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ABSTRACT

We enhance the resolution of depth videos acquired with low

resolution time-of-flight cameras. To that end, we propose

a new dedicated dynamic super-resolution that is capable to

accurately super-resolve a depth sequence containing one or

multiple moving objects without strong constraints on their

shape or motion, thus clearly outperforming any existing

super-resolution techniques that perform poorly on depth

data and are either restricted to global motions or not precise

because of an implicit estimation of motion. The proposed

approach is based on a new data model that leads to a robust

registration of all depth frames after a dense upsampling. The

textureless nature of depth images allows to robustly handle

sequences with multiple moving objects as confirmed by our

experiments.

Index Terms— Depth sequence, dynamic super-resolution,

motion estimation, upsampling, ToF data, moving object.

1. INTRODUCTION

Super resolution (SR) is the process of recovering a high res-

olution (HR) image from a set of captured low resolution

(LR) frames. SR has originally been defined for static scenes,

i.e., scenes where the motion between the observed images is

global as opposed to dynamic scenes containing a moving ob-

ject. The past two decades have witnessed tremendous work

on SR for static scenes. As presented in [3], these algorithms,

commonly referred to as classical SR, are numerically limited

to small global motions even for an increased number of LR

frames. Moreover, they cannot handle scenes with moving

objects and consider the corresponding frames as outliers. As

a solution to these major limitations, example-based SR algo-

rithms have been proposed [4], as well as their combinations

with classical multi-frame SR [5]. However, such algorithms

depend on a heavy training phase and the quality of the super-

resolved image is dependent on the suitability of the training

data.

Relatively little attention has been given to the SR of dy-

namic scenes. Farsiu et al. have proposed in [1] a dynamic

shift and add model (dynamic S&A) as a mere extension of

the original S&A that was first defined for the static case

in [2], hence suffering from the same restrictions. Other meth-

ods [6, 7, 8, 9] have been proposed to tackle the problem of

dynamic SR by segmenting the moving object first before su-

per resolving it. Such methods do not handle pixels on the

boundary of the object causing major artifacts. In 2010, van

Eekeren et al. [9] proposed an algorithm to solve the prob-

lem of boundary pixels; however, this algorithm is computa-

tionally heavy and based upon strong assumptions. In 2009,

dynamic SR models were proposed with an implicit motion

estimation, e.g., steering kernels for SR (SKSR) [21]. While

the idea is theoretically attractive, it is very impractical as it

relies on heavy computations and on many empirical param-

eters. Moreover, these methods are dedicated for 2D inten-

sity sequences, strongly failing when it comes to depth data

because of its abrupt value changes around edges and tex-

tureless nature. Such data, usually captured with a time-of-

flight (ToF) camera, requires a resolution enhancement. Fu-

sion based methods have been proposed as a solution for dy-

namic depth scenes [10, 11, 12, 13, 14] where a HR 2D cam-

era is coupled with a depth LR camera. These methods often

suffer from texture copying problems and require a perfect

alignment and synchronization of 2D and depth sequences.

In [16], we have proposed to release the limitations on

scale and motion of the static S&A algorithm [1, 2] in the

case of depth data with global rigid motions. In this work,

we target the SR of dynamic depth scenes containing one or

multiple moving objects without prior assumptions on their

shape or motion, and without engaging in an additional learn-

ing stage. To the best of our knowledge, we are the first

to explore the multi-frame SR framework for dynamic depth

scenes. The proposed algorithm takes advantage of the tex-

tureless nature of depth data, leading to a robust median esti-

mation without fusing with 2D data; hence, avoiding blurring

and texture copying artifacts. This algorithm is based on a

new data model that starts by densely upsamling the LR mea-

surements for an accurate registration using a new cumulative

motion compensation.

The organization of the paper starts by formulating the

problem of dynamic SR in Section 2. We then provide our

key concepts for a robust motion estimation in Section 3. In

Section 4, we propose a new data model that leads to a robust

dynamic depth SR algorithm. In Section 5, we experimen-

tally compare its performance with state-of-art techniques us-

ing depth sequences. A conclusion is given in Section 6.



2. PROBLEM FORMULATION

The aim of dynamic SR algorithms is to estimate a sequence

of N HR images {xt}
N

t=1 of size (m × n) from an observed

LR sequence {yt}
N

t=1, where each LR image yt is of size

(m′ × n′) pixels, with n = r · n′ and m = r ·m′, such that

r is the SR factor. Every image yt may be viewed as an LR

noisy and deformed realization of xt′ at the acquisition time t,

with t′ ≤ t. Rearranging all images xt and yt, t = 1, · · · , N ,

in lexicographic order, i.e., column vectors of lengths mn and

m′n′, respectively, we consider the following data model:

yt = DHLt
′

t
xt′ + nt, t

′ ≤ t and t, t′ ∈ [1, N ] ⊂ N
∗, (1)

where D is a matrix of dimension (m′n′ ×mn) that repre-

sents the downsampling operator, and which we assume to

be known and constant over time. The system blur is repre-

sented by the time and space invariant matrix H. The vector

nt is an additive Laplacian noise at time t as justified in [2].

The matrices Lt
′

t
are (mn×mn) matrices corresponding to

the geometric motion between the considered HR image xt′

and the observed LR image yt prior to its downsampling.

The dynamic SR problem is simplified by reconstructing one

HR image at a time using the full observed sequence. From

now on, we fix the reference time to t0, and focus on the re-

construction of xt0
from {yt}

N

t=t0
. The operation may be

repeated for t0 = 1, · · · , N . Based on the data model in

(1), and using an L1 norm between the observations and the

model, the Maximum Likelihood (ML) estimate of xt0
is ob-

tained as follows:

x̂t0
= argmin

xt0

N∑

t=t0

‖DHLt0
t
xt0

− yt‖1. (2)

Using the same approach as in [2, 18], we consider that H

and Lt0
t

are block circulant matrices. Therefore:

HLt0
t

= Lt0
t
H. (3)

The minimization in (2) can therefore be decomposed into

two steps; estimation of a blurred HR image zt0 = Hxt0
,

followed by a deblurring step. In what follows, we assume

that yt is simply the noisy and decimated version of zt with-

out any geometric warp. We may thus write Lt

t
= I, ∀t, I

being the identity matrix, hence, Lt0
t
zt0 = zt = Hxt. This

operation can be assimilated to registering zt0 to zt. We draw

attention to the fact that in the case of static multi-frame SR,

instead of a sequence, a set of observed LR images is consid-

ered, i.e., there is no order between frames. Such order be-

comes crucial in dynamic SR because the estimation of mo-

tion, based on the optical flow paradigm, happens between

consecutive frames only. An accurate dynamic SR estimation

is consequently highly dependent on the accuracy of estimat-

ing the registration matrices Lt−1
t

, as well as Lt0
t

. In the case

of one moving object with a very small translational motion

through few frames, a subpixel motion estimation would be

sufficient to guarantee a good HR image. This assumption is

not valid anymore if the object moves fast or the scene has

multiple objects moving with different motions. In this case,

the SR process becomes more challenging and a robust reg-

istration method is required using a dense optical flow. Most

SR algorithms are directly related to a registration based on

a too coarse pixel correspondence as compared to the scale

of details in the scene. It is therefore necessary to call upon

a very accurate subpixel correspondence. In what follows,

we argue that this accuracy is highly increased after an up-

sampling of the observed sequence as presented in Section 3.

We accordingly propose a new data formulation for dynamic

depth SR and give its corresponding algorithm in Section 4.

3. MOTION ESTIMATION AND REGISTRATION

It has been shown in [17] that higher image resolutions help

increase the accuracy of motion estimation which justifies ap-

plying an upsampling framework to get higher scale images.

Moreover, performing the registration process on upsampled

images guarantees a better result with a higher accuracy than

registering the LR images yt followed by upsampling them.

This is due to the fact that registration parameters are approx-

imated by rounding the motion vectors with an expected error

of ± 1

2
pixel. The effect of this error is related to the size

of the registered images, whereas the upsampling process re-

duces this effect from ± 1

2m
in the LR case to ± 1

2rm
. Hence,

we propose to upsample the observed LR images even be-

fore registering them. Due to the specifications of depth data,

classical interpolation based methods (e.g. bicubic) cannot be

used and lead to jagged values and blurring effects especially

for boundary pixels. Thus, we propose to densely upsam-

ple yt, t = 1, ..., N , up to the super-resolved image of size

(m× n). We define the resulting image as:

yt ↑= U · yt, (4)

where U is a dense upsampling matrix of size (mn×m′n′),
which we choose to be the transpose of D, s.t., UD = A,

where A is a block circulant matrix that defines a new blur-

ring matrix B = AH. Therefore, we redefine zt as:

zt = Bxt. (5)

Since the optical flow approach works under the assumption

of small motions, the frames which are further from the refer-

ence frame yt0
↑ would introduce a higher registration error

than the ones that are closer to yt0
↑. They will thus be con-

sidered as outliers. The percentage of these outliers is related

to two main factors; the speed of the moving objects and the

length of the sequence N . For example, a long sequence with

a fast moving object would most likely lead to more than 50%

of outliers and the SR process fails even when using a robust

estimator with a high breakdown value such as a median esti-

mator. To tackle this problem, we herein propose to use a new



registration method based on a cumulative motion compensa-

tion.

Considering two consecutive upsampled frames yt−1 ↑
and yt ↑, the optimal registration solution is:

M̂t

t−1 = argmin
M

Ψ(yt−1 ↑,yt ↑,M) , (6)

where Ψ is a dense optical flow-related cost function and

yt ↑= Mt

t−1yt−1 ↑ +vt. (7)

The vector vt contains the innovation that we assume negligi-

ble in this framework. In addition, similarly to [21], for ana-

lytical convenience, we assume that all pixels in yt ↑ originate

from pixels in yt−1 ↑ in a one to one mapping. Therefore,

each row in Mt

t−1 contains 1 for each position corresponding

to the address of the source pixel in yt−1 ↑. This bijective

property implies that the matrix M̂t

t−1 is an invertible per-

mutation, s.t., [M̂t

t−1]
−1 = M̂t−1

t
. Furthermore, its estimate

leads to the following registration to yt−1:

y
t
↑= M̂t−1

t
yt ↑ . (8)

We then need to define yt0
t

↑, the registered version of yt ↑
to the reference yt0

↑. To that end, we use all the regis-

tered upsampled images y
t
↑, as defined in (8), for t > t0.

We propose, similarly to our work in [17], a cumulative mo-

tion compensation approach with an additional improvement

where we further reduce the cumulated motion error by re-

computing M̂t

t−1 as follows:

M̂t

t−1 = argmin
M

Ψ(yt−1 ↑,y
t
↑,M) , (9)

We prove by induction the following registration relationship

for non-consecutive frames:

yt0
t

↑= M̂t0
t
yt ↑= M̂t0

t0+1 · · · M̂
t−1
t

︸ ︷︷ ︸

(t− t0) times

·yt ↑ . (10)

Considering the bijection simplification, we further write:

M̂t0
t

≈ Lt

t0
= [Lt0

t
]−1. (11)

4. PROPOSED ALGORITHM

The subpixel accuracy in motion estimation induced by the

combined upsampling and cumulative motions proposed in

Section 3, make it feasible to handle a depth sequence with

a moving object without using any prior information on its

shape, rigidity, or motion. These advantages are extended to

the much more complex case of multiple moving objects. In-

deed, the textureless nature of depth images categorizes them

as images containing gross information only, i.e., with no tex-

ture information, as per Mallikarajuna et al.’s composite im-

age model [22]. This property, combined with the SR impulse

noise nt, suggests that a temporal median estimator is a robust

equivalent to the ML formulation of (2).

We reformulate the data model in (1) to introduce the upsam-

pling strategy of Section 3. Combining (1), (3), (4), (5), and

(11), we find1:

yt0
t

↑= zt0 +wt, t0 ≤ t and t, t0 ∈ [1, N ] ⊂ N
∗, (12)

where wt = M̂t0
t
U · nt is an additive Laplacian noise at t.

The estimation in (2) becomes:

ẑt0 = argmin
zt0

N∑

t=t0

‖zt0 − yt0
t

↑ ‖1, (13)

which corresponds to the pixel-wise temporal median estima-

tor, i.e., ẑt0 = medt{y
t0
t

↑}N
t=t0

. Then follows a simple im-

age deblurring to recover x̂t0
from ẑt0 . We hence propose

a new dynamic SR algorithm corresponding to the presented

new SR estimation, that we refer to as Upsampling for Precise

Super-Resolution (UP-SR) as summarized below:

UP-SR algorithm

for t0,

1. Choose the reference frame yt0
.

for t, s.t., t0 < t < N ,

do

2. Compute yt ↑ using (4).

3. Estimate the registration matrices M̂t0
t

using (10).

4. Compute yt0
t

↑ using (10).

end do

end for

5. Find ẑt0 by applying a median estimator (13).

6. Deduce x̂t0
by deblurring.

end for

5. EXPERIMENTS

We test the performance of the proposed UP-SR algorithm

on depth data acquired with a ToF camera. Using the SR

estimation on such data is suitable as it suffers from a very

low resolution. We start with a simple case of one moving

object (hand) with a translational motion. We compare the

performance of UP-SR for both cases, registered measured

LR depth images yt0
t

and registered densely upsampled depth

images yt0
t

↑, t0 < t < N . Results show that in the latter

case (Fig. 1(b)), the registration is more accurate and leads to

sharper edges. Directly relying on LR images, however, leads

to blurred edges (Fig. 1(a)), necessitating a special treatment

or a segmentation step to reduce the artifacts caused by the

boundary pixels. This experimentally confirms the benefit of

our upsampling strategy. Next, we tested UP-SR on a real se-

1A full proof of (12) will be provided in another paper.



(a) (b)
Fig. 1. UP-SR results using motion estimated (a) from an LR

sequence; (b) from densely upsampled sequence (r = 5).

quence of LR depth images containing multiple moving ob-

jects. We mounted an LR ToF camera at a 2.5 meter hight

looking down at the ground with two persons sitting on chairs

sliding in two different directions. A sequence of 9 LR depth

images, of size (56×61) pixels, were super-resolved with a

factor r = 5 using UP-SR, 2D/depth fusion [13], SKSR [18]

and dynamic S&A [1]. Visual results for one frame are given

in Fig. 2(c), (d), (e) and (f), clearly showing that SKSR and

dynamic S&A fail badly on depth data mainly on boundary

pixels while 2D/depth fusion, although computationally ef-

ficient, often suffers from strong 2D texture copying on the

final super-resolved depth frame. Fig. 2(f) shows the result

of UP-SR where we obtained clear sharp edges in addition to

an efficient removal of noisy pixel values. This is mostly due

to the proposed subpixel motion estimation combined with

an accurate registration leading to a successful temporal fu-

sion of the sequence. Finally, in order to provide a quan-

titative evaluation, we generated an LR depth sequence by

downsampling an available HR depth sequence with a factor

r = 4, and further degrading it by additive white Gaussian

noise (AWGN) with signal to noise ratio (SNR) of 15, 25,

35, and 45 dB. We quantitatively compare our proposed algo-

rithm with SKRS and dynamic S&A. We tested these methods

using the corresponding softwares provided in [19] and [20].

Since we have a known ground truth {xt}
N

t=1, we measure the

quality of an estimated HR depth frame x̂t′ using peak SNR

(PSNR), which is defined as: PSNR = 10 log10
m×n

‖x
t′
−x̂

t′
‖2

.

Obtained results show the superiority of the UP-SR algorithm

where it provides the best results among discussed state-of-

the-art SR methods across all noise levels. As illustrated in

Fig. 3, it is not surprising to see that even for a very high

noise level (SNR = 15 dB) results are good. This is due to the

key components of UP-SR, namely, its subpixel motion esti-

mation and accurate multi-frame registration combined with

a robust median filtering that matches the textureless prop-

erty of depth data. Therefore, our algorithm results with good

quality depth images without having to call upon an additional

regularization step. The same algorithm applied on 2D im-

ages gives blurry results with lost details due to the fact that

generally they do not fall under the model proposed in (12).

(a) 2D image (b) Low resolution frame

(c) 2D/depth fusion [13] (d) SKSR [18]

(e) Dynamic S&A [1] (f) Proposed UP-SR

Fig. 2. UP-SR example of a dynamic depth scene (r = 5).

Fig. 3. PSNR on the moving hand sequence with r = 4.

6. CONCLUSION

A new algorithm, UP-SR, has been presented to enhance the

quality of LR depth videos for dynamic scenes containing one

or multiple moving objects. This algorithm is based on the

SR framework without strong constraints on objects’ shape or

motion. It takes advantage of the textureless nature of depth

data to achieve robust SR estimation after densely upsampling

LR frames. Experimental results with both synthetic and real

ToF depth images showed that UP-SR, although conceptually

simple, provides a more accurate motion estimation which

leads to greatly outperforming existing methods.
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