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Dynamic Susceptibility of a Model Polymer in Several Limits --

*
Theory and Calculations

M. J. Mandell

Laboratory of Atomic and Sclid State Physics
Cornell University
Ithaca, New York 14850

Abstract

We study the. susceptibility of a model polymer having
rotating dipolar sidechﬁins with nearest neighbor intgractiu1s
and diagonal viscositf. The susceptibility can be found
exactly (1) at zero frequency fof arbitrary interaction strength,
and (2) at zero interaction strength for arbitrary frequency
and vigcogity, .In addition, a high-temperature expansion exists
for arbictrary frequenﬁy both in the viscous limit and for finite
viscoslty. We also study the time-dependent correlation function
< cosB mi(t) cos mi+1(ﬂ) > for arbitrary viscosity and we ak
interaction, and the possibility of a more complex diagonal
frietion law, In no case are we able to prodqce a Cole-Cole
plot which approaches the origin with finite slope at high

frequencies, as does much experimental data.
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. "I+ TIntroduction
There has been scme ini'.;erest in recent years in the dyna-
mical (nonequilibrium) properties of many-particle systems under
the influence of stochastic forces. Examples Include the work

of Glauber on the Ising model(l), and a series of papers on

hamenic oscillator systems by Oppenheim, Shuler and Weiss.(Z}

Various properties of polymers have been considered candi-

(3,4,5)

dates for explamation by such models. In this paper

we study a model similar to that proposed by Work and Fujitafs’

S— .

to explain dielectric relaxation in certain polymers. The

- O cm———

frequency dependént susceptibility of such polymers, as repre-

sented on a Egle-ﬂcle plot, takes either the semicircular Debye

form (l-imr)~}, or a distorted form which approaches the origin
with finite slope (Fig. 1.).{?)

Our model is a polymer consisting of a backbone with polar
sidechains free to rotate in the plane normal to the backbone.
Each such side element has a dipole moment u {which we hencé-
furthlset to unity) and is subject to a random torque. We
furthermore suppose an interaction betﬁeen nearest neighbors
of the form v ¢°5(¢1 -.¢i_1), 50 as to create a tendency toward
antiferroelectric aligmment for v > 0. (This would be an
excellent approximation if'thé interaction is elecfrastatid:in
origin, taking v ~ pzfaa, with a the nearest neighbor distance.

However, it 1s rather naive to suppose this to be the case.)
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1“& then attempt to caleculate the linear susceptibility for arbi-
trary frequency.

In section 11 we present the solution of the model for
zero frequency. Section I1I reviews the theory of motion in the
field of a random force. In section IV we derive a high-tempera-
ture expansion for the susceptibility in the wviscous limit.
In section V we derive the susceptibility for the noninteracting
system in the case of finite viscosity, and we demonstrate the
existence of a high-temperature expansion. Section VI deals with
the dynamic, linear nearest-neighbor correlation function for
the case of finite viscosity. Section VII discusses the case of
a more complex random fche, and we summarize our conclusions
in section VIII.

In all the cases we consider we are unable to convineingly
produce a Cole-Cole plot which approaches the origin with finite
slope as in Figure 1. This suggests that our model, as well as

all similar models, lacks the essential Ingredient needed to

produce such behavier.

o




IE. Exact Equilibrium Results
At equilibrium it is possible to find many properties
{8)

exactl-}r by the techniques used by Fisher on the classical
Helsenberg model. We give these calculations in some detail
both for completeness and because we will use some of the

results later.

The Hamiltonian is given by

H-I-lk+Hv+HE(t) (1)
where -
_ 1 < 2
T ‘E*Pj
h
HE = R Ecus {cpj = (bt} (2)
k|

H =v ZCOS (npj - wj*l) R
J
we use I to denote the moment of inertla per sidechain, and

P:I is the tomentwmconijugate to the angular position P e The

partition funetion (for @ = 0) 1is then

Z= [ ;' Idpj exp(- E% p? )][Jd“q;j exp(-p,gj (v cos uy = E cos q:lj}]
(3)

where we have written u, = @ At zero applied field,

RS I
and neglecting end effects, the partition function may be

evaluated to glve

7z = 2m1r) M2 (2n1, (v/T)" (4)
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"where L is the Bessel function for imaginary argument, and we
have set Boltzmann's constant to unity. This result enables
the caleulation of such thermal properties as the specific heat
by the usual methods. (See Fig. 2).

Next we calculate the correlatrion function

< exp[i(mb - ¢k}] » = 2< cos P, CO8 @y >

&)

Z2< 8in 0, sin ¢ >

For concreteness we take k » 0. We note that
Cos o = cos(uk + ¢k-1) = cos w cos ¢ 3 - Sinu sin g ;|
(6)
Thus

1 N~1
< COS ©  cO8 @ > ° EI d¢0 COs ¢njd u cos g, axp (=gv i cos uk)

=-% dwo cos ¢bjdﬂ-1 u (cos U, €OS gy - sin u, sin @ ;2
(7)
where we use the fact that there are N variables ¢, but only N-1
variables u. Since the W 5 are all independent, and since
< 8in W > = 0, we get a recursion formula
< COB @ COS g > = < €05 U > COS . COS @ 4 >, (8)

NHow,

3
a3 (pv)

< COs 0, > ® =

3 &Jduj exp(-pv COS uj)

- ot (%)
“1 (sv) /1 (Bv)

and < c052 P, > = % 8O that
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< explife, - @)1 > = [-1_(ev)/1,(sv)" (10)

- - '
The function <« -eicme I"‘:'1:l > = Iohe iz shown on Figure Z.
Furthermore, we may calculate

< exp[2i(q;.n - c.pl}] > = <& 08 21.11 &

& Zeesz u - 1>

(21, (av) - I (v /I (6v)  (ID)

and this technique may be extended to < ein(mo-ml) >
Finallf,r,' using once again the independence of the ccordinates

u,s we may caleulete such a term as

< exp[1 2 ny9y] > = < explim] >< explLCy g )Ry

§=0 k=2
+ 4 E:pj]‘.e (12)

=0
Since all coordinates u, are independent.

The static euseeptibilit)r is given by

x=8Y < cos 4y 08 95 > | (13)
i}

which can be derived by differentiating the partition function
twice with respect to E before taking the zero-field limit.

This is easily evalueted to give

('3)

x= = 1+2£[ I(av)])

I (ﬁv) = I (pv)
B czT )(I {(gv) + T {av} ) | ' (14)

Ev-—-w (ZTr) ﬁv = ﬁg * (15)




ITI. Review of the Theory of a Particle Subject to a Random Fnr;e
In this section we nutiine the theory of a system sub-

Ject to a random force in order to derive the equations basic

to subsequent sections. We follow the development of Kramers.(g)
An ensemble of model polymers may be characterized by

a distribution funetion Ay, p, t), where g and p are N-dimensional

vectors describing the angular positions and momenta of the

gide-chzains of a given polymer. We wish to calculate

P‘

g?.m% P(@ B t+7) - Py ps ©)) (16)
where 5 is a macroscopically small time interval. We proceed
using

. 1

e=TE (17a)
and

1
= =g U + =B 17b
B=-v U@ + B, (17b)
where
thn )
B = X{t)dt 18
Bl EE (18)

Xi(t) being the random torgue on the ith sidechain, andEI is
described by a distribution iT(g, > p). Then
Plespst + 1) = [€B0(g - fp,p + 19 U(@) - B2t)E BowR)  (19)

which leads to

e 1
%%--%_E.imp+fiu(m)-i&#+;w (20)

where

so = [dB1P(ep = B,0) - Ple:p. )]s (Brmyp)
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- o ('Bi)m_a_ m
=§,|‘_ﬂ B, { 21 I Crol G (21)
mr=

Note that we have assumed the random forces on different side-
chains to be uncorrelated, and also that QT 1s independent of

. Defining

oy = [ B72(B.p)as | 22)

-

vields the Fokker=-Planck equation

3P o 1/ _3 \ntn
¥ iqau(""}f.ap p_.hp+z }jn:( api)(_rp) (23)
i n=]1
It is usuwal to choose (Einstein damping) by T TNPTs uy = 2nITr,

and. all higher moments zero. This choice is not unique, however,
The moments \y are restricted only by the conditions that the
Haxwell-Boltzmann distribution be stationary and stable. We
ghall return to this point in section VII. Under the usual

choice of My s {23) becomes

22 w9 Ulp)ev P - p-w P + «{pp + ITw_ P 24
st~ U@ TP - Rr9 P+ M9 (RP + ITv ) (24)

In the case of large viscosity, it is customary to assume
that

P{gspst) = ofp, t)exp[-p.p/2IT] (25)
The equation for g is derived by integrating (24) over the
path g + p/al = 9, from p, = -= to +w, and assuming that the

force and the distribution p(p,p) have nearly the same values

as at p over the region making the main contribution to the
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integral. This leads te rhe diffusion equation

In :—g = v, [ U@)o + Tv ol (26)




IV. Suseceptibility in the Viscous Limit

1. Single Particle Susceptibility
In this subsection we calculate the susceptibility of
an ensemble of noninteracting side-chains wﬁnse dymtamics are
governed by equation (26), with U = =E cos 8, & = g-ot.

The quantity we will calculate is a reduced susceptibility

given by
- _Bh -8
X 2T 5E < ® > (27)
We will write (26) in the form
' 2
.'I:—ll:.1 a—ﬁ = E —a- ¥ - M
Tat T 3glosin(e - o)) + >l (28)
Denoting Iv/T by 1, and writing
1 L]
ooty =3, ) A,e" (29
===

gives

Ta® - taz)a, = 1y 31¢™ - o729 ¥ a4 ) (30)

n n
where z = Wy and vy = E/2T. Equating powers of eig gives

(n - iz) Ah = y(&n_l - Ah+1} . (31)
Now we observe that, using Ah =1,

e85 = p = I+ 060 (32)
This yields, then the expected result

x = -dh (33)

2. Many Particle Susceptibilicty

For our model we need consider a distribution function

a= u(wl;...,qh't) . (34)
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with a potential given by H‘E + Hv' The generalization of

equation (29) is
g = (5% )H{z a{nj}exp{i.jz njﬁj); A{{}} - 1. (35)
n
b

We aszsume that (a) A{n} 1z invariant under { = J +moxr j - m - j;
(b) we may neglect A nj if more than a few nearby nj's are
nonzero, provided v/T is notr teo large; and (¢) end effects
are negligible. TUnder these assumptions, we may write the

generalization of equation (31) as

Z
(jznj - 1 ? "3 )A n R4 } oy m'”’“j—l’nj'l’nj+1"”

‘ - A
o ','ﬂj -l’nj+1’nj+1, [ |

@ XHng A Lo,

n
j h | J+l
- A

(36)

+1,l'1j-1,- -

+1,'.|+ Al‘"'nj-l

-I’iii- ﬁ- +a1l _1'1,11 +1’i-li)

h] J

seayn+Hlyn

h | 3+1

vwhere x = v/2T.

For simplieity, in what follows we subscript the coef-
ficients A only with indices from the region in which they
thay be nonzero, such a procedure belng justified by the assumptions
{a, b, ¢) above. Once again, our object is to find the coeffi~
cient Al to linear oxder in vy, but a5 a power series in x. The
equation for Al is now

(1 - iz)-&l = Y(Aﬂ - Az) = zx('&l - &2’_1)' (3?)
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Since ﬁz ~ yz and Az -1 ~ XVs we have, to linear order in x,
»

- Y
S T (38)

To go to higher order in x we must write the equation

for AE,-I’ which is

(5 - 12)A, ;= ¥(28) ;= 28y ) - 5, o+ A

“X(38) - 38y o H 2y g g 72y 5
Ay 12,1t A2,0,-1)- (39}

Four types of guantities appear on the right handside: (1) ﬁl
appears in a previous equation, and may be handled algebraically
or expanded to low order; (2) A2 and Aﬂ,-l are proportional to
?2 and may be ignored; (3) &1’_1 and *2,-2 are known from the
exact results of section II, or, alternatively, may be expanded
as a power series using (36); (4) The remaining terms satisfy
equations similar to (3%2), and contribute to the susceptibility
terms cubic or higher in x. We may thus proceed to include
terms to arbitrarily high powers of x = v/2T. Including terms

through x> leads to the Cole-Cole Plots shown in Figure 3.

For the highest values we have plotted (x = 0.6 and
x = 1.0} the Cole-Cole plot is definitely distorted from a
semi~circulax shape, showing some tendency toward the plot of
Figure 1. (See Figure 4.)

The numerical results suggest that, for very high fre-

quencies z »>> (1 + 8x), the susceptibility may be well fit by
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x'"'(z) = 271

X' (z) = (1 + 5.2x%/3)z? (40)
for 0 « x ¢« 3. 'The slope of the resulting Cole-Cole plot,
xX"/x' o~ 2x /3 15 less than that of the semicircle (ax - iz)-l,

for which ¥"/x' ~ zxﬁl.




V. Susceptibility in the Finite Viscosity Case
1. Single Particle
To find the susceptibility when the approximations

leading to (26} do not apply, it is necessary to deal with

the Fokker-Planck equation (2&),10 which for our case becomes
2P _ coey 2P 22, + 17 2P L
ot~ Esinly - at) 0 - P e Tﬁpp 1T % ) (41)

We define g(@, p) = (x,p. %ﬁgﬂ exp(pZIEIT), and its fourier

transform g(n,p) by

g(8,p) = (20) " 3 " (n,p). (42)
n
The susceptibility is now given by
X = ETE% < e-ig > = (EﬂlT)-%Idp exp(-pZKZIT)fu(pszT)* {43)

where fb(pszT)é = ¢{1,p)} evaluated at E/2T = 1 (keeping only

terms linear inm E), and satisfies the equafinn

L) + L(ory = x(ry/r YDIE () = -ix(r,/vE. (%4)
Here we have defined r, = n-l and
2
L(x)zi‘—z;x-:;. (45)

ax
Equation (44) ig derived from equation (41) in a straight-

forward manner using the definitions above and the fact that

g{0,p) = 1 + U(Ez). Some further details will be given in the

next subsection when we deal with the many-particle case.
Equation (44) seems to have no reasonably simple analytic

solution, but it is a well-behaved linear differential equation




=]15=

1and 1s susceptible to numerical methodz. (See Appendix A.)
We plot in Figure 5 the function fﬂ(x} exp(-x2f2). For small
frequencies (a) the real part is gaussian and the imaginary
part is & gaussian which grows with increasing frequency. At
intermediate frequencies (b} the imaginary part peaks at a
womentum which corresponds roughly to the angular velocity of
the field. This represents a sort of "surf-riding" effect.
Por high frequencies (¢) we have E0 ~ xﬂn(Tsz}é.

The resulting Cole-Cole plots for various values of
12311 are shown In Figure 6. The negative susceptibility at
high frequencies is characteristic of a harmonically ose¢il-
lating particle which accelerates in phase with the field.

In addition, Figure 7 shows the absorption X' as a function of

frequency for various values of Tszl.

2. Many Particles

The susceptibility in this case is given by

19, = Ie-i(mﬂ"Mt)P(mbE;t)dnﬁﬂﬂp

N/2

= (24IT) Idﬂpf(E)exp(-E;EjZIT) (45)

where we understand all quantities to be taken to linear order
in E/2T, which we then equate to unity. We shall write the

equation for f and show that

£=f,(x) +209/2D) £ (x ,x) + otv/21)2, (46)
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where x, = pifIT. We shall then consider the funetion fl and

neglect the higher order terms.

The Fokker-Planck equation for this case is

oP _ . »
3t - E:{E51n{mi - wt} - v{sin(wi - mi-l) + sin{mi - mi+1})} %E;
i

P
Ry -1 9 2P _
L b + ngapi (psP + IT 25y ) (47}

2

Define ¢ = p exp(i kaZIT). The viscous term now becomes

n Ea—;; [(pii - psg +IT gﬁ; )exp[- E pi!nT]:l

2
- 3 9 3% T _ 2
n IT - P; o Jexpl-  p /2LT]
% ( api i E‘Pi k "k
- 13 YL e (- £ x//2) (48)
T .

As hefore, we set
- T
3 {z: exp(i 3 njﬁj)i{nj}(g) (49)
oy}

and keep those terms proportional to exp{iﬂa}. This gives

- iof(p) = 2E 11:-% + EE‘% 1,0t % %,1,-1)
+37 { % ) EE )(f001 * #100 ~ %0,2,-1 ~ *-1,2,0 )
- % i 55%; W00 - 2-1,2,0) - (;'lf ) E'EI Jt01" %,2,-1)
- 178 £() + x5} Y Llxp)E, 50
1 th

Here the central Jubscript refers to the zero sidechain, and
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we have used the fact that @{ }differs from a pure paussian
h|
by ﬂ(E Y} if = F J = 0. Rewriting the above in dimensionless

variables and using tramslational invariance gives
Ty
[E Lx) + i(er, - xa(T—E) NES
=i _) 7RG, X gb 0t Ky *o1-1)

+i ;I ) {( 5 (f{x y + E(x - %501 " 5_126)

(% - - S NEED -4y 500) - (m - R WEED - v0,2,0))

(51)
where, if £(x) = f(...x_l, X s X3 e}
o+
the-n f(E ) = f(rilxa’ :{1, x2, -r-}
and fx) = £(oveX_ g5 X g5 X5 -o-) {(52)

All the terms on the right hand side of (51) are linear in
E/2T (which we now set to unity) and it is now c¢lear that we

can write equation (46), where f, satisfies (44) and

[LGg) + L)) + (o - ( ) )F (g2 %) (53)

=i(—) (x) + (5, = %,)E (x)) + 30— w7 Eolx))
We have used a modified relaxation method to solve this
equation. (See Appendix B.)} The solution ensbles us to cal-
culate the first order correction to the susceptibility, accor-

ding to )
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X=X + z(i-‘%)xl +a(?‘;-)2

2 2
-1 -x" /2 -x f2
0 =3 jdxa e o jdxl e LT £ (x ox) |

Typical results are shown in Figures 8, 2, and 10.

(54)



VI. Dynamic Correlation Functions

The susceptibility is related to a time-dependent correla-

tion function according to 11
T Ir
(g )0 = = %@ (55)

or, for our case,

%—I < cos q_{(t) cos g {0) > 1ot

) dt = 2—;—“ %)X;(m) (56)

and
Lo - 1
< cos g (t) cos g (o) > = j {2p) 1(2—‘; )Xltw)ei‘”tctu (57)
where we neglect terms higher than linear in (v/2T) = x.

For the viscous case we had

Xwm (1 + 2% - 12)'1 + ﬂ(xz)

& (L - 12"} + 2x/(1-12)* + 0(x%) (s8)
so that
xl{vis¢nus} - e - iz) -2
x:(viscous) e «22/(L + 22}2 (59)

Here we define z = Ory = @ if we take LS 1. We then have

(viscous) o
v 1l izt 2dz
< cos @ _(t)cos g, (0) > - - == e
o 1 2T I_n 2 (1+22)
v -t
= - §(ﬁ )(1 + t)e . (60)
We have mumerically evaluated these correlation functions
for three meon-viscous cases, and these are shown in Figures 11
and 12. The errors on the curve Ty = 0.3 are particularly

large, so that this curve should net be taken too seriously.
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One should observe, however, that (1) for 1arge.72 the time

scale of the correlations appears to vary like Tg , and (2) the
correlation reaches a broad maximum before_decaying. The

first may be understocd by noting that the characteristic

angular veloq;ty in the problem isg %-i pz >§ = (Tsz)'%.

The secand.fnlluws from noting that a measurement of cos mﬂ{ﬂ)
corresponds to a measurement of the force field on a neighboring
particle at time zero, and this will be reflected in the position

of the particle at some later time.




'VII. Non-Einstein Damping

We have begun to examine the effect on the single-particle
susceptibility of a random force more complex than the Einstein
case we have used thus far. Such a force, which we describe
by its moments My s must satisfy the cﬁnditiuns that the
Maxwell-Boltzmann distribution be both stationary and stable.

In the absence of applied field we may write

pip,t) = {1 + gfp,t))exp{-pEIZIT} (61)
and
F"_m ln 1 _g_'_"_ (62)
YA Ly =5 Qg
n=1 P

The stationarity condition may be satisfied by choosing, for
any n,

Hoy = {2n)! gnIT

Wop-1 = ~{2n - L)t g p (63)

This gives

e _2n-1

i zlszn*l {eape + 2,17 50}
n=
@ 2n-1 B.E. 2
-3 et fe1T 2 exvtep®/an) (54)

which clearly vanishes for g = constant. For a collection of

N such pailrs of moments (63), g(x, t) will satisfy an equation

of the form
2N ZN-1 2
Y En axznl (2N 1)§H X EEZH'I + ...+ hz{x )axz + xhl(x )ax

{65)
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Iwhere hl and h2 are polynomials of degree N - 1. (The right
hand side of (65) corresponds t¢o the linear operator L of
section V.) We may now consider the question of the stability
of the Maxwell-Boltzmann distribution. For concreteness, we
consider a distortion of the form g ~ cos ax. For a4 suffi-
ciently small, such a distortion will decay in time as long as
hz{xz) » 0. However, for large ¢ the (ZN)th derivative will
be the dominant term, and, since the un's are all positive-
definite, this says that N must be odd to insure stability
against a distortion which varies rapidly as a function of
momertum.

We have done a few calculations uszing the method of

Appendix A for the case N = 3, for which L takes the form

25 53 2 2™
L{x) = E (== = S5x ==} + {2, + MWE,(x" = 1)}—F
3(336 ax§ ) ( 2 3 )Bx&

2 33
+ x{10g3(3 - %) - 3@2} )
ax (66)
2
+ 11+ 58,0 - 6x° +3) + 3g,(x” - 1)) 25
ax

+ x[§2{3 - xz} - 53(34 - lﬂx2 + 15) - 1] E%

Some results are shown in Figure 13.
The susceptibility is deterwined by the function

fn(x} = 1 + g{x}, where g satisfies

L(x) g(x) + L1y ~ (1,/11)9)g(x) = ~far,. (67)
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One should note that the behavior of g(x) for |2} = = is
very different in the W » 1 cace from the Einstein (N = 1)
case. For N = 1, the dominant term on the left is

-i(wzfrl)%xg(x), so that

8 (x) po DL (68)
g
Fox W » 1, the dominant term is -EH xZN-l %;-g{x), s0 that
g(x) — ~dor,/ (g X0 (69)

[ %]

This results in decreased absorption at high frequencies.



VIII. Conclusions
We have produced a model polymer whose dielectric relaxa-
tion can be solved under a variety of conditions:

(1) At low frequencies, '
IG(Zx) - ID{Zx)

2T
xw) = =5 (e(®@) - ¢, Y} ¥
: sz o ID{Zx) + IO(ZK)

where x = v/2T. For x »> 1, x{) - 1/8x.

(70)

(2) In the viscous limit x(w) way be expanded as a power
series in ¥ (high temperature expansion). The high fre-
quency end of the Cole-Cole plot is shifted to the right
by the ipteraction, but we find no indication of the slope's
becoming finite near the origin. The shape of the curve
depends only on the parameter x = v/2T.

(3) For the finite viscosity the problem is cﬁaracterized
by twoe times: a kinematic time Ty = ﬂfl, and a relaxation
time r, = NL/T, the viscous limit applying for Ty << Ty-
The non-interacting problem can he solved exactly (i.e.,
reduced to the sclution of a differential equation), and
a high temperature expansion exists in the more general
case, In particular, dynamic correlation functions can
be caleulated for small x.

(4) Our method can be generalized te include a more com-
ﬁlex random force. It is possible to construct a force

for which th~ high frequency susceptibility moves to the
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right of the Debye semicirele, even in the finite vis-

cosity non-interacting case.

Nene of the above cases convincingly reproduces a Cole-
Cole plot such as that of Figure 1, unless one is willing to
believe that the method of section VII, with a judicious choice
of moments (possibly an Infinite number), can give such
behavior. A more likely cause of this effect is off-diagonal
viscosity, i.e., the random torque onm a given sidechain
depends on the z2ngular momentum of its neighbors. We have
neglected this possibility in deriving equation (21), but
it should be possible to generalize ocur methods to this case.

We believe this model to be Interesting in its own right,
as well as shedding some light on the question of polymer

relaxation.
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Appendix A, Method for Mumerical Sclution of (&4&)

This 12 a special case of a linear differential equation
on the domain ~« < x <« o. The first step is to transform the
real line into a finite intexval by a chaﬁge of variables
such as |

X = g tan p# . (Al)
Next we discretize the problem by dividing the interwval
-nf28 <« @ < w/2@ into N subintervals of length p = n/Ng, and
replacing the derivatives by the corresponding symmetric

finite differences, e.g.,

. - Y. '
i Ta (42)
2 " 2
_dx A"
atc. 7

This ﬁrucedure'will give,, for a differential equ#tion of order
22, (N+1 - 2m) equations for N + 1 unknowns Yo The remaining
2n equations are supplied by the boundary conditions. (The
boundary conditions for (44} are £ = 1l for x =+ «.) It is
known that under fairly general conditiens the solution of

the discrete problem will converge to that of the continuous
problem as N = w.

We have now reduced the problem to solving a set of

complex linear equations




AY = B x (AD)
where A is an (N 4+ 1) by (N + 1) matrix. In general, the
computer time required to solve such a problem is at least
O(Nz), but by taking advantage of the fact that A is’ band-
diagonal we may reduce the time to O{N).

We have sulved equation {44) using the SSP subroutine
GELBlz, modified for complex pumbers, and taking a = 3,

g = ¢, and N = 40. The time required to solve the equation for

one set of parameters is less than one second on the Cornell

University IBM 360/65.




Appendix B. Method of Solution of Equation (53)

This equation is Ff the form L(xl,xz)f = R(xl,xzj where
R is a known function and L is a linear operator. This may
be converted into a discrete preblem with (N + 1)2 mesh points,
but the matrix will not be band diagonal.

The usual relaxation methed is as follows: We make an
initial guess, satisfying the appropriate boundary conditions,
for the solution f. The interior equations are of the form

L xy s Expax)s ¥ £G0)) = RGxg,,) (B1)
where EIJ denotes the set of points immediately surrounding
(xi,xj). A measure of the distance of our guess from the

exact solution is

- R. (B2)

We then choose a point (xi,xj) and solve (Bl) for f(xi,xj).
This sets Sij to zero, but may increase the Skl's on the set
EP: in which case the method may diverge.

The modification is to solve {Bl) simultaneously on an n¥n
square of points (xi,xj). This reduces the mmber of points EP
relative to the number of points for which Sij = 0, and should

improve the chance of convergence.



We solved (53) using N = 20 and n = 3. The wethod always
converged, while the usual relaxation method often diverged.

However, coovergence in sowe cases was rather slow.
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Figure Captions

Figure 1: Typical cD&E:EE1EﬁE1EE,2E—%%fiffffif_fflﬂﬁégiﬂﬂ-fﬂr
a2 sidechain polymer. The dotted line is a semicircle.
Figure 2: Specific heat and correlation function <-exp i(mu- wl)}
for a sidechain polymer. A discontinuity appears at
{v/2T) = 1.7 for computational reasons.
Fiéﬁre 3: Cole-Cole plots in the viscous limit for x = 0,
0.1, 0.2, 0.4, 0.6, 1.0. The crosses indicate the
exact zero frequency results for x « 0.6 and x = 1.0.
The dashed lines are lines of constant freéuency.
Figure 4: Enlargement of the x = 1.0 plot of Figure 3. The
dashed line is a semicircle.
Figure 5: The funetion £_(x) e'xzfz for ¢ = r, = 1 and
(a) @ = ,125, (b} @ = 1.0, and {c) © = 4.0,
Figure 6: Cole-Cole plots for ¢2f71 = (.1 (smallest curve),
Tzfﬂrl = {.316, -rzf'r.l = 1.0, Tz,’ﬂ'l = 3,16, and *'rzf'rl =
10.0 (largest curve). The dashed line is a semicircle.
Figure 7: Absorption x" for the same five cases as in Figure 6.
Curve A is TEITI = 0.1; curve E is 1,/7; = 10,
The dﬁshed 1ine is z/(1 + zz).
Figure 8: The change in absorption (-x:} for (A) Tszl = 0,
(B) Tszl = .316, (C) ¢2f¢1 = 1.0, (D) ¢2ITI = 3.16.

1 L
Figure 9: X, (solid line) and X, (dashed line) for Tszl = 1.0.




" Figure 10:

Figure 11:

Figure 12:

Figure 13:

Cole-Cole plots for
curve)} and (v/2T) =

The correlation func

12f¢1 = 1.0 and v = 0 (upper

0.15% (lower curve).

"

tion xlfu:- for (A) "'2!"'1 = 0,

(B) t,/1 = .316, (C) 1,f1g = 1.0, (D) x,/7; = 3.16.

The correlation func

tion < cos Gﬂ(t) cos 91(0) e

for the same cases as Figure ll.

Cole-Cole plots for non-Einstein damping: &, = 2/3,

4 = 1/15, and ";“1 =

1.0 {lower curve).

0.1 (upper curve), fszl =

The dashed line 1s a semicircle.
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