular that exp(j′) < b2`−s
|H| c. Thus, e(j′) − j′ = s +

exp(j′)|H| + tail(j′) < s + (exp(j′) + 1)|H| ≤ s + b2`−s
|H| c|H| ≤ 2`. On the other hand, by

exp(j′) < k2, it follows exp(j′) < exp(j). Thus, e(j′) − j′ = s + exp(j′)|H| + tail(j′) < s +
(exp(j′)+1)|H| ≤ s+exp(j)|H| ≤ s+exp(j)|H|+tail(j) = e(j)−j. Therefore, for t = e(j′)−j′,
we have T [j′ . . j′ + t) = T [j . . j + t) and T [j′ + t] 6= T [j′ + t− |H|] = T [j + t− |H|] = T [j + t].
Thus, LCET (j, j′) = e(j′)− j′ < 2`. Combining with the above observation (holding for all
j′ ∈ (k1 . . k2]) LCET (j, j′) ≥ `, we obtain LCET (j, j′) ∈ [` . . 2`). Finally, by e(j′)−j′ < e(j)−j
and type(j′) = type(j) = −1, it follows from Item 2 of Lemma 6.18, that T [j′ . . n] ≺ T [j . . n].
We have thus proved j′ ∈ Pos`(j).

Thus, Posmid
` (j) ⊆ Pos`(j) ∪ Poshigh

` (j). Combining with the above proof of Poslow
` (j) ⊆ Pos`(j) ∪
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Poshigh
` (j), this establishes the inclusion Poslow

` (j) ∪ Posmid
` (j) ⊆ Pos`(j) ∪ Poshigh

` (j).
We now show the opposite inclusion, i.e., Pos`(j)∪Poshigh

` (j) ⊆ Poslow
` (j)∪Posmid

` (j). Let us first
assume j′ ∈ Pos`(j). By j ∈ R−s,H and T [j′ . . n] ≺ T [j . . n], we obtain from Item 2 of Lemma 6.18,

that e(j′) − j′ ≤ e(j) − j. Therefore, exp(j′) = b e(j
′)−j′−s
|H| c ≤ b e(j)−j−s|H| c = exp(j). On the other

hand, by definition of the run-decomposition, we have LCET (j, j′) ≥ min(e(j′)− j′, e(j)− j). Thus,
by e(j′) − j′ < e(j) − j and LCET (j, j′) < 2`, we obtain e(j′) − j′ = min(e(j′) − j′, e(j) − j) ≤
LCET (j, j′) < 2`, and consequently, exp(j′) = b e(j

′)−j′−s
|H| c ≤ b2`−s

|H| c. Combining the two upper
bounds on exp(j′), we thus obtain exp(j′) ≤ min(exp(j), b2`−s

|H| c) = k2. Next, we prove exp(j′) ≥ k1.
For this, we consider two cases:

• Let us first assume e(j)− j < `. By definition of k1, we then have k1 = min(exp(j), b `−s|H| c) =

min(b e(j)−j−s|H| c, b
`−s
|H| c) = b e(j)−j−s|H| c = exp(j). Observe now that by LCET (j, j′) ≥ `, we

have T [j . . j + `) = T [j′ . . j′ + `). Recall that by [KK19, Fact 3.2], T [j . . e(j)) is the longest
prefix of T [j . . n] having period |root(j)|. Therefore, since root(j′) = root(j) and T [j . . e(j))
is a proper prefix of T [j . . j + `), applying this equivalent definition to T [j′ . . n], we obtain
e(j′)− j′ = e(j)− j. Thus, exp(j′) = b e(j

′)−j′−s
|H| c = b e(j)−j−s|H| c = exp(j) = k1.

• Let us now assume e(j) − j ≥ `. Then, by the above alternative definition of T [j . . e(j)),
T [j . . j+ `) has a period |root(j)|. Thus, by root(j′) = root(j) and T [j . . j+ `) = T [j′ . . j′+ `),
the string T [j′ . . j′ + `) has period |root(j′)|, and consequently, e(j′) − j′ ≥ `. Therefore,
exp(j′) = b e(j

′)−j′−s
|H| c ≥ b `−s|H| c = min(b `−s|H| c, b

e(j)−j−s
|H| c) = k1.

We have thus shown than in both cases, it holds exp(j′) ≥ k1. Combining with the earlier upper
bound on exp(j′), we therefore obtain exp(j′) ∈ [k1 . . k2]. To see that this immediately implies the
inclusion Pos`(j) ⊆ Poslow

` (j) ∪ Posmid
` (j), it suffices to consider two cases. If exp(j′) > k1, then

j′ ∈ Posmid
` (j) holds by definition of Posmid

` (j). On the other hand, if exp(j′) = k1, then j′ ∈ Poslow
` (j)

follows from LCET (j, j′) ∈ [` . . 2`). It remains to show Poshigh
` (j) ⊆ Poslow

` (j) ∪ Posmid
` (j). Let

j′ ∈ Poshigh
` (j). We again consider two cases. If k1 < k2, then we immediately have j′ ∈ Posmid

` (j)
since exp(j′) ∈ (k1 . . k2]. On the other hand, if k1 = k2, then either T [j′ . . n] � T [j . . n] or
LCET (j, j′) ≥ 2` ≥ `. In either case, j′ ∈ Poslow

` (j). This concludes the proof of the inclusion
Pos`(j) ∪ Poshigh

` (j) ⊆ Poslow
` (j) ∪ Posmid

` (j).

6.3.3 Computing the Size of Occ

Let j ∈ R and d ≥ `. We define Occ−d (j) := Occd(j) ∩ R− and Occ+
d (j) := Occd(j) ∩ R+. In this

section, we show how under Assumption 6.21, given any position j ∈ R, to efficiently compute the
cardinalities of the four sets Occ−` , Occ+

` (j), Occ−2`(j), and Occ+
2`(j). In the rest of this section, we

focus on the computation of |Occ−` (j)| and |Occ−2`(j)|. The cardinalities of Occ+
` (j) and Occ+

2`(j)
are computed analogously (see the proof of Proposition 6.53).

The section is organized into four parts. First, we prove the combinatorial results (Lemma 6.24
and Corollary 6.25) characterizing the set Occ−d (j), d ≥ `, as a disjoint union of two sets Occeq−

d (j)

and Occgt−
d (j) (in particular, each of the sets Occ−` (j) and Occ−2`(j) admits such decomposition). In

the following two parts, we present a query algorithms (Proposition 6.28 and Proposition 6.31) to
compute the cardinality of Occeq−

d (j) for any d ∈ [` . . 2`] (in particular, we can compute |Occeq−
` (j)|

and |Occeq−
2` (j)|) and the cardinality of Occgt−

d (j) for any d ≥ ` (in particular, we can compute
|Occgt−

` (j)| and |Occgt−
2` (j)|). In Proposition 6.32, we put them together to obtain the final query
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algorithm.

The Main Idea Let d ≥ `. Assume H ∈ Roots, s ∈ [0 . . |H|), and j ∈ Rs,H . Denote k =
expcut(j, d) = min(exp(j), bd−s|H| c). We define

Occeq−
d (j) = {j′ ∈ Rs,H ∩Occ−d (j) : exp(j′) = k},

Occgt−
d (j) = {j′ ∈ Rs,H ∩Occ−d (j) : exp(j′) > k}.

Lemma 6.24. Assume d ≥ `. If j ∈ Rs,H then for any j′ ∈ Occd(j), it holds:

1. It holds j′ ∈ R−s,H ,
2. ecut(j′, d)− j′ = ecut(j, d)− j, and
3. T∞[ecut(j′, d) . . j′ + d) = T∞[ecut(j, d) . . j + d).

Proof. 1. Consider two cases. If j′ = j, then immediately j′ ∈ R, head(j′) = s and root(j′) = H.
Otherwise, by definition of Occd(j), it holds T∞[j . . j + d) = T∞[j′ . . j′ + d). By j 6= j′ and the
uniqueness of T [n] = $, this is equivalent to LCET (j, j′) ≥ d. Since by definition of τ , it holds
3τ ≤ ` ≤ d, we obtain LCET (j, j′) ≥ 3τ − 1. Thus, by Lemma 6.18, j′ ∈ Rs,H .

2. We first prove that expcut(j′, d) = expcut(j, d). Recall that by [KK19, Fact 3.2], for i ∈ R, the
substring T [i . . e(i)) is the longest prefix of T [i . . n] that has a period |root(i)|. By T∞[j . . j + d) =
T∞[j′ . . j′ + d), this immediately implies min(e(j′)− j′, d) = min(e(j)− j, d). Therefore, we obtain

expcut(j′, d) = min(exp(j′), bd−s|H| c) = min(b e(j
′)−j′−s
|H| c, bd−s|H| c)

= bmin(e(j′)−j′,d)−s
|H| c = bmin(e(j)−j,d)−s

|H| c

= min(b e(j)−j−s|H| c, b
d−s
|H| c) = min(exp(j), bd−s|H| c)

= expcut(j, d)

Thus, ecut(j′, d)− j′ = head(j′) + expcut(j′, d)|H| = head(j) + expcut(j, d)|H| = ecut(j, d)− j.
3. By j′ ∈ Occd(j), T∞[j′ . . j′ + d) = T∞[j . . j + d). By Item 2 this yields the claim.

Corollary 6.25. For any d ≥ ` and any j ∈ R, the set Occ−d (j) is a disjoint union of Occeq−
d (j)

and Occgt−
d (j).

Proof. By definition, it holds Occeq−
d (j) ∩Occgt−

d (j) = ∅ and Occeq−
d (j) ∪Occgt−

d (j) ⊆ Occ−d (j). It
remains to show Occ−d (j) ⊆ Occeq−

d (j) ∪Occgt−
d (j). Let j′ ∈ Occ−d (j). By Lemma 6.24, this implies

j′ ∈ Rs,H and expcut(j′, d) = expcut(j, d). Thus, by exp(j′) ≥ min(exp(j′), bd−s|H| c) = expcut(j′, d), we
obtain that j′ ∈ Occeq−

d (j) or j′ ∈ Occgt−
d (j).

Remark 6.26. Note that the differentiation between j ∈ R satisfying type(j) = −1 and type(j) = +1
used (without the loss of generality) in Section 6.3.2 is different from the symmetry used in this
section. Here we partition the output set Occeq

2`(j) (resp. Occgt
2`(j)) into two subsets Occeq−

2` (j) and
Occeq+

2` (j) (resp. Occgt−
2` (j) and Occgt+

2` (j)), but the computation is always performed regardless of
type(j), leading to two queries for each j ∈ R. In Section 6.3.2, on the other hand, the computation
is performed separately for j ∈ R− and j ∈ R+, without the need to partition Pos`(j) within each
case, leading to a single query but only on the appropriate structure depending on type(j).
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This subtle difference follows from the fact, then when computing δ`(j) = |Pos`(j)| by Lemma 6.18
we have Pos`(j) ⊆ R− for any j ∈ R− (and Pos`(j) ⊆ R+ for j ∈ R+). However, when computing
|Occ2`(j)| for j ∈ R−, it is possible that Occ2`(j) ∩ R− 6= ∅ and Occ2`(j) ∩ R+ 6= ∅ hold. This is
the reason for why the seemingly related computation of |Occ2`(j)| and |Pos`(j)| is (unlike for the
nonperiodic positions; see Section 6.2.2) described separately.

Computing |Occeq−
` (j)| and |Occeq−

2` (j)| We now describe the query algorithm that, given any
position j ∈ R and any d ∈ [` . . 2`], returns the cardinality of the sets Occeq−

d (j) (in particular,
it can return the cardinality of Occeq−

` (j) and Occeq−
2` (j)). We start with a combinatorial result

(Lemma 6.27) that shows how to count the elements of Occeq−
d (j) (where d ∈ [` . . 2`]) that belong to

any right-maximal contiguous block of positions in R−. The query algorithm to compute the size of
Occeq−

d (j) is presented next (Proposition 6.28).

Lemma 6.27. Let d ∈ [` . . 2`] and j ∈ RH . Assume i ∈ R−H and denote t = e(i) − i − 3τ + 2.
Then, |Occeq−

d (j) ∩ [i . . i + t)| ≤ 1. Moreover, |Occeq−
d (j) ∩ [i . . i + t)| = 1 holds if and only if

efull(i)− i ≥ ecut(j, d)− j and T∞[ecut(j, d) . . j + d) is a prefix of T∞[efull(i) . . efull(i) + 7τ).

Proof. Denote kd = expcut(j, d). Recall that e(i) = min{i′ ∈ [i . . n] : i′ 6∈ R}+3τ−2. Thus, t > 0 and
[i . . e(i)− 3τ + 2) = [i . . i+ t) ⊆ R. For any δ ∈ [0 . . t), by Lemma 6.19, we have root(i+ δ) = root(i)
and type(i + δ) = type(i). Thus, [i . . i + t) ⊆ R−H . Moreover, by Lemma 6.19, e(i + δ) = e(i).
Therefore, by the uniqueness of run-decomposition, it holds tail(i+ δ) = tail(i). Together, these facts
imply efull(i+δ) = efull(i), and consequently, that efull(i+δ)−(i+δ) = efull(i)−i−δ. Let s = head(j).
Recall that for any j′ ∈ Occeq−

d (j), we have efull(j′)−j′ = s+exp(j′)|H| = s+kd(j)|H| = ecut(j, d)−j.
Thus, i+ δ ∈ Occeq−

d (j) implies efull(i+ δ)− (i+ δ) = efull(i)− i− δ = ecut(j, d)− j, or equivalently,
δ = (efull(i)− i)− (ecut(j, d)− j), and thus |Occeq−

d (j) ∩ [i . . i+ t)| ≤ 1.
We now prove the equivalence. Let us first assume |Occeq−

d (j) ∩ [i . . i+ t)| = 1, i.e., that there
exists δ ∈ [0 . . t) such that i+δ ∈ Occeq−

d (j). Then, as observed above, ecut(j, d)−j = efull(i)−i−δ ≤
efull(i)− i. This proves the first condition. To show the second one, let s = head(j). By definition of
Occeq−

d (j), it holds i+ δ ∈ R−s,H , exp(i+ δ) = k, and T∞[i+ δ . . i+ δ+d) = T∞[j . . j+d). Therefore,
by s+ kd|H| ≤ d, we obtain T∞[i+ δ . . efull(i+ δ)) = T∞[i+ δ . . efull(i)) = T [j . . ecut(j, d)) = H ′Hk,
where H ′ is a length-s suffix of H. Thus, T∞[efull(i) . . i+ δ + d) = T∞[ecut(j, d) . . j + d). Therefore,
by i+ δ + d ≤ efull(i) + 7τ , T∞[ecut(j, d) . . j + d) is a prefix of T∞[efull(i) . . efull(i) + 7τ).

To prove the opposite implication, assume efull(i)−i ≥ ecut(j, d)−j and that T∞[ecut(j, d) . . j+d)
is a prefix of T∞[efull(i) . . efull(i) + 7τ). Let δ = (efull(i)− i)− (ecut(j, d)− j). We will show that
δ ∈ [0 . . t) and i + δ ∈ Occeq−

d (j). The inequality δ ≥ 0 follows from the definition of δ and our
assumptions. To show δ < t, we consider two cases:

• Let e(j) − j < d. We start by noting kd = min(exp(j), bd−s|H| c) = min(b e(j)−j−s|H| c, b
d−s
|H| c) =

b e(j)−j−s|H| c = exp(j). Thus, ecut(j, d) = j + s + kd|H| = j + s + exp(j)|H| = efull(j). We
next show that it holds e(i) − efull(i) ≥ e(j) − efull(j). Let q = e(i) − efull(i) and suppose
q < e(j)− efull(j). Then, by definition of run-decomposition, it holds LCET (efull(i), efull(j)) ≥
min(e(i)− efull(i), e(j)− efull(j)) = q. We claim that it holds T [efull(i) + q] ≺ T [efull(j) + q].
To show this, we first note that by T [n] = $ being unique in T , we have efull(i) + q = e(i) ≤ n.
We then consider two subcases:

1. If efull(i)+q = n, then by efull(j)+q < e(j) ≤ n, we have T [efull(i)+q] = $ ≺ T [efull(j)+q].
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2. On the other hand, if efull(i) + q < n, then by i ∈ R−, we again have T [e(i)] =
T [efull(i) + q] ≺ T [efull(i) + q − |H|] = T [efull(j) + q − |H|] = T [efull(j) + q].

We have thus obtained T [efull(i) . . efull(i)+q] ≺ T [efull(j) . . efull(j)+q]. By q < e(j)−efull(j) <
j + d− efull(j) = j + d− ecut(j, d) ≤ d ≤ 2` ≤ 7τ , this contradicts T∞[ecut(j, d) . . j + d) being
a prefix of T∞[efull(i) . . efull(i) + 7τ). Thus, it holds e(i)− efull(i) ≥ e(j)− efull(j). Applying
the definition of δ and using the above inequality, we obtain

e(i)− (i+ δ) = (efull(i)− (i+ δ)) + (e(i)− efull(i)) = (ecut(j, d)− j) + (e(i)− efull(i))

= (efull(j)− j) + (e(i)− efull(i)) ≥ (efull(j)− j) + (e(j)− efull(j))

= e(j)− j ≥ 3τ − 1.

• Let e(j)− j ≥ d. We first show that in this case it holds e(i)− efull(i) ≥ j + d− ecut(j, d). Let
q = e(i)− efull(i) and suppose q < j + d− ecut(j, d). Then, by definition of run-decomposition,
it holds LCET (efull(i), ecut(j, d)) ≥ min(e(i) − efull(i), e(j) − ecut(j, d)) = q. We claim that
T [efull(i) + q] ≺ T [ecut(j, d) + q]. To show this, we first note that by T [n] = $, we have
efull(i) + q = e(i) ≤ n. Thus:
1. If efull(i) + q = n, then by ecut(j, d) + q < d+ j ≤ e(j) ≤ n, we have T [efull(i) + q] = $ ≺
T [ecut(j, d) + q].

2. On the other hand, if efull(i) + q < n, then by i ∈ R−, we again have T [e(i)] =
T [efull(i) + q] ≺ T [efull(i) + q − |H|] = T [ecut(j, d) + q − |H|] = T [ecut(j, d) + q].

We thus obtained T [efull(i) . . efull(i)+q] ≺ T [ecut(j, d) . . ecut(j, d)+q]. By q < j+d−ecut(j, d) ≤
d ≤ 7τ , this contradicts the string T∞[ecut(j, d) . . j + d) being a prefix of T∞[efull(i) . . efull(i) +
7τ). Thus, e(i)− efull(i) ≥ j + d− ecut(j, d). Applying the definition of δ and using the above
inequality, we obtain

e(i)− (i+ δ) = (efull(i)− (i+ δ)) + (e(i)− efull(i)) = (ecut(j, d)− j) + (e(i)− efull(i))

≥ (ecut(j, d)− j) + (j + d− ecut(j, d)) = d ≥ ` ≥ 3τ − 1.

Thus, in both cases, we have shown e(i)− (i+ δ) ≥ 3τ − 1, or equivalently, δ ≤ e(i)− i− 3τ + 1 < t.
It remains to show i+δ ∈ Occeq−

d (j). For this, we first note efull(i+δ)−(i+δ) = efull(i)−(i+δ) =
ecut(j, d)− j. Combining this with i+ δ, j ∈ RH gives T [i+ δ . . efull(i+ δ)) = T [j . . ecut(j, d)). This
implies head(i+δ) = head(j) and exp(i+δ) = b(ecut(j, d)−j)/|H|c = kd. Moreover, by Lemma 6.19,
type(i + δ) = type(i) = −1. Thus, i + δ ∈ R−s,H . It remains to show T∞[i + δ . . i + δ + d) =

T∞[j . . j + d). For this, it suffices to combine T∞[i+ δ . . efull(i)) = T∞[j . . ecut(j, d)) (shown above)
and T∞[efull(i) . . i+δ+d) = T∞[ecut(j, d) . . j+d) (following from T∞[ecut(j, d) . . j+d) being a prefix
of T∞[efull(i) . . efull(i)+7τ) and i+δ+d = efull(i)−(ecut(j, d)−j)+d ≤ efull(i)+d ≤ efull(i)+7τ).

Proposition 6.28. Under Assumption 6.21, given any position j ∈ R and an integer d ∈ [` . . 2`],
we can compute |Occeq−

d (j)| in O(t) time.

Proof. The main idea of the query algorithm is to group all positions i ∈ R′− by root(i) and then
sort all positions within each group by T∞[efull(i) . . efull(i) + 7τ). Then, by Lemma 6.27, in order
to compute |Occeq−

d (j)| given j ∈ RH , it suffices to count the all positions i ∈ R′−H that satisfy
efull(i)− i ≥ ecut(j, d)− j and for which T∞[ecut(j, d) . . j+d) is a prefix of T∞[efull(i) . . efull(i) + 7τ).
The latter task is equivalent to the general range counting queries (Section 4) on a set of points
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PH ⊆ X × Y (with X = Z≥0 and Y = Σ∗) containing the value efull(i)− i on the X -coordinate and
the string T∞[efull(i) . . efull(i) + 7τ) on the Y-coordinate for every i ∈ R′−H . Note that we need to
provide efficient range counting queries on each collection PH separately for every H ∈ Roots. Since
|H| could be large, H cannot be given explicitly during the query. Thus, we specify H using its
length and the position of some occurrence in T .

We use the following definitions. Let q = 7τ and c = max Σ. Then, for any H ∈ Roots, we let
PH = Pointsq(T,E

−
H) (see Section 6.3.1 for the definition of E−H and Definition 4.4 for the definition

of PH). Note that by ` < n and τ = b `3c, the value q = 7τ ≤ 2`+ τ < 3n satisfies the requirement
in Problem 4.5.

Given any position j ∈ R, we compute |Occeq−
d (j)| as follows. First, using Assumption 6.21

we compute values s = head(j), p = |root(j)|, and e(j) in O(t) time. Note, that then root(j) =
T [j + s . . j + s + p), i.e., we have a starting position of an occurrence of H := root(j) in T . We
then calculate k = exp(j) = b e(j)−sp c in O(1) time. Using those values, we further calculate
k′ = min(k, bd−sp c) and ecut(j, d) = s+ k′p. By Lemma 6.27 (this is the place we use the assumption
d ∈ [` . . 2`]) and the definition of PH , we now have

|Occeq−
d (j)| = r-countPH (ecut(j, d)− j, n, Y c∞)− r-countPH (ecut(j, d)− j, n, Y ),

where Y = T∞[ecut(j, d) . . j + d), which by Assumption 6.21 we can compute in O(t) time using
the query defined by Item 1 of Problem 4.5 with the arguments (i, x, qr) = (ecut(j, d), ecut(j, d)−
j, j + d− ecut(j, d)). To check that all arguments satisfy the requirements of Problem 4.5, recall that
` < n. Thus, qr ≤ d ≤ 2` < 2n. On the other hand, ecut(j, d)− j ≤ e(j)− j < n hold by T [n] = $.
In total, the query takes O(t) time.

Computing |Occgt−
` (j)| and |Occgt−

2` (j)| We now describe a query algorithm, given any position
j ∈ R and any d ≥ `, returns the cardinality of the sets Occgt−

d (j) (in particular, it can return
the cardinality of Occgt−

` (j) and Occgt−
2` (j)). We start with a combinatorial result characterizing

Occgt−
d (j) (where d ≥ `) in terms of e(j)− j (Lemma 6.29). We then present a combinatorial result

(Lemma 6.30) that relates the number of positions j′ in R− having the value exp(j′) in a given
interval to a modular contract queries. We conclude with the algorithm to compute |Occgt−

d (j)|
(Proposition 6.31).

Lemma 6.29. Assume d ≥ ` and j ∈ Rs,H . If e(j)− j < d, then it holds Occgt−
d (j) = ∅. Otherwise,

it holds Occgt−
d (j) = {j′ ∈ R−s,H : exp(j′) > bd−s|H| c}.

Proof. Assume first e(j) − j < d. Then k = min(exp(j), bd−s|H| c) = min(b e(j)−j−s|H| c, b
d−s
|H| c) =

b e(j)−j−s|H| c = exp(j). Suppose that Occgt−
d (j) 6= ∅ and let j′ ∈ Occgt−

d (j). Then, we have e(j)− j =

s+ exp(j)|H|+ tail(j) < s+ (exp(j) + 1)|H| = s+ (k + 1)|H| ≤ s+ exp(j′)|H| ≤ e(j′)− j′. This
implies j 6= j′. Moreover, by definition of run-decomposition, if j, j′ ∈ Rs,H and e(j)− j 6= e(j′)− j′,
then LCET (j, j′) = min(e(j)−j, e(j′)−j′). Therefore, LCET (j, j′) = e(j)−j < d. By j 6= j′ and the
uniqueness of T [n] = $, this implies T∞[j′ . . j′ + d) 6= T [j . . j + d), and consequently, j′ 6∈ Occd(j),
a contradiction. Thus, we must have Occgt−

d (j) = ∅.
Assume now e(j)− j ≥ d. Then, k = min(exp(j), bd−s|H| c) = min(b e(j)−j−s|H| c, b

d−s
|H| c) = bd−s|H| c and

hence

Occgt−
d (j) = Occgt

d ∩ R−
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= {j′ ∈ R−s,H ∩Occd(j) : exp(j′) > k}

= {j′ ∈ R−s,H ∩Occd(j) : exp(j′) > bd−s|H| c}

⊆ {j′ ∈ R−s,H : exp(j′) > bd−s|H| c},

i.e., we obtain the first inclusion. To show the opposite inclusion let j′ ∈ R−s,H be such that
exp(j′) > bd−s|H| c. By e(j) − j ≥ d, we can write T [j . . j + d) = H ′HkH ′′, where |H ′| = s, and H ′

(resp. H ′′) is a proper prefix (resp. suffix) of H. Thus, T [j . . j + d) is a prefix of H ′Hk+1. On
the other hand, the string H ′Hk+1 is, by exp(j′) > k and j′ ∈ Rs,H , a prefix of T [j′ . . n]. Thus,
LCET (j′, j) ≥ d, and consequently, j′ ∈ Occd(j). By j′ ∈ R−s,H and exp(j′) > bd−s|H| c = k we thus
have j′ ∈ Occgt−

d (j).

Lemma 6.30. Let H ∈ Roots and s ∈ [0 . . |H|). For any k ∈ Z+, let us define Q−k := {j ∈R−s,H :
exp(j)≤ k}. Let also Ii = (ai, bi, i) (Definition 6.20). Then:

1. For i∈R−H , it holds |Q
−
k ∩ [i . . e(i)− 3τ + 2)| = |{j ∈ [ai . . bi) : j mod |H|= s and b j

|H|c≤ k}|.
2. It holds |Q−k | = mod-countI−H (|H|, s, k).

Proof. 1. Denote e = efull(i)− i, t = e(i)− i− 3τ + 1, and b = e− t. As shown at the beginning of
the proof of Lemma 6.27, for any i ∈ R−H , we have t > 0, [i . . i + t) ⊆ R−H , and for any δ ∈ [0 . . t)
it holds e(i + δ) = e(i) and efull(i + δ) = efull(i). This implies head(i + δ) + exp(i + δ)|H| =
efull(i+ δ)− (i+ δ) = efull(i)− (i+ δ) = (efull(i)− i)− δ = e− δ. Thus, head(i+ δ) = (e− δ) mod |H|
and exp(i+ δ) = b e−δ|H| c. Hence:

|Q−k ∩ [i . . e(i)− 3τ + 2)| = |{i+δ : δ ∈ [0 . . t), head(i+ δ) = s, and exp(i+ δ) ≤ k}|
= |{i+δ : δ ∈ [0 . . t), (e−δ) mod |H| = s, and b e−δ|H| c ≤ k}|

= |{i+e−j : j ∈ [b+1 . . e+1), j mod |H| = s, and b j
|H|c ≤ k}|

= |{j ∈ [b+1 . . e+1) : j mod |H| = s and b j
|H|c ≤ k}|

= |{j ∈ [ai . . bi) : j mod |H| = s and b j
|H|c ≤ k}|,

where the third equation utilizes that if δ ∈ [0 . . t), then letting j = e−δ, we have i+δ = i+e−j and
j ∈ (e−t . . e] = [b+1 . . e+1). We then (fourth equality) used the fact that since i and e are fixed, the
size of the “shifted” set does not change. Note that, b = (head(i) + exp(i)|H|)− (e(i)− i− 3τ + 2) =
(e(i)− i− tail(i))− (e(i)− i− 3τ + 2) = 3τ − 2− tail(i) > 0 follows by tail(i) < |H| ≤ τ . Thus, the
interval [ai . . bi) contains only nonnegative integers.

2. By Item 1, for any i ∈ R−H , we can reduce the computation of |Q−k ∩ [i . . i + t)}|, where
t = e(i)− i− 3τ + 2, to a modular constraint counting query. Observe that by definition of e(i), if
additionally it holds i ∈ R′, then the interval [i . . i+ t) is a maximal interval of positions in R, i.e.,
i− 1, i+ t 6∈ R. Thus, letting I−H be the collection of weighted intervals (with weights corresponding
to multiplicities) corresponding to all i ∈ R′−H (Definition 6.20), we obtain the claim by definition of
the modular constraint counting query (see Section 5).

Proposition 6.31. Under Assumption 6.21, given any j ∈ R and d ≥ `, we can compute |Occgt−
d (j)|

in O(t) time.
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Proof. The main idea of the algorithm is as follows. By Lemma 6.30, we can reduce the computation
of |Occgt−

d (j) ∩ [i . . i + t)}|, where i ∈ R−, root(i) = root(j), and t = e(i) − i − 3τ + 2, to an
unweighted modular constraint counting query. Therefore, we can compute |Occgt−

d (j)| using the
general (weighted) modular constraint counting queries (Section 5) on I−H as defined in Lemma 6.30.
Note that we need to provide efficient modular on each collection I−H separately for every H ∈ Roots.
Since |H| could be large, H cannot be given explicitly during the query. Thus, we specify H using
its length and the position of some occurrence in T .

Given any j ∈ R, we compute |Occgt−
d (j)| as follows. First, using Assumption 6.21 we compute

values s = head(j), p = |root(j)|, and e(j) in O(t) time. Note, that then root(j) = T [j+s . . j+s+p),
i.e., we have a starting position of an occurrence of H := root(j) in T . If e(j) − j < d, then by
Lemma 6.29 we have Occgt−

d (j) = ∅, and thus we return |Occgt−
d (j)| = 0. Let us thus assume

e(j) − j ≥ d. We then calculate bd−sp c and by the combination of Lemma 6.29 and Item 2 of
Lemma 6.30, we obtain

|Occgt−
d (j)| = |{j′ ∈ R−s,H : bd−s|H| c < exp(j′) ≤ n}|

= mod-countI−H (p, s, n)−mod-countI−H (p, s, bd−s|H| c)

which by Assumption 6.21 we can compute in O(t) time. In total, the query takes O(t) time.

Summary By combining the above results, we obtain the following query algorithm to compute
the values |Occ−` (j)| and |Occ−2`(j)|, given any position j ∈ R.

Proposition 6.32. Under Assumption 6.21, given any position j ∈ R, we can in O(t) time compute
the values |Occ−` (j)| and |Occ−2`(j)|.

Proof. First, using Proposition 6.28, we compute δeq
` := |Occeq−

` (j)| and δeq
2` := |Occeq−

2` (j)| in O(t)

time. Then, using Proposition 6.31, we compute δgt
` := |Occgt−

` (j) and δgt
2` := |Occgt−

2` (j)| in O(t)

time. By Corollary 6.25, we then have |Occ−` (j)| = δeq
` + δgt

` and |Occ−2`(j)| = δeq
2` + δgt

2`.

6.3.4 Computing the Type

Assume that i ∈ [1 . . n] satisfies SA[i] ∈ R. In this section, we show how under Assumption 6.21,
given i along with RangeBeg`(SA[i]), RangeEnd`(SA[i]) and some j ∈ Occ`(SA[i]) (note, that we
do not assume anything about type(j); the query works correctly even if type(j) 6= type(SA[i])) to
efficiently compute type(SA[i]), i.e., whether it holds SA[i] ∈ R− or SA[i] ∈ R+.

The section is organized as follows. Given the input parameters as described above, our query
algorithm computes type(SA[i]) by checking if it holds SA[i] ∈ Occ−` (SA[i]). To implement such
check, we first present a combinatorial result proving that Occ−` (SA[i]) occupies a contiguous block
of positions in SA and showing what are the endpoints of this block (Lemma 6.33). We then
use this characterization to develop an efficient method of checking if SA[i] ∈ Occ−` (SA[i]) holds
(Corollary 6.34). Finally, we develop a query algorithm that efficiently computes type(SA[i]) in
Proposition 6.35.

Lemma 6.33. Let i ∈ [1 . . n] be such that SA[i] ∈ R. Denote b = RangeBeg`(SA[i]) and e =
b+ |Occ−` (SA[i])|. Then, it holds Occ−` (SA[i]) = {SA[i] : i ∈ (b . . e]}.
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Proof. Let s = head(SA[i]) and H = root(SA[i]) By Item 1 of Lemma 6.24, it holds Occ`(SA[i]) ⊆
Rs,H . On the other hand, by Lemma 6.18, all elements of Rs,H occupy a contiguous block of positions
in SA. Moreover, all elements of R−s,H are earlier in the lexicographical order than the elements of
R+
s,H . Thus, since Occ`(SA[i]) by definition also occupies a contiguous block in SA starting at index
b+ 1, the elements of Occ−` (SA[i]) (assuming the set is nonempty) must start at this position, and
occupy the block of |Occ`(SA[i])| consecutive positions.

Corollary 6.34. For any i ∈ [1 . . n] such that SA[i] ∈ R, SA[i] ∈ Occ−` (SA[i]) holds if and only if
i− RangeBeg`(SA[i]) ≤ |Occ−` (SA[i])|.

Proof. Assume SA[i] ∈ Occ−` (SA[i]). By Lemma 6.40, i ∈ (b . . e], where b = RangeBeg`(SA[i]) and
e = b+ |Occ−` (SA[i])|. In particular, i ≤ e = RangeBeg`(SA[i]) + |Occ−` (SA[i])|.

Assume now i − RangeBeg`(SA[i]) ≤ |Occ−` (SA[i])|. Let b = RangeBeg`(SA[i]) and e =
b + |Occ−` (SA[i])|. Then, i ≤ e. On the other hand, by definition of Occ`(SA[i]), we have
i ∈ (RangeBeg`(SA[i]) . .RangeEnd`(SA[i])]. In particular, i > RangeBeg`(SA[i]) = b. There-
fore, we obtain i ∈ (b . . e]. By Lemma 6.33, this implies SA[i] ∈ Occ−` (SA[i]).

Proposition 6.35. Let i ∈ [1 . . n] be such that SA[i] ∈ R. Under Assumption 6.21, given
i, RangeBeg`(SA[i]), RangeEnd`(SA[i]), and some position j ∈ Occ`(SA[i]), we can compute
type(SA[i]) in O(t) time.

Proof. The main idea of the query is as follows. By Corollary 6.34, to compute type(SA[i]) it suffices
to know i, RangeBeg`(SA[i]) and |Occ−` (SA[i])|. The first two values are given as input. The third
is computed using Proposition 6.32. Note, however, that the query in Proposition 6.32 can compute
Occ−` (j) only if given j. In our case we do not have SA[i]. We observe, however, that by definition, for
any j ∈ Occ`(SA[i]) (note that type(j) can be either −1 or +1), it holds |Occ−` (SA[i])| = |Occ−` (j)|.
Thus, we can use j instead of SA[i].

Given the index i, along with values RangeBeg`(SA[i]), RangeEnd`(SA[i]), and some position
j ∈ Occ`(SA[i]), we compute type(SA[i]) as follows. First, using the query from Proposition 6.32, we
compute the value δ := |Occ−` (j)| in O(t) time. By the above discussion, it holds |Occ−` (SA[i])| = δ.
By Corollary 6.34, we then have type(SA[i]) = −1 if and only if i− RangeBeg`(SA[i]) ≤ δ, which
we can evaluate in O(1) time.

6.3.5 Computing the Size of Poslow
` (j) and Poshigh

` (j)

In this section, we present an algorithm to compute the values δlow
` (j) and δhigh

` (j) for j ∈ R−.
The section is organized as follows. We start with the combinatorial result (Lemma 6.36) that

shows how to count the elements of Poslow
` (j) and Poshigh

` (j) that belong to any right-maximal
contiguous block of elements of R−. This result is a very general extension of Lemma 6.27. This
generalization, however, is nontrivial and thus below we provide its complete proof (omitting and
referring to the appropriate places in the proof of Lemma 6.27 only for parts that are identical). We
then use this characterization to develop a query algorithm to compute δlow

` (j) and δhigh
` (j) given any

j ∈ R− (Proposition 6.37). We finally prove (Proposition 6.38) that the computation of δlow
` (j) (resp.

δhigh
` (j)) does not actually need the value of j, but it is sufficient to only know that type(j) = −1
and some j′ ∈ Occ`(j) (resp. j′ ∈ Occ2`(j)).
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Lemma 6.36. Assume i, j ∈ R−H and let t = e(i)− i− 3τ + 2. Then, |Poslow
` (j)∩ [i . . i+ t)| ≤ 1 and

|Poshigh
` (j)∩ [i . . i+ t)| ≤ 1. Moreover, |Poslow

` (j)∩ [i . . i+ t)| = 1 (resp. |Poshigh
` (j)∩ [i . . i+ t)| = 1)

holds if and only if

• efull(i)− i ≥ elow(j)− j (resp. efull(i)− i ≥ ehigh(j)− j) and
• T∞[efull(i) . . efull(i) + 7τ) � T∞[elow(j) . . j + `)

(resp. T∞[efull(i) . . efull(i) + 7τ) � T∞[ehigh(j) . . j + 2`)).

Proof. As shown at the beginning of the proof of Lemma 6.27, for any i ∈ R−H , letting t =
e(j)− i− 3τ + 2, we have t > 0, [i . . i+ t) ⊆ R−H , and for any δ ∈ [0 . . t) it holds e(i+ δ) = e(i) and
efull(i+ δ) = efull(i), which in turn implies efull(i+ δ)− (i+ δ) = efull(i)− i− δ. Let s = head(j).
Recall that for any j′ ∈ Poslow

` (j) (resp. j′ ∈ Poshigh
` (j)), we have efull(j′)− j′ = s+ exp(j′)|H| =

s + k1|H| = elow(j) − j (resp. efull(j′) − j′ = s + exp(j′)|H| = s + k2|H| = ehigh(j) − j). Thus,
i+δ ∈ Poslow

` (j) (resp. i+δ ∈ Poshigh
` (j)) implies efull(i+δ)−(i+δ) = efull(i)−i−δ = elow(j)−j (resp.

efull(i+δ)−(i+δ) = efull(i)−i−δ = ehigh(j)−j), or equivalently, δ = (efull(i)−i)−(elow(j)−j) (resp.
δ = (efull(i)−i)−(ehigh(j)−j)), and thus |Poslow

` (j)∩[i . . i+t)| ≤ 1 (resp. |Poshigh
` (j)∩[i . . i+t)| ≤ 1).

Next, we prove the equivalence. Let us first assume |Poslow
` (j)∩ [i . . i+ t)| = 1 (resp. |Poshigh

` (j)∩
[i . . i+t)| = 1), i.e., that i+δ ∈ Poslow

` (j) (resp. i+δ ∈ Poshigh
` (j)) holds for some δ ∈ [0 . . t). Then, as

noted above, elow(j)−j = efull(i)− i−δ ≤ efull(i)− i. (resp. ehigh(j)−j = efull(i)− i−δ ≤ efull(i)− i)
holds. This establishes the first condition. To show the second condition, let s = head(j). By
k1 ≤ exp(j) (resp. k2 ≤ exp(j)), we have T [j . . elow(j)) = H ′Hk1 (resp. T [j . . ehigh(j)) = H ′Hk2),
where H ′ is a length-s prefix of H. On the other hand, by definition, i + δ ∈ Poslow

` (j) (resp.
i + δ ∈ Poshigh

` (j)) implies head(i + δ) = s and exp(i + δ) = k1 (resp. exp(i + δ) = k2). Thus,
T [i + δ . . efull(i + δ)) = T [i + δ . . efull(i)) = H ′Hk1 = T [j . . elow(j)) (resp. T [i + δ . . efull(i + δ)) =
T [i+ δ . . efull(i)) = H ′Hk2 = T [j . . ehigh(j))). Therefore, the assumption T [i+ δ . . n] � T [j . . n] or
LCET (i+δ, j) ≥ ` (resp. LCET (i+δ, j) ≥ 2`) following from i+δ ∈ Poslow

` (j) (resp. i+δ ∈ Poshigh
` (j))

is equivalent to T [efull(i) . . n] � T [elow(j) . . n] (resp. T [efull(i) . . n] � T [ehigh(j) . . n]) or LCET (i +
δ, j) = LCET (efull(i), elow(j)) ≥ `− (elow(j)− j) (resp. LCET (i+ δ, h) = LCET (efull(i), ehigh(j)) ≥
2`− (ehigh(j)− j)). We thus consider two cases:

• If LCET (efull(i), elow(j)) ≥ `− (elow(j)− j) (resp. LCET (efull(i), ehigh(j)) ≥ 2`− (ehigh(j)− j))
holds, then by the assumption ` ≤ 7τ (resp. 2` ≤ 7τ), we obtain T∞[efull(i) . . efull(i) + 7τ) �
T∞[efull(i) . . efull(i)+`− (elow(j)−j)) = T∞[elow(j) . . j+`) (resp. T∞[efull(i) . . efull(i)+7τ) �
T∞[efull(i) . . efull(i) + 2`− (ehigh(j)− j)) = T∞[ehigh(j) . . j + 2`)).

• On the other hand, if T [efull(i) . . n] � T [elow(j) . . n] (resp. T [efull(i) . . n] � T [ehigh(j) . . n])
holds, then T [n] being smallest in T implies T∞[efull(i) . . efull(i)+q) � T∞[elow(j) . . elow(j)+q)
(resp. T∞[efull(i) . . efull(i) + q) � T∞[ehigh(j) . . ehigh(j) + q)) for any q ≥ 0. In particular, for
q = 7τ we have T∞[efull(i) . . efull(i) + 7τ) � T∞[elow(j) . . elow(j) + 7τ) � T∞[elow(j) . . j + `)
(resp. T∞[efull(i) . . efull(i) + 7τ) � T∞[ehigh(j) . . ehigh(j) + 7τ) � T∞[ehigh(j) . . j + 2`)), where
the last inequality follows by j + ` ≤ elow(j) + 7τ (resp. j + 2` ≤ ehigh(j) + 7τ).

To prove the opposite implication, assume efull(i)−i ≥ elow(j)−j (resp. efull(i)−i ≥ ehigh(j)−j) and
T∞[efull(i) . . efull(i) + 7τ) � T∞[elow(j) . . j + `) (resp. T∞[efull(i) . . efull(i) + 7τ) � T∞[ehigh(j) . . j +
2`)). Let δ = (efull(i)− i)− (elow(j)− j) (resp. δ = (efull(i)− i)− (ehigh(j)− j)). We will prove that
δ ∈ [0 . . t) and i + δ ∈ Poslow

` (j) (resp. i + δ ∈ Poshigh
` (j)). The inequality δ ≥ 0 follows from the

definition of δ and our assumptions. To show δ < t, we consider two cases:

• Let e(j) − j < ` (resp. e(j) − j < 2`). We start by noting k1 = min(exp(j), b `−s|H| c) =
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min(b e(j)−j−s|H| c, b
`−s
|H| c) = b e(j)−j−s|H| c = exp(j) (resp. k2 = exp(j)). Thus, elow(j) = j + s +

k1|H| = j+s+exp(j)|H| = efull(j) (resp. ehigh(j) = j+s+k2|H| = j+s+exp(j)|H| = efull(j)).
Let q = e(i) − efull(i). Using the same argument as in the proof of Lemma 6.27 (when
considering the two cases for the value e(j)− j), we obtain that assuming q < e(j)− efull(j)
implies T [efull(i) . . efull(i)+q] ≺ T [efull(j) . . efull(j)+q]. By q < e(j)−efull(j) < j+`−efull(j) =
j+`−elow(j) ≤ ` ≤ 7τ (resp. q < e(j)−efull(j) < j+2`−efull(j) = j+2`−ehigh(j) ≤ 2` ≤ 7τ),
this implies T∞[efull(i) . . efull(i) + 7τ) ≺ T∞[elow(j) . . j + `) (resp. T∞[efull(i) . . efull(i) + 7τ) ≺
T∞[ehigh(j) . . j+2`)), contradicting our assumption. Thus, it holds e(i)−efull(i) ≥ e(j)−efull(j)
and hence using the same chain of inequalities as in the proof of Lemma 6.27 with ehigh(j)
replaced by elow(j) (resp. without any change), we obtain e(i)− (i+δ) ≥ 3τ−1, or equivalently,
δ ≤ e(i)− i− 3τ + 1 < t.

• Let e(j)− j ≥ ` (resp. e(j)− j ≥ 2`). Denote q = e(i)− efull(i). Using the same argument as
in the proof Lemma 6.27 (when considering the two cases for the value e(j)− j), we obtain
that assuming q < j+ `− elow(j) (resp. q < j+ 2`− ehigh(j)), it holds T [efull(i) . . efull(i) + q] ≺
T [elow(j) . . elow(j)+q] (resp. T [efull(i) . . efull(i)+q] ≺ T [ehigh(j) . . ehigh(j)+q]). By q < j+`−
elow(j) ≤ ` ≤ 7τ (resp. q < j+2`−ehigh(j) ≤ 2` ≤ 7τ), this implies T∞[efull(i) . . efull(i)+7τ) ≺
T∞[elow(j) . . j+ `) (resp. T∞[efull(i) . . efull(i) + 7τ) ≺ T∞[ehigh(j) . . j+ 2`)), contradicting our
assumption. Thus, e(i)− efull(i) ≥ j + `− elow(j) (resp. e(i)− efull(i) ≥ j + 2`− ehigh(j)) and
hence using the same chain of inequalities as in the proof of Lemma 6.27 with ehigh(j) replaced
by elow(j) and 2` replaced by ` (resp. without any change), we obtain e(i)− (i+ δ) ≥ 3τ − 1,
or equivalently, δ ≤ e(i)− i− 3τ + 1 < t.

It remains to show i + δ ∈ Poslow
` (j) (resp. i + δ ∈ Poshigh

` (j)). For this, we first observe that
efull(i+ δ)− (i+ δ) = efull(i)− (i+ δ) = elow(j)− j (resp. efull(i+ δ)− (i+ δ) = efull(i)− (i+ δ) =
ehigh(j) − j). Combining this with i + δ, j ∈ RH gives T [i + δ . . efull(i + δ)) = T [j . . elow(j))
(resp. T [i + δ . . efull(i + δ)) = T [j . . ehigh(j))). This implies head(i + δ) = head(j) and exp(i +
δ) = b(elow(j) − j)/|H|c = k1 (resp. exp(i + δ) = b(ehigh(j) − j)/|H|c = k2). Moreover, by
Lemma 6.19, type(i + δ) = type(i) = −1. Thus, we obtain i + δ ∈ R−s,H . It remains to show
that it holds T [i + δ . . n] � T [j . . n] or LCET (i + δ, j) ≥ ` (resp. LCET (i + δ, j) ≥ 2`). For
this, we first note that by efull(i + δ) = efull(i) and T [i + δ . . efull(i + δ)) = T [j . . elow(j)) (resp.
T [i+ δ . . efull(i+ δ)) = T [j . . ehigh(j))), we have LCET (i+ δ, j) = elow(j)− j+ LCET (efull(i), elow(j))
(resp. LCET (i+ δ, j) = ehigh(j)− j + LCET (efull(i), ehigh(j))). Let q′ = LCET (efull(i), elow(j)) (resp.
q′ = LCET (efull(i), ehigh(j))). We consider three cases:

1. First, if q′ ≥ `− (elow(j)− j) (resp. q′ ≥ 2`− (ehigh(j)− j)), then we obtain LCET (i+ δ, j) =
elow(j)− j + q′ ≥ ` (resp. LCET (i+ δ, j) = ehigh(j)− j + q′ ≥ 2`).

2. Second, if q′ < `−(elow(j)−j) (resp. q′ < 2`−(ehigh(j)−j)) and max(efull(i)+q′, elow(j)+q′) =
n + 1 (resp. max(efull(i) + q′, ehigh(j) + q′) = n + 1), then T [n] = $ being unique in T gives
efull(i) = elow(j) (resp. efull(i) = ehigh(j)), and hence T [i+ δ . . n] = T [j . . n].

3. Finally, if q′ < `−(elow(j)−j) (resp. q′ < 2`−(ehigh(j)−j)) and max(efull(i)+q′, elow(j)+q′) ≤ n
(resp. max(efull(i)+q′, ehigh(j)+q′) ≤ n), then by T∞[efull(i) . . efull(i)+7τ) � T∞[elow(j) . . j+`)
(resp. T∞[efull(i) . . efull(i)+7τ) � T∞[ehigh(j) . . j+2`)), it holds T [efull(i)+q′] � T [elow(j)+q′]
(resp. T [efull(i) + q′] � T [ehigh(j) + q′]) and hence T [i+ δ . . n] � T [j . . n].

Proposition 6.37. Under Assumption 6.21, given any position j ∈ R−, we can in O(t) time compute
δlow
` (j) and δhigh

` (j).
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Proof. By Lemma 6.36, in order to compute δlow
` (j) (resp. δhigh

` (j)) given j ∈ R−H , it suffices to count
the all positions i ∈ R′−H that satisfy efull(i)− i ≥ elow(j)− j (resp. efull(i)− i ≥ ehigh(j)− j) and
T∞[efull(i) . . efull(i) + 7τ) � T∞[elow(j) . . j + `) (resp. T∞[efull(i) . . efull(i) + 7τ) � T∞[ehigh(j) . . j +
2`)). The latter task is equivalent to the generalized orthogonal range counting queries (Section 4)
on a set of points PH ⊆ X × Y (with X = Z≥0 and Y = Σ∗) containing the value efull(i)− i on the
X -coordinate and the string T∞[efull(i) . . efull(i) + 7τ) on the Y-coordinate for every i ∈ R′−H .

Given any position j ∈ R−, we compute δlow
` (j) and δhigh

` (j) as follows. First, using Assump-
tion 6.21 we compute values s = head(j), p = |root(j)|, and e(j) in O(t) time. Note, that then
root(j) = T [j + s . . j + s + p), i.e., we have a starting position of an occurrence of H := root(j)

in T . We then calculate k = exp(j) = b e(j)−sp c in O(1) time. Using those values, we further
calculate k1 = expcut(j, `) = min(k, b `−sp c), k2 = expcut(j, 2`) = min(k, b2`−s

p c), e
low(j) = s + k1p,

and ehigh(j) = s+ k2p. By Lemma 6.36 and the definition of PH , we now have

δlow
` (j) = r-countPH (elow(j)− j, n, c∞)− r-countPH (elow(j)− j, n, T∞[elow(j) . . j + `)) and

δhigh
` (j) = r-countPH (ehigh(j)− j, n, c∞)− r-countPH (ehigh(j)− j, n, T∞[ehigh(j) . . j + 2`)),

which by Assumption 6.21 we can compute in O(t) time using the query defined by Item 1 of
Problem 4.5, first with the query arguments (i, x, qr) = (elow(j), elow(j)− j, j + `− elow(j)) and then
with arguments (i, x, qr) = (ehigh(j), ehigh(j) − j, j + 2` − ehigh(j)). To check that all arguments
satisfy the requirements of Problem 4.5, recall that ` < n. Thus, qr ≤ 2` < 2n. On the other hand,
elow(j)− j ≤ e(j)− j < n and ehigh(j)− j ≤ e(j)− j < n hold by T [n] = $.

Proposition 6.38. Let j ∈ R−. Under Assumption 6.21, given any position j′ ∈ Occ`(j) (resp.
j′ ∈ Occ2`(j)), we can in O(t) time compute δlow

` (j) (resp. δhigh
` (j)).

Proof. The main idea of the query is as follows. The algorithm in the proof of Proposition 6.37 needs
s = head(j), p = |root(j)|, the value elow(j)−j (resp. ehigh(j)−j), some position x ∈ [1 . . n] such that
T∞[elow(j) . . j + `) = T∞[x . . x+ j + `− elow(j)) (resp. T∞[ehigh(j) . . j + 2`) = T∞[x . . x+ j + 2`−
ehigh(j))), and some position r ∈ [1 . . n] such that root(j) = T [r . . r+p). By Item 1 of Lemma 6.24, we
have head(j′) = head(j) and root(j′) = root(j). This implies that we can determine s, p, and position
r using j′. On the other hand, to determine elow(j)−j (resp. ehigh(j)−j) and the position x we utilize
that by Items 2 and 3 of Lemma 6.24 it holds elow(j)−j = elow(j′)−j′ (resp. ehigh(j)−j = ehigh(j′)−j′)
and position x = elow(j′) (resp. x = ehigh(j′)) satisfies T∞[x . . x+j+`−elow(j)) = T∞[elow(j) . . j+`)
(resp. T∞[x . . x+ j + 2`− ehigh(j)) = T∞[ehigh(j) . . j + 2`)).

Given any j′ ∈ Occ`(j) (resp. j′ ∈ Occ2`(j)), we compute δlow
` (j) (resp. δhigh

` (j)) as follows. First,
using Assumption 6.21 we compute values s = head(j′) = head(j), p = |root(j′)| = |root(j)|, and
e(j′) in O(t) time. Note, that then the position r = j′+s satisfies root(j) = T [r . . r+p), i.e., we have
a starting position of an occurrence of H := root(j′) = root(j) in T . We then calculate k = exp(j′) =

b e(j
′)−s
p c in O(1) time. Using those values, we further calculate k1 := expcut(j′, `) = min(k, b `−sp c)

(resp. k2 := expcut(j′, 2`) = min(k, b2`−s
p c)) and e

low(j′)− j′ = s+k1p (resp. ehigh(j′)− j′ = s+k2p).
Finally, as in the proof of Proposition 6.37, we obtain

δlow
` (j) = r-countPH (elow(j)− j, n, c∞)− r-countPH (elow(j)− j, n, T∞[elow(j) . . j + `))

= r-countPH (elow(j′)− j′, n, c∞)− r-countPH (elow(j′)− j′, n, T∞[elow(j′) . . j′ + `))
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(resp. δhigh
` (j) = r-countPH (ehigh(j)− j, n, c∞)− r-countPH (ehigh(j)− j, n, T∞[ehigh(j) . . j + 2`)) =

r-countPH (ehigh(j′) − j′, n, c∞) − r-countPH (ehigh(j′) − j′, n, T∞[ehigh(j′) . . j′ + 2`))) in O(t) time,
by using the query defined by Item 1 of Problem 4.5 with the query arguments (i, x, qr) =
(elow(j′), elow(j′)−j′, j′+`−elow(j′)) (resp. (i, x, qr) = (ehigh(j′), ehigh(j′)−j′, j′+2`−ehigh(j′))). The
arguments satisfy the requirements of Problem 4.5 by the same logic as in the proof of Proposition 6.37.
In total, the query takes O(t) time.

Remark 6.39. Although it may seem that Proposition 6.38 can be simplified by proving that for
any j′ ∈ Occ`(j) (resp. j′ ∈ Occ2`(j)) it holds Poslow

` (j′) = Poslow
` (j) (resp. Poshigh

` (j′) = Poshigh
` (j))

and it suffices to use Proposition 6.37 on position j′, this does not hold. The problem occurs
when e(j) − j ≥ ` (resp. e(j) − j ≥ 2`). Then, it may hold type(j′) = +1 and Poslow

` (j) 6=
Poslow

` (j′) (Poshigh
` (j) 6= Poshigh

` (j′)), where Poslow
` (j) (resp. Poshigh

` (j)) is generalized to j satisfying
type(j) = +1 as shown in the proof of Proposition 6.53. We shall later see that in our application of
Proposition 6.38 it is not possible to guarantee type(j′) = −1 when type(j) = −1, and the current
form of Proposition 6.38, in which we do not assume type(j′), is in fact necessary.

6.3.6 Computing the Exponent

Assume that i ∈ [1 . . n] satisfies SA[i] ∈ R− (positions i ∈ [1 . . n] satisfying SA[i] ∈ R+ are processed
symmetrically; see the proof of Proposition 6.53). In this section, we show that under Assumption 6.21,
given the index i along with values RangeBeg`(SA[i]), RangeEnd`(SA[i]), δlow

` (SA[i]), and some
position j ∈ Occ`(SA[i]), we can efficiently compute exp(SA[i]).

The section is organized as follows. Given the input parameters as described above, our query
algorithm first checks if it holds SA[i] ∈ Poslow

` (SA[i]). To implement such check, we first present a
combinatorial result proving that Poslow

` (SA[i]) occupies a contiguous block of positions in SA and
showing what are the endpoints of this block (Lemma 6.40). We then use this characterization to
develop an efficient method of checking if SA[i] ∈ Poslow

` (SA[i]) holds (Corollary 6.42). By definition
of Poslow

` (SA[i]), if SA[i] ∈ Poslow
` (SA[i]), then exp(SA[i]) = expcut(SA[i], `), which by Lemma 6.24 is

equal to expcut(j, `). Thus, the main difficulty is to compute exp(SA[i]) when SA[i] 6∈ Poslow
` (SA[i]).

In Lemma 6.43 we show that in such case the computation of exp(SA[i]) can be reduced to modular
constraint queries (see Section 5). We finally put everything together in Proposition 6.44 to obtain a
general query algorithm for computing exp(SA[i]).

Lemma 6.40. Let i ∈ [1 . . n] be such that SA[i] ∈ R−. Denote b = RangeBeg`(SA[i]) and e =
b+ δlow

` (SA[i]). Then, it holds Poslow
` (SA[i]) = {SA[i] : i ∈ (b . . e]}.

Proof. The proof consists of two steps. First, we show that Poslow
` (SA[i]) ⊆ {SA[i] : i ∈ (b . . n]}.

Then, we show that for i′ ∈ (b+1 . . n], SA[i′]∈Poslow
` (SA[i]) implies SA[i′−1]∈Poslow

` (SA[i]). This
proves that Poslow

` (SA[i]) = {SA[i] : i ∈ (b . . e]}, where e = b+ |Poslow
` (SA[i])| = b+ δlow

` (SA[i]), i.e.,
the claim.

By SA[i] ∈ Occ`(SA[i]), the range (RangeBeg`(SA[i]) . .RangeEnd`(SA[i])] is nonempty. In
particular, SA[b + 1] ∈ Occ`(SA[i]), i.e., T∞[SA[b + 1] . .SA[b + 1] + `) = T∞[SA[i] . .SA[i] +
`). Let i′ ∈ [1 . . b] and denote j′ = SA[i′]. The condition i′ 6∈ (b . .RangeEnd`(SA[i])] implies
T∞[j′ . . j′ + `) 6= T∞[SA[i] . .SA[i] + `). On the other hand, by definition of lexicographical order,
i′ < b + 1 implies T∞[j′ . . j′ + `) � T∞[SA[b + 1] . .SA[b + 1] + `) = T∞[SA[i] . .SA[i] + `). Thus,
we must have T∞[j′ . . j′ + `) ≺ T∞[SA[i] . .SA[i] + `). Let now i′′ ∈ [1 . . n] be such that for
j′′ = SA[i′′] it holds j′′ ∈ Poslow

` (SA[i]). By definition of Poslow
` (SA[i]), this implies T [j′′ . . n] �
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T [SA[i] . . n] or LCET (SA[i], j′′) ≥ `. By Item 2 in Lemma 6.7 this is equivalent to T∞[j′′ . . j′′+`′′) �
T∞[SA[i] . .SA[i] + `) for any `′′ ≥ `. In particular, T∞[j′′ . . j′′ + `) � T∞[SA[i] . .SA[i] + `). We
have thus proved that T∞[j′ . . j′ + `) ≺ T∞[SA[i] . .SA[i] + `) � T∞[j′′ . . j′′ + `). In particular,
T [j′ . . j′+ `) ≺ T [j′′ . . j′′+ `), and hence i′ < i′′. Since i′ was an arbitrary element of [1 . . b], we thus
obtain Poslow

` (SA[i]) ⊆ {SA[i] : i ∈ (b . . n]}.
Assume now that for some i′ ∈ (b+ 1 . . n] it holds SA[i′] ∈ Poslow

` (SA[i]). We will show that this
implies SA[i′ − 1] ∈ Poslow

` (SA[i]). Let s = head(SA[i]) and H = root(SA[i]).

• First, observe that by b+ 1 ≤ i′ − 1, the fact that SA[b+ 1] ∈ Occ`(SA[i]) (see above), and
the definition of the lexicographical order, we obtain T∞[SA[i] . .SA[i] + `) = T∞[SA[b +
1] . .SA[b + 1] + `) � T∞[SA[i′ − 1] . .SA[i′ − 1] + `). By Item 2 of Lemma 6.7, this implies
that T [SA[i′ − 1] . . n] � T [SA[i] . . n] or LCET (SA[i′ − 1], SA[i]) ≥ `.

• Second, by SA[b + 1] ∈ Occ`(SA[i]) and Item 1 of Lemma 6.24, we have SA[b + 1] ∈ Rs,H .
Furthermore, by b+ 1 < i′, type(SA[i′]) = −1, and Lemma 6.18, it holds type(SA[b+ 1]) = −1.
Thus, SA[b+1] ∈ R−s,H . On the other hand, by definition of Poslow

` (SA[i]), SA[i′] ∈ Poslow
` (SA[i])

implies SA[i] ∈ R−s,H . Thus, since by Lemma 6.18 the positions in R−s,H occupy a contiguous
block in SA and b+ 1 ≤ i′ − 1 < i′, it holds SA[i′ − 1] ∈ R−s,H .

• Denote k1 = expcut(SA[i], `). Applying Lemma 6.18, we obtain from i′ − 1 < i′ and SA[i′] ∈
Poslow

` (SA[i]) that exp(SA[i′ − 1]) ≤ exp(SA[i′]) = k1. On the other hand, by SA[b + 1] ∈
Occ`(SA[i]) and Items 1 and 2 of Lemma 6.24, it holds head(SA[b+1]) = s, root(SA[b+1]) = H,
and elow(SA[b+ 1])− SA[b+ 1] = elow(SA[i])− SA[i]. Consequently,

expcut(SA[b+ 1], `) =

⌊
elow(SA[b+ 1])− SA[b+ 1]− s

|root(SA[b+ 1])|

⌋
=

⌊
elow(SA[i])− SA[i]− s

|root(SA[i])|

⌋
= expcut(SA[i], `).

Therefore, utilizing one last time Lemma 6.18 for SA[b + 1] and SA[i′ − 1] we obtain from
b+ 1 ≤ i′ − 1 that k1 = expcut(SA[b+ 1], `) ≤ exp(SA[b+ 1]) ≤ exp(SA[i′ − 1]). Combining
with the earlier bound exp(SA[i′ − 1]) ≤ k1, this implies exp(SA[i′ − 1]) = k1.

Combining the above three conditions yields (by definition) SA[i′ − 1] ∈ Poslow
` (SA[i]).

Remark 6.41. By the above characterization, the set Poslow
` (SA[i]) occurs as a contiguous block of

position in SA starting at index RangeBeg`(SA[i]). Note, that the set Occ`(SA[i]) has the same
property. These two sets should not be confused, however, and they are not equal, nor one is always
a subset of the other.

Corollary 6.42. For any i ∈ [1 . . n] such that SA[i] ∈ R−, SA[i] ∈ Poslow
` (SA[i]) holds if and only

if i− RangeBeg`(SA[i]) ≤ δlow
` (SA[i]).

Proof. Assume SA[i] ∈ Poslow
` (SA[i]). By Lemma 6.40, we then must have i ∈ (b . . e], where

b = RangeBeg`(SA[i]) and e = b+δlow
` (SA[i]). In particular, i ≤ e = RangeBeg`(SA[i])+δlow

` (SA[i]).
Assume now i − RangeBeg`(SA[i]) ≤ δlow

` (SA[i]). Let b = RangeBeg`(SA[i]) and e = b +
δlow
` (SA[i]). Then, i ≤ e. On the other hand, by definition of the set Occ`(SA[i]), we have
i ∈ (RangeBeg`(SA[i]) . .RangeEnd`(SA[i])]. In particular, i > RangeBeg`(SA[i]) = b. Therefore,
we obtain i ∈ (b . . e]. By Lemma 6.40, this implies SA[i] ∈ Poslow

` (SA[i]).
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Lemma 6.43. Assume that i ∈ [1 . . n] is such that SA[i] ∈ R−H (where H ∈ Roots) and SA[i] 6∈
Poslow

` (SA[i]). Denote I = I−H (Definition 6.20), s= head(SA[i]), p = |H|, k1 = expcut(SA[i], `),
c = mod-countI(p, s, k1), and i′ = RangeBeg`(SA[i]) + δlow

` (SA[i]). Then, it holds exp(SA[i]) =
mod-selectI(p, s, c+ (i− i′)).

Proof. For any k ≥ k1, denote Pk = {j′ ∈ R−s,H : exp(j′) ∈ (k1 . . k]} and let mk = |Pk|. Our proof
consists of two parts.

1. We start by showing that for any k ≥ k1, it holds Pk = {SA[i′′] : i′′ ∈ (i′ . . i′ +mk]}. We will
show this in two substeps. First, we will prove that for any i′′ ∈ [1 . . n] satisfying SA[i′′] ∈ Pk,
it holds i′′ ∈ (i′ . . n]. Second, we show that for any i′′ ∈ (i′ + 1 . . n], SA[i′′] ∈ Pk implies
SA[i′′ − 1] ∈ Pk. These two facts immediately imply the claim.

• Let i′′ ∈ [1 . . n] be such that SA[i′′] ∈ Pk. Since Pk1 = ∅, this implies k > k1. Note
that SA[i] satisfies all the conditions in the definition of Poslow

` (SA[i]), except possibly
exp(SA[i]) = k1. Thus, SA[i] 6∈ Poslow

` (SA[i]) implies exp(SA[i]) 6= expcut(SA[i], `). By
expcut(SA[i], `) = min(exp(SA[i]), b `−s|H| c) ≤ exp(SA[i]), we then must have k1 = b `−s|H| c
and expcut(SA[i], `) < exp(SA[i]). Then, the string H ′Hk1+1 (where H ′ is a length-s
prefix of H) is a prefix of T [SA[i] . . n]. But since |H ′Hk1+1| ≥ `, we also obtain that
T∞[SA[i] . .SA[i] + `) is a prefix of H ′Hk1+1. Similarly, SA[i′′] ∈ R−s,H and exp(SA[i′′]) >

k1 imply that T∞[SA[i′′] . .SA[i′′] + `) is a prefix of H ′Hk1+1. Therefore, SA[i′′] ∈
Occ`(SA[i]) and, consequently, i′′ > RangeBeg`(SA[i]). Moreover, since by Lemma 6.40,
Poslow

` (SA[i]) = {SA[j] : j ∈ (RangeBeg`(SA[i]) . .RangeBeg`(SA[i]) + δlow
` (SA[i])]} and

SA[i′′] 6∈ Poslow
` (SA[i]), we must have i′′ > RangeBeg`(SA[i]) + δlow

` (SA[i]) = i′, or
equivalently, i′′ ∈ (i′ . . n].

• Assume now that for some i′′ ∈ (i′ + 1 . . n] it holds SA[i′′] ∈ Pk. We will show that this
implies SA[i′′ − 1] ∈ Pk. As observed above, if SA[i′′] ∈ Pk for k > k1, then SA[i′′] ∈
Occ`(SA[i]). Thus, i′′ − 1 < RangeEnd`(SA[i]). On the other hand, RangeBeg`(SA[i]) ≤
i′ < i′′−1. Consequently, RangeBeg`(SA[i]) < i′′−1 ≤ RangeEnd`(SA[i]), or equivalently,
SA[i′′− 1] ∈ Occ`(SA[i]). By Items 1 and 2 of Lemma 6.24, this implies SA[i′′− 1] ∈ R−s,H
and k1 = expcut(SA[i], `) = expcut(SA[i′′−1], `) ≤ exp(SA[i′′−1]). To obtain SA[i′′−1] ∈
Pk it thus remains to show exp(SA[i′′−1]) 6= k1. This follows by SA[i′′−1] 6∈ Poslow

` (SA[i])
(which holds since i′ < i′′ − 1 and by Lemma 6.40 Poslow

` (SA[i]) ⊆ {SA[j] : j ∈ [1 . . i′]})
because SA[i′′− 1] being in Occ`(SA[i]) implies that it satisfies all other conditions in the
definition of Poslow

` (SA[i]).

2. We can now show exp(SA[i]) = mod-selectI(p, s, c + (i − i′)). Denote k = exp(SA[i]). As
noted above SA[i] 6∈ Poslow

` (SA[i]) implies k1 < k. By definition of Pk−1 and Pk, we have
SA[i] ∈ Pk \ Pk−1. From Item 1, we have Pk−1 = {SA[i′′] : i′′ ∈ (i′ . . i′ + mk−1]} and
Pk = {SA[i′′] : i′′ ∈ (i′ . . i′ + mk]}. Therefore, i ∈ (i′ + mk−1 . . i

′ + mk]. On the other
hand, by Lemma 6.30, mk−1 = mod-countI(p, s, k − 1)− c and mk = mod-countI(p, s, k)− c.
Therefore, i ∈ (i′ + mod-countI(p, s, k − 1)− c . . i′ + mod-countI(p, s, k)− c], or equivalently,
c+ (i− i′) ∈ (mod-countI(p, s, k − 1) . .mod-countI(p, s, k)]. By definition of the select query,
this implies k = mod-selectI(p, s, c+ (i− i′)). Since we defined k = exp(SA[i]), we obtain the
main claim.

Proposition 6.44. Let i ∈ [1 . . n] be such that SA[i] ∈ R−. Under Assumption 6.21, given the values
i, RangeBeg`(SA[i]), RangeEnd`(SA[i]), δlow

` (SA[i]), and some j ∈ Occ`(SA[i]), we can compute
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exp(SA[i]) in O(t) time.

Proof. The main idea of the algorithm is as follows. The query algorithm first tests if SA[i] ∈
Poslow

` (SA[i]) holds. By Corollary 6.42 such test can be performed quickly given the values i,
RangeBeg`(SA[i]), and δlow

` (SA[i]), which are all given as input. The rest of the query algorithm
depends on this test. If SA[i] ∈ Poslow

` (SA[i]), then by definition of Poslow
` (SA[i]) and Lemma 6.24

(see below for details) we immediately obtain exp(SA[i]) = expcut(SA[i], `) = expcut(j, `). If
SA[i] 6∈ Poslow

` (SA[i]), then exp(SA[i]) is determined according to Lemma 6.43, and it is computed
using the modular constraint queries on the set of intervals I = I−H (where H = root(SA[i])), which
are supported under Assumption 6.21.

Given any index i ∈ [1 . . n] such that SA[i] ∈ R−, along with values RangeBeg`(SA[i]), δlow
` (SA[i]),

and some j ∈ Occ`(SA[i]), we compute exp(SA[i]) as follows. First, using Assumption 6.21 we
compute values s = head(j) = head(SA[i]), p = |root(j)| = |root(SA[i])|, and e(j) in O(t) time.
Note, that then the position r = j + s satisfies root(SA[i]) = T [r . . r + p), i.e., we have a starting
position of an occurrence of H := root(j) = root(SA[i]) in T . Denote I := I−H (see Definition 6.20).
We then calculate k = exp(j) = b e(j)−sp c in O(1) time. Using those values, we further calculate
k1 := min(k, b `−sp c) = expcut(j, `) = expcut(SA[i], `) (the last equality follows by j ∈ Occ`(SA[i])

and Items 1 and 2 of Lemma 6.24). Next, in O(1) time we determine if SA[i] ∈ Poslow
` (SA[i]).

By Corollary 6.42, SA[i] ∈ Poshigh
` (SA[i]) holds if and only if i ≤ RangeBeg`(SA[i]) + δlow

` (SA[i]).
Consider two cases:

• Assume i ≤ RangeBeg`(SA[i]) + δlow
` (SA[i]) (i.e., SA[i] ∈ Poslow

` (SA[i])). Then, by definition
of Poslow

` (SA[i]), we have exp(SA[i]) = k1.
• Assume now i > RangeBeg`(SA[i]) + δlow

` (SA[i]) (i.e., SA[i] 6∈ Poslow
` (SA[i])). First, using a

modular constraint counting query (Section 5) we compute the value c = mod-countI(p, s, k1).
By Assumption 6.21, this takes O(t) time. Next, we compute i′ = RangeBeg`(SA[i]) +
δlow
` (SA[i]) in O(1) time. Finally, using a modular constraint selection query (Section 5) we
compute r = mod-selectI(p, s, c+ (i− i′)). By Assumption 6.21, this takes O(t) time and by
Lemma 6.43, we then have exp(SA[i]) = r.

6.3.7 Computing the Size of Posmid
` (j)

In this section, we show that under Assumption 6.21, we can efficiently compute δmid
` (j) = |Posmid

` (j)|
for any j ∈ R− (j ∈ R+ can be processed symmetrically; see Proposition 6.53).

The section is organized as follows. We first develop an algorithm that takes the position j as
input and returns δmid

` (j) (Proposition 6.45). We then prove (Proposition 6.46) that the computation
of δmid

` (j) does not actually need the value of j, but it is sufficient to only know exp(j) and some
j′ ∈ Occ`(j).

Proposition 6.45. Under Assumption 6.21, given any position j ∈ R−, we can in O(t) time compute
δmid
` (j).

Proof. The main idea of the query is as follows. By Lemma 6.30, we can reduce the computation of
|Posmid

` (j) ∩ [i . . i+ t)}|, where i ∈ R−, root(i) = root(j), and t = e(i)− i− 3τ + 2, to two modular
constraint counting queries. Observe that if additionally, i ∈ R′, then this interval [i . . i + t) is
a maximal interval of positions in R, i.e., i − 1, i + t 6∈ R. Thus, letting I−H be the collection of
weighted intervals (with weights corresponding to multiplicities) constructed as in Definition 6.20
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for all i ∈ R′− satisfying root(i) = root(j), we can compute δmid
` (j) using the general (weighted)

modular constraint counting queries (Section 5) on I−H .
Given any j ∈ R−, we compute δmid

` (j) as follows. First, using Assumption 6.21 we compute
values s = head(j), p = |root(j)|, and e(j) in O(t) time. Note, that then the position r = j + s
satisfies root(j) = T [r . . r + p), i.e., we have a starting position of an occurrence of H := root(j) in
T . We then calculate k = exp(j) = b e(j)−sp c in O(1) time. Using those values, we further calculate
k1 := expcut(j, `) = min(k, b `−sp c) and k2 := expcut(j, 2`) = min(k, b2`−s

p c). By Lemma 6.30 we then
obtain

δmid
` (j) = mod-countI−H (p, s, k2)−mod-countI−H (p, s, k1)

which by Assumption 6.21 we can compute in O(t) time. In total, the query takes O(t) time.

Proposition 6.46. Let j ∈ R−. Under Assumption 6.21, given some position j′ ∈ Occ`(j), and the
value exp(j), we can in O(t) time compute δmid

` (j).

Proof. The main idea is as follows. The algorithm in the proof of Proposition 6.45 needs s = head(j),
p = |root(j)|, k = exp(j), and some r ∈ [1 . . n] such that root(j) = T [r . . r + p). By Item 1 of
Lemma 6.24, for j′ ∈ Occ`(j), we have head(j′) = head(j) and root(j′) = root(j). This implies that
we can determine s, p, and r from j′. The remaining information needed during the query (exp(j))
is given as input.

Given some j′ ∈ Occ`(j) and the value k = exp(j) as input, we compute δmid
` (j) as follows. First,

using Assumption 6.21 we compute s = head(j′) = head(j) and p = |root(j′)| = |root(j)| in O(t)
time. Note, that then the position r = j′ + s satisfies root(j) = T [r . . r + p), i.e., we have a starting
position of an occurrence of H := root(j) = root(j′) in T . Using those values, we further calculate
k1 := expcut(j, `) = min(k, b `−sp c) and k2 := expcut(j, 2`) = min(k, b2`−s

p c). Finally, as in the proof
of Proposition 6.45, we obtain δmid

` (j) = mod-countI−H (p, s, k2) − mod-countI−H (p, s, k1), which by
Assumption 6.21 we can compute in O(t) time.

6.3.8 Computing a Position in Occ2`(SA[i])

Assume that i ∈ [1 . . n] satisfies SA[i] ∈ R− (i ∈ [1 . . n] satisfying SA[i] ∈ R+ are processed
symmetrically; see the proof of Proposition 6.53). In this section, we show how under Assumption 6.21,
given i along with RangeBeg`(SA[i]), RangeEnd`(SA[i]), δlow

` (SA[i]), δmid
` (SA[i]), exp(SA[i]), and

some j ∈ Occ`(SA[i]), to efficiently compute some j′ ∈ Occ2`(SA[i]).
The section is organized as follows. Given the input parameters as described above, our query

algorithm first checks if it holds SA[i] ∈ Poshigh
` (SA[i]). To implement such check, we first present a

combinatorial result proving that Poshigh
` (SA[i]) occupies a contiguous block of positions in SA and

showing what are the endpoints of this block (Lemma 6.47). We then use this characterization to
develop an efficient method of checking if SA[i] ∈ Poshigh

` (SA[i]) holds (Corollary 6.49). In the next
two results (Lemmas 6.50 and 6.51), we show how in each of the two cases reduce the computation
of some position j′ ∈ Occ2`(SA[i]) to a generalized range selection query (see Section 4). We then
put everything together in Proposition 6.52.

Lemma 6.47. Let i ∈ [1 . . n] be such that SA[i] ∈ R−. Denote b = RangeBeg2`(SA[i]) and
e = b+ δhigh

` (SA[i]). Then, it holds Poshigh
` (SA[i]) = {SA[i] : i ∈ (b . . e]}.

44



Proof. The proof is analogous to the proof of Lemma 6.40. We will thus omit the parts that are
identical as in the proof of Lemma 6.47. First, we show that Poshigh

` (SA[i]) ⊆ {SA[i] : i ∈ (b . . n]}.
Then, we show that for i′ ∈ (b+1 . . n], SA[i′]∈Poshigh

` (SA[i]) implies SA[i′−1]∈Poshigh
` (SA[i]). This

proves that Poshigh
` (SA[i]) = {SA[i] : i ∈ (b . . e]}, where e = b+ |Poshigh

` (SA[i])| = b+ δhigh
` (SA[i]),

i.e., the claim.
By SA[i] ∈ Occ2`(SA[i]), the range (RangeBeg2`(SA[i]) . .RangeEnd2`(SA[i])] is nonempty. In

particular, SA[b+1] ∈ Occ2`(SA[i]), i.e., T∞[SA[b+1] . .SA[b+1]+2`) = T∞[SA[i] . .SA[i]+2`). Let
i′ ∈ [1 . . b] and denote j′ = SA[i′]. The condition i′ 6∈ (b . .RangeEnd2`(SA[i])] implies T∞[j′ . . j′ +
2`) 6= T∞[SA[i] . .SA[i] + 2`). On the other hand, by definition of lexicographical order, i′ < b+ 1
implies T∞[j′ . . j′ + 2`) � T∞[SA[b+ 1] . .SA[b+ 1] + 2`) = T∞[SA[i] . .SA[i] + 2`). Thus, we must
have T∞[j′ . . j′ + 2`) ≺ T∞[SA[i] . .SA[i] + 2`). Let now i′′ ∈ [1 . . n] be such that for j′′ = SA[i′′]

it holds j′′ ∈ Poshigh
` (SA[i]). By definition of Poshigh

` (SA[i]), this implies T [j′′ . . n] � T [SA[i] . . n]
or LCET (SA[i], j′′) ≥ 2`. By Item 2 in Lemma 6.7 this is equivalent to T∞[j′′ . . j′′ + `′′) �
T∞[SA[i] . .SA[i]+ 2`) for any `′′ ≥ 2`. In particular, T∞[j′′ . . j′′+2`) � T∞[SA[i] . .SA[i]+ 2`). We
have thus proved that T∞[j′ . . j′ + 2`) ≺ T∞[SA[i] . .SA[i] + 2`) � T∞[j′′ . . j′′ + 2`). In particular,
T [j′ . . j′ + 2`) ≺ T [j′′ . . j′′ + 2`), and hence i′ < i′′. Since i′ was an arbitrary element of [1 . . b], we
thus obtain Poshigh

` (SA[i]) ⊆ {SA[i] : i ∈ (b . . n]}.
Assume now that for some i′ ∈ (b + 1 . . n] it holds SA[i′] ∈ Poshigh

` (SA[i]). We will show that
this implies SA[i′ − 1] ∈ Poshigh

` (SA[i]). Let s = head(SA[i]) and H = root(SA[i]).

• First, observe that by b+ 1 ≤ i′ − 1, the fact that SA[b+ 1] ∈ Occ2`(SA[i]) (see above), and
the definition of the lexicographical order, we obtain T∞[SA[i] . .SA[i] + 2`) = T∞[SA[b +
1] . .SA[b+ 1] + 2`) � T∞[SA[i′ − 1] . .SA[i′ − 1] + 2`). By Item 2 of Lemma 6.7, this implies
that T [SA[i′ − 1] . . n] � T [SA[i] . . n] or LCET (SA[i′ − 1], SA[i]) ≥ 2`.

• Second, by SA[b + 1] ∈ Occ2`(SA[i]) and Item 1 of Lemma 6.24, we have SA[b + 1] ∈ Rs,H .
Thus, using the argument from the proof of Lemma 6.40, we have SA[i′ − 1] ∈ R−s,H .

• Denote k2 = expcut(SA[i], 2`). Applying Lemma 6.18, we obtain from i′ − 1 < i′ and
SA[i′] ∈ Poshigh

` (SA[i]) that exp(SA[i′ − 1]) ≤ exp(SA[i′]) = k2. On the other hand, by
SA[b + 1] ∈ Occ2`(SA[i]) and Items 1 and 2 of Lemma 6.24, it holds head(SA[b + 1]) = s,
root(SA[b+ 1]) = H, and ehigh(SA[b+ 1])− SA[b+ 1] = ehigh(SA[i])− SA[i]. Consequently,
(see the proof of Lemma 6.40), expcut(SA[b+ 1], 2`) = expcut(SA[i], 2`). Therefore, utilizing
one last time Lemma 6.18 for SA[b + 1] and SA[i′ − 1] we obtain from b + 1 ≤ i′ − 1 that
k2 = expcut(SA[b + 1], 2`) ≤ exp(SA[b + 1]) ≤ exp(SA[i′ − 1]). Combining with the earlier
bound exp(SA[i′ − 1]) ≤ k2, this implies exp(SA[i′ − 1]) = k2.

Combining the above three conditions yields (by definition) SA[i′ − 1] ∈ Poshigh
` (SA[i]).

Remark 6.48. Similarly as for Poslow
` (SA[i]) (see Lemma 6.40), by the above characterization, the set

Poshigh
` (SA[i]) occurs as a contiguous block of position in SA starting at index RangeBeg2`(SA[i]).

Note, that the set Occ2`(SA[i]) has the same property. These two sets should not be confused,
however, and they are not equal, nor one is always a subset of the other. We will, however, use
Poshigh

` (SA[i]) to infer about Occ2`(SA[i]). More precisely, to compute a position j ∈ Occ2`(SA[i]),
we will distinguish two cases: SA[i] ∈ Poshigh

` (SA[i]) and SA[i] 6∈ Poshigh
` (SA[i]). In the first case,

we will indeed locate and element of Occ2`(SA[i]) from Poshigh
` (SA[i]). We first, however, need to

develop an efficient test of whether SA[i] ∈ Poshigh
` (SA[i]) holds.
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Corollary 6.49. For any i ∈ [1 . . n] such that SA[i] ∈ R−, SA[i] ∈ Poshigh
` (SA[i]) holds if and only

if i− RangeBeg`(SA[i]) ≤ δlow
` (SA[i]) + δmid

` (SA[i]).

Proof. Assume SA[i] ∈ Poshigh
` (SA[i]). By Lemma 6.47, we then must have i ∈ (b . . e], where b =

RangeBeg2`(SA[i]) and e = b+δhigh
` (SA[i]). In particular, i ≤ e = RangeBeg2`(SA[i])+δhigh

` (SA[i]) =

RangeBeg`(SA[i]) + δ`(SA[i]) + δhigh
` (SA[i]) = RangeBeg`(SA[i]) + δlow

` (SA[i]) + δmid
` (SA[i]), where

the last equality follows by Lemma 6.23. This is equivalent to the claim.
Assume now i − RangeBeg`(SA[i]) ≤ δlow

` (SA[i]) + δmid
` (SA[i]). Let b = RangeBeg2`(SA[i])

and e = b + δhigh
` (SA[i]). Then, by Lemma 6.23, we equivalently have i ≤ RangeBeg`(SA[i]) +

δlow
` (SA[i]) + δmid

` (SA[i]) = RangeBeg2`(SA[i]) + δhigh
` (SA[i]) = e. On the other hand, by definition,

we have i ∈ (RangeBeg2`(SA[i]) . .RangeEnd2`(SA[i])]. In particular, i > RangeBeg2`(SA[i]) = b.
Therefore, we obtain i ∈ (b . . e]. By Lemma 6.47, this implies SA[i] ∈ Poshigh

` (SA[i]).

Lemma 6.50. Assume that i ∈ [1 . . n] is such that SA[i] ∈ R−H ∩ Poshigh
` (SA[i]), where H ∈

Roots. Let PH = {(efull(r), efull(r) − r) : r ∈ R′−H }, P = Points7τ (T,PH), d = δhigh
` (SA[i]),

x = ehigh(SA[i])− SA[i], m = r-countP(x, n), and e = RangeBeg`(SA[i]) + δlow
` (SA[i]) + δmid

` (SA[i]).
Then d ≤ m. Moreover:

1. For δ ∈ [0 . . d), any position p ∈ r-selectP(x, n,m − δ) satisfies T∞[p − x . . p − x + 2`) =
T∞[SA[e− δ] . .SA[e− δ] + 2`).

2. For δ = e − i, we have δ ∈ [0 . . d) and any position p ∈ r-selectP(x, n,m − δ) satisfies
p− x ∈ Occ2`(SA[i]).

Proof. Note that P is well-defined, since positions efull(r) are distinct among r ∈ R′−H . Denote
q = |R′−H |. Let (aj)j∈[1. .q] be a sequence containing all positions r ∈ R′−H ordered according to the string
T∞[efull(r) . . efull(r) + 7τ) In other words, for any j, j′ ∈ [1 . . q], j < j′ implies T∞[efull(r) . . efull(r) +
7τ) ≺ T∞[efull(r′) . . efull(r′) + 7τ), where r = aj and r′ = aj′ . Note, that the sequence (aj)j∈[1. .q]

is not unique. Since {(efull(ai), e
full(ai) − ai) : i ∈ [1 . . q]} = PH , it holds |{efull(aj) − x : j ∈

[1 . . q] and efull(aj)−aj ≥ x}| = |{j ∈ [1 . . q] : efull(aj)−aj ≥ x}| = |{(p, v) ∈ PH : v ∈ [x . . n)}| = m,
where the last equality follows by the definition of r-countP(x, n) (see Section 4.2), and by observing
that for any q ∈ R, it holds efull(q) − q < n. On the other hand, observe that by Lemma 6.36,
for any j ∈ [1 . . q], the right-maximal run of positions in R starting at position r = aj contains
an element p′ of Poshigh

` (SA[i]) if and only if efull(r) − r ≥ x and T∞[efull(r) . . efull(r) + 7τ) �
T∞[ehigh(SA[i]) . .SA[i] + 2`). Moreover, if the latter condition is true, then since by definition
on Poshigh

` (SA[i]) any such element p′ must satisfy exp(p′) = expcut(SA[i], 2`) (or equivalently,
efull(p′)−p′ = s+expcut(SA[i], 2`)|H| = ehigh(SA[i])−SA[i] = x, where s = head(SA[i]) = head(p′)),
we obtain p′ = efull(p′) − x = efull(r) − x. In other words, Poshigh

` (SA[i]) = {efull(aj) − x : j ∈
[1 . . q], efull(aj) − aj ≥ x, and T∞[efull(aj) . . e

full(aj) + 7τ) � T∞[ehigh(SA[i]) . .SA[i] + 2τ)}. The
latter set (whose cardinality is equal to d) is clearly a subset of {efull(aj)−x : j ∈ [1 . . q] and efull(aj)−
aj ≥ x} (whose size, as shown above, is m). Thus, d ≤ m.

1. As shown above, |{j ∈ [1 . . q] : efull(aj)− aj ≥ x}| = m. Let (bj)j∈[1. .m] be a subsequence of
(aj)j∈[1. .q] containing all the elements of the set {aj : j ∈ [1 . . q] and efull(aj)− aj ≥ x} (in the same
order as they appear in the sequence (aj)j∈[1. .q]). Our proof consists of three steps:

(i) Let j ∈ [1 . .m]. We first show bj ∈ r-selectP(x, n, j). Denote Y = T∞[efull(bj) . . e
full(bj) + 7τ).
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Let

rbeg = |{at : t ∈ [1 . . q], efull(at)− at ≥ x, and T∞[efull(at) . . e
full(at) + 7τ) ≺ Y }| and

rend = |{at : t ∈ [1 . . q], efull(at)− at ≥ x, and T∞[efull(at) . . e
full(at) + 7τ) � Y }|.

If an index t ∈ [1 . . q] satisfies efull(at) − at ≥ x, then we also have at ∈ {b1, . . . , bm}.
Moreover, since for any indexes t, t′ ∈ [1 . .m], t < t′ implies T∞[efull(bt) . . e

full(bt) + 7τ) �
T∞[efull(bt′) . . e

full(bt′) + 7τ), if t ∈ [1 . . q] additionally satisfies T∞[efull(at) . . e
full(at) + 7τ) ≺

Y = T∞[efull(bj) . . e
full(bj) + 7τ), then at ∈ {b1, . . . , bj−1}. Thus, rbeg < j. On the

other hand, every t ∈ [1 . . j] satisfies efull(bt) − bt ≥ x and T∞[efull(bt) . . e
full(bt) + 7τ) �

T∞[efull(bj) . . e
full(bj) + 7τ) = Y . Thus, j ≤ rend. Altogether, j ∈ (rbeg . . rend]. By

definition of P = Points7τ (T,PH) (Definition 4.4), it holds rbeg = r-countP(x, n, Y ) and
rend = r-countinc

P (x, n, Y ). Thus, j ∈ (r-countP(x, n, Y ) . . r-countinc
P (x, n, Y )]. On the other

hand, by (efull(bj), e
full(bj) − bj) ∈ PH , we have (efull(bj) − bj , Y, f) ∈ P. Combining with

x ≤ efull(bj)− bj < n we obtain bj ∈ r-selectP(x, n, j).
(ii) Let j ∈ [1 . .m]. We will now show that for any p ∈ r-selectP(x, n, j), it holds T∞[p− x . . p+

7τ) = T∞[efull(bj) − x . . efull(bj) + 7τ). By Item (i) and the definition of r-selectP(x, n, j),
the assumption p ∈ r-selectP(x, n, j) implies T∞[p . . p + 7τ) = T∞[bj . . bj + 7τ). Moreover,
x ≤ efull(p) − p < n and there exists r ∈ R′−H such that p = efull(r). The position p is thus
preceded in T∞ by a string H ′Hz, where H ′ is a prefix of H of length s = head(SA[i]) and
z = expcut(SA[i], 2`). Since by definition of (bj)j∈[1. .m], the position efull(bj) is also preceded by
H ′Hz in T and |H ′Hz| = x, we obtain T∞[p− x . . p+ 7τ) = T∞[efull(bj)− x . . efull(bj) + 7τ).

(iii) We are now ready to prove the main claim. As noted above, Poshigh
` (SA[i]) = {efull(aj)− x :

j ∈ [1 . . q], efull(aj) − aj ≥ x, and T∞[efull(aj) . . e
full(aj) + 7τ) � T∞[ehigh(SA[i]) . .SA[i] +

2τ)}. Since the positions k in (aj)j∈[1. .q] are sorted by T∞[efull(k) . . efull(k) + 7τ), we can
eliminate the second condition. Denoting jskip = |{j ∈ [1 . . q] : T∞[efull(aj) . . e

full(aj) + 7τ) ≺
T∞[ehigh(SA[i]) . .SA[i] + 2`)}|, we have

Poshigh
` (SA[i]) = {efull(aj)− x : j ∈ (jskip . . q] and efull(aj)− aa ≥ x}.

Consequently, by definition of (bj)j∈[1. .m], we have Poshigh
` (SA[i]) = {efull(bj) − x : j ∈

(m − d . .m]}. On the other hand, by Lemma 6.23, e = RangeBeg`(SA[i]) + δlow
` (SA[i]) +

δmid
` (SA[i]) = RangeBeg`(SA[i]) + δ`(SA[i]) + δhigh

` (SA[i]) = RangeBeg2`(SA[i]) + δhigh
` (SA[i]).

Thus, by Lemma 6.47, we have Poshigh
` (SA[i]) = {SA[j] : j ∈ (e− d . . e]}. We now observe:

• Let j1, j2 ∈ (m − d . .m] and assume j1 < j2. Since the elements of (bj) occur in the
same order as in (aj), and positions p in (aj) are sorted by T [efull(p) . . efull(p) + 7τ),
it follows that T∞[efull(p1) . . efull(p1) + 7τ) � T∞[efull(p2) . . efull(p2) + 7τ), where p1 =

bj1 and p2 = bj2 . On the other hand, by efull(p1) − x, efull(p2) − x ∈ Poshigh
` (SA[i]),

both positions efull(p1) − x and efull(p2) − x are followed in T by the string H ′Hz,
where H ′ is a prefix of H of length head(SA[i]) and z = expcut(SA[i], 2`). Recall,
however, that x = ehigh(SA[i])− SA[i] = head(SA[i]) + expcut(SA[i], 2`). Thus, we obtain
T∞[efull(p1) − x . . efull(p1)) = T∞[efull(p2) − x . . efull(p2)) = H ′Hz, and consequently,
T∞[efull(p1)− x . . efull(p1) + 7τ) � T∞[efull(p2)− x . . efull(p2) + 7τ).

• On the other hand, by definition of lexicographical order, for any j1, j2 ∈ [1 . . d], the
assumption j1 < j2 implies T∞[SA[e− d+ j1] . .SA[e− d+ j1] + x+ 7τ) � T∞[SA[e−
d+ j2] . .SA[e− d+ j2] + x+ 7τ).
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We have shown that both sequences SA[e−d+1], . . . ,SA[e] and efull(bm−d+1)−x, . . . , efull(bm)−
x contain the same set of positions Poshigh

` (SA[i]) ordered according to the length-(x+7τ) right
context in T∞. Therefore, regardless of how ties are resolved in each sequence, for any j ∈ [1 . . d],
we have T∞[SA[e−d+j] . .SA[e−d+j]+x+7τ) = T∞[efull(bm−d+j)−x . . efull(bm−d+j)+7τ).
Thus, by letting δ = d− j, for any δ ∈ [0 . . d) we obtain

T∞[SA[e− δ] . .SA[e− δ] + x+ 7τ) = T∞[efull(bm−δ)− x . . efull(bm−δ) + 7τ).

To finalize the proof of the main claim, let δ ∈ [0 . . d) and take any p ∈ r-selectP(x, n,m−δ). By
Item (ii) for j = m− δ, we have T∞[p−x . . p+ 7τ) = T∞[efull(bm−δ)−x . . efull(bm−δ) + 7τ) =
T∞[SA[e− δ] . .SA[e− δ] +x+ 7τ). In particular, by 0 ≤ x and 2` ≤ 7τ , we obtain 2` ≤ x+ 7τ
and T∞[p− x . . p− x+ 2`) = T∞[SA[e− δ] . .SA[e− δ] + 2`), i.e., the claim.

2. By Lemma 6.23, it holds e = RangeBeg`(SA[i]) + δ`(SA[i]) + δhigh
` (SA[i]) = RangeBeg2`(SA[i]) +

δhigh
` (SA[i]). Thus, by Lemma 6.47, we have Poshigh

` (SA[i]) = {SA[i] : i ∈ (e− d . . e]}. Consequently,
SA[i] ∈ Poshigh

` (SA[i]) implies i ∈ (e− d . . e] and hence δ = e− i satisfies δ ∈ [0 . . d). By Item 1 with
δ = e−i, any p ∈ r-selectP(x, n,m−δ) satisfies T∞[p−x . . p−x+2`) = T∞[SA[e−δ] . .SA[e−δ]+2`) =
T∞[SA[i] . .SA[i] + 2`), i.e., p− x ∈ Occ2`(SA[i]).

Lemma 6.51. Assume that i ∈ [1 . . n] is such that SA[i] ∈ R−H (where H ∈ Roots) and SA[i] 6∈
Poshigh

` (SA[i]). Let PH = {(efull(p), efull(p) − p) : p ∈ R′−H }, P = Point7τ (T,PH), s = head(SA[i]),
z = b2`−s

|H| c, and x = s+ (z + 1)|H|. Then:

1. It holds r-countP(x, n) ≥ 1.
2. Any p ∈ r-selectP(x, n, 1) satisfies p− x ∈ Occ2`(SA[i]).

Proof. 1. By definition, if SA[i] 6∈ Poshigh
` (SA[i]), then exp(SA[i]) 6= expcut(SA[i], 2`), since all

other conditions in the definition of Poshigh
` (SA[i]) are satisfied for position SA[i]. However, since

expcut(SA[i], 2`) = min(exp(SA[i]), b2`−s
|H| c), this implies b2`−s

|H| c < exp(SA[i]). Consequently, for
k = SA[i] it holds efull(k) − k = head(SA[i]) + exp(SA[i])|H| ≥ s + (z + 1)|H| = x, and hence
(p, v) = (efull(k), efull(k)− k) ∈ PH satisfies v ∈ [x . . n). Thus, by definition of P , r-countP(x, n) ≥ 1.

2. By exp(SA[i]) ≥ z + 1, the string H ′Hz+1 (where H ′ is a length-s prefix of H) is a prefix
of T [SA[i] . . n]. But since |H ′Hz+1| ≥ 2`, we also obtain that T∞[SA[i] . .SA[i] + 2`) is a prefix
of H ′Hz+1. Thus, to find an element of Occ2`(SA[i]), it suffices to find any position p ∈ [1 . . n]
satisfying T∞[p− x . . p) = H ′Hz+1 and then by the above argument, it holds p− x ∈ Occ2`(SA[i]).
Let now p ∈ r-selectP(x, n, 1). By definition of r-selectP(x, n, 1), this implies x ≤ v < n. Since
(p, v) ∈ PH holds for some v ∈ Z≥1, there exists r ∈ R′−H such that p = efull(r) and v = efull(r)− r,
the position p is preceded in T∞ by a string H ′Hz+1 (recall that |H ′Hz+1| = x). By the above
argument, this implies p− x ∈ Occ2`(SA[i]).

Proposition 6.52. Let i ∈ [1 . . n] be such that SA[i] ∈ R−. Under Assumption 6.21, given
the values i, RangeBeg`(SA[i]), RangeEnd`(SA[i]), δlow

` (SA[i]), δmid
` (SA[i]), exp(SA[i]), and some

j ∈ Occ`(SA[i]), we can compute some j′ ∈ Occ2`(SA[i]) in O(t) time.

Proof. The main idea is as follows. The query algorithm first tests if SA[i] ∈ Poshigh
` (SA[i]) holds. By

Corollary 6.49 such test can be performed quickly given the values i, RangeBeg`(SA[i]), δlow
` (SA[i]),

and δmid
` (SA[i]), which are all given as input. The rest of the query algorithm depends on this test.

If SA[i] ∈ Poshigh
` (SA[i]), then j′ ∈ Occ2`(SA[i]) is determined according to Lemma 6.50, and it
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is computed using the generalized range selection query on the set of points P = Points7τ (T,PH)
(where H = root(SA[i])), which are supported using the algorithm from Proposition 6.28. On the
other hand, if SA[i] 6∈ Poshigh

` (SA[i]), then we use Lemma 6.51 to compute some j′ ∈ Occ2`(SA[i]).
This again reduces to a generalized range selection query on P , but with different input parameters.

Given any index i ∈ [1 . . n] such that SA[i] ∈ R−, along with values RangeBeg`(SA[i]), k =
exp(SA[i]), δlow

` (SA[i]), δmid
` (SA[i]), and some j ∈ Occ`(SA[i]), we compute j′ ∈ Occ2`(SA[i])

as follows. First, using Assumption 6.21 we compute values s = head(j) = head(SA[i]) and
p = |root(j)| = |root(SA[i])| in O(t) time. Note, that then the position r = j + s satisfies
root(SA[i]) = T [r . . r + p), i.e., we have a starting position of an occurrence of H := root(j) =
root(SA[i]) in T . Denote P = Points7τ (T,E

−
H) (see Definition 4.4). In O(1) time we calculate

k2 := expcut(SA[i], 2`) = min(k, b2`−s
p c). Next, in O(1) time we determine if SA[i] ∈ Poshigh

` (SA[i]).
By Corollary 6.49, SA[i] ∈ Poshigh

` (SA[i]) holds if and only if i ≤ RangeBeg`(SA[i]) + δlow
` (SA[i]) +

δmid
` (SA[i]). Consider two cases:

• Assume i ≤ RangeBeg`(SA[i]) + δlow
` (SA[i]) + δmid

` (SA[i]) (i.e., SA[i] ∈ Poshigh
` (SA[i])). First,

we compute x = ehigh(SA[i])− SA[i] = head(SA[i]) + expcut(SA[i], 2`)|root(SA[i])| = s+ k2p,
e = RangeBeg`(SA[i]) + δlow

` (SA[i]) + δmid
` (SA[i]), and δ = e − i in O(1) time. Then, using

the query defined by Item 1 of Problem 4.5 we compute the value m = r-countP(x, n). By
Assumption 6.21, this takes O(t) time. Next, using the query defined by Item 2 of Problem 4.5
we compute some p ∈ r-selectP(x, n,m− δ). This again takes O(t) time. Finally, we calculate
j′ = p− x. By Item 2 from Lemma 6.50, it holds j′ ∈ Occ2`(SA[i]).

• Assume now i > RangeBeg`(SA[i]) + δlow
` (SA[i]) + δmid

` (SA[i]) (i.e., SA[i] 6∈ Poshigh
` (SA[i])).

First, calculate z = b2`−s
p c and x = s+(z+1)p. Next, using Item 2 of Problem 4.5 we compute

some p ∈ r-selectP(x, n, 1). By Assumption 6.21, this takes O(t) time. Finally, we calculate
j′ = p− x. By Item 2 from Lemma 6.51, it holds j′ ∈ Occ2`(SA[i]).

6.3.9 The Data Structure

By combining the above results, under Assumption 6.21, we obtain the following efficient algorithm
to “refine” (RangeBeg`(SA[i],RangeEnd`(SA[i])) into (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])) and
to simultaneously compute some j′ ∈ Occ2`(SA[i]).

Proposition 6.53. Let i ∈ [1 . . n] be such that SA[i] ∈ R. Under Assumption 6.21, given
the values i, RangeBeg`(SA[i]), RangeEnd`(SA[i]), and some j ∈ Occ`(SA[i]), we can compute
(RangeBeg2`(SA[i]),RangeEnd2`(SA[i])) and some j′ ∈ Occ2`(SA[i]) in O(t) time.

Proof. The algorithm consists of seven steps:

1. First, using Proposition 6.35, we compute in O(t) time the value of type(SA[i]). The query
algorithm needs the index i along with RangeBeg`(SA[i]), RangeEnd`(SA[i]), and some j ∈
Occ`(SA[i]), which at this point we have as input. Let us assume type(SA[i]) = −1 (the case
type(SA[i]) = +1 is explained at the end of the proof).

2. Next, using Proposition 6.38, we compute in O(t) time the value of δlow
` (SA[i]). The algorithm

only needs some j ∈ Occ`(SA[i]), which we are given as input.
3. In the third step, using Proposition 6.44, we compute in O(t) time the value of exp(SA[i]). The

algorithm needs the values of i, RangeBeg`(SA[i]), RangeEnd`(SA[i]), some j ∈ Occ`(SA[i]),
and δlow

` (SA[i]). The first four values are given as input, and the fifth value was computed in
Step 2.
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4. Next, using Proposition 6.46, we compute in O(t) time the value δmid
` (SA[i]). The algorithm

needs some position j ∈ Occ`(SA[i]) and the value exp(SA[i]) as input. The first argument is
given as input, and the second value we computed in Step 3.

5. Next, using Proposition 6.52, we compute in O(t) time some position j′ ∈ Occ2`(SA[i]). The
algorithm needs values i, RangeBeg`(SA[i]), RangeEnd`(SA[i]), some position j ∈ Occ`(SA[i]),
δlow
` (SA[i]), exp(SA[i]), and δmid

` (SA[i]) as input. The first four arguments are given as input.
The remaining three we computed in Step 2, Step 3, and Step 4.

6. Next, using Proposition 6.38, we compute in O(t) time the value of δhigh
` (SA[i]). The algorithm

only needs some j′ ∈ Occ2`(SA[i]), which we computed in Step 5.
7. Finally, using Proposition 6.32 and its symmetric version adapted according to Lemma 6.18

(see also below), we compute in O(t) time the values m− := |Occ−2`(j
′)| and m+ := |Occ+

2`(j
′)|,

where j′ ∈ Occ2`(SA[i]). Note that by definition of Occ2`(SA[i]) and j′ ∈ Occ2`(SA[i]), we
have |Occ−2`(SA[i])| = |Occ−2`(j

′)| and |Occ+
2`(SA[i])| = |Occ+

2`(j
′)|. Observe now that by Item 1

of Lemma 6.24, for any p ∈ Occ2`(SA[i]), it holds p ∈ R. Thus, Occ2`(SA[i]) is a disjoint
union of Occ−2`(SA[i]) and Occ+

2`(SA[i]), and hence denoting m = |Occ2`(SA[i])|, we have
m = m− +m+. To compute m− and m+, the query algorithms in Proposition 6.32 and its
symmetric counterpart only require some position j′ ∈ Occ2`(SA[i]) as input. We obtained
such position in Step 5.

After executing the above steps, we already have j′ ∈ Occ2`(SA[i]) (computed in Step 5) Thus, it
remains to calculate the pair (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])). For this, in O(1) time we first
obtain δ`(SA[i]) = δlow

` (SA[i])+δmid
` (SA[i])−δhigh

` (SA[i]) by Lemma 6.23. We then obtain the output
as (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])) = (RangeBeg`(SA[i]) + δ`(SA[i]),RangeBeg`(SA[i]) +
δ`(SA[i]) +m). In total, the query takes O(t) time.

If in Step 1, we have type(SA[i]) = +1, then in Steps 2–6 instead of queries on Points7τ (T,E−H) and
I−H in Assumption 6.21, we perform the queries on Points7τ (T,E+

H) and I+
H . By Lemma 6.18, all re-

maining details are symmetrical. In particular, δ′`(SA[i]) = δlow
` (SA[i])+δmid

` (SA[i])−δhigh
` (SA[i]) and

(RangeBeg2`(SA[i]),RangeEnd2`(SA[i])) = (RangeEnd`(SA[i])−δ′`(SA[i])−m,RangeEnd`(SA[i])−
δ′`(SA[i])). Definitions of sets Poslow

` (j), Posmid
` (j), and Poshigh

` (j) are adapted for j ∈ R+ as follows:

Poslow
` (j) = {j′ ∈ R+

s,H : exp(j′) = k1 and (T [j′ . . n] � T [j . . n] or LCET (j, j′) ≥ `)},

Posmid
` (j) = {j′ ∈ R+

s,H : exp(j′) ∈ (k1 . . k2]}, and

Poshigh
` (j) = {j′ ∈ R+

s,H : exp(j′) = k2 and (T [j′ . . n] � T [j . . n] or LCET (j, j′) ≥ 2`)}.

By the symmetric version of Lemma 6.23, for j ∈ R+, δ′`(j) = δlow
` (j) + δmid

` (j)− δhigh
` (j).

6.4 The Final Data Structure

We are ready to present the general SA query algorithm (returning SA[i] given any i ∈ [1 . . n]).
The section is organized as follows. First, we show how to combine Section 6.1, Section 6.2,

and Section 6.3 to obtain a query algorithm that for any ` ∈ [16 . . n), given any index i along
with the values RangeBeg`(SA[i]), RangeEnd`(SA[i]), and some j ∈ Occ`(SA[i]) as input, computes
the pair (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])) and some j′ ∈ Occ2`(SA[i]) (Proposition 6.54).
We then combine this result with the query algorithm that given i ∈ [1 . . n] computes the pair
(RangeBeg16(SA[i]),RangeEnd16(SA[i])) and some j′ ∈ Occ16(SA[i]) (Assumption 6.1) to obtain
the final algorithm for SA queries (Proposition 6.55).
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Proposition 6.54. For any ` ∈ [16 . . n), under Assumptions 6.3, 6.5, and 6.21, given an in-
dex i ∈ [1 . . n] along with the pair (RangeBeg`(SA[i]),RangeEnd`(SA[i])) and some position j ∈
Occ`(SA[i]) as input, we can compute the pair (RangeBeg2`(SA[i]),RangeEnd2`(SA[i])) and some
j′ ∈ Occ2`(SA[i]) in O(t) time.

Proof. First, using Assumption 6.3 we check in O(t) if SA[i] ∈ R. If SA[i] 6∈ R, then we compute the
output in O(t) time using Proposition 6.16. Otherwise, we compute the output in O(t) time using
Proposition 6.53.

Proposition 6.55. Under Assumption 6.1 and Assumptions 6.3, 6.5, and 6.21 for ` = 2q, where
q ∈ [4 . . dlog ne), given any i ∈ [1 . . n], we can compute SA[i] in O(t log n) time.

Proof. Given any position i ∈ [1 . . n], we compute SA[i] as follows. First, using Assumption 6.1,
we compute the pair (RangeBeg16(SA[i]),RangeEnd16(SA[i])) and some j ∈ Occ16(SA[i]) in O(t)
time. Then, for q = 4, . . . , dlog ne − 1, we use Proposition 6.54 with ` = 2q to compute in O(t) time
the pair (RangeBeg2q+1(SA[i]),RangeEnd2q+1(SA[i])) and some j′ ∈ Occ2q+1(SA[i]), given position
i along with the pair (RangeBeg2q(SA[i]),RangeEnd2q(SA[i])) and some j ∈ Occ2q(SA[i]) as input.
After executing all steps, we have (RangeBeg`(SA[i]),RangeEnd`(SA[i])) and some j′ ∈ Occ`(SA[i]),
where ` = 2dlogne ≥ n. Since for any k ≥ n, we have Occk(SA[i]) = {SA[i]}, we finally return
SA[i] = j′. In total, the query takes O(t log n) time.

7 Balanced Signature Parsing

7.1 Symbols and Grammars

For an alphabet Σ, we define the set (algebraic data type) S of symbols over Σ as the least fixed
point of the following equation, where letter and block are two named constructors:

S = {letter(a) : a ∈ Σ} ∪ {block(S) : S ∈ S+},

We define a recursive expansion function str : S → Σ+ with

str(X) =

{
a if X = letter(a) for a ∈ Σ,⊙|S|

i=1 str(S[i]) if X = block(S) for S ∈ S+,

and we lift it to str : S∗ → Σ∗ with str(S) =
⊙|S|

i=1 str(S[i]). We further define a recursive level
function level : S → Z≥0 with

level(X) =

{
0 if X = letter(a) for a ∈ Σ,

max
|S|
i=1 level(S[i]) if X = block(S) for S ∈ S+.

We say that a set G ⊆ S is a grammar if G ⊆ {letter(a) : a ∈ Σ} ∪ {block(S) : S ∈ G+}. Our
algorithms maintain grammars using the following interface.

Lemma 7.1 (Grammar Representation). For every constant C ∈ Z≥0, there exists a data structure
that maintains a grammar G ⊆ S subject to the following operations, where each symbol X ∈ G is
represented by a unique identifier id(X) ∈ [0 . . g), where g = |G|:
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deg(X): Given X ∈ G, return 0 if X = letter(a) and |S| if X = block(S).
letter−1(X): Given X = letter(a), return a.
block−1(X, i): Given X = block(S) and i ∈ [1 . . |S|], return S[i].
level(X): Given X ∈ G, return level(X).
len(X): Given X ∈ G, return |str(X)|.
pLen(X, i): Given X = block(S) and i ∈ [0 . . |S|], return |str(S[1 . . i])|.
insertLetter(a): Given a ∈ Σ, set G := G ∪ {letter(a)} and return letter(a).
insertString(S): Given S ∈ G+ with |S| ≤ C, set G := G ∪ {block(S)} and return block(S).
insertPower(Y,m): Given Y ∈ G and m ∈ Z+, set G := G ∪ {block(Y m)} and return block(Y m).

In the Ω(log(σ +
∑

X∈G len(X)))-bit word RAM model, the data structure size is O(g), insertions
cost O( log2 log g

log log log g ) time, and queries cost O(1) time.

Proof. Internally, the symbols are stored in array A[0 . . g) with the following entries A[id(X)] for
X ∈ G:

• if X = letter(a), then A[id(X)] = a;
• if X = block(Y m) for Y ∈ G and m ∈ Z+, then A[id(X)] = (id(Y ),m);
• otherwise, X = block(S) for S ∈ Gm with m ∈ [1 . . C], and A[id(X)] = id(S[1]) · · · id(S[m]).

Additionally, we maintain the inverse mapping A−1 using a dynamic deterministic dictionary [FG15],
as well as the precomputed values level(X) and len(X) for all symbols X ∈ G. The array A and the
precomputed values allow for an easy implementation of all queries in O(1) time. As for insertions,
we first build the internal representation of the inserted symbol X (note that insertString(S) needs
to check if S = Y m for some Y ∈ S and m ∈ Z+). Then, we perform a dictionary lookup for X in
A−1. If the lookup is successful, we retrieve id(X) and return this identifier as the reference to X.
Otherwise, we set id(X) := g, increment g, insert X to G (by adding the corresponding entries to
A and A−1), and compute level(X) as well as len(X). The running time is dominated by the cost
O( log2 log g

log log log g ) of a dictionary lookup and insertion.

7.2 Parse Trees

Every symbol X ∈ S can be interpreted as a rooted ordered parse tree T (X) with each node
ν associated to a symbol symb(ν) ∈ S. The root of T (X) is a node ρ with symb(ρ) = X. If
X = letter(a) for a ∈ Σ, then ρ has no children. Otherwise, X = block(S) for S ∈ Sm and m ∈ Z+;
then, ρ has m children, and the subtree rooted at the ith child is (a copy of) T (S[i]).

Each node ν of T (X) is associated with a fragment str(ν) of str(X) matching str(symb(ν)). For
the root ν, we define str(ρ) = str(X)[1 . . len(X)] to be the whole str(X). Moreover, if ν1, . . . , νm
are the children of a node ν, then str(νi) = str(ν)(ri−1 . . ri], where ri = pLen(symb(ν), i); this way,
str(ν) is the concatenation of fragments str(νi).

Lemma 7.2. Based on the interface of G provided in Lemma 7.1, for every X ∈ G, one can
implement references to nodes ν of T (X) so that the following operations cost O(1) time:

root(X): Given X ∈ G, return the root of T (X).
symb(ν): Given a node ν of T (X), return the symbol symb(ν).
str(ν): Given a node ν of T (X), return the fragment str(ν).
child(ν, i): Given a node ν of T (X) and i ∈ [1 . . deg(symb(ν))], return the ith child of ν.
parent(ν): Given a node ν of T (X), return ⊥ if ν = root(X), and otherwise the parent of ν.
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index(ν): Given a node ν of T (X), return ⊥ if ν = root(X), and otherwise the value i ∈ Z+ such
that ν = child(parent(ν), i).

Proof. Internally, each node ν is represented as a tuple (symb(ν), str(ν), index(ν), parent(ν)). Here,
parent(ν) points to the parent of ν stored in the same representation. In other words, the internal
of ν is a singly linked list describing to the path from ν to the root of its parse tree. This is a
functional list, which means that many multiple references can share parts of the underlying lists.
The non-trivial operations are root(X), which returns (X, str(X)[1 . . |str(X)|],⊥,⊥), and child(ν, i),
which returns (block−1(symb(ν), i), str(ν)(pLen(symb(ν), i− 1) . . pLen(symb(ν), i)], i, ν).

7.3 Deterministic Coin Tossing

For an integer h ∈ Z≥0, let us denote

Σh :=
[
0 . . 22·

·2︸︷︷︸
h

)
and Σh := Σh ∪ {⊥}.

Theorem 7.3. For every integer h ∈ Z+, there is a function gh : Σ
h+11
h → {0, 1} such that

the function Gh : Σ
Z
h → {0, 1}Z, defined with Gh(T )[i] = gh(T (i − h − 7 . . i + 4]) for i ∈ Z,

satisfies the following properties for all integers n ∈ Z≥0 and strings T ∈ Σ
Z
h with T [1 . . n] ∈ Σn

h,
T [0] = T [n+ 1] = ⊥, and T [j] 6= T [j + 1] for all j ∈ [1 . . n):

(1) Gh(T )[0] = Gh(T )[n] = 1.
(2) Gh(T )[0 . . n] does not contain 11 and 000000 as proper substrings.
(3) Gh(T )[0 . . n] would not be affected by setting T [j] := ⊥ for all j ∈ Z \ [1 . . n].

Moreover, given h and T [1 . . n], the string Gh(T )[0 . . n] can be computed in O(nh) time provided
that each character of T [1 . . n] is an O(w)-bit number.

Proof. The starting point of our construction is the function fh : Σ
h+11
h → {0, 1} behind [MSU97,

Lemma 1], for which the derived Fh : Σ
Z
h → {0, 1}Z (defined analogously to Gh) satisfies the

following property: For all integers n ∈ Z≥0 and strings T ∈ Σ
Z
h with T [1 . . n] ∈ Σn

h, T [j] = ⊥ for
j ∈ Z \ [1 . . n], and T [j] 6= T [j + 1] for j ∈ [1 . . n), the string Fh(T )[1 . . n] does not contain 11 and
0000 as substrings.

For a string X ∈ Σ
h+11
h , let X(` . . r] be the maximal fragment such that ` ≤ h + 7 ≤ r and

X(` . . r] ∈ Σ∗h. We set:

(a) gh(X) = 1 if ` = h+ 7 or r = h+ 7;
(b) gh(X) = 0 if ` = h+ 6 (and r > h+ 7) or r = h+ 8 (and ` < h+ 7);
(c) gh(X) = fh(⊥`X(` . . r]⊥h+11−r) otherwise.

Let us fix a string T ∈ Σ
Z
h with T [1 . . n] ∈ Σn

h, T [0] = T [n+ 1] = ⊥, and T [j] 6= T [j + 1] for all
j ∈ [1 . . n). Define a string T̄ ∈ Σ

Z
h so that T̄ [j] = T [j] for j ∈ [1 . . n] and T̄ [j] = ⊥ otherwise.

Observe that Gh(T )[0] = Gh(T )[n] = 1 by (a). Moreover, if n ≥ 2, then Gh(T )[1] = Gh(T )[n−
1] = 0 by (b), and, if n ≥ 4, then Gh(T )[2 . . n − 2] = Fh(T̄ )[2 . . n − 2] by (c). This immediately
yields conditions (1) and (3).

As for condition (2), note that any occurrence 11 as a proper substring of Gh(T )[0 . . n] would
yield an occurrence of 11 as a substring Fh(T̄ )[2 . . n−2], and any occurrence of 000000 as a substring
of Gh(T )[0 . . n] would yield an occurrence of 0000 as a substring of Fh(T̄ )[2 . . n− 2].
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An efficient algorithm for computing Gh(T )[0 . . n] follows from the corresponding algorithm for
computing Fh(T̄ )[0 . . n].

Definition 7.4 (Restricted signature parsing). Consider a set A ⊆ S of active symbols, an integer
h ∈ Z≥0, and an injective function sig : A → Σh. Given a string T ∈ S∗, define a string sig(T ) ∈ Σ

Z
h

so that sig(T )[i] = sig(T [i]) if i ∈ [1 . . |T |] and T [i] ∈ A, and sig(T )[i] = ⊥ otherwise. The
restricted signature parsing decomposes T into blocks that end at all positions i ∈ [1 . . |T |] with
Gh(sig(T ))[i] = 1, where Gh is defined in Theorem 7.3.

Corollary 7.5. Consider the restricted signature parsing of a string T ∈ S∗ such that no position
i ∈ [1 . . |T |) satisfies T [i] = T [i+ 1] ∈ A. Then:
(1) each block contains exactly one inactive symbol or up to six active symbols;
(2) an active symbol forms a length-1 block if and only if it has no adjacent active symbols.

Proof. Let T (` . . r] be any maximal fragment of T consisting of active symbols. By Theorem 7.3, we
have Gh(sig(T ))[`] = Gh(sig(T ))[r] = 1, so T (` . . r] consists of full blocks. Since Gh(sig(T ))(` . . r]
does not contain 000000, these blocks are of length at most six. Moreover, since Gh(sig(T ))[` . . r]
does not contain 11 as a proper substring, the only possibility for a length-1 block within T (` . . r] is
when r− ` = 1, i.e., when T [r] is an active symbol with no adjacent active symbols. In the reasoning
above, Gh(sig(T ))[`] = Gh(sig(T ))[r] = 1 also holds when ` = r, so all inactive symbols form length-1
blocks.

Corollary 7.6. Consider the restricted signature parsing of strings T, T ′ ∈ S∗. If a block ends at
T [i] but no block ends at T ′[i′], then there exists:

• a string in A≤4 that is a prefix of exactly one of the suffixes T (i . . |T |] and T ′(i′ . . |T ′|], or
• a string in A≤h+7 that is a suffix of exactly one of the prefixes T [1 . . i] and T ′[1 . . i′].

Proof. Let T (` . . r] and T ′(`′ . . r′] be maximal fragments with i − h − 7 ≤ ` ≤ i ≤ r ≤ i + 4
and i′ − h − 7 ≤ `′ ≤ i′ ≤ r′ ≤ i′ + 4, respectively, such that T (` . . r], T ′(`′ . . r′] ∈ A∗. If
T (` . . i] 6= T ′(`′ . . i′], this yields a desired suffix of exactly one of the prefixes T [1 . . i] and T ′[1 . . i′].
Similarly, if T (i . . r] 6= T ′(i′ . . r′], this yields a desired prefix of exactly one of the suffixes T (i . . |T |]
and T ′(i′ . . |T ′|]. By Theorem 7.3(3), we have Gh(sig(T ))[i] = gh(⊥`−i+h+7sig(T )(` . . r]⊥i+4−r)
and Gh(sig(T ′))[i′] = gh(⊥`′−i′+h+7sig(T ′)(`′ . . r′]⊥i′+4−r′). Due to the assumption that T (` . . i] =
T ′(`′ . . i′] and T (i . . r] = T ′(i′ . . r′], this yields Gh(sig(T ))[i] = Gh(sig(T ′))[i′]. Hence, blocks end at
both T [i] and T ′[i′] or at neither T [i] nor T ′[i′].

7.4 Balanced Signature Parsing

Definition 7.7 (Restricted run parsing). Consider a set A ⊆ S of active symbols. The restricted
run parsing decomposes a string T ∈ S∗ into blocks that end at all positions i ∈ [1 . . |T |] except
those with T [i] = T [i+ 1] ∈ A.

For every k ∈ Z≥0, we define the set of level-k active symbols Ak := {X ∈ S : level(X) =
k and len(X) ≤ dk}, where dk := 2bk/2c. Moreover, we say that a function sig : S → Z≥0 is a
signature function if sigk := sig|Ak injectively maps Ak to Σhk , where hk = log∗ |Ak|.

Fact 7.8. Every k ∈ Z≥0 satisfies hk = O(log∗(σk)).
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Proof. For k, ` ∈ Z≥0, let sk,` = |{X ∈ S : level(X) ≤ k and len(X) ≤ `}|. We shall inductively
prove that sk,` ≤ σ`(k + 1)`−1. The base case of k = 0 is easy to check since s0,0 = 0 and s0,` = σ
for ` ∈ Z+. As for k ∈ Z+, we have

sk,` ≤ sk−1,` +

`−1∑
j=1

sk−1,j · sk,`−j ≤ σ`k`−1 +

`−1∑
j=1

σjkj−1σ`−j(k + 1)`−j−1

= σ`(k + 1)`−2

(
k`−1

(k+1)`−2 +

`−2∑
i=0

ki

(k+1)i

)
≤ σ`(k + 1)`−2

(
k`−1

(k+1)`−2 +
1− k`−1

(k+1)`−1

1− k
k+1

)
= σ`(k + 1)`−1.

In particular, we conclude that |Ak| ≤ σ2k/2(k + 1)2k/2−1 ≤ 22σk , so hk ≤ 2 + log∗(σk).

Construction 7.9 (Balanced signature parsing). For a signature function sig, the balanced signature
parsing of a string T ∈ Σ+ is a sequence (Tk)

∞
k=0 of strings Tk ∈ S+ constructed as follows: The

string T0 is obtained from T by replacing each letter T [j] with symbol letter(T [j]). For k > 0, we
perform the restricted signature parsing of Tk−1 with respect to Ak−1, hk−1, and sigk−1 (if k is even)
or the restricted run parsing of Tk−1 with respect to Ak−1 (if k is odd) and derive Tk by collapsing
each block Tk−1[j . . j +m) into the corresponding symbol block(Tk−1[j . . j +m)).

Observe that str(Tk) = T for k ∈ Z≥0. Hence, for every j ∈ [1 . . |Tk|], we can associate Tk[j]
with a fragment T (|str(Tk[1 . . j))| . . |str(Tk[1 . . j])|] matching str(Tk[j]); these fragments are called
phrases induced by Tk. We also define a set Bk(T ) of phrase boundaries induced by Tk:

Bk(T ) = {|str(Tk[1 . . j])| : j ∈ [0 . . |Tk|]}.

The following result lets us use Corollary 7.5 when analyzing the restricted signature parsing of
Tk for odd k ∈ Z+.

Fact 7.10. For every T ∈ Σ+ and odd k ∈ Z+, there is no j ∈ [1 . . |Tk|) with Tk[j] = Tk[j+ 1] ∈ Ak.

Proof. For a proof by contradiction, suppose that Tk[j] = Tk[j+1] ∈ Ak holds for some j ∈ [1 . . |Tk|).
By definition of Tk, we have Tk[j] = Tk[j+ 1] = block(X`) for some X ∈ S and ` ∈ Z+. In particular,
|str(X)| ≤ |str(X`)| ≤ dk = dk−1, so X ∈ Ak−1. Let Tk−1(i− ` . . i] and Tk−1(i . . i+ `] be blocks of
Tk−1 collapsed to Tk[j] and Tk[j + 1], respectively. Due to Tk−1[i] = Tk−1[i + 1] = X ∈ Ak−1, no
block ends at position i in the restricted run parsing of Tk−1. This contradicts the existence of the
block Tk−1(i− ` . . i].

Next, we use Corollary 7.5 to derive upper and lower bounds on phrase lengths.

Fact 7.11. For every T ∈ Σ+, k ∈ Z≥0, and j ∈ [1 . . |Tk|], the string str(Tk[j]) has length at most
3dk or primitive root of length at most dk.

Proof. We proceed by induction on k. If k = 0, then |str(Tk[j])| = 1 < 3. Thus, we may assume
k > 0. Let Tk−1[i . . i + `) be the fragment of Tk−1 obtained by expanding Tk[j]. If ` = 1, then
the inductive assumption shows that str(Tk[j]) is of length at most 3dk−1 ≤ 3dk or its primitive
root is of length at most dk−1 ≤ dk. If ` ≥ 2 and k is odd, then Tk−1[i . . i + `) = X` for some
X ∈ Ak−1, and thus the primitive root of str(Tk[j]) is of length at most len(X) ≤ dk−1 = dk. If
` ≥ 2 and k is even, then, by Corollary 7.5, Tk−1[i . . i + `) ∈ A`k−1 and ` ≤ 6. Consequently,
|str(Tk[j])| ≤ ` · dk−1 ≤ 6dk−1 = 3dk.
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Lemma 7.12. For every T ∈ Σ+, k ∈ Z≥0, and j ∈ [1 . . |Tk|), we have |str(Tk[j . . j + 1])| > 1
2dk.

Proof. We proceed by induction on k. For k = 0, the claim holds trivially: |str(T0[j . . j+1])| = 2 > 1
2 .

Otherwise, let Tk−1[i . . i + `) be the fragment of Tk−1 obtained by expanding both symbols of
Tk[j . . j + 1]. If k is odd, then |str(Tk−1[i . . i + `))| ≥ |str(Tk−1[i . . i + 1])| > 1

2dk−1 = 1
2dk. If k is

even and Tk−1[i] ∈ S \Ak−1 or Tk−1[i+ `− 1] ∈ S \Ak−1, then |str(Tk[j . . j + 1])| > dk−1 = 1
2dk by

definition of Ak−1. Otherwise, by Corollary 7.5, deg(Tk[j]) ≥ 2 and deg(Tk[j + 1]) ≥ 2, and thus
|str(Tk[j . . j + 1])| ≥ |str(Tk−1[i . . i+ 3])| > 2 · 1

2dk−1 = 1
2dk.

Let us define sequences (αk)
∞
k=0 and (βk)

∞
k=0 with

αk =


0 if k = 0,

αk−1 + dk−1 if k ∈ Z+ is odd,
αk−1 + (hk−1 + 7)dk−1 if k ∈ Z+ is even;

βk =


0 if k = 0,

βk−1 + dk−1 if k ∈ Z+ is odd,
βk−1 + 4dk−1 if k ∈ Z+ is even.

Fact 7.13. For every k ∈ Z+, we have dk ≤ αk < (2hk−1 + 16)dk−1 and βk < 10dk−1.

Proof. The lower bound on αk is shown by simple induction. The base case holds for k = 1 due
to α1 = d0 = 1 = d1. For k ≥ 2, the inductive assumption yields αk ≥ αk−1 + dk−1 ≥ 2dk−1 =
2b(k−1)/2c+1 ≥ 2bk/2c = dk.

As for the upper bound on αk, we use induction with a stronger upper bound of αk < (hk−1 +
9)dk−1 for odd values k. The base case of k = 1 holds due to α1 = 1 < h0 + 9 = (h0 + 9)d0. If k is
odd, then αk = αk−1 + dk−1 < (2hk−2 + 16)dk−2 + dk−1 = (hk−2 + 9)dk−1 ≤ (hk−1 + 9)dk−1 holds
by the inductive assumption. If k is even, then αk = αk−1 + (hk−1 + 7)dk−1 < (hk−2 + 9)dk−2 +
(hk−1 + 7)dk−1 ≤ (2hk−1 + 16)dk−1 holds by the inductive assumption.

As for the upper bound on βk, we use induction with a stronger upper bound of βk < 6dk−1

for odd values k. The base case of k = 1 holds due to β1 = 1 < 6 = 6d0. If k is odd, then
βk = βk−1 + dk−1 < 10dk−2 + dk−1 = 6dk−1 holds by the inductive assumption. If k is even, then
βk = βk−1 + 4dk−1 < 6dk−2 + 4dk−1 = 10dk−1 holds by the inductive assumption.

Lemma 7.14. Consider strings T, T ′ ∈ Σ+, an integer k ∈ Z≥0, and positions i ∈ [0 . . |T |] and
i′ ∈ [0 . . |T ′|]. Suppose that the following two conditions are satisfied for every string U ∈ Σ∗:

• If cn ≤ βk, then U is a prefix of T (i . . |T |] if and only if U is a prefix of T ′(i′ . . |T ′|].
• If cn ≤ αk, then U is a suffix of T [1 . . i] if and only if U is a suffix of T ′[1 . . i′].

Then, i ∈ Bk(T ) if and only if i′ ∈ Bk(T ′).

Proof. We proceed by induction on k. The base case of k = 0 is trivially satisfied due to B0(T ) =
[0 . . |T |], B0(T ′) = [0 . . |T ′|], and α0 = β0 = 0.

For the inductive step, consider k ∈ Z+. We first claim that, for each k′ ∈ [0 . . k) and
δ ∈ [αk′ − αk . . βk − βk′ ], we have i+ δ ∈ Bk′(T ) if and only if i′ + δ ∈ Bk′(T ′). By symmetry, we
may assume for a proof by contradiction that i+ δ ∈ Bk′(T ) (and, in particular, i+ δ ∈ [0 . . |T |])
yet i′ + δ /∈ Bk′(T ′). We consider two cases.

δ ∈ [0 . . βk − βk′]. Due to T (i . . i+ δ] ∈ Σ≤βk , this string must occur as a prefix of T ′(i′ . . |T ′|].
Thus, i′+δ ≤ |T ′| and T (i . . i+δ] = T ′(i′ . . i′+δ]. If there is a string U ∈ Σ≤βk′ that is a prefix
of exactly one of the suffixes T (i+ δ . . |T |] and T ′(i′ + δ . . |T ′|], then T (i . . i+ δ] · U ∈ Σ≤βk

is a prefix of exactly one of the suffixes T (i . . |T |] and T ′(i′ . . |T ′|]. Otherwise, the inductive
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assumption yields a string U ∈ Σ≤αk′ that is a suffix of exactly one of the prefixes T [1 . . i+δ] and
T ′[1 . . i′+δ]. In this case, U(cn−δ . . cn] = T (i . . i+δ] = T ′(i′ . . i′+δ] and U [1 . . cn−δ] ∈ Σ≤αk

is a suffix of exactly one of the prefixes T [1 . . i] and T ′[1 . . i′].
δ ∈ [αk′ − αk . . 0]. Due to T (i + δ . . i] ∈ Σ≤αk , this string must occur as a suffix of T ′[1 . . i′].

Thus, i′ + δ ≥ 0 and T (i+ δ . . i] = T ′(i′ + δ . . i′]. If there is a string U ∈ Σ≤αk′ that is a suffix
of exactly one of the prefixes T [1 . . i+ δ] and T ′[1 . . i′ + δ], then U · T (i+ δ . . i] ∈ Σ≤αk is a
suffix of exactly one of the prefixes T [1 . . i] and T ′[1 . . i′]. Otherwise, the inductive assumption
yields a string U ∈ Σ≤βk′ that is a prefix of exactly one of the suffixes T (i + δ . . |T |] and
T ′(i′ + δ . . |T ′|]. In this case, U [1 . .− δ] = T (i+ δ . . i] = T ′(i′ + δ . . i′] and U(−δ . . cn] ∈ Σ≤βk

is a prefix of exactly one of the suffixes T (i . . |T |] and T ′(i′ . . |T ′|].
If i /∈ Bk−1(T ) and i′ /∈ Bk−1(T ′), then i /∈ Bk(T ) and i′ /∈ Bk(T ′), so the lemma holds trivially.

Otherwise, the claim, instantiated with k′ = k − 1 and δ = 0, implies that both i ∈ Bk−1(T ) and
i′ ∈ Bk−1(T ′). Let us set j, j′ so that i = |str(Tk−1[1 . . j])| and i′ = |str(T ′k−1[1 . . j′])|. By the
assumption on i, i′, exactly one of the positions j, j′ is an endpoint of a block of the parsing of Tk−1

and T ′k−1.
If k is odd, this means that either Tk−1[j] = Tk−1[j+ 1] ∈ Ak−1 or T ′k−1[j′] = T ′k−1[j′+ 1] ∈ Ak−1

(but not both). Without loss of generality, suppose that Tk−1[j] = Tk−1[j + 1] = X for some
X ∈ Ak−1. By the claim, for each k′ ∈ [0 . . k), the fragments T (i − |str(X)| . . i + |str(X)|] and
T ′(i′ − |str(X)| . . i′ + |str(X)|] are parsed into level-k′ phrases in the same way. In particular, this
implies T ′k−1[j′] = Tk−1[j] = Tk−1[j + 1] = T ′k−1[j′ + 1] ∈ Ak−1, a contradiction.

If k is even, the aforementioned condition yields by Corollary 7.6 a string S ∈ A≤4
k−1 that is a prefix

of exactly one of the suffixes Tk−1(j . . |Tk−1|] and T ′k−1(j′ . . |T ′k−1|], or a string S ∈ A≤hk−1+7
k−1 that is

a suffix of exactly one of the prefixes Tk−1[1 . . j] and T ′k−1[1 . . j′]. Without loss of generality, suppose
that S is a prefix of Tk−1(j . . |Tk−1|] or a suffix of Tk−1[1 . . j]. If S is a prefix of Tk−1(j . . |Tk−1|]
then, due to |str(S)| ≤ βk − βk−1, the claim implies that, for each k′ ∈ [0 . . k), the fragments
T (i . . i + |str(S)|] and T ′(i′ . . i′ + |str(S)|] are parsed into level-k′ phrases in the same way. In
particular, S is also a prefix of T ′k−1(j′ . . |T ′k−1|], a contradiction. Similarly, if S is a suffix of
Tk−1[1 . . j] then, due to |str(S)| ≤ αk − αk−1, the claim implies that, for each k′ ∈ [0 . . k), the
fragments T (i− |str(S)| . . i] and T ′(i′ − |str(S)| . . i′] are parsed into level-k′ phrases in the same way.
In particular, S is also a suffix of T ′k−1[1 . . j′], a contradiction.

Corollary 7.15. Consider strings T, T ′ ∈ Σ+, an integer k ∈ Z≥0, and a string S ∈ S∗.
• If S is a prefix of exactly one of the strings Tk, T ′k, then lcp(T, T ′) < |str(S)|+ βk.
• If S is a suffix of exactly one of the strings Tk, T ′k, then lcs(T, T ′) < |str(S)|+ αk.

Proof. We proceed by induction on k. The case of k = 0 is trivial. For a proof by contradiction,
suppose that lcp(T, T ′) ≥ |str(S)| + βk and S is prefix of Tk yet S is not a prefix of T ′k (the
remaining cases are symmetric). Let S′ be the prefix of Tk−1 obtained by expanding symbols in
S. By the inductive assumption, S′ is also a prefix of T ′k−1. At the same time Lemma 7.14 yields
Bk(T )∩ [0 . . lcp(T, T ′)− βk] = Bk(T ′)∩ [0 . . lcp(T, T ′)− βk]. Hence, the block boundaries within S′

are placed in the same way in the parsing of Tk−1 and T ′k−1. Consequently, S is also a prefix of T ′k,
a contradiction.
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8 Dynamic Strings

By Lemma 7.12, for every signature function sig and every string T ∈ Σ+ |Tk| = 1 holds for
sufficiently large k ∈ Z≥0 (whenever k ≥ 2dlog(2|T |)e). Hence, we define symbsig(T ) as the unique
symbol in the string Tk for the smallest k ∈ Z≥0 with |Tk| = 1.

We maintain a growing set of strings W ⊆ Σ+ and represent each string T ∈ W as symbsig(T ) for
implicit signature function sig. Our data structure consists of a grammar G ⊆ S (maintained using
Lemma 7.1) and the values sig(X) stored for allX ∈ G. The key invariant is that symbsig(T ) ∈ G holds
for each T ∈ W; based on this, we represent each string T ∈ W using the identifier id(symbsig(T ))
of the underlying symbol. The following simple observation allows leaving sig(X) unspecified for
X ∈ S \ G.

Observation 8.1. Consider a grammar G ⊆ S and two signature functions sig, sig′ such that
sig|G = sig′|G. If symbsig(T ) ∈ G for some string T ∈ Σ+, then symbsig′(T ) = symbsig(T ).

Efficiency of our data structure is supported by an additional invariant that, for each k ∈ Z≥0,
the signature function sig injectively maps Ak ∩ G to [0 . . |Ak ∩ G|). Whenever a symbol X ∈ Ak \ G
is added to G, it is assigned the smallest “free” signature |Ak ∩ G|. This way, we make sure that the
explicitly assigned signature values have O(log |G|) bits.

In the following, we describe various operations supported by this data structure. Internally, we
measure the efficiency in terms of the grammar size g := |G| (after executing the operation), the
alphabet size σ := |Σ|, and the lengths of the strings involved in the operations. We also assume
that the machine word size w satisfies w = Ω(log(σg)).

8.1 Access

The access(T, i) operation retrieves T [i] for a given string T ∈ W and position i ∈ [1 . . |T |]. For this,
we traverse the parse tree T (symbsig(T )) maintaining a pointer to a node ν such that str(ν) = T (` . . r]

for i ∈ (` . . r]. If ν is a leaf, we return letter−1(symb(ν)). If ν has d ≤ 6 children, we compute
pLen(symb(ν), j) for j ∈ [0 . . d] and descend to the child νj such that pLen(symb(ν), j − 1) < i− ` ≤
pLen(symb(ν), j). Otherwise, we have pLen(symb(ν), j) = j · pLen(symb(ν), 1) for j ∈ [0 . . d], so
we descend to the d i−`

pLen(symb(ν),1)e-th child. Overall, the running time is O(level(symbsig(T ))) =

O(log |T |).

8.2 Longest Common Prefix

The operation lcp(T,U) computes the (length of) the longest common prefix of any two strings
T,U ∈ W. Let (Tk)

∞
k=0 and (Uk)

∞
k=0 be the balanced signature parsing of T and S, respectively.

Moreover, let X = symbsig(T ) and Y = symbsig(U). Our algorithm traverses the parse trees T (X)
and T (Y ) maintaining two pointers νT and νU , as illustrated in Algorithm 1.

In this algorithm, we use a short-hand level(ν) := level(symb(ν)) and an extra right(ν) operation
that, given a node ν corresponding to Tk[i], returns the node corresponding to Tk[i + 1] or ⊥ if
i = |Tk| (and analogously for Uk). We maintain an invariant at Line 6 that level(νT ) = level(νU ) and,
denoting this common value by k, the pointers νT and νU correspond to symbols Tk[i] and Uk[i] such
that Tk[1 . . i) = Uk[1 . . i) and lcp = |str(Tk[1 . . i))|. It is easy to see that this invariant is indeed
satisfied after executing Line 5 with i = lcp = 0 and k = min(level(symbsig(T )), level(symbsig(U))).
The while loop of Line 7 maintains the invariant and increments i as far as possible. If i reaches
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Algorithm 1: lcp(T,U)

1 νT := root(symbsig(T ));
2 νU := root(symbsig(U));
3 lcp := 0;
4 while level(νT ) > level(νU ) do νT := child(νT , 1);
5 while level(νU ) > level(νT ) do νU := child(νU , 1);
6 while true do
7 while νT 6= ⊥ and νU 6= ⊥ and symb(νT ) = symb(νU ) do
8 lcp := lcp + len(symb(νT ));
9 νT := right(νT );

10 νU := right(νU );
11 if νT = ⊥ or νU = ⊥ or level(νT ) = 0 then return lcp;
12 νT := child(νT , 1);
13 νU := child(νU , 1);

|Tk|+ 1 or |Uk|+ 1, then we conclude that Tk is a prefix of Uk (or vice versa), and thus the longest
common prefix of T and S is of length lcp = min(|str(Tk)|, |str(Uk)|) = min(|T |, cn); it is then
reported correctly. Similarly, if k = 0 and Tk[i] 6= Uk[i], then the longest common prefix of T and S
is of length i− 1 = lcp. In the remaining case, by moving νT and νU to the leftmost children, we
maintain the invariant and decrement the level k.

An efficient implementation of Algorithm 1 requires one optimization: if, at Line 12, we have
symb(νT ) = block(SX) and symb(νU ) = block(SY ), then we immediately simulate the first ` :=
lcp(SX , SY ) subsequent steps of Line 6. (Since SX and SY are symbol powers or strings of constant
length, the value ` can be determined in O(1) time.) To carry out such simulation, we set lcp :=
lcp + pLen(νT , `), νT := child(νT , ` + 1), and νU := child(νU , ` + 1), where child(ν, deg(ν) + 1) =
child(right(ν), 1).

As our traversal of T (X) and T (Y ) always proceeds forward in the pre-order, the time complexity
is proportional to the number of visited nodes (including the ancestors visited while traversing the
paths from ν to right(ν)). Corollary 7.15 guarantees that, for each k, the visited nodes at level k
correspond to level-k phrases overlapping T (max(0, lcp(T,U)− βk+1) . . lcp(T,U)]. By Lemma 7.12
and Fact 7.13, the number of such phrases is O(

βk+1

dk
) = O(1). Consequently, the overall running

time is O(level(X) + level(Y )) = O(log |TU |).

8.3 Longest Common Suffix

A symmetric operation lcs(T,U) computes the (length of) the longest common suffix of any two
strings T,U ∈ W. Its implementation is analogous to that of lcp(T,U). However, in the analysis,
the number of level-k nodes visited is O(

αk+1

dk
) = O(hk+1) = O(log∗(kσ)), which yields the total

running time of O(log |TU | log∗(|TU |σ)).

8.4 Insertion

The insert(T ) operation inserts to W a given string T ∈ Σ+. For this, we construct the subsequent
levels of the balanced signature parsing (Tk)

∞
k=0 until reaching |Tk| = 1 so that symbsig(T ) = Tk[1].
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The construction of Tk for k = 0 costs O(|T | log2 log g
log log log g ) time. The cost for odd values k ∈ Z+

is O(|Tk−1| log2 log g
log log log g ), whereas the cost for even values k ∈ Z+ is O(|Tk−1|(hk−1 + log2 log g

log log log g )) =

O(|Tk−1|(log∗(σk) + log2 log g
log log log g )) by Theorem 7.3 and Fact 7.8. Since Lemma 7.12 yields |Tk| =

O(1 + |T |
dk

) = O(1 + |T |
2k/2

), the overall cost is O(|T |(log∗ σ + log2 log g
log log log g )).

8.5 Concatenation

The concat(L,R) operation, given two strings L,R ∈ W, inserts their concatenation T := L ·R to
W. Consider the balanced signature parsing (Lk)

∞
k=0 of L, (Rk)

∞
k=0 of R, and (Tk)

∞
k=0 of T . For

each k ∈ Z≥0, let Pk denote the longest prefix of Tk with |str(Pk)| ≤ max(0, |L| − βk), and let Sk
denote the longest suffix of Tk with |str(Sk)| ≤ max(0, |R| − αk). By Corollary 7.15, Pk is also the
longest prefix of Lk with |str(Pk)| ≤ max(0, |L| − βk), and Sk is also the longest suffix of Rk with
|str(Sk)| ≤ max(0, |R| − αk). Moreover, define L′k, R

′
k, Ck so that Lk = PkL

′
k, Rk = R′kSk, and

Tk = PkCkSk. Furthermore, let P ′k be the suffix of Pk such that str(Pk) = str(Pk+1)str(P ′k), and let
S′k be the prefix of Sk such that str(Sk) = str(S′k)str(Sk+1).

Our implementation of concat(L,R) constructs Ck for subsequent integers k ∈ Z≥0. For k = 0,
the string C0 is empty. For odd k ∈ Z+, we build P ′k−1Ck−1S

′
k−1 and apply the restricted run-length

parsing with respect to Ak−1. Finally, we retrieve Ck by collapsing each block into the corresponding
symbol, inserted to G using insertPower. For even k ∈ Z+, we additionally retrieve the longest
string P ′′k−1 ∈ A

≤hk−1+7
k−1 such that P ′′k−1P

′
k−1 is a suffix of Pk−1, and the longest string S′′k−1 ∈ A

≤4
k−1

such that S′k−1S
′′
k−1 is a prefix of Sk−1. Then, we perform the balanced signature parsing of

P ′′k−1P
′
k−1Ck−1S

′
k−1S

′′
k−1 with respect to Ak−1, hk−1, and sigk−1. Finally, we cut P ′k−1Ck−1S

′
k−1

(which is guaranteed to consist of full blocks by Corollary 7.6), and we obtain Ck by collapsing each
block into the corresponding symbol, inserted to G using insertString. We stop as soon as |Ck| = 1
and |Pk| = |Sk| = 0; the only symbol of Ck is then Z := symbsig(T ).

The efficiency of this procedure follows from the fact that, by Lemma 7.12 and Fact 7.13,
|Ck| = O(hk), |L′k| = O(1), and |R′k| = O(hk). For odd k ∈ Z+, we also have |P ′′k−1P

′
k−1| = O(hk)

and |S′k−1S
′′
k−1| = O(hk), whereas for even k ∈ Z+, the strings P ′k−1 and S′k−1 have run-length

parsing of size O(1) and O(hk), respectively. In particular, all the required strings P ′k−1 and P ′′k−1

can be generated in O(log |T | log∗(|T |σ)) time by traversing the parse tree T (X), whereas all the
required strings S′k−1 and S′′k−1 can be generated in O(log |T | log∗(|T |σ)) time by traversing the
parse tree T (Y ). The cost of run-length parsing at even levels k ∈ Z+ is O(hk) = O(log∗(|T |σ)),
whereas the cost of signature parsing at odd levels k ∈ Z+ is O(hk−1hk) = O((log∗ |T |σ)2), for a
total of O(log |T |(log∗(|T |σ))2) across all levels. Collapsing each block into the corresponding symbol
costs O( log2 log g

log log log g ) time, for a total of O(log |T | log∗(|T |σ)(log∗(|T |σ) + log2 log g
log log log g )) time.

8.6 Split

The split(T, i) operation, given T ∈ W and i ∈ [1 . . |T |), inserts L := T [1 . . i] and R := T (i . . |T |] to
W. We utilize the same notation as in the implementation of the operation concat(L,R).

To derive symb(L, sig), we build L′k for subsequent integers k ∈ Z≥0. For k = 0, the string L′0 is
empty. For odd k ∈ Z+, we build P ′k−1L

′
k−1 and apply the restricted run-length parsing with respect

to Ak−1. Finally, we retrieve L′k by collapsing each block into the corresponding symbol, inserted to
G using insertPower. For even k ∈ Z+, we build P ′′k−1P

′
k−1L

′
k−1 and apply the balanced signature
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parsing with respect to Ak−1, hk−1, and sigk−1. Finally, we cut P ′k−1L
′
k−1 (which is guaranteed

to consist of full blocks by Corollary 7.6), and we obtain L′k by collapsing each block into the
corresponding symbol, inserted to G using insertString. We stop as soon as |L′k| = 1 and |Pk| = 0;
the only symbol of L′k is then symb(L, sig).

Symmetrically, to derive symb(R, sig), we build R′k for subsequent integers k ∈ Z≥0. For k = 0,
the string R′0 is empty. For odd k ∈ Z+, we build R′k−1S

′
k−1 and apply the restricted run-length

parsing with respect to Ak−1. Finally, we retrieve R′k by collapsing each block into the corresponding
symbol, inserted to G using insertPower. For even k ∈ Z+, we build R′k−1S

′
k−1S

′′
k−1 and apply the

balanced signature parsing with respect to Ak−1, hk−1, and sigk−1. Finally, we cut R′k−1S
′
k−1 (which

is guaranteed to consist of full blocks by Corollary 7.6), and we obtain R′k by collapsing each block
into the corresponding symbol, inserted to G using insertString. We stop as soon as |R′k| = 1 and
|Sk| = 0; the only symbol of R′k is then symb(R, sig). The complexity analysis is similar to that for
concat(L,R).

8.7 Lexicographic Order of Cyclic Fragments

For a string T ∈ Σ+, let CF(T ) = {T∞(i . . j] : i, j ∈ Z such that i ≤ j}; note that each fragment in
CF(T ) can be represented using its endpoints i, j. We also define CF+(T ) = CF(T ) ∪ {F · c∞ : F ∈
CF(T )}, where c = max Σ. Finally, CF(W) =

⋃
T∈W CF(T ) and CF+(W) =

⋃
T∈W CF+(T ).

Our next operation compare(F1, F2), given F1, F2 ∈ CF+(W), decides whether F1 ≺ F2. For
each i ∈ {1, 2}, let Gi = T∞i (`i . . ri] ∈ CF(Ti) be such that Fi ∈ {Gi, Gi · c∞} and Ti ∈ W. Our
initial goal is to determine lcp(G1, G2). As the first step, we use the split and concat operations
in order to insert T∞i (`i . . `i + |Ti|]. Effectively, this lets us assume that `i = 0. Moreover, by
symmetry, we assume that |T1| ≤ |T2|. Next, we compute min(r1, r2, lcp(T1, T2)). If this value is
less than |T1|, then it is equal to the sought longest common prefix lcp(T∞1 (0 . . r1], T∞2 (0 . . r2]).
Otherwise, we use the split and concat operations to insert T∞2 (|T1| . . |T1T2|] to W , and we compute
min(r1, r2, |T1|+ lcp(T2, T

∞
2 (|T1| . . |T1T2|])). If this value is less than |T1T2|, then it is equal to the

sought longest common prefix lcp(T∞1 (0 . . r1], T∞2 (0 . . r2]). In the remaining case, we simply have
lcp(T∞1 (0 . . r1], T∞2 (0 . . r2]) = min(r1, r2). If the reported value t is smaller than min(r1, r2), then
we use the access operation to check G1[t+ 1] ≺ G2[t+ 1] and return the reported answer. If G1 is a
proper prefix of G2, we return YES if and only if F1 ∈ CF(T1). If G2 is a proper prefix of G1, we return
YES if and only if F2 /∈ CF(T2). The running time is O(log |T | log∗(|T |σ)(log∗(|T |σ) + log2 log g

log log log g )).
A symmetric procedure lets us implement compare(F1, F2) if F1, F2 ∈ CF+(W), where W = {T :

T ∈ W}.

8.8 Internal Pattern Matching

The ipm(P, T ) operation, given P, T ∈ W with |P | ≤ |T | ≤ 2|P |, computes Occ(P, T ) := {o ∈
[0 . . |T | − |P |] : P = T (o . . o+ |P |]}. As shown in [Koc18, KRRW15], Occ(P, T ) forms an arithmetic
progression.

Our implementation of ipm(P, T ) first identifies the maximum level k ∈ Z≥0 with |P | ≥ αk +
βk + 3dk.6 We consider two cases depending on whether Bk(P ) ∩ [αk . . |P | − βk] = ∅.

If there exists i ∈ Bk(P ) ∩ [αk . . |P | − βk] then, Lemma 7.14 shows that i+ o ∈ Bk(T ) holds for
any o ∈ Occ(P, T ). Thus, for each position j ∈ Bk(T ) ∩ [i . . |T |], we compute o := j − i, extract

6If there is no such level, i.e., if |P | ≤ 2, we answer the query naively by decompressing P and T .
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T (o . . |T |] via split(T, o), and check whether P is a prefix of T (o . . |T |] via lcp(P, T (o . . |T |]).
Thus, it remains to consider the case when Bk(P ) ∩ [αk . . |P | − βk] = ∅, i.e., when P [αk . .

|P | − βk + 1] is contained in a single level-k phrase. Suppose that this phrase is P (` . . r]; due to
r− ` > 3dk, Fact 7.11 shows that P (` . . r] = Qc for some integer c ∈ Z≥2 and primitive string Q with
|Q| ≤ dk. Moreover, if k′ ∈ Z≥0 is the maximum level such that P (` . . r] consists of multiple level-k′

phrases, then all these phrases match Q. By Lemma 7.14, for each o ∈ Occ(P, T ), the fragment
T (o + αk . . o + |P | − βk] is also contained in a single level-k phrase T (`′ . . r′]. Moreover, another
application of Lemma 7.14 (at level k′) shows that the phrase T (`′ . . r′] is decomposed into c′ ∈ Z≥2

level-k′ phrases matching Q. Our algorithm computes the symbol of Pk corresponding to P (` . . r],
the symbol of Pk′ corresponding to the primitive root Q, and all the candidate phrases T (`′ . . r′] with
the same primitive root Q. We select an arbitrary phrase boundary i ∈ Bk′(P )∩ [αk . . |P | − βk] and
observe that, by Lemma 7.14, for each o ∈ Occ(P, T ), we have i+ o ∈ Bk′(T ). Given that we assume
that T (o+αk . . o+ |P |−βk] is contained in T (`′ . . r′], we further have i+ o ∈ (`′ . . r′), i.e., j := i+ o
is one of the boundaries in the decomposition of T (`′ . . r′] = Qc

′ into c′ individual occurrences of Q.
Our goal is to verify each candidate j by checking whether P (i . . |P |] is a prefix of T (j . . |T |] and
whether P [1 . . i] is a suffix of T [1 . . j]. A naive implementation performs one split, one lcp, and one lcs
operation per candidate position j. The positions j form a so-called periodic progression (with period
Q); thus, as shown in [Koc18, Lemma 7.1.4(c)], positions j maximizing lcp(P (i . . |P |], T (j . . |T |])
are contiguous elements of the periodic progression, and they can be retrieved using a constant
number of lcp queries concerning suffixes of P and T . Thus, using O(1) calls to split and lcp, we
can filter positions j for which P (i . . |P |] is a prefix of T (j . . |T |]. As symmetric procedure using
O(1) calls to split and lcs filters positions j for which P (i . . |P |] is a prefix of T (j . . |T |]. The set of
positions o ∈ Occ(P, T ) corresponding to T (`′ . . r′] is obtained by intersecting the two ranges and
shifting it by i positions to the left. Finally, the occurrences corresponding to various candidate
phrase T (`′ . . r′] are retrieved by combining all o ∈ Occ(P, T ) into a single arithmetic progression.

As for the running time, we observe that the number of candidate position j (in the first
case) and the number of candidate phrases T (`′ . . r′] (in the second case) is bounded by |Tk| =

O(1+ |T |dk ) = O(1+ |P |dk ) = O(hk) = O(log∗(|T |σ)) by Fact 7.13. The overall running time is therefore

O(log |T |(log∗(|T |σ))2(log∗(|T |σ) + log2 log g
log log log g )).

8.9 2-Period Queries

A 2-period query period(T ), given T ∈ W, asks to compute the shortest period per(T ) or to report
that per(T ) > 1

2 |T |. As shown in [Koc18, KRRW15], each of these queries can be reduced to a
constant number of ipm and lcp queries on substrings of T . Consequently, period(T ) queries can also
be answered in O(log |T |(log∗(|T |σ))2(log∗(|T |σ) + log2 log g

log log log g )) time.

8.10 Canonical Cyclic Shift

As shown in [KRRW15], cyclic equivalence of T and T ′ can be tested using a constant number of ipm
and lcp queries on substrings of T ; the resulting algorithm also reports a shift s with T ′ = rots(T ). In
this paper, however, we need a stronger operation that, given a string T ∈ W , computes a canonical
cyclic shift canShift(T ) such that fsig(T ) := rotcanShift(T )(T ) is a necklace-consistent function (as
defined in Definition 6.17).
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Before implementing an algorithm computing canShift(T ), let us provide a synthetic definition of
the underlying function f in terms of the signature function sig.

Construction 8.2. For a string T ∈ Σ+, let k = min{t ∈ Z≥0 : dt ≥ 4|T |} and U = T c, where
c = dαk+βk+3dk

|T | e. For a signature function sig, we set fsig(T ) = rotmax(Bk(U)∩[0. .αk))(T ).7

Lemma 8.3. For every signature function sig, the function fsig : Σ+ → Σ+ defined in Construc-
tion 8.2 is a necklace-consistent function.

Proof. Let us fix T ∈ Σn with n ∈ Z+. By construction, the string fsig(T ) is cyclically equivalent
to T . However, before proving that fsig(T ) = fsig(rot

s(T )) holds for every s ∈ Z, let us analyze
the properties of the level-k phrase U(` . . r] in the balanced signature parsing of U such that
` = max(Bk(U) ∩ [0 . . αk)). By definition, ` < αk ≤ r; our first claim is that r > cn − βk.
Thus, for a proof by contradiction, suppose that r ∈ Bk(U) ∩ [αk . . cn − βk]. By Lemma 7.14,
Bk(U) ⊇ {r′ ∈ [αk . . cn− βk] : r′ ≡ r (mod n)}. Due to cn− αk − βk ≥ 3dk > 2n, this induces two
subsequent phrases of total length at most 2n ≤ 1

2dk, contradicting Lemma 7.12. The contradiction
completes the proof that r > cn− βk. Consequently, r − ` > cn− αk − βk ≥ 3dk; by Fact 7.11, this
means that U(` . . r] has primitive root of length at most dk. At the same time, U(` . . r] has period
n (inherited from U). Using the periodicity lemma, we conclude that U(` . . `+ n] is the primitive
root of U(` . . r]. In particular, U(` . . r] has been created at some level j ∈ [1 . . k] by merging several
phrases matching U(` . . `+ n]. Thus, Bj−1(U) ∩ [αk . . cn− βk] = {i ∈ [αk . . cn− βk] : i ≡ ` mod n}
and Bj(U) ∩ [αk . . cn− βk] = ∅.

We are now ready to consider the corresponding phrase U ′(`′ . . r′] in the balanced signature
parsing of U ′ = rots(U) = (rots(T ))c. By the above argument, Bj′−1(U ′) ∩ [αk . . cn − βk] = {i ∈
[αk . . cn−βk] : i ≡ `′ (mod n)} and Bj′(U ′)∩ [αk . . cn−βk] = ∅ hold for some j′ ∈ [1 . . k]. However,
Lemma 7.14 also yields Bj−1(U ′) ∩ [αk . . cn − βk] = {i ∈ [αk . . cn − βk] : i ≡ ` − s (mod n)}
and Bj(U

′) ∩ [αk . . cn − βk] = ∅. Consequently, j′ = j and `′ ≡ ` − s (mod n). In particular,
rot`

′
(rots(T )) = rot`

′+s(T ) = rot`(T ) holds as claimed.

Our algorithm computing canShift(T ) simply computes k and c, builds U = T c by repeated calls
to concat, and then builds Bk(U) by traversing the parse tree of symbsig(U). Finally, it returns
max(Bk(U) ∩ [0 . . αk)).

As for the complexity analysis, we note Lemma 7.12 implies |Bk(U)| = O( 1
dk
|U |) = O(c), whereas

Fact 7.13 implies c = O(hk) = O(log∗(|T |σ)), Consequently, the total running time does not exceed
O(log |T |(log∗(|T |σ))2(log∗(|T |σ) + log2 log g

log log log g )).

9 From Balanced Signature Parsing to Synchronizing Sets

Definition 9.1 (τ -runs). For a string T ∈ Σ+ and an integer τ ∈ [1 . . n], we define the set RUNSτ (T )
of τ -runs in T that consists of all fragments T [p . . q] of length at least τ that satisfy per(T [p . . q]) ≤ 1

3τ
yet cannot be extended (in any direction) while preserving the shortest period.

By the Periodicity Lemma, distinct τ -runs γ, γ′ satisfy |γ ∩ γ′| ≤ 2
3τ . Consequently, each τ -run

γ contains at least 1
3τ (trailing) positions which are disjoint from all τ -runs starting to the left of γ.

Hence, RUNSτ (T ) ≤ 3n
τ .

7Recall that the function Bk is defined in Section 7.4 based on the signature function sig.
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Construction 9.2. Consider the signature encoding of a string T ∈ Σn with respect to a signature
function sig and an integer τ ∈ Z+. Based on the set Bk(T ) for the largest k ∈ Z≥0 with τ ≥ 3αk,
we defined the set of Ssig(τ, T ) so that it consists of all positions i ∈ [1 . . n− 2τ + 1] that satisfy at
least one of the following conditions:

(1) i+ τ − 1 ∈ Bk(T ) and T [i . . i+ 2τ) is not contained in any τ -run,
(2) i = p− 1 for some τ -run T [p . . q] ∈ RUNSτ (T ),
(3) i = q − 2τ + 2 for some τ -run T [p . . q] ∈ RUNSτ (T ).

Note that Ssig(T, τ) = ∅ if τ > 1
2n.

Lemma 9.3. For every T ∈ Σn and τ ∈ [1 . . b1
2nc], the set Ssig(τ, T ) obtained using Construction 9.2

is a τ -synchronizing set. Moreover, for every i ∈ [1 . . n−3τ+2], |Ssig(τ, T )∩[i . . i+τ)| = O(log∗(τσ)).

Proof. First, suppose that i, i′ ∈ [1 . . n−2τ+1] satisfy T [i . . i+2τ) = T [i′ . . i′+2τ) and i ∈ Ssig(τ, T ).
We will show that if i satisfies conditions (1)–(3), then i′ satisfies the same condition. If i satisfies
condition (1), then per(T [i′ . . i′+ 2τ)) = per(T [i . . i+ 2τ)) > 1

3τ , so T [i′ . . i′+ 2τ) is not contained in
any τ -run. At the same time, due to T (i+τ−1−αk . . i+τ−1+βk] = T (i′+τ−1−αk . . i′+τ+βk], by
Lemma 7.14, i+τ−1 ∈ Bk(T ) implies i′+τ−1 ∈ Bk(T ). Consequently, i′ also satisfies condition (1).
If i satisfies condition (2), then per(T [i′+1 . . i′+τ ]) = per(T [i+1 . . i+τ ]) ≤ 1

3τ < per(T [i . . i+τ ]) =
per(T [i′ . . i′ + τ ]). Hence, T [i′ + 1 . . i′ + τ ] can be extended to a τ -run T [p′ . . q′] that starts at
position p′ = i + 1, and thus i′ satisfies condition (2). Similarly, if i satisfies condition (3), then
per(T [i′+ τ − 1 . . i′+ 2τ − 2]) = per(T [i+ τ − 1 . . i+ 2τ − 2]) ≤ 1

3τ < per(T [i+ τ − 1 . . i+ 2τ − 1]) =
per(T [i′+ τ − 1 . . i′+ 2τ − 1]). Hence, T [i′+ τ − 1 . . i′+ 2τ − 2] can be extended to a τ -run T [p′ . . q′]
that ends at position q′ = i+ 2τ − 2, and thus i′ satisfies condition (3).

For a proof of the density condition, consider a position i ∈ [1 . . n− 3τ + 2] with [i . . i+ τ) ∩
Ssig(τ, T ) = ∅. We start by identifying a τ -run T [p . . q] with p ≤ i + τ and q ≥ i + 2τ − 2. First,
suppose that there exists a position b ∈ [i+ τ − 1 . . i+ 2τ − 1) ∩Bk(T ). Since b− τ + 1 ∈ [i . . i+ τ)
has not been added to Ssig(τ, T ), the fragment T [β − τ + 1 . . β + τ ] must be contained in a τ -run
T [p . . q] that satisfies p ≤ b− τ + 1 ≤ i+ τ − 1 and q ≥ β + τ ≥ i+ 2τ − 1.

Next, suppose that [i+ τ − 1 . . i+ 2τ − 1) ∩Bk(T ) = ∅. Then, T [i+ τ − 1 . . i+ 2τ ] is contained
in a single phrase induced by Tk, and the length of this phrase is at least τ + 1. If k = 0, this
contradicts that all level-0 phrases are of length 1. Due to τ + 1 ≥ 3αk + 1 > 3dk (see Fact 7.13), so
Fact 7.11 yields per(T [i+ τ − 1 . . i+ 2τ ]) ≤ dk ≤ αk ≤ 1

3τ (again by Fact 7.13). The run T [p . . q]
extending T [i+ τ − 1 . . i+ 2τ ] satisfies p ≤ i+ τ − 1 and q ≥ i+ 2τ .

Note that p− 1 and q − 2τ + 2 satisfy conditions (2) and (3), respectively. Due to [i . . i+ τ) ∩
Ssig(τ, T ) = ∅, this implies p ≤ i and q ≥ i+ 3τ − 2, which means that per(T [i . . i+ 3τ − 1)) ≤ 1

3τ
holds as claimed.

For the converse implication, note that if s ∈ [i . . i+ τ)∩ Ssig(τ, T ), then per(T [i . . i+ 3τ − 1)) ≥
per(T [s . . s+ 2τ)) > 1

3τ because T [s . . s+ 2τ) is not contained in any τ -run (the latter observation
is trivial if s satisfies condition (1); in the remaining two cases, it follows from the upper bound of
2
3τ on the overlap of two τ -runs).

As for the size, observe that s ∈ Ssig(τ, T ) can be accounted to s+ τ − 1 ∈ Bk(T ) if it satisfies
condition (1), to γ ∈ RUNSτ (T ) starting at position s + 1 if it satisfies condition (2), and to
γ ∈ RUNSτ (T ) ending at position s+ 2τ −2 if it satisfies condition (3). Since any two distinct τ -runs
γ, γ′ satisfy |γ ∩ γ′| ≤ 2

3τ , the number of positions s ∈ S∩ [i . . i+ τ) satisfying (2) or (3) is O(1). By
Lemma 7.12, the number of positions satisfying (1) is O( τdk ) = O(

αk+1

dk
) = O(hk) = O(log∗(kσ)) =

O(log∗(τσ)) by Facts 7.8 and 7.13.
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An additional property of Construction 9.2 is consistency across different strings. The following
observation can be proved by adapting the first paragraph of the proof of Lemma 9.3.

Observation 9.4. Consider strings T, T ′ ∈ Σ+ and positions i ∈ [1 . . |T | − 2τ + 1], i′ ∈ [1 . . |T ′| −
2τ + 1]. If T [i . . i+ 2τ) = T ′[i′ . . i′ + 2τ), then i ∈ Ssig(T, τ) if and only if i′ ∈ Ssig(τ, T ′).

Corollary 9.5. Consider a string T ∈ Σ+ and its substring U = T (i . . j]. Then, Ssig(τ, U) = {s− i :
s ∈ Ssig(τ, T ) ∩ (i . . j − 2τ + 1]}.

Proposition 9.6. The data structure of Section 8 can be extended so that, given T ∈ W and
τ ∈ Z+, the set RUNSτ (T ), with τ -runs ordered by their starting positions, can be constructed in
O( |T | log |T |

τ (log∗(|T |σ))2(log∗(|T |σ) + log2 log g
log log log g )) time.

Proof. We partition T into blocks of length b1
3τc (leaving up to b1

3τc trailing characters behind).
For any two consecutive blocks, we extract the corresponding fragment (using split) and apply period
to retrieve its shortest period (provided that it does not exceed 1

3τ). If the period indeed does
not exceed 1

3τ , we maximally extend the fragment while preserving its shortest period. This is
implemented using an lcp query on two suffixes of T and an lcs queries on two prefixes of T . If the
maximal fragment is of length at least τ , we include it in RUNSτ (T ). By the Periodicity Lemma,
each τ -run is generated this way (perhaps multiple times). Moreover, if we process the block pairs
in the left-to-right order, then the τ -runs are also generated in the left-to-right order.

Proposition 9.7. The data structure of Section 8 can be extended so that, given T ∈ W and
τ ∈ Z+, the set Ssig(τ, T ) obtained using Construction 9.2 can be built in O( |T | log |T |

τ (log∗(|T |σ))2 ·
(log∗(|T |σ) + log2 log g

log log log g )) time.

Proof. We first compute the largest k ∈ Z≥0 with 2τ ≥ αk + βk and construct Tk by traversing the
parse tree T (symbsig(T )). In particular, this yields the set Bk(T ). Next, we generate RUNSτ (T )
using Proposition 9.6. To construct Ssig(τ, T ), we simultaneously scan Bk(T ) and RUNSτ (T ). For
every position i ∈ Bk(T ) ∩ [αk + 1 . . n − 2τ − αk], we add i − τ + 1 to Ssig(τ, T ) provided that
T (i−τ . . i−2τ ] is not contained in any τ -run. Moreover, for every τ -run T [p . . q], we add to Ssig(τ, T )
positions p− 1 and q − 2τ + 2 (provided that they are within [1 . . n− 2τ + 1]). The query time is
dominated by the cost of generating runs using Proposition 9.6.

10 Dynamic Text Implementation

In this section, we develop a data structure that maintains a dynamic text T ∈ Σ+ subject to
character insertions and deletions, as well as substring swaps (the ‘cut-paste’ operation), and supports
queries specified in Assumptions 6.1, 6.3, 6.5, and 6.21.

For an alphabet Σ, we say that a labelled string over Σ is a string over Σ×Z≥0. For c := (a, `) ∈
Σ× Z≥0, we say that val(c) := a is the value of c and label(c) := ` is the label of c. For a labelled
string S ∈ (Σ× Z≥0)∗, we define the set of labels L(S) = {label(S[i]) : i ∈ [1 . . |S|} and the string of
values val(S) = val(S[1]) · · · val(S[|S|]).

Instead of maintaining a single labelled string representing T , our data structure internally allows
maintaining multiple labelled strings (with character labels unique across the entire collection). This
lets us decompose each update into smaller building blocks; for example, a swap (cut-paste) operation
can be implemented using three splits followed by three concatenations. This internal interface
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matches the setting considered in a large body of previous work on dynamic strings [MSU97, ABR00,
GKK+18].

For a finite family L ⊆ (Σ× Z≥0)∗, we set L(L) =
⋃
S∈L L(S) and ‖L‖ =

∑
S∈L |S|. We say L

is uniquely labelled if |L(L)| = ‖L‖; equivalently, for each label ` ∈ L(L) there exist unique S ∈ L
and i ∈ [1 . . |S|] such that ` = label(S[i]).

Lemma 10.1. There is a data structure maintaining a uniquely labelled family L ⊆ (Σ × Z≥0)+

using the following interface, where label(S[1]) is used as a reference to any string S ∈ L:
concat(R,S): Given distinct R,S ∈ L, set L := L \ ({R,S}) ∪ {R · S}.
split(S, i): Given S ∈ L and i ∈ [1 . . |S|), set L := L \ ({S}) ∪ {S[1 . . i], S(i . . |S|]}.
insert(a, `): Given a ∈ Σ and ` ∈ Z≥0 \ L(L), set L := L ∪ {(a, `)}.
delete(S): Given S ∈ L with |S| = 1, set L := L \ {S}.
label(S, i): Given S ∈ L and i ∈ [1 . . |S|], return label(S[i]).
val(S, i): Given S ∈ L and i ∈ [1 . . |S|], return val(S[i]).
unlabel(`): Given ` ∈ L(L), return (S, i), where S ∈ L and i ∈ [1 . . |S|] are such that ` = label(S[i]).

In the word RAM model with word size w satisfying L(L) ⊆ [0 . . 2w), each of these operations can be
implemented in O(log n) time, where n = ‖L‖.

Proof. Each string S ∈ L is stored as a balanced binary search tree (such as an AVL tree [AVL62])
whose in-order traversal yields S. Additionally, each node of the BST is augmented with the size of
its subtree and the label of the leftmost node. We also maintain a node dictionary that maps each
label ` ∈ L(L) to the node representing the character with label `.

The unlabel(`) operation uses the node dictionary to reach the node representing the character
with label `, and then traverses the path from ` to the root of the corresponding tree, using the subtree
sizes to determine the number of nodes to the left of the path traversed. The remaining operations
use the same approach to locate the roots of the trees representing strings S ∈ L represented by
label(S[1]). Then, the val and label operations traverse the tree, using the subtree sizes to descend
to the ith leftmost node, and they return the value and the label, respectively, of the corresponding
character. The split operation also descends to the ith node of the tree representing S, but then it
splits the tree. The concat operation joins two trees. The delete operation deletes a single-element
tree and removes the corresponding entry from the node dictionary. The insert operation creates a
single-element tree and inserts a new entry to the node dictionary.

As a warm-up, we show that Lemma 10.1 allows for efficient random access to a dynamic text.

Corollary 10.2. A dynamic text T ∈ Σn can be implemented so that initialization takes O(1) time,
updates take O(log n) time, and the following access(i) queries take O(log n) time:

access(i): given i ∈ [1 . . n], return T [i].

Proof. We maintain a uniquely labelled string family L that satisfies the following invariant after
each update is completed: L = {S} for a labelled string S such that val(S) = T . We also store a
count c of the insertions performed so that we can assign a fresh label to every inserted character,
and a label ` := label(S[1]) needed to access the only string in L.

To implement initialize(σ), we initialize an empty labelled family L over Σ = [0 . . σ) and perform
an L.insert($, 0) operation to make sure that L = {S} with val(S) = $. We also set c := 0 and ` := 0.

As for the T.insert(i, a) operation, we increment the counter c and perform the L.insert(a, c)
operation adding to L a new labelled string R with val(R) = a. If i = 1, we simply perform

66



L.concat(`, c) that results in L = {R · S}, and we update the label of the first character of the only
string in L, setting ` := c. If i > 1, on the other hand, we retrieve the label `i := L.label(`, i) of S[i],
and perform the following calls: L.split(`, i−1) (resulting in L = {S[1 . . i), S[i . . n], R}), L.concat(`, c)
(resulting in L = {S[1 . . i) ·R,S[i . . n]}), and L.concat(`, `i) (resulting in L = {S[1 . . i) ·R ·S[i . . n]}).

As for the T.delete(i) operation, we retrieve the label `i := L.label(`, i) of the character to
be deleted and the label `i+1 := L.label(`, i + 1) of the subsequent character. Next, we perform
the L.split(`, i) operation that results in L = {S[1 . . i], S(i . . n]}. If i = 1, we then set ` := `i+1

because S[1 . . i] = S[i] and S(i . . n] = S[1 . . i) · S(i . . n]. Otherwise, we perform the L.split(`, i− 1)
operation (resulting in L = {S[1 . . i), S[i], S(i . . n]}) and the L.concat(`, `i+1) operation (resulting
in L = {S[1 . . i) · S(i . . n], S[i]}). In both cases, we conclude with a call L.delete(`i) that removes
S[i] from L and results in desired state L = {S[1 . . i) · S(i . . n]}.

As for the T.swap(i, j, k) operation, we first check whether i < j < k; otherwise, there is nothing
to do. Next, we retrieve the labels `i := L.label(`, i), `j := L.label(`, j), and `k := L.label(`, k) of
S[i], S[j], and S[k], respectively. Then, we perform the L.split(`, k − 1) operation (resulting in L =
{S[1 . . k), S[k . . n]}), the L.split(`, j − 1) operation (resulting in L = {S[1 . . j), S[j . . k), S[k . . n]}),
and the L.concat(`, `k) operation (resulting in L = {S[1 . . j)·S[k . . n], S[j . . k)}). If i = 1, we proceed
with the L.concat(`j , `) operation (resulting in L = {S[j . . k)·S[1 . . j)·S[k . . n]} = {S[1 . . i)·S[j . . k)·
S[i . . j) · S[k . . n]} and set ` := `j to update the label of the first character of the only string in
L.) Otherwise, we perform the L.split(`, i − 1) operation (resulting in L = {S[1 . . i), S[i . . j) ·
S[k . . n], S[j . . k)}), the L.concat(`, `j) operation (resulting in L = {S[1 . . i) · S[j . . k), S[i . . j) ·
S[k . . n]}), and finally the L.concat(`, `i) operation (resulting in L = {S[1 . . i) · S[j . . k) · S[i . . j) ·
S[k . . n]}).

Finally, the T.access(i) operation simply queries L.access(`, i) and forwards the obtained answer.
It is easy to see that the initialization takes O(1) time whereas the remaining operations take

O(log n) time.

10.1 Implementing Assumption 6.1

For a labelled family L and an integer q ∈ Z+, we define

CFq(L) =
⋃
S∈L
{(val(S)∞[j . . j + q), label(S[j])) : j ∈ [1 . . |S|]}

Lemma 10.3. For any fixed q ∈ Z+, the data structure of Lemma 10.1 can be augmented so that,
given r ∈ [1 . . ‖L‖], the rth smallest element (X, `) ∈ CFq(L) can be computed in O(q log n) time,
along with the counts |{(X ′, `′) ∈ CFq(L)} : X ′ ≺ X}| and |{(X ′, `′) ∈ CFq(L) : X ′ � X}|. This
comes at the price of increasing the cost of all updates to O(q2 log n).

Proof. We explicitly store CFq(L) in a balanced binary search tree (ordered lexicograpically) and
a dictionary that maps each label ` ∈ L(L) to the corresponding node (X, `) ∈ CFq(L). With this
implementation, a query takes O(q log n) time (O(log n) comparisons in O(q) time each).

As for the delete(S) operation, we just remove from CFq(L) the corresponding pair (Sq, label(S)),
which takes O(q log n) time. Symmetrically, insert(a, `) inserts (aq, `) in O(q log n) time.

The concat(R,S) operation is implemented as follows: For each j ∈ (max(0, |R| − q + 1) . . |R|],
we replace (val(R)∞[j . . j + q), label(R[j])) with (val(RS)∞[j . . j + q), label(R[j])) and, analogously,
for each j ∈ (max(0, |S|−q+1) . . |S|], we replace (val(S)∞[j . . j+q), label(S[j])) with (val(RS)∞[j+
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|R| . . j + |R|+ q), label(S[j])). Each new entry can be constructed in O(q log n) time using q calls to
the val and label operations, for the overall running time of O(q2 log n).

The implementation of split(S, i) is symmetric. For each j ∈ (max(0, i− q + 1) . . i], we replace
(val(S)∞[j . . j + q), label(S[j])) with (val(S[1 . . i])∞[j . . j + q), label(S[j])), and, analogously, for each
j ∈ (max(i, |S| − q + 1) . . |S|], we replace (val(S)∞[j . . j + q), label(S[j])) with (val(S(i . . |S|])∞[j −
i . . j − i+ q)), label(S[j])).

Proposition 10.4. A dynamic text T ∈ Σn can be implemented so that initialization takes O(1)
time, updates take O(log n) time, and the queries of Assumption 6.1 take O(log n) time.

Proof. We proceed as in the proof of Corollary 10.2, but instead of implementing the uniquely
labelled family L using the vanilla version of Lemma 10.1, we apply the extension of Lemma 10.3 for
q = 16. Due to q = O(1), this preserves the update times.

As for the query, we forward the argument i to the query of Lemma 10.3. This results in the
ith smallest pair (X, `) in the set {T∞[j . . j + 16), label(S[j])) : j ∈ [1 . . n]}, as well as the counts
|{j ∈ [1 . . n] : T∞[j . . j + 16) ≺ X}| and |{j ∈ [1 . . n] : T∞[j . . j + 16) � X}|. By Corollary 6.8,
we have X = T∞[SA[i] . .SA[i] + 16), and thus the counts are equal to RangeBeg16(SA[i]) and
RangeEnd16(SA[i]), respectively. Moreover, a position j ∈ Occ16(SA[i]) can be retrieved using an
unlabel(`) call.

10.2 Common Tools for Assumptions 6.3, 6.5, and 6.21

For a family L ⊆ L(L) and a label ` ∈ L, we define predL(`) and succL(`) as follows. Let (S, i) =
unlabel(`). If L(S[1 . . i]) ∩ L = ∅, then we set predL(`) = ⊥. Otherwise, predL(`) = label(S[max{t ∈
[1 . . i] : label(S[t]) ∈ L}]). Symmetrically, if L(S[i . . |S|]) ∩ L = ∅, then we set succL(`) = ⊥.
Otherwise, succL(`) = label(S[min{t ∈ [i . . |S|] : label(S[t]) ∈ L}]).

Lemma 10.5. The data structure of Lemma 10.1 can be augmented to maintain a set L ⊆ L(L) of
marked labels so that, given ` ∈ L(L), the values predL(`) and succL(`) can be computed in O(log n)
time. Moreover, marking and unmarking a label ` ∈ L(L) also costs O(log n) time.

Proof. Compared to the implementation in the proof of Lemma 10.1, each node ν stores two extra
bits, specifying whether the corresponding label is marked and whether the subtree of ν contains a
node with a marked label.

To determine the predecessor of predL(`), we first locate the node ν with label `. Then, we
check whether ` ∈ L; if so, we simply return `. Otherwise, we traverse the path from ν the root
of the corresponding tree. For ν as well as for each node that we reach from its left subtree, we
check whether the right subtree contains a node with a marked label node. If so, we descend to
the leftmost such node and return its label. If our traversal reaches the root without success, we
report that predL(`) = ⊥. It is easy to see that this procedure is correct and takes O(log n) time. A
symmetric procedure computes succL(`).

As for marking and unmarking, we use the node dictionary to locate the node with label `, and
update its status with respect to marking. Then, we update the cumulative bits on the path towards
the root; this costs O(log n) time. As for the remaining updates, we recompute the cumulative bits
for all nodes visited; this does not increase the asymptotic time of these updates.

Based on the function CF+(·) defined for unlabeled string families in Section 8.7, let us denote
CF+(L) = CF+({val(S) : S ∈ L}).
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Lemma 10.6. The data structure of Lemma 10.1 can be augmented so that any two fragments in
CF+(L) and any two fragments in CF+(L) can be compared lexicographically in O(log n log2 logm·log∗m

log log logm )
time, where m = σ + t and t is the total number of instruction that the data structure has performed
so far. This comes at the price of increasing the cost of concat to O(log n log2 logm·log∗m

log log logm ), split to

O(log n log2 logm·log∗m
log log logm ), and insert to O( log2 logm·log∗m

log log logm ).

Proof. On top of the data structure of Lemma 10.1, we also store W := {val(S) : S ∈ L} using
dynamic strings of Section 8. The insert(a, `) operation adds a new string a to W using W.insert(a).
The split(S, i) operation adds strings val(S)[1 . . i] and val(S)(i . . |S|] to W using W.split(val(S), i).
The concat(R,S) operation adds the string val(R) · val(S) to W using W.concat(val(R), val(S)). As
for lexicographic comparisons, we use the compare operation implemented in Section 8.7.

10.3 Implementing Assumption 6.3

Recall that, for a string T and an integer τ ∈ Z+, we defined R(τ, T ) = {i ∈ [1 . . |T | − 3τ + 2] :
per(T [i . . i + 3τ − 2]) ≤ 1

3τ} and R′(τ, T ) = {i ∈ R(τ, T ) : i − 1 /∈ R(τ, T )}. We also define a
symmetric set R′′(τ, T ) = {i ∈ R(τ, T ) : i + 1 /∈ R(τ, T )}. For a uniquely labelled family L, we
generalize these notions as follows:

R(τ,L) = {label(S[i]) : S ∈ L and i ∈ R(τ, val(S))}
R′(τ,L) = {label(S[i]) : S ∈ L and i ∈ R′(τ, val(S))}
R′′(τ,L) = {label(S[i]) : S ∈ L and i ∈ R′′(τ, val(S))}.

Lemma 10.7. For any fixed τ ∈ Z+, the data structure of Lemma 10.6 can be augmented so that,
given ` ∈ L(L), we can check in O(log n) time whether ` ∈ R(τ,L). This comes at the price of
increasing the cost of concat to O(log n log2 logm·(log∗m)2

log log logm ).

Proof. On top of the data structure of Lemma 10.6, we store two instances of the component of
Lemma 10.5, for R′(τ,L) and R′′(τ,L), respectively.

In the query algorithm, we first find `′ := predR′(τ,L)(`). If `′ = ⊥, we report that ` /∈ R(τ,L).
Otherwise, we find `′′ := succR′′(τ,L)(`

′) (it is never ⊥), and we use the unlabel(`), unlabel(`′), and
unlabel(`′′) operations to determine the positions j, j′, and j′′ corresponding to these labels (these
are positions in the same string S ∈ L). We report that ` ∈ R(τ,L) if and only if j′ ≤ j ≤ j′′.

After executing the concat(R,S) operation of Lemma 10.6, we perform the following steps. First,
we remove label(S[1]) from R′(τ,L) and label(R[|R|]) from R′′(τ,L) (if present in the respective sets).
Next, we compute the τ -runs in val(U), where U = R(max(0, |R|−3τ+1) . . |R|]·S[1 . .min(|S|, 3τ−1)].
For this, we use construct val(U) using concat and split operations onW , and then run the algorithm
of Proposition 9.6 on val(U). We iterate over fragments (R · S)[x . . y] corresponding to τ -runs of
length at least 3τ − 1 in val(U). For each such fragment, we add label((R · S)[x]) to R′(τ,L) if
x > |R| − 3τ + 2, and we add label((R · S)[y]) to R′′(τL) if y ≤ |R|+ 3τ − 2. The number of newly
marked labels is O(1), so the extra cost is O(log n · log2 logm·log∗m

log log logm ) time, dominated by the procedure
of Proposition 9.6.

Before executing the split(S, i) operation of Lemma 10.6, we perform the following steps. First,
we run the query algorithm to check whether label(S[i]) ∈ R(τ,L) and label(S[i + 1]) ∈ R(τ,L).
If label(S[i]) ∈ R(τ,L), we add label(S[i]) to R′′(τ,L), and if label(S[i + 1]) ∈ R(τ,L), we add
label(S[i + 1]) ∈ R′(τ,L). Then, we remove from R′(τ,L) all labels ` with unlabel(`) = (S, j) for
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j ∈ (i− 3τ + 2 . . i], and from R′′(τ,L) all labels ` with unlabel(`) = (S, j) for j ∈ (i− 3τ + 2 . . i] for
j ∈ (i . . i+ 3τ − 2]. The labels to be removed are listed with O(log n)-time delay using predecessor
queries on R′(τ,L) and successor queries on R′′(τ,L), respectively. The number of newly unmarked
labels in O(1), so the extra cost compared to Lemma 10.6 is O(log n), dominated by the original
cost of W.split(S, i).

Proposition 10.8. For any fixed ` ∈ Z+, a dynamic text T ∈ Σn can be implemented so that
initialization takes O( log2 logm·log∗m

log log logm ) time, updates take O(log n · log2 logm·(log∗m)2

log log logm ) time, and the
queries of Assumption 6.3 take O(log n) time, where m = |Σ| + t and t is the total number of
instructions that the data structure has performed so far.

Proof. We proceed as in the proof of Corollary 10.2, but instead of implementing family L using
Lemma 10.1, we apply the extension of Lemma 10.7 for τ = b `3c. This increases the cost of initialize
to O( log2 logm·log∗m

log log logm ) and the cost of updates to O(log n · log2 logm·(log∗m)2

log log logm ) (dominated by L.concat).
As for a query, note that L = {S}, where S is a labelled string with val(S) = T . Given a position

i ∈ [1 . . |T |], we compute label(S[i]) using a call L.label(S, i). Next, we apply the query algorithm of
Lemma 10.7 to check whether label(S[i]) ∈ R(τ,L), which is equivalent to testing whether i ∈ R(τ, T ).
The query time is therefore O(log n).

10.4 Implementing Assumption 6.5

Based on Construction 9.2, we define Ssig(τ,L) =
⋃
S∈L{label(S[i]) : i ∈ Ssig(τ, val(S))}.

Lemma 10.9. For any fixed τ ∈ Z≥0, the data structure of Lemma 10.6 can be augmented so that,
given S ∈ L and j ∈ [1 . . |S|], the value succSsig(τ,val(S))(j) can be computed in O(log n) time, where
sig is an (implicit) signature function. This comes at the price of increasing the cost of concat to
O(log n · log2 logm·(log∗m)2

log log logm ).

Proof. On top of the data structure of Lemma 10.6, we store the component of Lemma 10.5 with
L := Ssig(τ,L). As for the query algorithm, we compute ` = label(S[j]) and find `′ = succL(`). If
`′ = ⊥, then succSsig(τ,val(S))(j) = |S| − 2τ + 2 (see Section 6.2). Otherwise, succSsig(τ,val(S))(j) = j′,
where (S, j′) = unlabel(`′). Thus, the query time is O(log n).

While executing the split(S, i) operation, we unmark all nodes corresponding to S[i− 2τ + 2 . . i].
For this, we repeatedly compute predSsig(τ,L)(label(S[i])) and, if the predecessor exists, use the unlabel
operation to retrieve its position j. If j ≥ i− 2τ + 2, we unmark the corresponding label. Otherwise,
we terminate the procedure. By Corollary 9.5, this correctly maintains the set of marked nodes. The
running time of this step is O(log n) per unmarked node and, by Lemma 9.3, O(log n log∗(τσ)) in
total. This cost is dominated by the cost O(log n log2 logm·log∗m

log log logm ) of split(val(S), i).
While executing the concat(R,S) operation, by Corollary 9.5, we need to mark Ssig(U, τ) in

the tree representing R · S, where U = R(max(0, |R| − 2τ + 1) . . |R|] · S[1 . .min(2τ, |S|)]. For
this, we construct val(U) using split and concat operations on W, and then apply Proposition 9.7
to derive Ssig(val(U), τ). For each of the obtained positions, we locate the corresponding label
using the label(R · S, j). The cost O(log n log2 logm·(log∗m)2

log log logm ) is dominated by the application of
Proposition 9.7.
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For a uniquely labelled family L, an integer τ ∈ Z+, and a signature function sig, define

Psig(τ,L) =
⋃
S∈L
{(val(S)∞[i− 7τ . . i), val(S)∞[i . . i+ 7τ), label(S[i])) : S ∈ Ssig(τ, val(S))}

(cf. Definition 4.2). We interpret Psig(τ,L) ⊆ X × Y × Z as a family of labelled points with
X = CF+(L) and Y = CF+(L), both ordered lexicographically.

Lemma 10.10. The data structure of Lemma 10.9 can be augmented so that range queries (Section 4)
on Psig(τ,L) can be supported in time O(log3 n+ log2 n · log2 logm·log∗m

log log logm ). This comes at the price of

increasing the cost of concat and split to O(log2 n · log2 logm·(log∗m)2

log log logm ) time.

Proof. Compared to the data structure of Lemma 10.9, we also maintain Psig(τ,L) in the data
structure of Theorem 4.1. By Lemma 10.6, each comparison on X and Y costs O(log n· log2 logm·log∗m

log log logm )

time. As a result, the cost of a range query is O(log3 n + log2 n · log2 logm·log∗m
log log logm ). As for updates,

insert and delete do not incur updates to P (strings of length 1 have empty synchronizing sets). On
the other hand, split and concat may incur O(log∗m) insertions and deletions, both corresponding
to changes in the synchronizing set and to synchronizing positions whose context has changed; the
latter can be generated by repeated calls to the succSsig(τ,L) operation. The running time is therefore

increased to O(log2 n · log2 logm·(log∗m)2

log log logm ).

Proposition 10.11. For any fixed ` ∈ Z+, a dynamic text T ∈ Σn can be implemented so that
initialization takes O( log2 logm·log∗m

log log logm ) time, updates take O(log2 n · log2 logm·(log∗m)2

log log logm ) time, and the

queries of Assumption 6.5 take O(log3 n+ log2 n · log2 logm·log∗m
log log logm ) time, where m = |Σ|+ t and t is

the total number of instructions that the data structure has performed so far.

Proof. We proceed as in the proof of Corollary 10.2, but instead of implementing family L using
Lemma 10.1, we apply the extensions of Lemmas 10.9 and 10.10 for τ = b `3c. This increases the cost
of initialize to O( log2 logm·log∗m

log log logm ) and the cost of updates to O(log2 n · log2 logm·(log∗m)2

log log logm ) (dominated
by L.concat and L.split).

We use S := Ssig(τ, T ) as the synchronizing set of T . As for a succS(i) query for i ∈ [1 . . n−3τ+1],
we simply forward the query to the component of Lemma 10.9. The cost of this query is O(log n).

As for the string-string range queries on Points7τ (T,S), we use the equivalent range queries on
Psig(τ,L) instead. The only work needed is to convert the query arguments from indices to fragments
in CF+(T ) and CF+(T ) (as specified in Problem 4.3). Moreover, the label returned by the range
selection on Psig(τ,L) is converted to a position in T using the L.unlabel(·) operation. The query
time is O(log3 n+log2 n · log2 logm·log∗m

log log logm ), dominated by the cost of range queries of Lemma 10.10.

10.5 Implementing Assumption 6.21

Lemma 10.12. For any fixed τ ∈ Z+, the data structure of Lemma 10.7 can be augmented
so that, given S ∈ L and j ∈ R(τ, val(S)), in O(log n) time we can compute e(τ, val(S), j),
|rootfsig(τ, val(S), j)|, and headfsig(τ, val(S), j), where fsig is the necklace-consistent function de-
fined in Construction 8.2. This comes at the price of increasing the cost of split and concat to
O(log n · log2 logm·(log∗m)2

log log logm ).
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Proof. On top of the data structure of Lemma 10.7, for each ` ∈ R′(τ,L), we store |rootfsig(τ, val(S), j)|
and headfsig(τ, val(S), j), where (S, j) = unlabel(`).

In the query algorithm, we first compute ` = label(S[j]). Then, we find `′ = predR′(τ,L)(`)
and `′′ = succR′′(τ,L)(`

′), and we use the unlabel(`′) and unlabel(`′′) operations to retrieve the
corresponding positions j′ and j′′ in S. We note that e(τ, val(S), j) = e(τ, val(S), j′) = j′′ + 3τ − 2.
Additionally, we retrieve the stored values p := |rootfsig(τ, val(S), j′)| and h := headfsig(τ, val(S), j′),
and we return |rootfsig(τ, val(S), j)| = p and headfsig(τ, val(S), j′) = (h+j′−j) mod p. The correctness
of this procedure follows from Lemma 6.19, and the running time is clearly O(log n).

In order to maintain the extra information stored for ` ∈ R′(τ,L), we execute the following
procedure whenever a label ` is added to R′(τ,L): first, we determine (S, j) = unlabel(`). Next, we
extract val(S)[j . . j + 3τ − 1) using W.split operations, compute p := period(val(S)[j . . j + 3τ − 1)),
and note that |rootfsig(τ, val(S), j)| = p. Then, we extract val(S)[j . . j + p) using another W.split
operation, compute h =W.canShift(val(S)[j . . j + p)), and note that headfsig(τ, val(S), j) = h mod p.
Since split(S, i) and concat(R,S) involve O(1) insertions to R′(τ,L), the extra cost of these operations
is O(log n · log2 logm·(log∗m)2

log log logm ). The correctness follows from the fact that ` = label(S[j]) is deleted
from R′(τ,L) whenever split(S, i) with i ∈ [j . . j + 3τ − 2) is performed.

For a uniquely labelled family L, an integer τ ∈ Z+, a string H, and a necklace-consistent
function f , we define (cf. Definitions 4.4 and 6.20):

P−f,H(τ,L) =
⋃
S∈L
{(d, val(S)∞[j . . j + 7τ), label(S[j])) : (j, d) ∈ E−f,H(τ, val(S))},

P+
f,H(τ,L) =

⋃
S∈L
{(d, val(S)∞[j . . j + 7τ), label(S[j])) : (j, d) ∈ E+

f,H(τ, val(S))},

I−f,H(τ,L) =
⋃
S∈L
{(a, b, label(S[j])) : (a, b, j) ∈ I−f,H(τ, val(S))},

I+
f,H(τ,L) =

⋃
S∈L
{(a, b, label(S[j])) : (a, b, j) ∈ I+

f,H(τ, val(S))}.

We interpret P±f,H(τ,L) as a family of labelled points with X = Z and Y = CF+(L).

Lemma 10.13. The data structure of Lemma 10.12 can be augmented so that, for each string
H, given as a fragment of val(S) for some S ∈ L, range queries (Section 4) on P±fsig,H(τ,L) and
modular constraint queries (Section 5) on I±fsig,H(τ,L) can be supported in time O(log3 n+ log2 n ·
log2 logm·log∗m

log log logm ). This comes at the price of increasing the cost of concat and split to O(log2 n ·
log2 logm·(log∗m)2

log log logm ) time.

Proof. The non-empty sets P±fsig,H(τ,L) (henceforth denoted P±H) are maintained in the data structure
of Theorem 4.1, whereas the non-empty sets I±fsig,H(τ,L) (henceforth denoted I±H) are maintained
in the data structure of Corollary 5.2. Pointers to these components are stored in a deterministic
dynamic dictionary [FG15] indexed by symbsig(H).

The first step of the query algorithm is to compute symbsig(H) by extracting the appropriate
fragment using W.split. This lets us identify the data structure responsible for the query in O(log n ·
log2 logm·log∗m

log log logm ) time. By Lemma 10.6, each comparison on CF+(L) costs O(log n · log2 logm·log∗m
log log logm )
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time. As a result, the cost of a range query is O(log3 n+ log2 n · log2 logm·log∗m
log log logm ). On the other hand,

the cost of a modular constraint query is O(log3 n).
Before executing the split(S, i) operation of Lemma 10.7, we identify all maximal intervals

[j′ . . j′′] ∈ R(τ, val(S)) (with j′ ∈ R′(τ, val(S)) and j′′ ∈ R′′(τ, val(S))) such that i ∈ [j′ . . j′′ + 7τ)
or i+ |S| ∈ [j′ . . j′′ + 7τ). There are O(1) such intervals, and they can be generated in O(1) time
using the succ and pred operations on R′(τ,L) and R′′(τ,L). For each identified interval [j′ . . j′′],
we remove the entries with label label(S[j′]) from the sets P±H and I±H containing it, and we add
label(S[j′]) to a temporary set A containing all labels ` ∈ R′(τ,L) which are missing their elements
in P±H and I±H . Then, we execute the split(S, i) operation of Lemma 10.7, updating the set A
whenever a label is removed from or added to R′(τ,L). Finally, we iterate over the set A to add
the missing elements to P±H and I±H . For such a label ` ∈ A, we retrieve (T, j) = unlabel(`) and
ask the query of Lemma 10.7 to determine p := |rootfsig(τ, val(T ), j)|, h := headfsig(τ, val(T ), j), and
e := e(τ, val(T ), j). This lets us extract H = val(T )[j+h . . j+h+ p) via a W.split operation and, in
particular identify symbsig(H). Moreover, we compute type(τ, val(T ), j) by comparing val(T )∞[j . .)

with val(T )∞[j+p . .) via Lemma 10.6 so that we know whether the elements should be inserted to P−H
and I−H or to P+

H and I+
H . Finally, we determine e′ := efull

fsig
(τ, val(T ), j) = e− (e− j − h) mod p and

insert a point (e′, val(T )∞[e′ . . e′+7τ), label(j)) to P±H , and a tuple (e′−e+3τ −1, e′− j+1, label(j))

to I±H . The overall running time is increased to O(log2 n · log2 logm·log∗m
log log logm ), dominated by the cost of

O(1) insertions and deletions on the sets P±H .
The implementation of the concat(R,S) operation is symmetric. The only difference is that

the auxiliary set A is initialized based on maximal intervals [j′ . . j′′] ∈ R(τ, val(R)) with |R|+ 1 ∈
[j′ . . j′′ + 7τ) and on maximal intervals [j′ . . j′′] ∈ R(τ, val(S)) with |S|+ 1 ∈ [j′ . . j′′ + 7τ).

Proposition 10.14. For any fixed ` ∈ Z+, a dynamic text T ∈ Σn can be implemented so that
initialization takes O( log2 logm·log∗m

log log logm ) time, updates take O(log2 n · log2 logm·(log∗m)2

log log logm ) time, and the

queries of Assumption 6.21 take O(log3 n+ log2 n · log2 logm·log∗m
log log logm ) time, where m = |Σ|+ t and t is

the total number of instructions that the data structure has performed so far.

Proof. We proceed as in the proof of Corollary 10.2, but instead of implementing family L using
Lemma 10.1, we apply the extensions of Lemmas 10.12 and 10.13 for τ = b `3c. This increases the cost
of initialize to O( log2 logm·log∗m

log log logm ) and the cost of updates to O(log2 n · log2 logm·(log∗m)2

log log logm ) (dominated
by L.split and L.concat).

We use f := fsig as the necklace-consistent function. The queries asking to compute |rootf (τ, T, j)|,
headf (τ, T, j), and e(τ, T, j) for j ∈ R(τ, T ) are answered in O(log n) time directly using Lemma 10.12.
As for the int-string range queries for the sets Points7τ (T,E±f,H(τ, T )), we use the equivalent range
queries on P±f,H(τ,L) answered using Lemma 10.10. The only work needed is to covert the query
arguments from indices to fragments in CF+(T ) (as specified in Problem 4.5). Moreover, the label
returned by the range selection on P±sig,H(τ,L) is converted to a position in T using the L.unlabel(·)
operation. The query time is O(log3 n + log2 n · log2 logm·log∗m

log log logm ), dominated by the cost of range
queries of Lemma 10.13.

Finally, the modular constraint queries on the sets I±f,H(τ, T ) are implemented using the equivalent
modular constraint queries on the set I±f,H(τ,L). No transformation of arguments and query outputs

are necessary here, and the overall query time is O(log3 n+ log2 n · log2 logm·log∗m
log log logm ).
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10.6 Summary

We are now ready to describe the main result of our work: a dynamic text implementation that can
answer suffix array queries. We start with a version with a bounded lifespan: it takes an additional
parameter N at initialization time, and it is only able to handle N operations. Then, we use this
solution as a black box to develop an ‘everlasting’ dynamic suffix array.

Proposition 10.15. For any given integer N ≥ σ, a dynamic text T ∈ [0 . . σ)+ can be implemented
so that initialization takes O(logN · log2 logN ·log∗N

log log logN ) time, updates take O(log3N · log2 logN ·(log∗N)2

log log logN )

time, the suffix array queries take O(log4N) time, and the inverse suffix array queries take O(log5N)
time, provided that the total number of updates and queries does not exceed N .

Proof. We maintain T using data structures of Proposition 10.4 and Lemma 10.6, as well as
several instances of the data structures of Propositions 10.8, 10.11, and 10.14 for ` = 2q, where
q ∈ [4 . . dlogNe]. The initialization and each update operation needs to be replicated in all these
components.

The suffix queries are implemented using Proposition 6.55. Due to the fact that |T | ≤ N , the
components maintained are sufficient to satisfy the assumption required in Proposition 6.55.

As for the inverse suffix array queries, we perform binary search. In each of the O(log |T |) =
O(logN) steps, we compare the specified suffix T [j . . |T |] with the suffix T [SA[i] . . |T |]; here, we use
a suffix array query of to determine SA[i] and the lexicographic comparison (of Lemma 10.6) to
compare the two suffixes lexicographically.

Recall that the running times of all the components are expressed in terms of parameters n = |T |
(which does not exceed N) and m = σ + t, where t is the total number of instructions performed
so far by the respective component. This value may differ across components, but we bound it
from above by the total number of instructions performed so far by all the components; let us call
this value M . Note that each update and query costs O(logO(1)(N +M)) time, which means that
M = O(σ+N logO(1)N) = O(N logO(1)N), where the last step follows from the assumption N ≥ σ.

Consequently, the initialization takes O(logN · log2 logM ·log∗M
log log logM ) = O(logN · log2 logN ·log∗N

log log logN ) time

and the updates take O(logN · log2 n · log2 logM ·(log∗M)2

log log logM ) = O(log3N · log2 logN ·(log∗N)3

log log logN ) time. By

Proposition 6.55, suffix queries take O(log n · (log3 n+ log2 n log2 logM ·log∗M
log log logM )) = O(log4N) time. On

the other hand, the inverse suffix array queries cost O(logN · (log4N + log n · log2 logM ·log∗M
log log logM )) =

O(log5N) time.

Theorem 10.16. A dynamic text T ∈ [0 . . σ)n can be implemented so that initialization takes
O(log σ · log2 log σ·log∗ σ

log log log σ ) time, updates take O(log3(nσ) · log2 log(nσ)·(log∗(nσ))2

log log log(nσ) ) time, the suffix array
queries take O(log4(nσ)) time, and the inverse suffix array take queries O(log5(nσ)) time.

Proof. We first describe an amortized-time solution which performs a reorganization every Ω(n) opera-
tions. This reorganization takes O(n·U(n, σ)) time, where U(n, σ) = O(log3(nσ) log2 log(nσ)·(log∗(nσ))2

log log log(nσ) )
is the update time.

The text T is stored using the data structures of both Corollary 10.2 and Proposition 10.15.
Moreover, we maintain a counter t representing the number of operations that can be performed before
reorganization. At initialization time, we set t = 1 and initialize both components, setting N = σ for
Proposition 10.15. The updates and queries are forwarded to the component of Proposition 10.15, but
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we first perform reorganization (if t = 0) and decrement t (unconditionally). As for the reorganization,
we set t = d1

2 |T |e, discard the component of Proposition 10.15, and initialize a fresh copy using
N = max(σ, d3

2 |T |e − 1); we then insert characters of T one by one using the access operation of
Corollary 10.2 and the insert operation of Proposition 10.15.

To prove that this implementation is correct, we must argue that each instance of Proposition 10.15
performs no more than N operations. The instance created at initialization time is limited to a single
operation, which is no more than the allowance of N = σ operations. On the other hand, an instance
created during a reorganization performs |T | − 1 insertions during the reorganization, and is then
limited to d1

2 |T |e operations. In total, this does not exceed the allowance of N = max(σ, d3
2 |T |e − 1)

operations.
It remains to analyze the time complexity. For this, we observe that, if N > σ, then |T | ≥

|T | − t ≥ b1
3Nc is preserved as an invariant. This means that N = O(max(σ, |T |)) = O(σ|T |), and

thus the operation times of Proposition 10.15 can be expressed using nσ instead of N . This also
applies to the cost of reorganization, which uses initialization and n− 1 updates.

As for the deamortization, we use the standard technique of maintaining two instances of the
above data structure. At any time, one them is active (handles updates and queries), whereas the
other undergoes reorganization. The lifetime of the entire solution is organized into epochs. At
the beginning of each epoch, the active instance is ready to handle t ≥ 1

2n forthcoming operations,
whereas the other instance needs to be reorganized. The epoch lasts for t operations. During the first
half of the epoch, the reorganization is performed in the background and the updates are buffered
in a queue. For each operation in the second half of the epoch, at most one update in buffered
(none if the operation is a query) and two buffered updates are executed (unless there are already
fewer updates in the buffer). Since the reorganization cost is bounded by O(t ·U(n, t)) and since the
query cost is larger than the update cost, the deamortized solution has the same asymptotic time
complexity as the amortized one.

11 Conditional Lower Bound for Copy-Pastes

A natural extension of the dynamic text interface provided in Section 10 would be to support not
only cut-pastes (that move fragments of T ), but also a copy-pastes (that copy fragments of T ). Such
operation is readily supported by the underlying implementation of dynamic strings (Section 8), but
it is incompatible with the concept of labelling characters – a single copy-paste may add multiple
new characters, and we cannot afford to assign them labels one by one. In this section, we provide a
conditional lower bound showing that this is not due to a limitation of our techniques, but rather
due to inherent difficulty of the (inverse) suffix array queries in dynamic texts. Our lower bound is
conditioned on the Online Matrix-Vector Multiplication Conjecture [HKNS15], which is often used
in the context of dynamic algorithms. The underlying reduction resembles one from the Dynamic
Internal Dictionary Matching problem [CKM+21], where the queries ask if a given fragment of a
static text contains an occurrence of any pattern from a dynamic dictionary.

In the Online Boolean Matrix-Vector Multiplication (OMv) problem, we are given as input an
n× n boolean matrix M . Then, a sequence n vectors v1, . . . , vn, each of size n, arrives in an online
fashion. For each such vector vi, we are required to output Mvi before receiving vi+1.

Conjecture 11.1 (OMv Conjecture [HKNS15]). For any constant ε > 0, there is no O(n3−ε)-time
algorithm that solves OMv correctly with probability at least 2

3 .
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We use the following simplified version of [HKNS15, Theorem 2.2].

Theorem 11.2 ([HKNS15]). For all constants γ, ε > 0, the OMv Conjecture implies that there is no
algorithm that, given as input a p× q matrix M , with p = bqγc, preprocesses M in time polynomial
in p · q, and then, presented with a vector v of size q, computes Mv in time O(q1+γ−ε) correctly with
probability at least 2

3 .

Theorem 11.3. For all constants α, β > 0 with α+ β < 1, the OMv Conjecture implies that there
is no dynamic algorithm that preprocesses a text T in time polynomial in |T |, supports copy-pastes
in O(|T |α) time, and inverse suffix array queries in O(|T |β) time, with each answer correct with
probability at least 2

3 .

Proof. Let us suppose that there is such an algorithm and set γ = 1+α−β
1+β−α . Given a p× q matrix M

satisfying p = bqγc, we construct a text T of length pq + 2p+ 3 over an alphabet {$, a0, . . . , ap,#}
(with $ ≺ a0 ≺ · · · ≺ ap ≺ $) using the following formula:

T =

 q⊙
j=1

(
p⊙
i=1

ai·M [i,j]

) ·( p⊙
i=0

ai#

)
· $.

In other words, we first write down the columns of M in the increasing order, replacing each zero
with a0 and each one with ai, where i ∈ [1 . . p] is the row index of the underlying matrix entry. Then,
we append ai# for all i ∈ [0 . . p], and finally we place $ at the very end of T . At the preprocessing
time, we also precompute, for each i ∈ [1 . . p], the number ci of occurrences of ai in T .

Given a query vector v ∈ {0, 1}q, we proceed as follows. For each j ∈ [1 . . q] with vj = 1, we copy
T ((j−1)p . . jp] to the end of T (setting T := T [1 . . |T |) ·T ((j−1)q . . jq] ·T [|T |]). Next, we construct
the answer vector w ∈ {0, 1}p, setting wi := 1 if and only if ISA[pq + 2i+ 1]− ISA[pq + 2i− 1] > ci
for i ∈ [1 . . p].

Let us prove that w = Mv holds assuming that all the ISA queries are answered correctly. For
this, note that, for i ∈ [0 . . p], the value ISA[pq + 2i+ 1] represents total number of occurrences of
symbols $, a0, . . . , ai in T ; that is because T [pq+ 2i+ 1 . . pq+ 2i+ 2] is the unique occurrence of ai#
in T , and # is the largest symbol in Σ. In particular, ISA[pq+ 2i+ 1]− ISA[pq+ 2i− 1] > ci holds if
and only if one of the copy-pastes involved a substring T ((j − 1)p . . jp] containing ai. This character
could have only occurred at position T [(j− 1)p+ i], indicating that M [i, j] = 1. Moreover, the whole
copy-paste is executed if and only if vj = 1. Consequently, ISA[pq + 2i+ 1]− ISA[pq + 2i− 1] > ci
holds if and only if there exists j ∈ [1 . . q] with M [i, j] = vj = 1; this is precisely when (Mv)i = 1.

If the answers to ISA queries are correct with probability at least 2
3 , we can guarantee that

the whole vector w is correct with probability at least 1 − n−Ω(1) ≥ 2
3 by maintaining Θ(log n)

independent instances of the algorithm and taking the dominant answer to each ISA query. In total,
we perform Õ(q) copy-pastes and Õ(p) ISA queries. Furthermore, the copy-pastes have disjoint
sources, so the length of T increases at most twofold. Hence, the total time required is

Õ
(
q|T |α + p|T |β

)
= Õ

(
pαq1+α + p1+βqβ

)
= Õ

(
q1+(1+γ)α + qβ+γ(1+β)

)
= Õ

(
q

1+α+β
1+β−α

)
.

In the light of Theorem 11.2, this would disprove Conjecture 11.1 due to 1+α+β
1+β−α <

2
1+β−α = 1+γ.

Remark 11.4. The reduction behind Theorem 11.3 not only proves hardness of inverse suffix array
queries, but also of the counting version of the dynamic indexing problem: It shows that the counting
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queries are hard already for patterns of length one. Moreover, since each ISA query can be reduced
to a logarithmic number of SA queries, we get the same lower bound for SA queries. (The underlying
reduction is described in the proof of Proposition 10.15; the dynamic strings of Section 8 support
lexicographic comparisons and copy-pastes in Õ(1) time.)

A Omitted Proofs

Lemma 6.18. Let S ∈ Σk, τ ∈ Z+, and let f be any necklace-consistent function. If j ∈ Rf,s,H(τ, S)
then for any j′ ∈ [1 . . k], LCES(j, j′) ≥ 3τ − 1 holds if and only if j′ ∈ Rf,s,H(τ, S). Moreover, if
j′ ∈ Rf,s,H(τ, S), then:

1. If type(τ, S, j) = −1 and type(τ, S, j′) = +1, then S[j . .] ≺ S[j′ . .],
2. If type(τ, S, j) = type(τ, S, j′) = −1 and e(τ, S, j)− j < e(τ, S, j′)− j′, then S[j . .] ≺ S[j′ . .],
3. If type(τ, S, j) = type(τ, S, j′) = +1 and e(τ, S, j)− j > e(τ, S, j′)− j′, then S[j . .] ≺ S[j′ . .].

Proof. Let j′ ∈ [1 . . k] be such that LCES(j, j′) ≥ 3τ − 1. Then, by definition, rootf (τ, S, j′) =
rootf (S[j′ . . j′+3τ−1)) = rootf (S[j . . j+3τ−1)) = rootf (τ, S, j). To show headf (τ, S, j′) = s, note
that by |H| ≤ τ , the string H ′H2 (where H ′ is a length-s suffix of H) is a prefix of S[j . . j+3τ−1) =
S[j′ . . j′+3τ−1). On the other hand, headf (τ, S, j′) = s′ implies that Ĥ ′H2 (where Ĥ ′ is a length-s′

suffix of H) is a prefix of S[j′ . . j′ + 3τ − 1). Thus, by the synchronization property of primitive
strings [CHL07, Lemma 1.11] applied to the two copies of H, we have s′ = s, and consequently,
j′ ∈ Rf,s,H .

For the converse implication, assume j, j′ ∈ Rf,s,H . This implies that both S[j . . e(τ, S, j)) and
S[j′ . . e(τ, S, j′)) are prefixes of H ′H∞ (where H ′ is as above). Thus, by e(τ, S, j)−j, e(τ, S, j′)−j′ ≥
3τ − 1, we obtain LCES(j, j′) ≥ 3τ − 1.

1. Let Q = H ′H∞, where H ′ is a length-s suffix of H. We will prove S[j . . k] ≺ Q ≺ S[j′ . . k],
which implies the claim. First, we note that type(τ, S, j) = −1 implies that either e(τ, S, j) = k + 1,
or e(τ, S, j) ≤ k and S[e(τ, S, j)] ≺ S[e(τ, S, j)− |H|]. In the first case, S[j . . e(τ, S, j)) = S[j . . k] is
a proper prefix of Q and hence S[j . . k] ≺ Q. In the second case, letting ` = e(τ, S, j)− j, we have
S[j . . j + `) = Q[1 . . `] and S[j + `] ≺ S[j + ` − |H|] = Q[1 + ` − |H|] = Q[1 + `]. Consequently,
S[j . . k] ≺ Q. To show Q ≺ S[j′ . . k] we observe that type(τ, S, j′) = +1 implies e(τ, S, j′) ≤ k.
Thus, letting `′ = e(τ, S, j′)− j′, we have Q[1 . . `′] = S[j′ . . j′ + `′) and Q[1 + `′] = Q[1 + `′ − |H|] =
S[j′ + `′ − |H|] ≺ S[j′ + `′]. Hence, we obtain Q ≺ S[j′ . . k].

2. Similarly as above, we consider two cases for e(τ, S, j). If e(τ, S, j) = k + 1, then by
e(τ, S, j)− j < e(τ, S, j′)− j′, S[j . . e(τ, S, j)) = S[j . . k] is a proper prefix of S[j′ . . e(τ, S, j′)) and
hence S[j . . k] ≺ S[j′ . . e(τ, S, j′)) � S[j′ . . k]. If e(τ, S, j) ≤ k, then letting ` = e(τ, S, j) − j, we
have S[j . . j + `) = S[j′ . . j′ + `) and by e(τ, S, j)− j < e(τ, S, j′)− j′, S[j + `] ≺ S[j + `− |H|] =
S[j′ + `− |H|] = S[j′ + `]. Consequently, S[j . . k] ≺ S[j′ . . k].

3. By type(τ, S, j′) = +1 we have e(τ, S, j′) ≤ k. Thus, letting `′ = e(τ, S, j′) − j′, by
e(τ, S, j)− j > e(τ, S, j′)− j′, we have S[j . . j + `′) = S[j′ . . j′+ `′) and S[j + `′] = S[j + `′− |H|] =
S[j′ + `′ − |H|] ≺ S[j′ + `′]. Consequently, S[j . . k] ≺ S[j′ . . k].

Lemma 6.19. Let S ∈ Σ+, τ ∈ Z+, and assume that f is a necklace-consistent function. For any
position j ∈ R(τ, S) \ R′(τ, S) it holds

• rootf (τ, S, j−1) = rootf (τ, S, j),
• e(τ, S, j−1) = e(τ, S, j), and
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• type(τ, S, j−1) = type(τ, S, j).

Proof. Denote p = per(S[j−1 . . j−1+3τ−1)) and p′ = per(S[j . . j+3τ−1)). By j − 1, j ∈ R(τ, S)
we have p, p′ ≤ τ

3 . Consider Q = S[j . . j + τ). The string Q has both periods p and p′. If p 6= p′,
then by the weak periodicity lemma, Q has a period p′′ = gcd(p, p′) < p′. Since p′′ | p′ we obtain
that S[j . . j + p′) is not primitive, which contradicts per(S[j . . j + 3τ − 1)) = p′. Thus, p = p′. Then,
by p ≤ τ

3 , we have S[j−1 . . j−1+p) = S[j−1+p . . j−1+2p). Consequently, {S[j−1+t . . j−1+t+p) :
t ∈ [0 . . p)} = {S[j+t . . j+t+p) : t ∈ [0 . . p)}. This implies that S[j−1 . . j−1+p) and S[j . . j+p) are
cyclically equivalent. Thus, it holds rootf (τ, S, j − 1) = f(S[j − 1 . . j − 1 + p)) = f(S[j . . j + p)) =
rootf (τ, S, j).

By [KK19, Fact 3.2], S[j− 1 . . e(τ, S, j− 1)) (resp. S[j . . e(τ, S, j))) is the longest substring start-
ing at position j − 1 (resp. j) with period p (resp. p′). Equivalently, e(τ, S, j − 1) = j−1+p +
LCES(j−1, j−1+p) and e(τ, S, j) = j+p′ + LCES(j, j+p′). Thus, by p = p′ and S[j−1] =
S[j−1+p], we have e(τ, S, j − 1) = j−1+p + LCES(j−1, j−1+p) = j+p + LCES(j, j+p) =
j+p′ + LCES(j, j+p′) = e(τ, S, j).

The third claim follows from the definition of type and equalities e(τ, S, j − 1) = e(τ, S, j) and
p = p′.
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