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Dynamic Susceptibility of Classical Anharmonic Oscillator 

----A Unified Oscillator 1\llodel for Order-Disorder 

and Displacive Ferroelectrics----

Y ositaka ONODERA 

DejJartment of Physics, l(yoto University, Kyoto 

(l~eceived August 6, 1970) 

As a unified oscillator model for order-disorder and displacive ferroelectrics, we consider 

a system of interacting classical oscillators moving in the anharmonic potential V(x) =Ax4+ 
Bx2, where A is positive and B may be either positive or negative. The interaction of the 

oscillators is taken to be bilinear in their displacements and it is treated in the Weiss molec­

ular-field approximation. For this model, it is shown that the exact expression can be ob­

tained for the dynamic susceptibility above the Curie temperature. The theory is exact ex­

cept for its being classical and use of the Weiss approximation; anharmonicity of the potential 

is perfectly taken into account. Detailed analysis is made for this system and temperature 

dependence of the dynamic response (including the occurrence of "soft" mode) is described 

on the basis of the results of numerical calculations for both B>O and B<O cases. 

§ l. Introduction and d(escription of the model 

Ferroelectric crystals are classified into two types: order-disorder and dis­

placive ones. The purpose of the present paper is to investigate the dynamic 

response of these two kinds of ferroelectrics above the Curie temperature and 

clarify the difference of its behaviour they exhibit, by com;idcring a simple an­

harmonic oscillator model. A similar study has been made by a few workers ; 1
)~

3
) 

but their theories are only qualitative or deal with the case of weak anharmonicity. 

In view of the importance of anharmonieity in ferroelectrics, it seems necessary 

to get a more explicit theory which has no restrictions on the degree of an­

harmonicity. The present author has succeeded in it for the model described 

below, though it is classical. It is believed that this is the first theoretical study 

of the dynamic susceptibility in which anharmoni.city of the potential is perfectly 

taken into account. 

The model we investigate in this paper 1s as follow": Consider first an 

assembly of oscillators moving in the anharmonic potential V(x) = Ax4 + Bx2
, 

where x stands for the displacement of an oscillator. A is taken to be definitely 

positive, while B may be either positive or negative. The potential has one or 

two minima, depending on the sign of B, as depicted in Fig. 1. Suppose then 

that there be an interaction between these anharmonic oscillators which is bilinear 

in their displacements; it may be regarded as corresponding to the dipole-dipole 

interaction and causes instability of the sy[stem. We treat this interaction in the 
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V(x) 

B<O 

Onodera 

I 
V(x) 

----------- ~----x__ 

framework of theW eiss molecular­

field approximation. Because of 

the long-ranged nature of the 

interaction in ferroelectrics, the 

Weiss approximation is believed 

to work welL Lastly we con­

sider the interaction of applied 

(alternating) electric field E with 

the dipole moment of the oscil­

lator, which we assume to be pro­

portional to its displacemenL 

Fig. 1. Shape of the potential V(x) =Ax4+Bx2 for 

B<O and B>O. 

The model system mentioned 

above can be described by the 

Hamiltonian: 

Ho+ 

1-Io = ( M /2) .:e + A.r4 + B.r2 
, 

1-Il=- [r(r)+E].r, 

where M signifies the mass of the oscillator. The angular bracket means that 

we are to take the canonical average with respect to the total Hamiltonian 1-I. 

This system undergoes a secon(l-order phase transition in both B<O and B>O 

cases at a Curie temperature determined by r. The bulk of the paper is con­

cerned with the classical dynamic susceptibility in the paraelectric phase. In 

developing the theory, we shall make no approximations on the anharmonicity 

of the potential since we believe it essential in our problem; we pay instead the 

cost of the theory's being classical and of the Weiss approximation. These two 

restrictions arc not considered critical for many ferroelectric substances, however. 

A comment is here in order on the correspondence between the sign of B 

and the type of ferroelectric phase transition. At first sight, one may be tempted 

to think that the B>O case corresponds to the displacive type and B<O to the 

order-disorder type. It is not the case, however. When the temperature becomes 

much greater than B 2
/ 4Akn (kB being the Boltzmann constant), the response 

becomes practically independent of the Sign of B. The correct correspondence 

should therefore be 

B>O or l~n 0 ;:> B 2
/ 4A -----clisplacive , 

B<O and knT0 -<B2/4A----order-clisorder. 

The final purpose of the paper is to give the spectra of dynamic response 

above the Curie temperature. To this end, we begin with deriving a formal 

expression for the dynamic susceptibility by use of the linear-response theory 

(§ 2). The next section (§ 3) is devoted to discussing the static properties-
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Dynamic SuscejJtibility of Classical Anharmonic Oscillator 1479 

temperature dependence of the static susceptibility. As shown explicitly in § 2, 

the solution for free oscillation is needed to evaluate the dynamic susceptibility. 

This is given in § 4 in terms of the Jacobian elliptic functions, together with its 

important characteristics. By using this result, the dynamic susceptibility is 

calculated in § 5. To carry through the calculation exactly, it inevitably becomes 

somewhat complicated, but the final expression for the dynamic susceptibility is 

seen to contain the contributions of various harmonics in quite a natural form. 

In § 6, we consider the 0)->0 limit of the dynamic susceptibility thus obtained 

and compare it with the static one given in § 3. It will be seen that for the 

B<O case the two values of the static susceptibility do not agree (owing to non­

ergodicity of the displacement :c); this in turn results in the remarkable difference 

of the temperature dependence of the 'soft.-mode' frequency in the B<O and 

B>O cases. Sections 7 and 8 give the results of the numerical calculation of the 

dynamic response for the r = 0 and r:::\:0 cases respectively as functions of the 

temperature. The final section gives summary of the important conclusions ob­

tained in the present work. 

In carrying out the calculation below, the following units will often be used 

since they are most natural in the present problem. 

Energy ···· · · ···B
2
/4A. 

Temperature · · ·B 2
/4Al~ 13 

Frequency ······(2/BJ/MY/2 

Susceptibility ···1//B/ 

§ 2. I~'ormal expression for the classical dynamic susceptibility 

In this section, we derive a formal expression for the classical dynamic 

susceptibility above Curie temperature using the linear-response theory. Further 

detailed calculation of the susceptibility will be continued in § 5. 

Since we consider the system in the paraelectric phase exclusively, the 

canonical average <:c) vanishes identically in Eq. (1· 2) unless an external field 

is present. Suppose now that an alternating electric :field E with angular 

frequency w is applied upon the system. Then as far as the response linear in 

E is considered, <x> oscillates with the same angular frequency w. We therefore 

regard H 1 defined by Eq. (1 · 2) as the external disturbance and apply the linear­

response thcory4
),

5
) to calculate <:c). we then get 

from which the dynamic susceptibility X ((v) = (x)/ Ee-i,,t 1s expressed as 

x(w) :cc::¢(w)/[1---r¢(w)]. (2 ·1) 

¢ (w) represents the classical dynamic polarizability of non-interacting oscillators. 
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i480 . Onoderct 

When we decompose it into real and imaginary parts by ¢ (w) = ¢Jw) + i¢2 (u)), 

they are given by 

1 
¢1 (u)) = -- v.p. 

CD ~ ( T') 
\f/2 \''/ l . 

C .X, (2·2) 
n .r-(J) 

(2·3) 

where < · · · )0 means that we are to take the canonical average with respect to 

the Hamiltonian I-10• It should be remembered here that our theory is classical. 

The above result can be obtained as the nw / /z 13 T-'?0 limit of the corresponding 

quantum-mechanical expression. 

Thus the further task to be made is to reduce Eq. (2 · 3) into an explicit 

form. It is done in §§ 4 and 5. Before proceeding to it, we discuss static prop­

erties of the system in the following section. 

§ 3o Curie temperature and static susceptibility 

Before going on to a rather detailed analysis of the dynamic susceptibility, 

we consider in this section the static susceptibility and Curie temperature. 

The static susceptibility is obtained by putting w = 0 in Eqs. (2 ·1) and (2 · 2): 

x(O) =¢(0)/[1-r¢(0)], (3·1) 

(3 ·2) 

The temperature T 0 at which phase transition occurs IS given by the solution 

of 1- r¢ (0) = 0. An important quantity in the above equations is <.r2
) 0• We 

show below how it can be calculated and show explicitly the temperature depend­

ence of the static susceptibility and r-dependence of the Curie temperature T 0 • 

To evaluate <x2
) 0, we introduce a new variable y= (Ajh 13T)l14x and a 

quantity 

(3 ·3) 

proportional to the partition function, where p is defined by 

(3 ·4) 

The sign of jJ depends on whether the potential has one or two m1mma. In 

terms of Z (p) defined in this way, the static polarizability is written 

¢(0)=-P d logZ(jJ), 
djJ 

irrespective of the sign of jJ (and hence of B). 

Now the function Z (jJ) can be expressed as 

(3 ·5) 
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Dynamic Susceptibility of Classical Anharmonic Oscillator 1481 

m terms of the gamma function r and the confluent hype.rgeometrie function 

F(a, r; z) =1+~ ~+ a(c:t+~)_ z
2 

+ ···. 
r 1! rCr-+-1) 2! 

(3. 7) 

The above result can be perhaps most easily obtained by observing that Z (p) 

satisfies the confluent hypergeometrie differential equation 

or else by direct expansion of Z (p) in powers of jJ. 

For liJI <I, the power series expression (3 · 7) is useful to calculate Z (jJ). 

From Eqs. (3 · 5), (3 · 6) and (3 · 7), the static polarizability ¢ (0) in this limit is 

found to be 

(3·8) 

where o:-==T(3/4)/T(1/4) =0.3380 and the natural units giVen at the end of § 1 

have been adopted. The symbol sgn means 'the sign of'. 

For I jJ I~ 1 on the other hand, we use the asymptotic expansion formula 6) for 

the confluent hypergeometric function. The result becomes 

Z (p) = (nj2p y;zc ({-, ~- ; -- j}) 

where (3 ·9) 

G(a,r;z) 
ar a(a+1)r(r+1) 

1 + + --- ---------+ .. ·. 
1! z 2! z 2 

Thus m the limit liJ I~ 1, we get the following asymptotic formulae from Eqs. 

(3·5) and (3·9): 

¢(0) =l(1-·tT+-~T 2

) 

¢(0) =2(1-tT)/T 

for B>O, 

for B-<O, 

where again we have used our natural units. 

(3 ·10) 

(3 ·11) 

Equations (3 · 8), (3 ·10) and (3 ·11) can be used to obtain the algebraic 

expressions for the Curie temperature and the static susceptibility X (0) in the 

T 0 <1 and T 0 ~1 limits; they are summarized in Table L 

Figure 2 shows*l the Curie temperature plotted as a function of r/IBI. The 

dashed line in the figure represents another quantity to be discussed later in § 6. 

*) In fact in carrying out these numerical calculations, Eqs. (3 · 6) and (3 · 9) were not sufficient 

to cover all the ranges of temperature. In the intermediate region, use was made of the other for­

mulae which are to be derived in § 6. 
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1482 Onodera 

Table I. Curie temperature and static susceptibility in the Tc~1 and Tc<(1 cases. The units 

mentioned at the end of § 1 are used. 

case 

Tc~1 

Cr~IBI) 

Tc<(1, B>O 

( r"'2B) 

Tc<(1,B<O 

(r<(IBI) 

10001 
Tc 

1001-

-.:..==-~.~-.~~"=--~=::""""' 

1 

100 

Curie temperature Tc 

0.457 (~ ) 
2 

[ 1-2.38 ~ J 

H ( 1 B) 
3 2 r 

2r ( r ) 
IBI 

1
- 2IBI 

(b) 
(~ 

v 
Q:; 

1 -

X(O) for T----Tc 

0.914(r/IBI) 

T-Tc 

4B/3r 
T-Tc 

2 

T-Tc 

C) 

-1 
0 

Fig. 2. Curie temperature (in units of B2/4AkB) as a function of the ratio r/IBI for B<O (double­

minimum potential) and B>O (single-minimum potential) cases. The dashed curve represents 

another characteristic temperature Tc 1 discussed in § 6. 

As may be seen in the figure (or from Table I), the difference between the two 

curves decreases as r /IBI increases. This is indeed natural because at tempera­

tures much higher than unity the term Bx2 in the potential becomes unimportant. 

On the other hand, around Tc = 0, they show different behaviour: in the 

B<O case, even a vanishingly small value of r /IBI is sufficient to cause the 

phase transition, whereas in the B>O case rIB has to be greater than 2 in 

order to let the system undergo a phase transition. The difference stems from 

the quite different temperature dependence of <x2
) 0 in the two cases. In the 

former case, since the bottom of the potential is located not at the origin but at 

x= (IBI/2AY12
, (r2

) 0 tends to IBI/2A at sufficiently low temperatures. As a 

result, one gets Tc = 2r /I Bl. In contrast to this, in the latter case, <x2
) 0 tends 

to 1<-n Tj2B as T->0, which requires rIB to be greater than 2 in order that the 

phase transition take place. This is the reason for the different behaviour of 

the two curves about Tc=O. 
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Dynamic SuscejJtibility of Classical Anharmonic Oscillator 1483 

Our result for B>O appears to be in 

agreement with the previous one by Lines 3l 

which was obtained by direct numerical 

calculation of (x2
) 0, though the comparison 

is not easy since he plots vT~B /2ro versus 

2B/r (Fig. 1 of reference 3)). 

Figure 3 shows*l the mverse of static 

susceptibility for Tc =--= 0 as a function of 

temperature. The dashed curve does not 

concern us at the moment; it will be dis­

cussed in § 6. As may be seen from Eq. 

(3 ·1), the inverse of the susceptibility is 

defined by X (o)- 1 = ¢ (0)- 1
- r. 1-Iere the de­

pendence of X (0)- 1 upon T and Tc are 

separately contained in ¢ (0)- 1 and r respec­

tively. Therefore the curves of X (0)- 1 for 

arbitrary values of Tc can be readily obtain­

ed by vertical shifting of the curves in Fjg. 3 

so that they cut the abscissa at T = Tc. 

L, 

--------t------~,---------'--

TEMPERATURE 

Fig. 3. Inverse of the static susceptibility 

in the Tc--?>0 limit plotted as a function 

of temperature. To get X (0)-1 for a 

finite value of Tc, one has merely to 

shift the curve vertically so that it cross 

the abscissa at that value Tc. The 

It is important to note that the two clashed curve gives limw->oX(w)-1 for 

curves for B>O and B<O have very similar the B<O case discussed in § 6. 

temperature dependence. This means that we cannot easily distinguish between 

the B>O and B<O cases so far as we are observing only the static response. 

Finishing here a brief excursion on the static susceptibility, we now get back 

to the calculation of the dynamic susceptibility. 

§ 4. Solution for the free oscillation 

In § 2, we have seen that the solution for the free oscillation IS needed to 

evaluate the dynamic susceptibility. It is obtained in this section; the result is 

subsequently used in the succeeding section to calculate the dynamic susceptibility. 

We wish to solve the classical equation of motion of an anharmonic oscillator 

Mx+4Ax 3 +2Bx=O (4·1) 

for the given initial values of x and .:i: at t = 0. Integration of Eq. ( 4 ·1) gives 

a constant of motion E, 

(Mj2)x 2 +A.x:4 -I-Bx2 =E. (4·2) 

Hence the solution of Eq. ( 4 ·1) can be expressed formally as 

t = ( ~) 1/2 s·v Jl{~=-~:4~_-- B.;2 . (4 ·3) 

*) See the footnote on _page 14RJ .• 
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1484 Onodera 

We now consider the E>O and E<O cases separately, smce the oscillation 1s 

qualitatively different in these two cases. 

Case L E>O (B may be either positive or negative). 

In this case, one can write 

(4. 4-) 

where a and b are real positive quantities defined by 

2 -B+ VB2 + 4AE a= -- ----------- --------
2A ' 

(4·5) 

The motion of the oscillator is confined within the interval (-a, a). In view 

of Eq. ( 4 · 4), we observe 7
> that the integral ( 4 · 3) can be expressed in terms of 

the inverse function of the Jacobian elliptic function. The solution of the equation 

of motion ( 4 · 1) is thus given by 

x(t) ==a cn[Qt-cn--1(.r/a)] 

_ .r en Qt -1- (xjQ) sn Qt dn Qt 

1-~ h2 (1- x
2

/ a 2
) sn2.9£ 

where x and x denote their initial values at t = 0, and Q IS 

/
2JBJ ( B

2 

)1;.1 
Q=A, l-1--E/ · 

4-A 

(4. 6) 

g1ven by 

(4. 7) 

sn, en and cln represent the Jacobian elliptic functions, and their modulus k 

defined by 

(4·8) 

measures the degree of anharmonicity of oscillation. In fact the sn, en and dn 

functions depend on k, and hence should be written sn (Qt, !~), etc.; but we omit 

the argument k to simplify the notation. In the 1~->0 limit (the limit of weak 

anharmonicity), the oscillation becomes harmonic, since sn-->sin, cn~->cos and dn->1. 

The en function is periodic in 41( (1?), where K (!~) is the normal elliptic 

integral of the first kind, 

The fundamental (angular) frequency of oscillation 1s therefore given by 

w1 = 2nf2/41((/?). (4· 9) 

Case II. -B2/4A<E<O (B<O). 

In this case, the motion of the oscillator is confined within one of the 

potential wells cmd does not extend to the otheL One can writ~ 
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Dynamic SuscejYtibility of Classical Anharmonic Oscillator 1485 

with use of 

and a
2 already defined above. Substitution of Eq. ( 4 ·10) into Eq. ( 4 · 3) and an 

observation similar to the Case I yield 

x(t) =a dn[Q't--dn- 1 (.:r:/a)] 

==x dn Q't-t-(x/Q')sn Q't en Q't 

1- (1- x 2 /{i) sn2Q't 
( 4 ·11) 

where, as in Case I, x and x represent their initial values at t '= 0. Q' 1s defined 

by 

( 4 ·12) 

and the modulus of the elliptic functions by 

( 4 ·13) 

Notice that the elliptic functions 111 Eqs. (4·6) and (4·11) have different 

modulus k. 

Since the dn function is limited to (1 k
2
)
1
1
2
~Sdn u:Sl, Eq. ( 4 ·11) represents 

the oscillation in the range cSx<a. Furthermore it is periodic in 21( (k). So, 

the fundamental (angular) frequency of oscillation Is 

(4 ·14) 

111 this case. 

As P is an important quantity which measures the degree of anharmonicity, 

we show in Fig. 4 its dependence on the energy E, as calculated from Eqs. 

(4·8) and (4·13). In the B>O case, 

we have o</~
2
<1/2. Therefore the 

oscillation does not become highly 

distorted even for large values of the 

energy E. In contrast to this, the 

curve for B<O exhibits a peculiar 

behaviour. About E= 0, the oscillation 

becomes quite distorted because it 

takes a long time for the oscillator 

to run in the neighbourhood of x = 0. 

When the energy approaches E= --1, 

th~ oscillation become~ a harmonic 

t 
2 

------------

~- ------------- ____________ j____ _____ j _____ _L_ 

-1 0 1 2 3 
ENERGY 

Fig. 4. Square of the modulus of the elliptic func­
tions plotted as a function of the energy E 
(in units of B 2 I 4A). It is limited to os;::k2s;::1 
;J.nd m~asures the anharnwnicity of oscillation

1 
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1486 Onodera 

1.5 

[3 > ~--------

~------

0 ----·--··--
-1 0. 

.. l 

2 

--

Fig. 5. Fundamental frequency (in units of (2IBI/ 

M)ll2) versus the energy E (in units of B 2 / 4A). 

one about :c= (IBI/2A)112
• 

Figure 5 shows the dependence 

of the fundamental frequency upon 

the energy, computed by Eqs. ( 4 · 7), 

(4·8) and (4·9) for E>O, and by 

Eqs. (4·12), (4·13) and (4·14) for 

E<O. In the case B>O, the funda­

mental frequency starts with the 

harmonic value 1.0 at E= 0 and 

gradually increases with E, with the 

energy dependence 1 + (3/16) E for 

E<L In the E>1 limit, it ap­

proaches asymptotically 

In the B<O case too, the above asymptotic behaviour 1s valid. The peculiar 

energy-dependence about E==O, rr/log(64/E) for E>O and 2rr/log( -64/E) for 

E<O, arises from the logarithmic singularity of the elliptic integral K(k) at 

1~ = 1. In physical terms, it is because the oscillator has to spend lots of time 

in the region near .x = 0 on ,account of the small kinetic energy available. For 

Erv -1, the oscillation becomes a harmonic one with frequency v2. The value 

v2 results from the shape of the potential, which can be approximated by 

2IBI (.r- v'IBI/2AY-B2
/4A about :c=-= CIBI/2A)112

• 

To conclude this section, we have shown that the solution for the free oscil­

lation can be expressed as Eqs. ( 4 · 6) and ( 4 ·11) by means of the Jacobian 

elliptic functions. We have also examined some basic properties of this oscillation. 

These results will be used in the following sections to investigate the dynamic 

response of the system. 

§ Explicit d.yna:m.:Ji.c pola:dzability 

In this section, we combine the results obtained in § 2 and § 4 to get an 

explicit and exact formula for the imaginary part cfh (u)) of the dynamic polari­

zability. 

The correlation function (r (0) .x (t) ) 0 appearing in the expression (2 · 3) for 

¢2 (w) is written explicitly as 

(.x (0) .X (t) )o == J_coco d.x J~coco dxe-Efkn'!'.:c (t) .X I s:co d.:c f-oooo d.i:e-EflcBT (5 ·1) 

in which .x (t) is to be replaced by the right-hand side of Eq. ( 4 · 6) or Eq. ( 4 · 11), 

according to the sign of the energy E. Upon this substitution, the contribution 

o:f the x terms in Egs. ( 4 · 6) and ( 4 ·11) vanishes because of the phase-space 
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Dynamic SuscejJtibility of Classical Anharmonic Oscillator 1487 

integral in Eq. (5 ·1). Therefore we have merely to consider the x terms. 

To perform the integration, we measure the temperature T in units of 

B
2
/4Al~n, and introduce a new set of variables (.x, e) in lieu of (.x, .r), where 8 

is defined by 

Equation (5 ·1) becomes then 

_J'Xl dse-sfT fa dxx(t)x[sB2/4.A- Ax4 --Bx2
]-

1f2 

(x(O).x(t))o-- f'' dee-EfT sa dx[sB2/4A--Ax 4 -Bx2}- 1f2 
(5. 2) 

The range of integration is o<s<oo, O<:x<a for B>O, and -l<s<oo, c<x<a 

for B<O. It is therefore convenient to treat the two cases separately. 

5. 1 The B>O case (single-minimum potential) 

If one uses Eqs. ( 4 · 4), ( 4 · 6) and ( 4 · 8) m Eq. (5 · 2), and introduces 

z = cn- 1(.x/ a), then one finds that 

Joo de- -EfT 1 fK(k:) d 2 j· ( nt ) 
<x(O).x(t))o= o "e aN o ,_zcnz 1 .:u;,z' 

f;' dse-sfTJ~J( (k) /a 
(5. 3) 

(5. 4) 

where a, Q and !? have already been deft ned by Eqs. ( 4 · 5), ( 4 · 7) and ( 4 · 8) 

respectively. 

Before doing integration over z in Eq. (5 · 3), we first calculate its Fourier 

transform. For that purpose, Fourier transformation 

(5. 5) 

has to be effected. The function j 1 (u, z) has simple poles at u = ± z + 2mK (/?-) 

+ (2n + 1) iK' (!~), where m and n are integers, and K' (!?) is defined by 

Table II. Poles and residues of the functions f 1 (u, z) and f 2 (u, z) defined by Eqs. (5·4) and 

(5 ·13) respectively. 

pole 

z+4mK+ (2n+l)iK' 

z+ (4m+2)K+ (2n+l)iK' 

-z+4mK+ (2n+l)iK' 

-z+ (4m+2)K+ (2n+l)iK1 

residue of / 1 

i ( -:-l)n 

2k en .z 

+ 

+ 

residue of !2 

i( -l)n 

2dnz 
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1488 Onodera 

X X X X X X 

Fig. 6. Path on the complex u-plane to com­

pute Fourier integral. 

The periodic two-dimensional array of the 

simple poles on the complex u-plane is a 

direct consequence of the double perio­

dicity of the Jacobian elliptic functions. 

The poles and residues of !1 (u, z) are 

listed in Table II; they can be obtained 

by using some basic properties of the 

Jacobian elliptic functions. The integral 

(5 · 5) can then be evaluated by taking 

contour integral along the path shown 

in Fig. 6 on the upper half of the com­

plex u-plane and letting the radius of the hemi-circle tend to infinity: 

f-ooco eiwtj; (Qt, z) dt 

:n_ oo cos [ ,(2n + 1) nz/21(] 0 ('w _ (2n ±_~)nSJ), 
l~K en .z 1k=-Cf.l qnl-1/2 + q-n--l/2 2K 

111 which 

q = exp (- n J(' /I<) 

J.S referred to as the nome. 

After the Fourier transformation has been effected m this way, we carry 

out the z-integration utilizing the formula 

l K. '( 1 )nz] n d.zcnzcosl n+---- __ =---(qnl-1/2+q-n-lf2)-1. 

o . 2 K k 

The final result becomes 

c/h (uJ) = S1 (w) /Z1, (5. 6) 

Z1= l""dee-sfTK(l~)jQ, (5. 7) 

S
1 

(uJ) = 4TC
3 

U) roo dee-EfT 
7

Q ~ (qnl-1/2 + q-n--1/2)-2 

T Jo A (k) n=-m 

xo[w- (2n+1)nSJj2K(k)]. (5·8) 

Here use IS made of the units mentioned at the end of § 1. We repeat the 

definition of Q and !? for the sake of completeness: 

SJ= (1-+-sY11
, 

!?2 
= l [1-- sgn · (1 + e)- 1

1
2
]. (5. 9) 

The meaning of Eq. (5 · 8) is straightforward. The quantity Qnj2K (k) means 

the fundamental frequency of the oscillation for a g1ven energy e, and the (J 
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Dynamic Susceptibility of Classical Anharmonic Oscillator 1489 

function selects odd harmonics. The absence of even harmonics is related to the 

symmetry of the potential, V(x) = V( -.x). Since the fundamental frequency is 

no less than 1.0, the loss spectrum r/h (w) gets a non-vanishing value for (J) > 1. 

Contribution of the third harmonic begins at (J) = :3. 

The weighting factor 

(. 
n+l/2 I --n-1/2)-2 q --- q (5 ·10) 

gives the intensity of the harmonic specified by n. In the T -->0 limit, the Boltzmann 

factor e--sJ'l' makes only the s<1 region significant. In that case, one has q->P/ 

16~s/64, and the weighting factor (5 ·10) suppresses all the harmonics except 

the n=O (and n= -1) one, yielding r/h(oJ) = (n/4) [o(w--1) -o(w+1]. 

In the other limit T> 1, the region e> 1 becomes important. One then has 

P~1/2 and q~e-". When one compares the intensity of the n=l and n=O 

harmonics for a fixed energy c:>1, then the ratio becomes "'--'e·--
2

" = 0.0019. This 

means that the harmonics with n?1 are not very essential in the dynamic re­

sponse. The most important effect of the anharmonicity manifests itself in the 

dependence of the fundamental frequency upon the energy e. 

As shown in Eq. (2 · 2), the real part r/h (riJ) of the polarizability is the Hilbert 

transform of the imaginary part ¢2 ((iJ) given by Eq. (5 · 6). We can examine its 

behaviour for r.u<l by expanding it in powers of w. It is then found that ¢1 (w) 

has the form 

(5·11) 

a 1s a complicated quantity and is difficult to compute, even numerically, for 

general values of T. Only for T <I, it can be calculated explicitly, and we have 

(5 ·12) 

Here the first term on the right-hand side is the same as (:3 ·10) obtained in § :3. 

5. 2 The B<O case (double-minimum jJotential) 

In this case, the c-integration in Eq.. (5.2) can be divided into two parts: 

-1 <s<O and O<s< oo. Calculation of the latter part has no difference from 

the B>O case mentioned above except the difference of 1< 2 defined by Eq. (5 · 9). 

The former part can be calculated parallel to the B>O case.. One has 

merely to use Eqs. (4·10), (4·11) and ('1:·1:3) in Eq. (5·2) and define a new 

variable z = dn-- 1 (x/ a). The function which appears in an expression similar to 

(5 · :3) in place of !1 is 

(5 ·13) 

This function l;as the same poles as ./~, and they are listed in Table II together 

with the residues. Its Fourier transform can be computed by taking the contour 

integral along the same path, The calculation finishes up with the z-integration 

using the formula 
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i
K 

nnz rc 
dz dn z cos = " , 

o J( qn-j- q-n 

and results in the following expression: 

r/h(w) = [5\(w) -f-S2(rv)]I[Z]+Z2], 

z2 = ,[ldse-c/T J( (h) I Q', 

(5 ·14) 

(5 -15) 

(5 ·16) 

where the units are those mentioned at the end of § 1. For the sake of com­

pleteness, we repeat the definition of Q' and k in these units: 

,,= [ (1 + vl + s) I2TI 2
, 

k2 ~= 2 J 1 + c 1 (1 + vi +- s) . 

(5 ·17) 

(5 ·18) 

Z1 and 81 ((u) have already been defined by Eqs. (5 · 7) and (5. 8) respectively. 

Attention should be given here to the fact that they depend on the sign of B 

because of Eq. (5 · 9). 

Equation (5 ·16) contains the n == 0 term, but it drops out automatically on 

account of the common factor oJ. The o function now selects all the even and 

odd harmonics; this is because the potential haG no symmetry about x = ( IB! I2AY12
• 

At sufficiently low temperatures only the n = 1 (and n ="" -1) harmonic with 

frequency r'-J '1/'2 the weighting factor ((t + q-n) 2
• 

The real part (/h (ro) of the polari/;ability a bout (I) 0 has the form 

¢1 (o)) ccc lim ¢1 (ro) + {Jro 2
• (5 ·19) 

(I) >0 

Here fJ is again a complicated quantity and can be calculated only for sufficiently 

low temperatures. For 1, it follows that 

(5. 20) 

Attention should be paid to the difference between the first term on the right­

hand side of Eq. (5 ·19) and the static susceptibility discussed in § 3 (Eq. (3 · 5)). 

For example, Eq. (5 · 20) does not agree with Eq. (3 ·11) in the (J)->0 limit. 

We continue to discuss this difference which occurs in the B<O case and its 

origin in the following section. 

In the preceding section, we have shown how the imaginary part ¢ 2 (0)) of 

the dynamic polariza bility can be calculated exactly. The purpose of this small 

section is to take the (u->0 limit in that result and to compare it with the static 

polarizability that we have already discussed jn ~ 3. 
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Dynamic SuscejJtibility of Classical Anhannonic Oscillator 1491 

Let us first consider the B>O case. We use Eq. (5 · 6) in Eq. (2 · 2) and 

let (J)->0, then it follows that 

(6 ·1) 

where E (k) is the normal elliptic integral of the second kind: 

In obtaining Eq. (6 ·1), the formula 

turns out to be useful. The ';..::tatic' polarizability obtained in Eq. (6 ·1) agrees 

with the one derived independently in Eq. (3 · 5). In the actual numerical calcu­

lation of Figs. 2 and ;3, Eq. (6 ·1) has been utilized to bridge the gap between 

the T>1 and T<1 limits. 

In the case B<O, a similar calculation leads to*) 

(6. 2) 

To obtain the second term 1n the bracket, the formula 

E (6 ·3) 

has been used. The dashed curve in Fig. ~3 :;hows the inverse of limaHo 1h (uJ) 

given by Eq. (6 · 2) as a function of temperature. 

A problem now arises because it disagrees with the static value already 

obtained in § 3. The difference, which becomes pronounced at low temperatures, 

stems from whether or not one drops the n =: 0 term in Eq. (6 · 3). Actually, 

the solid curve B<O in Fig. 3 has been computed by adding the n == 0 term to 

Eq. (6·2). 

The occurrence of the n = 0 term is related to the fact that the correlation 

function <x (0) x (t) ) 0 has non-vanishing d. c. component, or that its long-time 

average limt->o:J-- 1 
f~ <x (0) x (t) ) 0dt does not vanish, because the oscillating motion 

is restricted within one of the potential wells. It mwst be included in the isothermal 

polarizability ¢ (0), but it has nothing to do with the dynamic properties of the 

system (of non-interacting oscillators). 

*) It should be remembered that the definition of k depends on the signs of B and E, as seen 

from Eqs. (5· 9) and (5·18). Similarly, Zb defined by Eq. (5·7), depends on the sign of B because 

of Eq. (5·9). 
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In the sophisticated terms of statistical physics, it is said that the displace­

ment x is 'non-ergodic' in such a case, and various other examples are known 

of such a difference.8
l The phenomenon should occur in general for multiple­

minimum potential, since it is caused by the above-mentioned singularity of the 

correlation function. 

¢ (w) thus possesses a discontinuous leap at w = 0. \Nhich of the two (¢ (0) 

or limw_,0q) (w)) is observed in a particular low-frequency measurement depends 

on whether or not the system can be regarded to be in quasi-equilibrium under 

the applied field. 

The dashed curve in Fig. 2 shows the virtual temperature at which limw_,0X (w) 

diverges for B<O, which will be denoted by T 0 ', as a function of r /[B[. Since 

this characteristic temperature is always smaller than Tc, the divergence does 

not actually take place. The difference between Tc and Tc' substantially di­

minishes with increase in T 0 • shall turn to this difference in § 8 in relation 

to the temperature dependence of the 'soft-mode' frequency. 

In this section we have considered the discontinuity of ¢ (w) at uJ = 0. If 

one takes account of the quantum-mechanical effect, the situation becomes some­

what cliiferent, since the oscillator can go over into the other potential well 

through the tunnelling eifecL c,b (cu) then gets a resonance at the tunnelling 

frequency and joins continuously to ¢ (0). The difference is unimportant so far 

as the tunnelling frequency i~; much smaller than (2[ B [ / M) 112
• 

In this section we present the results of numerical calculation for ¢ (w) ~ 

the susceptibility of non-interacting anharmonic oscillators. They are used in the 

succeeding section to compute the imaginary part X2 (w) of the susceptibility of 

interacting oscillators. 

¢2 (w) is given by Eqs. (5 · 6) and (5 ·14) for B>O and B<O cases respectively. 

In the numerators of these expressions, there appear integrals of the following type: 

f dsw(s)o(uJ--g(s)). 

The actual numerical calculation has been carried out by transforming it to 

("' ) ;~,; (dr! (s)) 1 

'tV '-'0 I ' 

] de c~s 0 

where r;;, 0 is the root of uJ ::= [/ (s0), and can be obtained numerically by means of 

the Newton method. 

The real part cfJI ((v) can be computed by Hilbert transforming the imaginary 

part ¢2 (uJ). The results arc given in Fig. 7. The excellent agreement (to four 

places in most cases) bet,Neen the static susceptibility thus obtained by numerical 

Hilbert transformation of ¢2 (UJ) and the one obtained independently in § 3 demon-
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(a) B > 0 

T =.3 

/''­
/ \ 

(c) B >0 

Td 

1-

(b) B>O 

T=1 

--------- / 

{\ 1 
I 
I 
I 

I 
I 

/ 
/ \ 

\ 

\ 
0 ---cf5------,---~------i1.5==--

-1 

\ 
\ /_...-

\ / 

\ / 
\ I 

\./ 

(d) B >0 

T =10 

----=-~-------/_/_ \ 0 

0 0.5 1 \1.5 ---

\ --------

-1 

0.2 

" // 
'-~/ 

(e) 8>0 

T=lOO 

-0.5 

- 0.2 

(f) B < 0 

T =100 

Fig. 7. Real part ¢ 1 (w) (clashed line) and imaginary part ¢ 2 (w) (solid line) of the dynamic sus­

ceptibility of non-interacting oscillators. The arrows indicate the value of the fundamental 

frequency of oscillation with energy kJ>,T. 
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- 0.5 

-0.5 

-1 

2-

(i) B<O 

T = 1 

(k) 8<0 

T = .2 

Fig. 7. Real part ¢;1 (w) (dashed line) and imagi­

nary part ¢ 2 (w) (solid line) of the dynamic 

susceptibility of non-interacting oscillators. 

The arrows indicate the value of the funda­

mental frequency of oscillation with energy 

h,T. 

-1 

-1 

6 

5-

4 

-2-

-3 

-4 

-5t -6 

-7 

(l) 8<0 

T = .1 

(J) B<O 

T =.5 

strates the high accuracy of the numerical work, to which considerable care has 

been taken. 

The spectra for the single-minimum potential are g1ven m Figs. 7 (a) rv7 (e). 

The imaginary part ¢2 (uJ) vanishes identically for w<l.O, since there can occur 
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no resonating oscillation for those frequencies. At low temperatures, the behaviour 

of ¢ (uJ) is similar to the response of harmonic oscillator. As temperature is 

raised, shift and broadening occur progressively. The broadening occurs for two 

reasons: one is the energy dependence of the frequency of oscillation. The 

other is the existence of various harmonics. The latter effect can occur only 

for (1) >3 and is negligibly small compared with the contribution of the funda­

mental frequency. Therefore the shift and broadening of the response almost 

result from the energy dependence of the fundamental frequency of oscillation. 

Figures 7 (f) r-07 (1) show the spectra for the double-minimum potential. The 

main part of the spectra is governed by the fundamental-frequency component, 

as in the single-minimum case. At sufficiently high temperatures, the spectra 

do not depend on the sign of B (compare Figs. 7 (e) and 7 (f)). It is because 

at such high temperatures only the term A.x4 is dominant and that the term B.x2 

has little influence on the motion of the oscillator. As the temperature IS 

lowered, the spectra exhibit the following characteristics which are absent m 

the B> 0 case : 

(1) ¢h ((1)) does not vanish even for o.><l; As may be seen from Fig. 5, 

cp 2 ((1)) cannot vanish for any frequency uJ. 

(2) A tail appears on the high-frequency side. The tail is due to the an­

harmonicity of the oscillation. As seen from Fig. 4, the anharmonicity becomes 

pronounced for Er>-./0, which means that the contribution of harmonics is greatest 

at intermediate temperatures Tr-Jl, and that it is small at high and low tem­

peratures. 

(3) Double peak appears at intermediate temperature. Figure 5 tells us 

that for a given frequency (1), there correspond two oscillations-with positive 

and negative energies. At high temperatures the positive-energy response prevails, 

while at low temperatures the response tends to that of a harmonic oscillator 

with frequency v2. At intermediate temperatures, the two parts are competing; 

as a result, ¢ 2 ((1)) has double peak and ¢1 ((1)) shows a complex behaviour. 

§ 8. Dynamic susceptibility of interacting oscillators 

The imaginary part of the susceptibility can be written 

(8 ·1) 

as may be seen from Eq. (2 ·1). We show below the behaviour of X2 ((1)), usmg 

the ¢2 ((1)) and ¢1 ((1)) obtained in the preceding section and the relationship 

between r and Tc obtained in § 3. 

Let us begin with the B>O case. Figure 8 gives the temperature dependence 

of X2 ((1)) spectra for Tc = 2.5 and Tc = ~W. The resonance frequency lowers as 

the temperature approaches T 0 • At temperatures near T 0 , the peak manifests 

itself as a delta function in the uJ<I region. The frequency of such a collective 
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T:SO 

B>O 

Tc=40 

300 

4 

Y. Onodera 

X/W) 
8 >0 

Tc=2.5 

3.0 

Fig. 8. Imaginary part X2(w) of dynamic susceptibility for the case of single-minimum potential. 

(T- Tc)ITc 

Fig. 9. Temperature dependence of 

the collective-mode frequency for 

the case of single-minimum po­

tential. 

mode is given by the solution of 

(8·2) 

The above equation explains the softening of the 

collective-mode frequency Wo as the temperature 

T approaches T 0 • Using the expression (5 ·12) 

for ¢1 (w, T) valid for T~l and w~l, we get 

an expression for the soft-mode frequency 

(8 ·3) 

applicable to the T 0 ~1 case. In Fig. 9 is shown 

the temperature dependence of W0
2 as obtained 

numerically. The curve for T 0 = 0.07 satisfies 

Eq. (8 · 3) well. 

Let us now go on to the B<O case. The 

collective-mode frequency is determined by Eq. 

(8 · 2) in this case too, but now a difference 

from the B>O case occurs because of the dis­

continuity of ¢ (w) at w = 0 mentioned in § 6. 

The discontinuity does not guarantee that Wo 

tends to zero as T ------3> T 0 ; therefore softening of the collective mode does not take 

place in the B<O, T 0 $1 case, in agreement with the conclusion of Vaks et al_l> 

Figure 10 shows the temperature dependence of the X2 (w) spectra. For large 

T 0 , the behaviour of X2 (W) becomes qualitatively similar to the B>O case and 

the collective-mode frequency becomes highly temperature-dependent. 

In Fig. 11 is plotted the peak frequency of the X2 (w) spectra computed 

numerically. For large T 0 , we have 
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1.5 

X,(w) 

1.0 

0. 
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8<0 

(a) Tc :40 

8<0 

(c) Tc=2.5 

8<0 

(e) Tc = 0.45 

0o___ os 

X,(w) 

1.0 

8 <0 

(b) Tc=9 

T = 0.75 
8<0 

(d) Tc:0.7 

Fig. 10. Imaginary part X2(w) of dynamic 

susceptibility for the case of double­

minimum potential. 
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8 (0 

1 
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Fig. 11. Temperature dependence of the 

peak frequency of X2(w) for the case of 

double-minimum potential. 

§ 

where Tc' IS defined as the temperature 

at which lim,D->oX (oJ) virtually diverges and 

is shown graphically in Fig. 2. The curves 

in Fig. 11 cut the abscissa at T= c' <Tc 

rather than at T===T0 • It looks as if the 

system were undergoing first-order phase 

transition, although the transition is actually 

of second order. For high T 0 , the difference 

between T c' and T c (and hence the dis­

continuity of ¢(w) at cu==O) diminishes; the 

collective mode then softens. For low T 0 , 

the discontinuity becomes substantial, as a 

result there exist no anomalous oscillations. 

Our model thus correctly describes and 

connects these two limits of high and low 

Curie temperature. 

In this paper, we have considered a simple anharmonic oscillator system 

and have shown that its dynamic susceptibility above the Curie temperature can be 

calculated exactly. Although the theory has two restrictions---use of the \7V eiss 

molecular-field approximation and neglect of the quantum-mechanical effects, no 

approximations have been made otherwise. In particular, the anharmonicity of 

the potential is perfectly taken into account. 

Important conclusions obtained in the present work may be summarized as 

follows: 

(1) In the dynamic response, contribution of the fundamental-frequency com­

ponent prevails over that of higher-harmonic components in both B>O and B<O 

cases. This means that the effect of the anharmonicity is reflected mainly on 

the energy dependence of the fundamental frequency of oscillation. Contribution 

of the higher harmonics can safely be neglected. 

(2) In the B>O (single-minimum potential) case, which corresponds to the 

displacive ferroelectrics, the collective oscillation has a frequency proportional 

to (T- T cY12 near T c-
(3) In the B<O (double-minimum potential) case, the dynamic response 

depends heavily upon the magnitude of T 0 . If kB Tc is much greater than the 

height of the potential barrier B 2 
/ 4A, then the system may be regarded as dis­

placive type. The frequency of collective oscillation is proportional to (T -- Tc'Y12
, 

where T 0 ' is somewhat smaller than T 0 . It looks as though the system under­

went a first-order phase transition despite the fact that the transition is really 

of second order. The difference between T c' and T c results from the disconti-
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nuity of ¢ (w) at w = 0, which in turn arises from the non-vanishing d. c. component 

of the correlation function (x (0) x (t) ) 0• 

The discontinuity becomes substantial when k13T 0 <{,B2/4A, to which case 

order-disorder ferroelectrics correspond. There exist no 'soft' modes in this case. 

We have not considered the tunnelling effects since the present theory is classical; 

but allowance for them does not change the conclusion, so far as the tunnelling 

frequency is much smaller than (21 B I/ M)112
. 

We have thus been able to describe the dynamic response of the high Tc 

(displacive type) and low Tc (order-disorder type) cases and the intermediate 

cases in terms of a unified anharmonic oscillator model. 
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