
Dynamic Symbolic Data Structure Repair

Ishtiaque Hussain, Christoph Csallner
Computer Science and Engineering Department

University of Texas at Arlington
Arlington, TX 76019, USA

ishtiaque.hussain@mavs.uta.edu,csallner@uta.edu

ABSTRACT
Generic repair of complex data structures is a new and ex-
citing area of research. Existing approaches can integrate
with good software engineering practices such as program
assertions. But in practice there is a wide variety of asser-
tions and not all of them satisfy the style rules imposed by
existing repair techniques. I.e., a “badly” written assertion
may render generic repair inefficient or ineffective. In this
paper we build on the state of the art in generic repair and
discuss how generic repair can work effectively with a wider
range of correctness conditions.

We motivate how dynamic symbolic techniques enable
generic repair to support a wider range of correctness condi-
tions and present DSDSR, a novel repair algorithm based on
dynamic symbolic execution. We implement the algorithm
for Java and report initial empirical results to demonstrate
the promise of our approach for generic repair.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debug-
ging—Error handling and recovery, symbolic execution;
D.2.4 [Software Engineering]: Software/Program Veri-
fication—Assertion checkers, class invariants, reliability

General Terms
Algorithms, Reliability, Verification

Keywords
Data structure repair, data structure invariants, dynamic
symbolic execution

1. INTRODUCTION
Generic repair of complex data structures is a new and

exciting approach to software robustness [5, 4, 6, 7, 10]. It
promises to mutate the state of a running program in such
a way that the resulting state satisfies a given assertion or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

correctness condition. It is generic in the sense that a single
repair algorithm can repair many kinds of data structures.
It thereby differs from traditional repair, as in traditional
repair for each kind of data structure we need a separate
repair algorithm. This makes generic repair exciting and
potentially very powerful. Indeed, initial generic repair tech-
niques [5, 6] and implementations such as Juzi [7] are very
promising.

Besides runtime data structures and their respective cor-
rectness conditions, a generic repair algorithm does not need
any additional inputs. This makes the correctness conditions
the focal point of generic repair. A key challenge is that a
badly written correctness condition may render generic re-
pair inefficient or ineffective. In this paper we build on the
state of the art in generic repair and discuss how generic
repair can work effectively with a wider range of correct-
ness conditions. Specifically, this paper makes the following
contributions.

• We motivate how dynamic symbolic techniques enable
generic repair to support a wider range of correctness
conditions.

• We present DSDSR (Dynamic Symbolic Data Struc-
ture Repair), the first dynamic symbolic algorithm for
generic repair of complex data structures.

• We describe an implementation of our algorithm within
our new dynamic symbolic execution framework for
Java.

• We present initial empirical results to demonstrate the
promise of our approach for generic repair.

We describe our implementation in terms of object-oriented
software and especially Java programs, but the algorithm
equally applies to related languages (C++, C#, etc.) and
related programming paradigms (i.e., functional and proce-
dural languages).

2. BACKGROUND AND MOTIVATING
EXAMPLE

We start with the necessary background on program asser-
tions and generic repair, which we will need for a motivating
example.

2.1 Assertions and Correctness
Software customers and developers likely have an informal

notion of the conditions under which the state and behavior
of their programs are correct. Such informal notions are the

notions of program correctness that typically matter most
in real-world software applications. Large parts of software
engineering are therefore concerned with capturing informal
correctness notions and transforming them into more formal
ones, culminating in the fully formal notion of source code.
This influences the terminology we use in this paper. By
correct we mean correct in the informal sense of the user. A
correctness condition tries to capture this informal correct-
ness in a more formal notion.

An easy way to write down a correctness condition is to
add to the program text a simple if-condition or program
assertion. Empirical evidence suggests that programmers
write assertions into their code and that code that contains
more assertions tends to contain fewer bugs [9].

Correctness conditions may be expressed in different styles
and languages, ranging from formal modeling languages to
program assertions. For this work, we concentrate on pro-
gram assertions. Assertions are attractive as programmers
do not have to learn a separate language in order to write
down correctness conditions.

The main assumption we use in this paper is that correct-
ness conditions have been engineered to be correct. This
assumption is also used in all previous work we are aware
of. However, we do not require the related assumption that
is often made in this area, namely that correctness condi-
tions also satisfy style rules that are specific to a certain
repair technique. These rules may conflict with other con-
cerns. Our goal is therefore to provide an approach that
does not depend on such repair-specific style rules.

2.2 Juzi and Generic Repair
Assertions are evaluated periodically as part of the pro-

gram execution, to determine if the program is still in a
correct state. If the program state is found to be incor-
rect, maybe due to a bug on a rarely exercised execution
path, the program is typically aborted, analyzed, fixed, re-
deployed, and finally restarted. But there may be situations
in which this is impossible. For example, even aborting may
not be a viable option if a program is required to keep run-
ning to support critical services. Such scenarios are typi-
cally addressed with a combination of techniques, including
redundancy and traditional, specialized repair routines. An
emerging additional technique that may be included in such
a mix is generic repair.

Juzi is the state of the art approach to generic repair using
assertions [6, 7]. It builds on the Korat framework [1] and
monitors the execution of the assertion to determine the
order in which the assertion accesses data structure fields.
When the assertion returns false, Juzi mutates the value of
the field that was accessed just before the assertion failed. If
this does not result in a satisfactory state, Juzi backtracks in
the list of field accesses and continues with the field that the
assertion has accessed earlier. Each repair attempt mutates
the original state in one or more fields.

Depending on the field type, Juzi uses different techniques
to determine candidate values. For integer fields, it employs
a constraint solver, for reference fields Juzi uses the Korat
technique of skipping isomorphic structures in an otherwise
exhaustive trial and error approach.

2.3 Motivating Example
To illustrate how our algorithm works and how it improves

upon the state of the art, we now consider the singly linked

public class Node {
int value ;
Node next ;
// . .

}

public class LinkedLis t {
Node header ;
// . .
public boolean repOk () {

Node n = header ;
i f (n==null)

return true ;
int l ength = n . va lue ;
int count = 1 ;
while (n . next != null) {

count += 1 ;
n = n . next ;
i f (count > l ength)

return fa lse ;
}
i f (count != length)

return fa lse ;

return true ;
}

}

Figure 1: Example singly linked list data struc-
ture, abbreviated, consisting of a Node class and a
LinkedList class. Method repOk is a contrived cor-
rectness condition for the linked list, which may be
invoked by assertions throughout the program.

list data structure given in Figure 1. The list has a correct-
ness condition, namely that the first node has a value that
is equal to the number of nodes in the list. This condition
is implemented by the repOk method, which first stores the
value field of the first node in a temporary variable named
length. Then the method iterates over the list nodes to
count them. This loop terminates prematurely once the
node count exceeds the value of the length variable. This
also prevents lists that are circular from forcing repOk into
an infinite loop. Finally, the length variable is compared
with the node count, to produce the desired answer.

5

(a)
 4

4

5

 4

5

 3

... (b)

(d)

(z) 4(c)

Figure 2: Exhaustive approach in Juzi. Initially (a),
the LinkedList is corrupt, as the first node contains
value 4, which is incorrect according to the Figure 1
repOk correctness condition. Dotted lines show the
first three repair attempts (b, c, d). Omitted are
several subsequent repair attempts. Ultimately re-
pair culminates in the correct list (z).

Figure 2 (a) shows an example linked list that consists of

three nodes. The first node has a corrupt value. According
to the correcntess condition encoded in the Figure 1 repOk
method, the value should be equal to the number of nodes
in the list, 3, but it is off by one, 4. To repair the corrup-
tion, Juzi first (b, c, d) tries all possible mutations of the
field that the repOk method accessed last—the next pointer
of the last node. Subsequently (omitted from the figure),
Juzi backtracks in the list of fields accessed by the repOk
method and continues repair actions in an exhaustive fash-
ion. Finally, Juzi reaches a field that the repOk method had
accessed very early, the corrupt value field of the first node,
and now Juzi repairs the list successfully (z). For each re-
pair attempt Juzi executes the repOk method, to check if
the resulting list satisfies the repOk correctness condition.

In situations like this, an exhaustive approach works well
for repairing small data structure instances, containing few
nodes. But when repairing larger structures, at some point
exhaustive search becomes inefficient. The number of pos-
sible mutations grows exponentially and most mutations do
not result in a correct state.

Our key insight is that we can guide data structure repair
by mutating the data structure in such a way that the re-
paired data structure takes a predetermined execution path.
In our example, we want to invert the outcome of the last
if-condition such that, instead of returning false, repOk re-
turns true. Indeed, if we take the path condition of the
original path, which returned false, invert the last conjunct,
and solve the resulting path condition, we can obtain the
correct repair action directly.

3. PROPOSED APPROACH
Dynamic symbolic data structure repair (DSDSR) con-

sists of two parts. At the lower level is a dynamic symbolic
execution engine that has a broad interface to allow modifi-
cation of path conditions, etc. Using the dynamic symbolic
engine, at the top layer sits our generic repair algorithm. In
this section we briefly describe both components.

3.1 Dynamic Symbolic Execution Engine
Our dynamic symbolic execution engine automatically in-

serts instrumentation code into a given repOk method, which
yields an instrumented version of repOk. The execution of
the instrumented version behaves just like the original, ex-
cept that it also creates a symbolic representation of the
program execution state. In that our engine is similar to
previous ones such as Dart, jCute, and Pex [8, 12, 13]. When
we apply dynamic symbolic execution to repOk, we obtain
a complete symbolic representation of the path taken by the
repOk correctness condition. For example, we now have a
symbolic representation of the last if-condition, whose con-
crete value triggered repOk to return false.

3.2 Algorithm for Data Structure Repair
Figure 3 gives a high-level overview of our algorithm. As

part of its normal execution, a program invokes assertions
or other methods that implement a correctness condition.
In our description we follow previous work and name such a
method repOk [6, 7]. When the correctness condition fails,
i.e., repOk returns false, execution is handed over to our ex-
tended dynamic symbolic engine, which in turn invokes the
instrumented version of repOk. Executing the instrumented
repOk builds the path condition of the execution path that
leads to the point at which repOk failed.

RepOk returns true?

Repair Attempt

I-RepOk builds path condition

Error:

Failed

to repair

Yes

No

Modify and solve path condition

Repair data structure

Yes

Too many tries?
Yes

Found solution?
No

No

Normal program execution

Figure 3: Overview of our dynamic symbolic data
structure repair algorithm (DSDSR). RepOk is a
method that implements a given correctness condi-
tion. I-RepOk is the instrumented version of repOk.

With the full symbolic path condition in hand, we can now
modify the path condition to obtain a different path. I.e.,
if we invert the last if-condition we obtain a path that does
not return false at the point at which the original execution
failed. At the same time, solving such a new path condition
can give us an input state that will trigger the new path.
If the new state satisfies the repOk correctness condition,
we can mutate the existing state to resemble the new one,
which completes the repair.

The algorithm relies on a faithful encoding of the path
condition and other program constraints in a format suitable
for automated reasoning. It further relies on a powerful au-
tomated constraint solver that can simplify such constraints
and, if a solution exists, can produce a concrete solution.
Finally, the solution of the constraint solver needs to be
mapped back into the program state, to repair the existing
data structures.

We repair the data structure according to the solution
of the constraint solver and invoke repOk to check if the
resulting structure satisfies the repOk correctness condition.
If repOk again returns false, we may make another iteration
and attempt another repair. To prevent an infinite loop of
repair attempts, the algorithm terminates after reaching a
user-defined number of futile attempts. If the repOk method
returns true, we consider the repair attempt to be successful
and resume normal program execution.

The main advantage of our approach is that, unlike Juzi,
in the search for a data structure that satisfies a repOk cor-
rectness condition, we do not need to exhaustively generate
all possible candidate data structures. Instead, DSDSR de-
rives conditions directly from the repOk implementation to

generate a single data structure that satisfies the correctness
condition.

3.3 Implementation
We implement our generic repair algorithm on top of our

new dynamic symbolic execution engine for Java, called Dsc.
Dsc works on top of any standard Java virtual machine. It
does not require modifications of the virtual machine or the
user code. This means we can repair existing Java code
when it is executed on a standard JVM.

Dsc analyzes user code at the bytecode level. It uses the
instrumentation facilities provided by Java 5 to instrument
user code at load-time, using the ASM bytecode instrumen-
tation framework [3, 2]. By instrumenting code at the byte-
code level, we can repair third-party libraries that are only
available in bytecode form.

4. PRELIMINARY RESULTS
We conducted a small experiment using the linked list

subject of Figure 1. The experiment applies the motivating
example of Figure 2 to lists of different lengths. Specifically,
each run constructs a correct singly linked list of a given
length, corrupts the value of the first node by increasing it
by one, invokes one of the repair tools, and measures the
time the tool takes to suggest the correct repair.1 In the
experiment both tools succeed in that they terminate with
producing the correct repair action in all cases.

We conducted the experiment with the latest version of
Juzi (0.0.0.1) which we obtained from the Juzi website2 and
took all measurements on a Sun HotSpot JVM 1.6.0 17 run-
ning on Windows on an intel laptop 2.26GHz Core2 Duo
processor.

 10

 100

 1000

 10000

 100000

 1e+006

 0 2 4 6 8 10 12 14 16 18 20

re
pa

ir
tim

e
[m

s]

#nodes

Juzi
DSDSR

Figure 4: Result of applying the linked list example
of Figure 2 to lists of different lengths. #nodes is
the number of nodes in the list. Repair time is the
time a tool took to produce the correct repair action.
Smaller repair times are better.

Figure 4 shows the result of our experiment. Juzi repairs
small lists more efficiently than our prototype implemen-
tation. But starting with 13 nodes, our approach is more
efficient. This makes sense intuitively, as an exhaustive
approach such as Juzi is bound to be inefficient for larger
data structures, motivating more directed approaches such
as ours.

1Our prototype suggests but not yet performs a repair ac-
tion. The implementation of performing a suggested repair
is straightforward and will only add a negligible overhead.
2http://users.ece.utexas.edu/˜elkarabl/Juzi/index.html

5. RELATED WORK
Generic data structure repair, pioneered by Demsky and

Rinard [5], is a relatively new area of research. Non-generic
data structure repair is not new, classic examples include
the IBM MVS/XA operating system [11].

6. CONCLUSIONS
Our prototype DSDSR implementation is available at

http://cseweb.uta.edu/~ishtiaqu/repair/

Acknowledgments
We thank Bassem Elkarablieh and Sarfraz Khurshid for help-
ing us with Juzi.

7. REFERENCES
[1] C. Boyapati, S. Khurshid, and D. Marinov. Korat:

Automated testing based on Java predicates. In Proc. ACM
SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), pages 123–133. ACM, July 2002.

[2] É. Bruneton, R. Lenglet, and T. Coupaye. ASM: a code
manipulation tool to implement adaptable systems. In
Proc. ACM SIGOPS France Journées Composants 2002:
Systèmes à composants adaptables et extensibles (Adaptable
and extensible component systems), Nov. 2002.

[3] G. A. Cohen, J. S. Chase, and D. L. Kaminsky. Automatic
program transformation with Joie. In Proc. USENIX
Annual Technical Symposium, pages 167–178. USENIX,
June 1998.

[4] B. Demsky. Data Structure Repair Using Goal-Directed
Reasoning. PhD thesis, Massachusetts Institute of
Technology, 2006.

[5] B. Demsky and M. C. Rinard. Automatic detection and
repair of errors in data structures. In Proc. 18th ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages
78–95. ACM, Oct. 2003.

[6] B. Elkarablieh, I. Garcia, Y. L. Suen, and S. Khurshid.
Assertion-based repair of complex data structures. In Proc.
22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 64–73. ACM, Nov.
2007.

[7] B. Elkarablieh and S. Khurshid. Juzi: a tool for repairing
complex data structures. In Proc. 30th ACM/IEEE
International Conference on Software Engineering (ICSE),
pages 855–858. ACM, May 2008.

[8] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. In Proc. ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 213–223. ACM, June 2005.

[9] G. Kudrjavets, N. Nagappan, and T. Ball. Assessing the
relationship between software assertions and faults: An
empirical investigation. In Proc. 17th IEEE International
Symposium on Software Reliability Engineering (ISSRE),
pages 204–212. IEEE, Nov. 2006.

[10] M. Z. Malik, K. Ghori, B. Elkarablieh, and S. Khurshid. A
case for automated debugging using data structure repair.
In 24th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, Nov. 2009.

[11] S. Mourad and D. Andrews. On the reliability of the IBM
MVS/XA operating system. IEEE Transactions on
Software Engineering (TSE), 13(10):1135–1139, Oct. 1987.

[12] K. Sen and G. Agha. Cute and jCute: Concolic unit testing
and explicit path model-checking tools. In Proc.
International Conference on Computer Aided Verification
(CAV), pages 419–423. Springer, Aug. 2006.

[13] N. Tillmann and J. de Halleux. Pex - white box test
generation for .Net. In Proc. 2nd International Conference
on Tests And Proofs (TAP), pages 134–153. Springer, Apr.
2008.

