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Dynamic Susceptibility of a Model Polymer in Several Limits --

* 
Theory and Calculations 

M. J. Mandell 

Laboratory of Atomic and Solid State Physics 
Cornell University 

Ithaca, New York 14850 

Abstract 

We study the susceptibility of a model polymer having 

rotating dipolar sidechains with nearest neighbor interactions 

and diagonal viscosity. The susceptibility can be found 

exactly (1) at zero frequency for arbitrary interaction strength, 

and (2) at zero interaction strength for arbitrary frequency 

and viscosity. In addition, a high-temperature expansion exists 

for arbitrary frequency both in the viscous limit and for finite 

viscosity. We also study the time-dependent correlation function j 

< cos cp.(t) cos "P.jiCO) > for arbitrary viscosity and weak 

interaction, and the possibility of a more complex diagonal 

friction law. In no case are we able to produce a Cole-Cole 

plot which approaches the origin with finite slope at high 

frequencies, as does much experimental data. 



I. Introduction 

There has been some interest in recent years in the dyna­

mical (nonequilibrium) properties of many-particle systems under 

the influence of stochastic forces. Examples include the work 

of Glauber on the Ising model , and a series of papers on 
(2) harmonic oscillator systems by Oppenheim, Shuler and Weiss. 

Various properties of polymers have been considered candi­

dates for explanation by such models. ' ' In this paper 

we study a model similar to that proposed by Work and Fujita 

to explain dielectric relaxation in certain polymers. The 

frequency dependent susceptibility of such polymers, as repre­

sented on a Cole-Cole plot, takes either the semicircular Debye 

form (1-ICDT) > or a distorted form which approaches the origin 

with finite slope (Fig. 1.). 

Our model is a polymer consisting of a backbone with polar 

sidechains free to rotate in the plane normal to the backbone. 

Each such side element has a dipole moment u (which we hence­

forth set to unity) and is subject to a random torque. We 

furthermore suppose an interaction between nearest neighbors 

of the form v cos(cp. - <£•_-,), so as to create a tendency toward 

antiferroelectric alignment for v > 0. (This would be an 

excellent approximation if the interaction is electrostatic3 in 
2 3 origin, taking v ~ u /a , with a the nearest neighbor distance. 

However, it is rather naive to suppose this to be the case.) 
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We then attempt to calculate the linear susceptibility for arbi­

trary frequency. 

In section II we present the solution of the model for 

zero frequency. Section III reviews the theory of motion in the 

field of a random force. In section IV we derive a high-tempera­

ture expansion for the susceptibility in the viscous limit. 

In section V we derive the susceptibility for the noninteracting 

system in the case of finite viscosity, and we demonstrate the 

existence of a high-temperature expansion. Section VI deals with 

the dynamic, linear nearest-neighbor correlation function for 

the case of finite viscosity. Section VII discusses the case of 

a more complex random force, and we summarize our conclusions 

in section VIII. 

In all the cases we consider we are unable to convincingly 

produce a Cole-Cole plot which approaches the origin with finite 

slope as in Figure 1. This suggests that our model, as well as 

all similar models, lacks the essential ingredient needed to 

produce such behavior. 



II. Exact Equilibrium Results 
At equilibrium it is possible to find many properties 

exactly by the techniques used by Fisherv on the classical 
Heisenberg model. We give these calculations in some detail 
both for completeness and because we will use some of the 
results later. 

The Hamiltonian is given by 
H = \ + Hv + V^ (1) 

where 
2 1 V 2 

\~21 lPj 
J 

Hg = -E ^ cos (cp - cot) (2) 
J 

H = v V cos (cp. - cp. .) v L Tj J-l > 
J 

we use I to denote the moment of inertia per sidechain, and 
p. is the momentum conjugate to the angular position cp.. The 
partition function (for co = 0) is then 

Z = [ j J d pj e x p ( " 21 p j )irj d ^j exp(-gSj(v cos Uj - E cos cp^)] 
(3) 

where we have written u. = cp. - cp._1« At zero applied field, 
and neglecting end effects, the partition function may be 
evaluated to give 

Z = (2TTIT)"N/2 (2TTI 0(V/T)) N (4) 
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where I is the Bessel function for imaginary argument, and we 

have set Boltzmann's constant to unity. This result enables 

the calculation of such thermal properties as the specific heat 

by the usual methods. (See Fig. 2). 

Next we calculate the correlation function 

< exp[i(cpQ - c^)] > = 2< cos cp0 cos c^ > 

- o^ • • (5) 
= 2< sin cp sin cp, > , 

For concreteness we take k > 0. We note that 

cos cp, = cos(u, + cp, -.) = cos u, cos cp, _, - sin u, sin cp, , 
(6) 

Thus 

l p , P J N - 1 , Z , 
< cos cp cos cp, > = — dcp cos cp d u cos cp, exp( -pv cos u, ) 

k 
1 p p N-1 

= — dcp cos cp d u (cos u cos cp,_-i - s i n u, s i n cp, _ , ) 
(7) 

where we use the fact that there are N variables cp, but only N-1 

variables u. Since the u, s are all independent, and since 

< sin u, > = 0, we get a recursion formula 

< cos cp cos cp, > = < cos u, >< cos cp cos cp̂ -1 > 4 (8) 

Now, 

< cos u. > 
3 a(pv) ftj^j exP("Pv cos uj) 

= -i' (pv)/I (pv) ( 9 ) 

o o 
2 and < cos cp > = \ , so that 
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< exp[i(cpo - cpk)] > = [ - I o (pv) / l o ( f3v) ] k . (10) 

The function < -e ^o ^1' > = I /I is shown on Figure 2. 
o o

 & 

Furthermore, we may calculate 

< exp[2i(cp - cp,)] > = < cos 2u, > 

= < 2cos u- - 1 > 

= [2/'(pv) - Io(pv)l/lo(pv) (11) 
and this technique may be extended to < e ^o ^1 >. 

Finally, using once again the independence of the coordinates 

u., we may calculate such a term as 
k 

< exp[i £ "j^j j > = < e x p t i n ^ ] >< exp[i(nk_1-nk)tpk_1 
j=0 k-2 

■+ i £ cpJ] > (12) 

j=0 

Since all coordinates u. are independent. 

The static susceptibility is given by 

X - p Y < cos cp. cos cp. > (13) 

which can be derived by differentiating the partition function 

twice with respect to E before taking the zero-field limit. 

This is easily evaluated to give 
t 

k=l 
N I (pv) -: I (pv) 

= (iT )G°(pv) + J(pv) ) (14) 



III. Review of the Theory of a Particle Subject to a Random Force 

In this section we outline the theory of a system sub­

ject to a random force in order to derive the equations basic 
(9) 

to subsequent sections. We follow the development of Kramers. 

An ensemble of model polymers may be characterized by 

a distribution function p(cp_, p_, t), where cp_ and p_ are N­dimensional 

vectors describing the angular positions and momenta of the 

side­chains of a given polymer. We wish to calculate 
2* I {p(cp_, p_, t + T) ­ P(cp., p_, t)} (16) 

where T is a macroscopically small time interval. We proceed 
St " T 

using 

£ = J 2. (
17a
) 

and 

P = ­v U(CD) + ­ B (17b) 
_J& T T 

where 

B = ft+T X(t)dt (18) rT x<t 
jt 

X.(t) being the random torque on the ith sidechain, and B is 

described by a distribution § (B, cp_, p_). Then 

P(cp.,£,t + T) = JdNBP(cp_ ­ ■££,£ + TV U(cp.) ­ B,t)$T(B,c£,p_) (19) 

which leads to 

: = - 7 P . v P + v u ( c p > v n P + - AP (20) 
t I -̂  _ip _i£ _£ T 

If. 
a t I * _jp 

where 
,N AP = Jd B[P(cp_,p - B, t ) - P(cp_,P,t)]$T(B,cp_,p_) 
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- I J -MI-^Hi f r )<>*>} . (2D 
. —oo - 1 

i m=l 

Note that we have assumed the random forces on different side-

chains to be uncorrelated, and also that § is independent of 
T 

cp_. Defining 
un - f Bn$(B,p)dB (22) 

— oo 
yields the Fokker-Planck equation 

'Z-^-V-^p+ll£(-±TP;p) (23) IE. = 
si 

i n=l 
It is usual to choose (Einstein damping) u- = —rfl?T, U 2

 = 2TIITT, 

and. all higher moments zero. This choice is not unique, however. 

The moments u. are restricted only by the conditions that the 

Maxwell-Boltzmann distribution be stationary and stable. We 

shall return to this point in section VII. Under the usual 

choice of u., (23) becomes 

T T = v U(cp)«v P - P. v P + Tiv • (pp + ITV P) (24) 
^ Jt - _£ _£P. _P_ _P_ 
In the case of large viscosity, it is customary to assume 

that 

P(cp_,P_,t) = o(ffi,t)exp[-£.p_/2lT] (25) 

The equation for o is derived by integrating (24) over the 

path cp. + E/TII = ^ from p. = -» to +», and assuming that the 

force and the distribution P(cp.,p_) have nearly the same values 

as at cp over the region making the main contribution to the 
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i n t e g r a l . This l e ads to the d i f f u s i o n equa t ion 

7 7 = v - [ ( v U(cp.))o + T71 
b t _jp_ _c£ _J£ 

I-H T7 = v - [ ( v U(cp.))o + Tv a ] . (26) 
dt CD CD CD 



IV. Susceptibility in the Viscous Limit 

1. Single Particle Susceptibility 

In this subsection we calculate the susceptibility of 

an ensemble of noninteracting side­chains whose dynamics are 

governed by equation (26), with U = ­E cos 9, 9 = cp­o)t. 

The quantity we will calculate is a reduced susceptibility 

given by 

X = 2T ̂ | < e"iG > (27) 

We will write (26) in the form 

^ t f - f i|<o.l»<, - «*» + 4 (28) 
^ dcp 

Denoting Iri/T by T-. and w r i t i n g 

«<**> ■ i I v i n e <29> 
n=­» 

gives 
£(n

2 ­ inz)An = iy ̂ |[(e
iG ­ e"i0) £ Ane

±nQ] (30) 
n n 

i9 
where z = 0)T1 and y = E /2T. Equating powers of e gives 

(n ­ iz) An = y(An_1 ­ A R + 1 ) . (31) 

Now we observe that, using A = 1, 

< e"10 > = A­ = T^r­ + 0(y3
). (32) 

1 1­iz
 J 

This yields, then, the expected result 
X = (1 ­ iz)"1

. (33) 

2. Many Particle Susceptibility 

For our model we need consider a distribution function 

a = °(cpp ••­,%,t) (34) 
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with a potential given by L, + H . The generalization of 
equation (29) is 

""(^"i/f-.r^i-jV5 v r 1 - (35) 
{-} ^ " j xi 

We assume that (a) kr *> is invariant under j - » j + m o r j - m - j ; 
1nji (b) we may neglect Ar -» if more than a few nearby n. !s are 

nonzero, provided v/T is not too large; and (c) end effects 
are negligible. Under these assumptions, we may write the 
generalization of equation (31) as 

\L nj " 1Z L nj ) {n..} ~ y L nj ...,nj-lfnj-l,nj+1,... 

».., n. _,n. +J.,n. .,,.•. J-l J J+1 

-) x\'n. (A , . i + A _ i _ i i -y /, 1 .. .n. -i,n. , ,-ri,... ...n. -+i,n.-i«. 
j J J+1 J-l J 

J ' j+i * j - i j 

where x = v/2T. 
For simplicity, in what follows we subscript the coef­

ficients A only with indices from the region in which they 
may be nonzero, such a procedure being justified by the assumptions 
(a, b, c) above. Once again, our object is to find the coeffi­
cient A, to linear order in y, but as a power series in x. The 
equation for A, is now 

(1 - iz)A1 = y(AQ - A2) - 2x(Ax - A 2 x ) . (37) 
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2 
Since A2 ~ y and A2 , ~ xy, we have, to linear order in x, 

A
i
 = i ■ o Y — . (38) 

1 1 + 2x ­ iz 

To go to higher order in x we must write the equation 

for ky _,, which is 

(5 ­ iz)A2>_1 = y(2A1>_1 ­ 2A3j_1 ­ S2>_2 + A,) 
­x(3Ax ­ 3A3j_2 + 2 A 1 J 1 J _ 1 ­ 2A_lj3>_1 

"
A
2,­2,l

 + A
2,0,­l

)# ( 3 9 ) 

Four types of quantities appear on the right hand side: (1) A­

appears in a previous equation, and may be handled algebraically 

or expanded to low order; (2) A2 and A« _, are proportional to 
2 

y and may be ignored; (3) A. _, and A2 _2
 a r e known from the 

exact results of section II, or, alternatively, may be expanded 

as a power series using (36); (4) The remaining terms satisfy 

equations similar to (39), and contribute to the susceptibility 

terms cubic or higher in x. We may thus proceed to include 

terms to arbitrarily high powers of x = v/2T. Including terms 
through x5 leads to the Cole­Cole plots shown in Figure 3. 

For the highest values we have plotted (x = 0.6 and 

x = 1.0) the Cole­Cole plot is definitely distorted from a 

semi­circular shape, showing some tendency toward the plot of 

Figure 1. (See Figure 4.) 

The numerical results suggest that, for very high fre­

quencies z » (1 4­ 8x), the susceptibility may be well fit by 
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X"(z) = z"1 

X'(z) = (1 + 5.2x4/3)z"2 (40) 
for 0 < x < 3. The slope of the resulting Cole-Cole plot, 
Xn/x' ~ zx is less than that of the semicircle (ax - iz) , 
for which X"/Xf ~ zx" . 



V. Susceptibility in the Finite Viscosity Case 
1. Single Particle 

To find the susceptibility when the approximations 
leading to (26) do not apply, it is necessary to deal with 
the Fokker­Planck equation (24), which for our case becomes 

£■£ = E sin(cp ­ cot) $L _ p If. + Tr^fpP + IT $L > (41) 
at

 K^ J BP v acp ^ v \ bp J v 
Q 2 

We define g(9, p) = (cp,p, ̂ — ) exp(p /2IT), and its fourier 
transform g(n,p) by 

g(9,p) = (2TT)'
1
^e

ine
g(n,p). (42) 

n 
The susceptibility is now given by 

X H 2Tg§ < e"iG > = (2TTlT)""*Jdp exp(­p2
/2lT)fo(p

2
/lT)* (43) 

2 i 
where f (p /IT)S = g(l,p) evaluated at E/2T = 1 (keeping only 
terms linear in E), and satisfies the equation 

[L(x) + i(avr2 ­ x ^ / ^ ) * ) ]fQ(x) = ­1X(T 2/ T I)*. (44) 
Here we have defined T« = r\ and 

L(x) s H -x ti • <45> 
dx 

Equation (44) is derived from equation (41) in a straight­
forward manner using the definitions above and the fact that 

2 
g(0,p) = 1 + 0(E ). Some further details will be given in the 
next subsection when we deal with the many­particle case. 

Equation (44) seems to have no reasonably simple analytic 
solution, but it is a well­behaved linear differential equation 
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and is susceptible to numerical methods. (See Appendix A.) 
2 We plot in Figure 5 the function f (x) exp(-x /2). For small 

frequencies (a) the real part is gaussian and the imaginary 

part is a gaussian which grows with increasing frequency. At 

intermediate frequencies (b) the imaginary part peaks at a 

momentum which corresponds roughly to the angular velocity of 

the field. This represents a sort of "surf-riding" effect. 

For high frequencies (c) we have f ~ X/OO(T1T2) • 

The resulting Cole-Cole plots for various values of 

T2/T-I are shown in Figure 6. The negative susceptibility at 

high frequencies is characteristic of a harmonically oscil­

lating particle which accelerates in phase with the field. 

In addition, Figure 7 shows the absorption x" as a function of 

frequency for various values of TO/T 1 • 

2. Many Particles 

The susceptibility in this case is given by 

- = < e o > = Je ^o 'p(cp_,p_,t)d cpd p 

^ (2TTIT)N/2 JdNpf(£)exp(-£.£/2lT) (45) 

where we understand all quantities to be taken to linear order 

in E/2T, which we then equate to unity. We shall write the 

equation for f and show that 

f = fo(xQ) +,2(v/2T) f1(xQ,x1) + 0(v/2T)2, (46) 
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where x. = p./IT. We shall then consider the function f, and 
1 1 1 

neglect the higher order terms. 
The Fokker-Planck equation for this case is 

^ = £ JEsinCq^ - cut) - v(sin(cpi - cpi_1) + s i n ^ - cpi+1))| — 
i 

-y ^ ^ - + T, y - a - (P.P + I T | £ - ) (47) 
£ I Bcpi £, SPi v t i ap± 
I I 

S 2 
Define § = P exp(, p, /2IT). The viscous term now becomes 

^i("4-Pi^7)-pt-^k^iT] 
i B p i 1 

= T2
X ̂ (L(x1)*)exp(- I x£/2) (48) 
i 

As before, we set 
$ - V exp(i J n 9 ) 4 / ,(£) (49) 

A) U 
and keep those terms proportional to exp(i9 ) . This gives 

. . . v iE ,Po , P - l & , Pl , \ 
-icof(p) = _ ( _ + - l f $ _ 1 > l j 0 + _ $ o ^ j _ i ) 

p 
+ IT {(if " i ^ )($001 + *100 ~ *0,2,-l " *-l,2,0 ) 

" ("TT " i F ^ )(*100 ■ *-l,2,o) - (iT " i^" )($001" *0,2,-l) 

- i ̂  f(£) + T"1 £L(x.)f. (50) 
i th 

Here the central Subscript refers to the zero sidechain, and 
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we have used the fact that $r -> differs from a pure gaussian 
2 y " ™ 

by 0(E ) if . n. = 0. Rewriting the above in dimensionless 
variables and using translational invariance gives 

,T2 vi [£ L(Xl) + i(»T2 - x o ( ^ ) )]f (X) 
1 

T 2 v* E = - ^ ) 2T(xo + X-lf-ll0 + xl $0l-l) 

^ f 2? {(Xo " i!-)(ffe+> + f(x"> " $02-l " *-120) 

-(X " X ~ 5*l)(£fe"> " $-l,2,0) " (Xl - ix7)(f^+> " *0,2,-l)} 
(51) 

where, if f(x) = f(...x_, x , x1, ...) 
then f(x ) = f(...x , x-, x„, ...) 
and f(x ) = f(...x 0, x ., x , . . . ) . (52) 

— -£. -1 o 

All the terms on the right hand side of (51) are linear in 
E/2T (which we now set to unity) and it is now clear that we 
can write equation (46), where f satisfies (44) and 

T2 vi [L(xo) + L(xx) + i(o.T2 - x o( 7- ) )]f1(xo> x1) (53) 
./ 2 v*, , , xr , , , 3 = i(^) (Xl + < X o - X l ) f o ^ + i x 7 f o ^ l » -

We have used a modified relaxation method to solve this 
equation. (See Appendix B.) The solution enables us to cal­
culate the first order correction to the susceptibility, accor­
ding to -, 
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*=*o + 2(li)>l + e(s) 2 

"i-sK'^h'^Sw • (54) 

Typical results are shown in Figures 8, 9, and 10. 



VI. Dynamic Correlation Functions 
The susceptibility is related to a time-dependent correla­

tion function according to 

or, for our case, 

- J < cos cpQ(t) cos cp1(o) > e1 dt = j ^ { T T ) \ ^ ^56^ 

and 
< cos cpQ(t) cos cp1(o) > = j" (2 T 1CD)" 1^ ^X^(a))eicotcio (57) 

where we neglect terms higher than linear in (v/2T) = x. 
For the viscous case we had 
X = (1 + 2x - iz)"1 + 0(x2) 
«= (1 - iz)" 1 + 2x/(l-iz)2 + 0(x2) (58) 

so that 
(viscous) . -2 

XI « = - ( ! - 1 2) 
"(viscous) 2.2 ,-Q. 

X- = -2z/(l + z ) (59) 
Here we define z = OUT-, = CD if we take T-, - 1. We then have 

(viSCOUS) oo i • x. O J 
/x.\ /\ - v p 1 lzt 2dz 

< cos cpQ(t)cos cp̂ (o) > ~ ~ 2T 2TT e 2"T 
-» (1+Z ) 

= " *(2T X 1 + t)e"t. (60) 
We have numerically evaluated these correlation functions 

for three non-viscous cases, and these are shown in Figures 11 
and 12. The errors on the curve T 2

 = 0*3 are particularly 
large, so that this curve should not be taken too seriously. 
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One should observe, however, that (1) for large T~ the time 

scale of the correlations appears to vary like T 2 , and (2) the 

correlation reaches a broad maximum before decaying. The 

first may be understood by noting that the characteristic 
1 2 4 ­

1 
angular velocity in the problem is =■ < p >^ = (TITO) ̂ » 

The second follows from noting that a measurement of cos cp (0) 
o 

corresponds to a measurement of the force field on a neighboring 

particle at time zero, and this will be reflected in the position 

of the particle at some later time. 



VII. Non-Einstein Damping 
We have begun to examine the effect on the single-particle 

susceptibility of a random force more complex than the Einstein 
case we have used thus far. Such a force, which we describe 
by its moments u., must satisfy the conditions that the 
Maxwell-Boltzmann distribution be both stationary and stable. 

In the absence of applied field we may write 
P(p,t) = (1 + g(p,t))exp(-p2/2lT) (61) 

and 

rt-I^n£ #<".»• <62> 
n=l v 

The stationarity condition may be satisfied by choosing, for 
any n, 

U 2 n = (2n)! ?nIT 
*2n-l " "<2n " V V , <«3> 

This gives 
oo 2n-l 

Bt L 9D2n"i 1 n n apJ 
n=l p 

-I ^ S l K ^ t f -P(-P2/1T)} (64) 
n=l b p 

which clearly vanishes for g = constant. For a collection of 
N such pairs of moments (63), g(x, t) will satisfy an equation 
of the form 

2N .2N-1 9 2 9 

ft - *H r i i - <2N - «5H X ^arf+ •••+ v x >ri+ x V x >f£ 
bx dg Bx 

(65) 
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where h.. and h9 are polynomials of degree N ­ 1 . (The right 

hand side of (65) corresponds to the linear operator L of 

section V.) We may now consider the question of the stability 

of the Maxwell­Boltzmann distribution. For concreteness, we 

consider a distortion of the form g ~ cos ax. For a. suffi­

ciently small, such a distortion will decay in time as long as 
2 

h2(x ) > 0. However, for large a the (2N)th derivative will 

be the dominant term, and, since the p. 's are all positive­

definite, this says that N must be odd to insure stability 

against a distortion which varies rapidly as a function of 

momentum. 

We have done a few calculations using the method of 

Appendix A for the case N = 3, for which L takes the form 

L(x) = s (­4 ­ 5x -£ ) + (5 + 10?3(x2 ­ l))­4 
x
dx BX '

 N 'dx 
2 a

3 
+ x(10§,(3 ­ x■) ­ 3??) ­Ar 

J Z bx
J (66) 

2 
+ [1 + 5?o(x4 ­ 6x2 + 3) + 3^2(x2 ­ 1)] ­3­

+ x[^(3 ­ x2
) ­ ?3(x4 ­ 10x2 + 15) ­ 1] £ 

Some results are shown in Figure 13. 

The susceptibility is determined by the function 

f (x) s 1 + g(x), where g satisfies 

L(X) g(x) + <.(CDT2 " (T2/T1)^)g(x) = ­i03T2. (67) 
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One should note that the behavior of g(x) for Ixl -• » is 

very different in the N > 1 case from the Einstein (N = 1) 

case. For N = 1, the dominant term on the left is 

-i(T2/T1)^xg(x), so that 

g(x) > CD( T IT 2)*/X . (68) 

l x l ~ 
For N > 1, the dominant term is -£„ x — g(x), so that 

N Bx ° 

g(x) > -^2nh x2N"2) ' (69) 
jx|-»oo 

This results in decreased absorption at high frequencies. 



VIII. Conclusions 

We have produced a model polymer whose dielectric relaxa­

tion can be solved under a variety of conditions: 

(1) At low frequencies, t 

X(co) . -& (e(co) - ett ) — x° + T? (70) 
NU CD-O ov ' o 

where x = v/2T. For x » 1, x(°) - l/8x. 

(2) In the viscous limit x^) raay be expanded as a power 

series in x (high temperature expansion). The high fre­

quency end of the Cole-Cole plot is shifted to the right 

by the interaction, but we find no indication of the slope's 

becoming finite near the origin. The shape of the curve 

depends only on the parameter x = v/2T. 

(3) For the finite viscosity the problem is characterized 

by two times: a kinematic time T 2
 = *n » and a relaxation 

time T1 = ^I/T, the viscous limit applying for T 2 « T.. 

The non-interacting problem can be solved exactly (i.e., 

reduced to the solution of a differential equation), and 

a high temperature expansion exists in the more general 

case. In particular, dynamic correlation functions can 

be calculated for small x. 

(4) Our method can be generalized to include a more com­

plex random force. It is possible to construct a force 

for which thn high frequency susceptibility moves to the 
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right of the Debye semicircle, even in the finite vis­

cosity non-interacting case. 

None of the above cases convincingly reproduces a Cole-

Cole plot such as that of Figure 1, unless one is willing to 

believe that the method of section VII, with a judicious choice 

of moments (possibly an infinite number), can give such 

behavior. A more likely cause of this effect is off-diagonal 

viscosity, i.e., the random torque on a given sidechain 

depends on the angular momentum of its neighbors. We have 

neglected this possibility in deriving equation (21), but 

it should be possible to generalize our methods to this case. 

We believe this model to be interesting in its own right, 

as well as shedding some light on the question of polymer 

relaxation. 
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Appendix A. Method for"Numerical Solution of (44) 

This is a special case of a linear differential equation 

on the domain -oo < x < eo. The first step is to transform the 

real line into a finite interval by a change of variables 

such as 

x = a tan £0 . (Al) 

Next we discretize the problem by dividing the interval 

-Tr/2p < 0 < Tv/2p into N subintervals of length A = -n/Np, and 

replacing the derivatives by the corresponding symmetric 

finite differences, e.g., 

dy yn+l " yn-l ,A0. 
d£ - 2* (A2) 

£± yn+i - 2yn + yn-i ,.-, 
— k - 9 (A3) 
dxz br. 
etc. 

This procedure will give,,for a differential equation of order 

2m, (N + 1 - 2m) equations for N + 1 unknowns y . The remaining 

2m equations are supplied by the boundary conditions. (The 

boundary conditions for (44) are f = 1 for x = + a>.) It is 

known that under fairly general conditions the solution of 

the discrete problem will converge to that of the continuous 

problem as N -• ». 

We have now reduced the problem to solving a set of 

complex linear equations 



AY = B (A4) 

where A is an (N + 1) by (N + 1) matrix. In general, the 

computer time required to solve such a problem is at least 
2 

0(N ), but by taking advantage of the fact that A is' band-

diagonal we may reduce the time to 0(N). 

We have solved equation (44) using the SSP subroutine 
12 

GELB , modified for complex numbers, and taking a = 3, 

P = ^, and N = 40. The time required to solve the equation for 

one set of parameters is less than one second on the Cornell 

University IBM 360/65. 



Appendix B. Method of Solution of Equation (53) 

This equation is of the form L(x ,x?)f = R(x..,x„) where 

R is a known function and L is a linear operator. This may 
2 

be converted into a discrete problem with (N + 1) mesh points, 

but the matrix will not be band diagonal. 

The usual relaxation method is as follows: We make an 

initial guess, satisfying the appropriate boundary conditions, 

for the solution f. The interior equations are of the form 

LD(xi,xj,f(xi,xj), xPi f(xP)) = R(xi>Xj) (Bl) 

where xp denotes the set of points immediately surrounding 

(x.,x.). A measure of the distance of our guess from the 
exact solution 

s = y S.. 
L ij i»J 

where 

S.. = L D -

is 

R. (B2) 

We then choose a point (x.,x.) and solve (Bl) for f(x.,x.). 

This sets S . to zero, but may increase the S, ,'s on the set iJ > y k l 

x , in which case the method may diverge. 

The modification is to solve (Bl) simultaneously on an nxn 

square of points (x.,x.). This reduces the number of points x 

relative to the number of points for which S.. = 0, and should 

improve the chance of convergence. 



We solved (53) using N = 20 and n = 3. The method always 

converged, while the usual relaxation method often diverged. 

However, convergence in some cases was rather slow. 
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Figure Captions 

Figure 1: Typical Cole-Cole plot of dielectric relaxation for 

a sidechain polymer. The dotted line is a semicircle. 

Figure 2: Specific heat and correlation function <-exp i(cp - cp1 )> 

for a sidechain polymer. A discontinuity appears at 

(v/2T) =1.7 for computational reasons. 

Figure 3: Cole-Cole plots in the viscous limit for x = 0, 

0.1, 0.2, 0.4, 0.6, 1.0. The crosses indicate the 

exact zero frequency results for x = 0.6 and x = 1.0. 

The dashed lines are lines of constant frequency. 

Figure 4: Enlargement of the x = 1.0 plot of Figure 3. The 

dashed line is a semicircle. 
-x2/2 Figure 5: The function f (x) e for Ti = T 2 = 1 and 

(a) a) = .125, (b) co = 1.0, and (c) CD = 4.0. 

Figure 6: Cole-Cole plots for T 2/T 1 =0.1 (smallest curve), 

T 2/T^ = 0.316, T^/T, = 1.0, T 2/T^ = 3.16, and T ^ ^ I = 

10.0 (largest curve). The dashed line is a semicircle. 
ii 

Figure 7: Absorption X for the same five cases as in Figure 6. 

Curve A is T2/T, = 0.1; curve E is T 2/T 1 = 10. 
2 

The dashed line is z/(l + z ). 
II 

Figure 8: The change in absorption (-X,) for (A) T2/T-. = 0, 
(B) T 2/T 1 = .316, (C) T 2/T 1 = 1.0, (D) ̂ /-^ = 3.16. 
i II 

Figure 9: X, "(solid line) and X. {clashed line) for TO/T, = 1.0. 



Figure 10: Cole-Cole plots for T2/T-, = 1.0 and v = 0 (upper 

curve) and (v/2T) = 0.15 (lower curve). 
II 

Figure 11: The correlation function X1/to for (A) T 2/T 1 = 0, 

(B) T 2/T X = .316, (C) T 2/T 1 = 1.0, (D) ^ / ^ = 3.16. 

Figure 12: The correlation function < cos 9 (t) cos 9- (0) > 

for the same cases as Figure 11. 

Figure 13: Cole-Cole plots for non-Einstein damping: %2 = 2/3, 

^3 = 1/15, and T 2/T 1 =0.1 (upper curve), T 2/T, fa 

1.0 (lower curve). The dashed line is a semicircle. 
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