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ABSTRACT 

In t h i s paper, recent research resu l t s are 
presented which demonstrate the ef fect iveness of 
a ru le learn ing system in two dynamic system 
con t ro l tasks. This system, ca l led a learn ing 
c l a s s i f i e r system (LCS), learns ru les to con t ro l 
a simple l n e r t l a l object and a simulated na tu ra l 
gas p i p e l i n e . 

S ta r t i ng from a randomly generated s ta te of 
mind, the learn ing c l a s s i f i e r system learns 
s t r i n g - r u l e s ca l l ed c l a s s i f i e r s which match 
s t r i ngs ca l led messages. Messages are sent by 
environmental sensors or by prev ious ly ac t i va ted 
c l a s s i f i e r s . Each c l a s s i f i e r ' s e f fect iveness i s 
evaluated by an i n t e r n a l serv ice economy complete 
w i th b idd ing and auc t ion . Furthermore, new ru les 
are created by an innovat ive search mechanism 
ca l led a genetic a lgor i thm. Genetic algor i thms 
are search algor i thms based on the mechanics of 
natura l genet ics . 

Results from computational experiments in 
both tasks are presented. In the i n e r t i a l object 
task , the LCS learns an e f f e c t i v e set of ru les to 
center the object repeatedly. In the p ipe l i ne 
task , the LCS learns to con t ro l the p ipe l i ne 
under normal summer and w in te r cond i t ions . It 
a lso learns to alarm co r rec t l y fo r the presence 
or absence of a leak. These resu l t s demonstrate 
the ef fect iveness of the learn ing c l a s s i f i e r 
system approach and suggest f u r t h e r refinements 
which are cu r ren t l y under I n v e s t i g a t i o n . 

I BACKGROUND 

Many i n d u s t r i a l tasks and machines that once 
requi red human i n te r ven t i on have been a l l but 
completely automated. Where once a person tooled 
a p a r t , a machine t o o l s , senses, and too ls again. 
Where once a person con t ro l l ed a machine, a 
computer c o n t r o l s , senses, and continues i t s task . 
Repet i t i ve tasks requ i r i ng a h igh degree of 
p rec is ion have been most suscept ib le to these 
extreme forms of automated c o n t r o l . Yet despi te 
these successes, there are s t i l l many tasks and 
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mechanisms tha t requi re the a t t en t i on of a human 
operator . P i l o t i n g an a i r p l a n e , c o n t r o l l i n g a 
p i p e l i n e , d r i v i n g a car , and f i x i n g a machine are 
j u s t a few examples of ord inary tasks which have 
res is ted a h igh degree of automation. What is it 
about these tasks tha t has prevented more autono­
mous, automated contro l? P r i m a r i l y , each of the 
example tasks requ i res , not j u s t a s ing le capab i l ­
i t y , but a broad range of s k i l l s f o r successful 
performance. Furthermore, each task requires 
performance under circumstances which have never 
been encountered before . For example, a p i l o t 
must take o f f , nav igate, con t ro l speed and d i r e c ­
t i o n , operate a u x i l i a r y equipment, communicate 
w i t h tower c o n t r o l , and land the a i r c r a f t . He may 
be requi red to do any or a l l of these tasks under 
extreme weather condi t ions or w i t h equipment 
malfunct ions which he has never faced before . 
C lea r l y , the breadth and perpetual novel ty of the 
p i l o t i n g task (and s i m i l a r l y complex task env i ron­
ments) prevents the ord inary a lgor i thmic so lu t i on 
used in more r e p e t i t i v e chores. In other words, 
d i f f i c u l t environments are d i f f i c u l t because not 
every possib le outcome can be an t i c ipa ted in ad­
vance, nor can every possible response be prede­
f i n e d . This t r u t h places a premium on adapta t ion. 

In t h i s paper, we present research resu l t s 
from the app l i ca t i on of a learn ing c l a s s i f i e r 
system (LCS) to the con t ro l of two dynamic systems 
[ 1 ] , an l n e r t l a l object and a na tu ra l gas p ipe ­
l i n e . A learn ing c l a s s i f i e r system is a ru le 
learn ing system which combines a computat ional ly 
complete ru le and message system, an apportionment 
of c r e d i t system based on a serv ice economy 
analogue, and a genet ic a lgor i thm to form a system 
w i t h s u f f i c i e n t l y broad a d a p t a b i l i t y and e f f i c i e n ­
cy to learn how to con t ro l each dynamic system 
s t a r t i n g from a random s ta te of mind. 

In the remainder of the paper we f i r s t 
examine the o r i g i n s and s t ruc tu re of learn ing 
c l a s s i f i e r systems. We examine I t s app l i ca t i on to 
the con t ro l of an i n e r t i a l ob jec t . F i n a l l y , we 
observe i t s adaptat ion to normal summer and w in te r 
cond i t i ons , as w e l l as abnormal leak events, in 
the con t ro l of a simulated na tu ra l gas p i p e l i n e . 

II ORIGINS AND STRUCTURE OF 
LEARNING CLASSIFIER SYSTEMS 

Learning c l a s s i f i e r systems are the l a t e s t 
outgrowth of Hol land 's cont inu ing work on adaptive 
systems. In 1962, when Holland ou t l i ned h i s 
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theory of adaptive systems [2] he developed a 
general theory encompassing many adaptive systems, 
but u l t i m a t e l y he was addressing himself toward 
programmable machines that could reprogram them­
selves. 

With t h i s foundation more concrete sugges-
t ions emerged fo r classes of schemata processors 
[3] which in some l im i ted respects resemble the 
present day LCS. This work has evolved i n to the 
i n t r i c a t e l y i n t e r e s t i n g , but as yet unimplemented 
broadcast language [A ] . The f i r s t p r a c t i c a l im­
plementat ion of a learning system based on these 
theor ies appeared in 1978. Holland and Reitman 
[5] describe t h i s f i r s t C lass i f i e r System which 
learns a simple maze running task. Though the 
task is s imple, the achievement Is remarkable be­
cause of i t s successful marriage of a rule-based 
knowledge system and a genetic algor i thm fo r d i s ­
covery of new ru les . Others have continued and 
extended t h i s work in a va r ie ty of areas ranging 
from v i s u a l pat tern recogni t ion to draw poker 
[ 6 -10 ] . 

A learn ing c l a s s i f i e r system (LCS) is an 
a r t i f i c i a l system that learns r u l e s , ca l led 
c l a s s i f i e r s , to guide i t s i n t e rac t i on in an 
a r b i t r a r y environment. I t consists of three main 
elements: 

1. Rule and Message System 
2. Apportionment of Credit System 
3. Genetic Algorithm 

A schematic of an LCS is shown in Figure 1. 
In t h i s schematic, we see that the ru le and mes­
sage system receives environmental in format ion 
through i t s sensors, cal led detectors, which de­
code to some standard message format. This env i ­
ronmental message is placed on a message l i s t 
along w i t h a f i n i t e number of other i n t e r n a l 
messages generated from the previous cyc le . 
Messages on the message l i s t may ac t i va te 
c l a s s i f i e r s , ru les i n the c l a s s i f i e r s to re . I f 
ac t i va ted a c l a s s i f i e r may then be chosen to send 
a message to the message l i s t fo r the next cyc le . 
A d d i t i o n a l l y , cer ta in messages may c a l l f o r 

ENVIRONMENT 

Figure 1. Schematic - Learning C l a s s i f i e r System 

external ac t ion through a number of ac t i on 
t r i gge rs ca l led e f f ec to r s . In t h i s way, the r u l e 
and message system combines both external and 
I n te rna l data to guide behavior and the s ta te of 
mind in the next s tate cyc le . 

In an LCS, i t is important to maintain simple 
syntax in the primary un i t s of i n fo rmat ion , 
messages and c l a s s i f i e r s . In the current study 
messages are 1-b i t (binary) s t r i ngs and 
c l a s s i f i e r s are 3 l - p o s i t l o n s t r i ngs over the 
alphabet { 0 , 1 , # } . In t h i s alphabet the # is a 
w i l d card, matching a 0 or a 1 in a given message. 
Thus, we maintain powerful pa t te rn recogn i t ion 
capab i l i t y w i t h simple s t ruc tu res . 

In t r a d i t i o n a l rule-based expert systems, the 
value or r a t i n g of a ru le r e l a t i v e to other ru les 
is f i xed by the programmer in conjunct ion w i t h the 
expert or group of experts being emulated. In a 
ru le learn ing system, we don ' t have t h i s luxury . 
The r e l a t i v e value of d i f f e r e n t ru les is one of 
the key pieces of in format ion which must be 
learned. To f a c i l i t a t e t h i s type of l ea rn ing , 
Holland [6] has suggested that ru les coexist in a 
competi t ive service economy. A competi t ion is 
held among c l a s s i f i e r s where the r i g h t to answer 
re levant messages goes to the highest bidders w i t h 
t h i s payment serving as s source of income to 
previously successful message senders. In t h i s 
way, a chain of middlemen is formed from man­
ufac turer (source message) to message consumer 
(environmental ac t ion and payo f f ) . The 
competi t ive nature of the economy insures that the 
good ru les survive and that bad ru les die o f f . 

In add i t ion to r a t i n g ex i s t i ng r u l e s , we must 
also have a way of searching f o r new, possib ly 
b e t t e r , r u l e s . The primary mechanism fo r t h i s 
type of c reat ive learn ing w i t h i n an LCS is the 
genetic a lgor i thm. A genetic a lgor i thm (GA) is a 
search a lgor i thm based upon the mechanics of 
na tu ra l genet ics. I t combines a Darwinian 
su rv i va l of the f i t t e s t among a populat ion of 
a r t i f i c i a l chromosomes ( s t r i n g ru les) and a 
s t ruc tu red , yet randomized, Informat ion exchange 
among randomly mated pa i rs of r u l es . GA 
s i m p l i c i t y of operat ion and power of e f f ec t have 
been demonstrated in func t ion op t im iza t i on , 
opt imal c o n t r o l , as w e l l as LCS domains. 

Taken together , the learn ing c l a s s i f i e r 
system w i th i t s computat ional ly complete and 
convenient ru le and message system, an 
apportionment of c red i t system modeled a f t e r a 
competi t ive service economy, and the innovat ive 
search of a genetic a lgor i thm, provides a u n i f i e d 
framework f o r i nves t iga t i ng the learn ing con t ro l 
of dynamic systems. In the remainder, we examine 
the app l i ca t i on of the LCS to i n e r t i a l object and 
gas p ipe l i ne c o n t r o l . 

I l l INERTIAL OBJECT CONTROL 

We tes t the LCS and i t s a b i l i t y to con t ro l an 
i n e r t i a l object in the 1-D space depicted in 
Figure 2. The object is f r i c t i o n l e s s and is 
governed by Newton's second law. As shown, the 
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domain is bounded by i n e l a s t i c w a l l s , and the LCS 
receives p e r f e c t , yet crude and d i s c r e t e , know­
ledge o f the o b j e c t ' s p o s i t i o n , v e l o c i t y , f o r ce , 
and reward in an e ight b i t environmental message. 
The LCS has a simple behaviora l r e p e r t o i r e : it 
can apply a force of given magnitude to the r i g h t 
o r to the l e f t . 

Figure 2. I n e r t i a l Object Domain - Schematic 

In these tes ts the LCS is rewarded i f the 
ac t ion i t has taken is consistent w i t h the goal o f 
center ing the object (maximum po in t score = 6 ) . 
Furthermore, a c r i t e r i o n count is incremented I f 
the ob ject is centered f o r 10 consecutive time 
steps. A f t e r t h i s , the object is randomly d i s -
turbed by a large force to make the system t r y 
again. 

S ta r t i ng from a randomly generated set of 30 
ru les we compare the performance of the LCS w i t h 
genet ic a lgor i thm and wi thout genet ic a lgor i thm to 
a random walk on the basis of time-averaged po in t 
count (TOTALEVAL/T) in Figure 3. We note tha t both 
the LCS runs are much be t te r than random pe r f o r ­
mance. Furthermore, case I0LCS.2 (w i th GA) even­
t u a l l y overtakes and outperforms run I0LCS.1 
(wi thout GA). In f a c t , wh i le the d i f fe rences 
appear small on t h i s bas i s , the d i f fe rence In 
phys ica l con t ro l is much be t t e r in the case w i t h 
genetic a lgor i thm. 

To see t h i s we s h i f t the basis of comparison 
to the more sens i t i ve measure, time-averaged 
number of c r i t e r i o n achievements displayed as 
Figure 4. Again, LCS performance is f a r be t t e r 
than random. Performance w i t h the genetic a lgo­
r i thm is tha t much b e t t e r than w i thou t . In f a c t , 
the run w i t h genet ic a lgor i thm has found res to ra ­
t i o n and braking ru les s i m i l a r to those tha t might 
be programmed by a knowledgeable con t ro l engineer. 
The run wi thout genet ic a lgor i thm has i n e f f e c t i v e 
braking ru les thereby l i m i t i n g i t s capab i l i t y * 

IV GAS PIPELINE CONTROL 

A p ipe l i ne model, load schedule, and upset 
condi t ions are programmed and In ter faced to the 
LCS. We b r i e f l y discuss t h i s environmental model 
and present r esu l t s of normal operat ions and upset 
t es t s . 

A model of a p ipe l i ne has been developed 
which accounts f o r l inepack accumulation and 

Figure 3. Time-averaged TOTALEVAL vs . Time 
Random Rule Set - Runs I0LCS.1 
and I0LCS.2 

Figure 4. Time-averaged Goal Count vs . Time 
Random Rule Set - Runs I0LCS.1 
and I0LCS.2 

f r l c t l o n a l res is tance. User demand var ies on a 
d a l l y basis and depends upon the weather. D i f f e r ­
ent pat terns may be used f o r w in te r and summer 
opera t ion . In add i t i on to normal summer and 
w in te r cond i t i ons , the p ipe l i ne may be subjected 
to a leak upset. During any given time s tep , a 
leak may occur w i t h a spec i f i ed leak p r o b a b i l i t y . 
I f a leak occurs, the leak f l ow , a spec i f i ed 
va lue , is ext racted from the upstream j unc t i on and 
pe rs i s t s f o r a spec i f i ed number of time steps. 

The LCS receives a message about the p ipe l i ne 
cond i t ion every time s tep. A template fo r that 
message Is shown in Figure 5. The system has 
complete, a l b e i t Imperfect and d i s c r e t e , knowledge 
o f i t s s ta te Inc lud ing in f low, ou t f low, i n l e t 
pressure, o u t l e t pressure, pressure ra te change, 
season, time of day, t ime of year , and current 
temperature reading. 

In the p ipe l i ne task , the LCS has a la rger 
range of a l t e r n a t i v e s f o r act ions i t may take 
compared w i t h the I n e r t i a l object task . I t may 
send out a f low ra te chosen from one of four 
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Figure 6. Time-averaged TOTALEVAL vs . Time 
Normal Operations - Runs P0LCS.3 
& P0LCS.4 

system. Figure 7 shows the time-averaged t o t a l 
evaluat ion versus time fo r several runs w i t h leak 
upsets. Once again the LCS is i n i t i a l i z e d w i t h 
random ru les and permit ted to learn from ex te rna l 
reward. Both LCS runs outperform the random walk 
and the run w i t h GA c l ea r l y beats the run w i t h no 
new ru le l ea rn ing . To understand t h i s , ve take a 
look at some a u x i l i a r y performance measures. In 
Figure 8 ve see the percentage of leaks alarmed 
co r rec t l y versus t ime. Strangely, the run wi thout 
GA alarms a higher percentage of leaks than the 
run v l t h GA. This may seem coun te r i n t u i t i ve u n t i l 
ve examine the fa lse alarm s t a t i s t i c s in Figure 9. 
The run without GA is only able to alarm a high 
percentage of leaks co r rec t l y because it has so 
many fa lse alarms. The run w i t h GA decreases its 
fa lse alarm percentage, whi le increasing i t s leaks 
correct percentage. 

Figure 8. Percentage of Leaks Correct vs . Time 
Runs POLCS.5 & POLCS.6 

V CONCLUSIONS 

In t h i s paper, we have appl ied a learn ing 
c l a s s i f i e r system to the con t ro l of two d i f f e r e n t 
dynamic systems, an i n e r t l a l object and a natura l 
gas p i p e l i n e . 

More dramatic performance d i f ferences are 
noted when ve have the p o s s i b i l i t y of leaks on the 

In the tvo app l ica t ions the LCS learns 
e f f e c t i v e ru les in normal and abnormal operat ing 

Figure 5. Pipel ine LCS Environmental 
Message Template 

values and it may send a message i nd i ca t i ng 
whether a leak is suspected or not . 

The LCS receives reward from i t s t r a i n e r 
depending upon the qua l i t y of i t s ac t ion in 
r e l a t i o n to the current state of the p i p e l i n e . To 
make the t r a i n e r e v e r - v i g i l a n t , a computer subrou­
t i n e has been w r i t t e n which administers the reward 
cons i s ten t l y . This is not a necessary s tep, and 
reward can come from a human t r a i n e r . 

Under normal operating condit ions we examine 
the performance of the learning c l a s s i f i e r system 
w i t h and without the genetic a lgor i thm enabled. 
Without the genetic a lgor i thm, the system is 
forced to make do wi th i t s o r i g i n a l set of r u l es . 
The resu l t s of a normal operating tes t are presen­
ted in Figure 6. Both runs w i th the LCS outper­
form a random walk (through the operat ing a l t e r n a ­
t i ves ) . Furthermore, the run w i th genetic a lgo­
r i thm enabled is superior to the run wi thout GA. 
In t h i s f i g u r e , we show time-averaged t o t a l 
eva luat ion versus time of s imulat ion (maximum 
reward per tlmestep - 6 ) . 
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Figure 9, Percentage of False Alarms vs . Time 
Runs POLCS.5 & POLCS.6 
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9. Booker, L. B. , " I n t e l l i g e n t Behavior as an 
Adaptat ion to the Task Environment," Ph.D. 
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condi t ions a l i k e . I n the i n e r t i a l object task , 
the LCS learns to center the object cons i s ten t l y . 
In the p ipe l i ne task , the LCS learns to operate 
the p ipe l i ne under normal summer and w in te r 
cond i t i ons . I t a lso learns to alarm co r rec t l y 
w i t h increasing accuracy f o r the presence or 
absence of a leak . 

While the app l i ca t ions of the LCS in t h i s 
paper have been necessar i ly s p e c i f i c , t h i s work 's 
imp l i ca t ions f o r other research i n a r t i f i c i a l 
I n t e l l i gence are more fa r - reach ing . The use of 
r u t h l e s s l y spartan syntax and s imple, yet powerful 
learn ing h e u r i s t i c s drawn from nature may e l se ­
where prove promising in our quest f o r programs 
which e f f e c t i v e l y reprogram themselves w i t h be t te r 
I n s t r u c t i o n s . 
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