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ABSTRACT

In this paper, recent research results are
presented which demonstrate the effectiveness of
a rule learning system in two dynamic system
control tasks. This system, called a learning
classifier system (LCS), learns rules to control
a simple Inertlal object and a simulated natural
gas pipeline.

Starting from a randomly generated state of
mind, the learning classifier system learns
string-rules called classifiers which match
strings called messages. Messages are sent by
environmental sensors or by previously activated
classifiers. Each classifier's effectiveness is
evaluated by an internal service economy complete
with bidding and auction. Furthermore, new rules
are created by an innovative search mechanism
called a genetic algorithm. Genetic algorithms
are search algorithms based on the mechanics of
natural genetics.

Results from computational experiments in

both tasks are presented. |In the inertial object
task, the LCS learns an effective set of rules to
center the object repeatedly. In the pipeline
task, the LCS learns to control the pipeline

under normal summer and winter conditions. It
also learns to alarm correctly for the presence
or absence of a leak. These results demonstrate
the effectiveness of the learning classifier
system approach and suggest further refinements
which are currently under Investigation.

| BACKGROUND

Many industrial tasks and machines that once
required human intervention have been all but
completely automated. Where once a person tooled
a part, a machine tools, senses, and tools again.
Where once a person controlled a machine, a
computer controls, senses, and continues its task.
Repetitive tasks requiring a high degree of
precision have been most susceptible to these
extreme forms of automated control. Yet despite
these successes, there are still many tasks and
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mechanisms that require the attention of a human
operator. Piloting an airplane, controlling a
pipeline, driving a car, and fixing a machine are
just a few examples of ordinary tasks which have
resisted a high degree of automation. What is it
about these tasks that has prevented more autono-
mous, automated control? Primarily, each of the
example tasks requires, not just a single capabil-
ity, but a broad range of skills for successful
performance. Furthermore, each task requires
performance under circumstances which have never
been encountered before. For example, a pilot
must take off, navigate, control speed and direc-
tion, operate auxiliary equipment, communicate
with tower control, and land the aircraft. He may
be required to do any or all of these tasks under
extreme weather conditions or with equipment
malfunctions which he has never faced before.
Clearly, the breadth and perpetual novelty of the
piloting task (and similarly complex task environ-
ments) prevents the ordinary algorithmic solution
used in more repetitive chores. In other words,
difficult environments are difficult because not
every possible outcome can be anticipated in ad-
vance, nor can every possible response be prede-
fined. This truth places a premium on adaptation.

In this paper, we present research results
from the application of a learning classifier
system (LCS) to the control of two dynamic systems
[1], an Inertlal object and a natural gas pipe-
line. A learning classifier system is a rule
learning system which combines a computationally
complete rule and message system, an apportionment
of credit system based on a service economy
analogue, and a genetic algorithm to form a system
with sufficiently broad adaptability and efficien-
cy to learn how to control each dynamic system
starting from a random state of mind.

In the remainder of the paper we first
examine the origins and structure of learning
classifier systems. We examine Its application to
the control of an inertial object. Finally, we
observe its adaptation to normal summer and winter
conditions, as well as abnormal leak events, in
the control of a simulated natural gas pipeline.

I ORIGINS AND STRUCTURE OF
LEARNING CLASSIFIER SYSTEMS

Learning classifier systems are the latest
outgrowth of Holland's continuing work on adaptive
systems. In 1962, when Holland outlined his



theory of adaptive systems [2] he developed a
general theory encompassing many adaptive systems,
but ultimately he was addressing himself toward
programmable machines that could reprogram them-
selves.

With this foundation more concrete sugges-
tions emerged for classes of schemata processors
[3] which in some limited respects resemble the
present day LCS. This work has evolved into the
intricately interesting, but as yet unimplemented
broadcast language [A]. The first practical im-
plementation of a learning system based on these
theories appeared in 1978. Holland and Reitman
[5] describe this first Classifier System which
learns a simple maze running task. Though the
task is simple, the achievement |s remarkable be-
cause of its successful marriage of a rule-based
knowledge system and a genetic algorithm for dis-
covery of new rules. Others have continued and
extended this work in a variety of areas ranging
from visual pattern recognition to draw poker
[6-10].

A learning classifier system (LCS) is an
artificial system that learns rules, called
classifiers, to guide its interaction in an
arbitrary environment. It consists of three main
elements:

1. Rule and Message System

2. Apportionment of Credit System

3. Genetic Algorithm

A schematic of an LCS is shown in Figure 1.
In this schematic, we see that the rule and mes-
sage system receives environmental information
through its sensors, called detectors, which de-
code to some standard message format. This envi-
ronmental message is placed on a message list
along with a finite number of other internal

messages generated from the previous cycle.
Messages on the message Ilist may activate
classifiers, rules in the classifier store. I

activated a classifier may then be chosen to send
a message to the message list for the next cycle.
Additionally, certain messages may call for
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Figure 1. Schematic - Learning Classifier System
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external action through a number of action
triggers called effectors. In this way, the rule
and message system combines both external and
Internal data to guide behavior and the state of
mind in the next state cycle.

In an LCS, it is important to maintain simple
syntax in the primary units of information,
messages and classifiers. In the current study
messages are 1-bit (binary) strings and
classifiers are 3l-positlon strings over the
alphabet {0,1,#}. In this alphabet the # is a
wild card, matching a 0 or a 1 in a given message.
Thus, we maintain powerful pattern recognition
capability with simple structures.

In traditional rule-based expert systems, the
value or rating of a rule relative to other rules
is fixed by the programmer in conjunction with the
expert or group of experts being emulated. In a
rule learning system, we don't have this luxury.
The relative value of different rules is one of
the key pieces of information which must be
learned. To facilitate this type of learning,
Holland [6] has suggested that rules coexist in a
competitive service economy. A competition is
held among classifiers where the right to answer
relevant messages goes to the highest bidders with
this payment serving as s source of income to
previously successful message senders. In this
way, a chain of middlemen is formed from man-
ufacturer (source message) to message consumer
(environmental action and payoff). The
competitive nature of the economy insures that the
good rules survive and that bad rules die off.

In addition to rating existing rules, we must
also have a way of searching for new, possibly
better, rules. The primary mechanism for this
type of creative learning within an LCS is the
genetic algorithm. A genetic algorithm (GA) is a
search algorithm based upon the mechanics of
natural genetics. It combines a Darwinian
survival of the fittest among a population of
artificial chromosomes (string rules) and a
structured, yet randomized, Information exchange
among randomly mated pairs of rules. GA
simplicity of operation and power of effect have
been  demonstrated in function optimization,
optimal control, as well as LCS domains.

Taken together, the learning classifier
system with its computationally complete and
convenient rule and message system, an
apportionment of credit system modeled after a
competitive service economy, and the innovative
search of a genetic algorithm, provides a unified
framework for investigating the learning control
of dynamic systems. In the remainder, we examine
the application of the LCS to inertial object and
gas pipeline control.

11 INERTIAL OBJECT CONTROL

We test the LCS and its ability to control an
inertial object in the 1-D space depicted in
Figure 2. The object is frictionless and s
governed by Newton's second law. As shown, the
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domain is bounded by inelastic walls, and the LCS
receives perfect, yet crude and discrete, know-
ledge of the object's position, velocity, force,
and reward in an eight bit environmental message.
The LCS has a simple behavioral repertoire: it
can apply a force of given magnitude to the right
or to the left.
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Figure 2. Inertial Object Domain - Schematic

In these tests the LCS is rewarded if the
action it has taken is consistent with the goal of
centering the object (maximum point score = 6).
Furthermore, a criterion count is incremented If
the object is centered for 10 consecutive time
steps. After this, the object is randomly dis-
turbed by a large force to make the system try
again.

Starting from a randomly generated set of 30
rules we compare the performance of the LCS with
genetic algorithm and without genetic algorithm to
a random walk on the basis of time-averaged point
count (TOTALEVAL/T) in Figure 3. We note that both
the LCS runs are much better than random perfor-
mance. Furthermore, case I0LCS.2 (with GA) even-
tually overtakes and outperforms run [OLCS.1
(without GA). In fact, while the differences
appear small on this basis, the difference In
physical control is much better in the case with
genetic algorithm.

To see this we shift the basis of comparison
to the more sensitive measure, time-averaged
number of criterion achievements displayed as
Figure 4. Again, LCS performance is far better
than random. Performance with the genetic algo-
rithm is that much better than without. In fact,
the run with genetic algorithm has found restora-
tion and braking rules similar to those that might
be programmed by a knowledgeable control engineer.
The run without genetic algorithm has ineffective
braking rules thereby limiting its capability*

IV GAS PIPELINE CONTROL

A pipeline model, load schedule, and upset
conditions are programmed and Interfaced to the
LCS. We briefly discuss this environmental model
and present results of normal operations and upset
tests.

A model of a pipeline has been developed
which accounts for linepack accumulation and
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Figure 4. Time-averaged Goal Count vs. Time
Random Rule Set - Runs IOLCS.1
and I0LCS.2

frlctlonal resistance. User demand varies on a
dally basis and depends upon the weather. Differ-
ent patterns may be used for winter and summer
operation. In addition to normal summer and
winter conditions, the pipeline may be subjected
to a leak upset. During any given time step, a
leak may occur with a specified leak probability.
If a leak occurs, the leak flow, a specified
value, is extracted from the upstream junction and
persists for a specified number of time steps.

The LCS receives a message about the pipeline
condition every time step. A template for that
message Is shown in Figure 5. The system has
complete, albeit Imperfect and discrete, knowledge
of its state Including inflow, outflow, inlet
pressure, outlet pressure, pressure rate change,
season, time of day, time of year, and current
temperature reading.

In the pipeline task, the LCS has a larger
range of alternatives for actions it may take
compared with the Inertial object task. It may
send out a flow rate chosen from one of four
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Figure 5. Pipeline LCS Environmental
Message Template

values and it may send a message indicating
whether a leak is suspected or not.

The LCS receives reward from its trainer
depending upon the quality of its action in
relation to the current state of the pipeline. To
make the trainer ever-vigilant, a computer subrou-
tine has been written which administers the reward
consistently. This is not a necessary step, and
reward can come from a human trainer.

Under normal operating conditions we examine
the performance of the learning classifier system
with and without the genetic algorithm enabled.
Without the genetic algorithm, the system s
forced to make do with its original set of rules.
The results of a normal operating test are presen-
ted in Figure 6. Both runs with the LCS outper-
form a random walk (through the operating alterna-
tives). Furthermore, the run with genetic algo-
rithm enabled is superior to the run without GA.
In this figure, we show time-averaged total
evaluation versus time of simulation (maximum
reward per tlmestep - 6).

with Gh {roLis.d)

ne GA (FOLEB.JY

Random

- - M TEE.T
[ TR TR
Figure 6. Time-averaged TOTALEVAL vs. Time

Normal Operations - Runs POLCS.3
& POLCS.4

More dramatic performance differences are
noted when ve have the possibility of leaks on the
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system. Figure 7 shows the time-averaged total
evaluation versus time for several runs with leak
upsets. Once again the LCS is initialized with
random rules and permitted to learn from external
reward. Both LCS runs outperform the random walk
and the run with GA clearly beats the run with no
new rule learning. To understand this, ve take a
look at some auxiliary performance measures. In
Figure 8 ve see the percentage of leaks alarmed
correctly versus time. Strangely, the run without
GA alarms a higher percentage of leaks than the
run vith GA. This may seem counterintuitive until
ve examine the false alarm statistics in Figure 9.
The run without GA is only able to alarm a high
percentage of leaks correctly because it has so
many false alarms. The run with GA decreases its
false alarm percentage, while increasing its leaks
correct percentage.

3
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Figure 8. Percentage of Leaks Correct vs. Time
Runs POLCS.5 & POLCS.6

V  CONCLUSIONS

In this paper, we have applied a learning
classifier system to the control of two different
dynamic systems, an inertlal object and a natural
gas pipeline.

In the tvo applications the LCS Ilearns
effective rules in normal and abnormal operating
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conditions alike. In the inertial object task,
the LCS learns to center the object consistently.
In the pipeline task, the LCS learns to operate
the pipeline wunder normal summer and winter
conditions. It also learns to alarm correctly
with increasing accuracy for the presence or
absence of a leak.

While the applications of the LCS in this
paper have been necessarily specific, this work's
implications for other research in artificial
Intelligence are more far-reaching. The use of
ruthlessly spartan syntax and simple, yet powerful
learning heuristics drawn from nature may else-
where prove promising in our quest for programs
which effectively reprogram themselves with better
Instructions.
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