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This paper presents a dynamic systems model of a sensorimotor synchronization

(SMS) task. An SMS task typically gives temporally discrete human responses to some

temporally discrete stimuli. Here, a dynamic systems modeling approach is applied

after converting the discrete events to regularly sampled time signals. To collect data

for model parameter fitting, a previously published pilot study was expanded. Three

human participants took part in an experiment: to tap a finger on a keyboard, following a

metronome which changed tempo in steps. System identification was used to estimate

the transfer function that represented the relationship between the stimulus and the

step response signals, assuming a separate linear, time-invariant system for each tempo

step. Different versions of model complexity were investigated. As a minimum, a second-

order linear system with delay, two poles, and one zero was needed to model the most

important features of the tempo step response by humans, while an additional third pole

could give a somewhat better fit to the response data. The modeling results revealed

the behavior of the system in two distinct regimes: tempo steps below and above the

conscious awareness of tempo change, i.e., around 12% of the base tempo. For the

tempo steps above this value, model parameters were derived as linear functions of

step size for the group of three participants. The results were interpreted in the light of

known facts from other fields like SMS, psychoacoustics and behavioral neuroscience.

Keywords: sensorimotor synchronization, period correction, rhythmic perception, system identification, root

locus analysis, pole/zero systems, frequency domain, tempo step-change

INTRODUCTION

Sensorimotor synchronization (SMS) is defined as the coordination of rhythmicmovement (motor)
with an external rhythm (sensory) (Repp, 2005; Repp and Su, 2013). Such rhythmic coordination
of perception and action, or the rhythmic synchronization between a timed sensory stimulus and
a motor response (Michon and Van der Valk, 1967), is often studied in the context of rhythmic
perception and collaboration, especially music performance.

One standard experiment in the study of SMS deals with the task of synchronizing an action
to a temporally regular (isochronous) series of impulses and has applications beyond music co-
performance, such as in dance (Miura et al., 2011) or computer gaming (Bégel et al., 2017).
When reducing the input (the sensory stimulus) to a metronome, i.e., an isochronous sequence
of tones or clicks, the action is often reduced to a simple task of hand clapping or finger tapping
in synchronization with the input (Repp, 2005). A variety of models have been used to study the
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relationship between such input and output. These models
typically rely on a simple assumption that, based on observations
of previous beat timings, the participant can predict the timing of
the next beat and make anticipatory actions, for example aiming
at being synchronous to it. In this paper, we are bringing models
from dynamical systems theory and control systems engineering
to the study of SMS and applying them on data from a task
of synchronization to a suddenly changing metronome tempo.
The primary goal is to apply dynamic systems modeling to the
inherently discrete-time system of an SMS task. The use of a
separate linear, time-invariant system for each tempo step is a
limitation, but model parameter trends might be developed into
more advanced non-linear models, which could be applied to
more general stimulus signals.

History
Studies on rhythm and perception started in the early years of
experimental psychology with pioneer works by Stevens (1886)
and Wilhelm Wundt back in the 1890s [cited in Blumenthal
(1975)]. Early work included experimental studies on the speed
of synchronization with an external rhythm (Nicholson, 1925)
[cited in Delignières et al. (2004)] and properties of asynchrony
in adaptation to different tempos, which led to the definition of
upper limits of the human rates (Woodrow, 1932). Later, notable
contributions were made in the 1950s and 1960s through the
works of Paul Fraisse [cited in Repp (2005)] and Michon and
Van der Valk (1967). Michon studied the response to rhythmic
perturbations including step changes, ramps and sinusoidals and
sums of sinusoidals. He also made the first attempt at formulating
a standard set of descriptive terms to describe research on SMS.
In later years Bruno H. Repp (Repp and Keller, 2004; Repp, 2010)
and Jeff Pressing (Pressing and Jolley-Rogers, 1997; Pressing,
1998, 1999) presented several important findings, including two
extensive overview studies (Repp, 2005; Repp and Su, 2013).

Study of Sudden Step Changes
One particular task, which is common in the studies of SMS, is
to respond to sudden tempo changes. Michon used inter-onset
intervals (IOIs) (the time between two consecutive clicks) of 600,
1200, and 2400 ms and step changes of 8, 16, and 32% of the base
value, and one step up and one step down for each test on five
subjects (Michon and Van der Valk, 1967). The results revealed
an initial overshoot in the rate of the response for increasing
tempo changes, as well as an undershoot for decreasing ones,
generally within 4–5 taps. He proposed a linear predictor model
that could account for 70% of the data collected from three of
his five subjects. Parameterizing the experiment and identifying
the parameters he spotted some non-linearity; that the quality
of performance depended on the step size and the baseline IOI.
However, he did not elaborate on the nature of this dependency
nor included a higher resolution of tempo changes or a variety of
tempo baselines.

Later studies started to make a difference between the
subliminal step changes that are below the threshold for
conscious perception, and the supraliminal changes that are
above that threshold (Thaut M. et al., 1998; Thaut and Kenyon,
2003). Mates (1994) further defined two hypothetical internal

processes called phase and period error correction processes that
will be briefly reviewed in section “Event and Interval Variables
and the Choice Between the Period Error Correction and Phase
Correction Process” due to their relevance to the stages of data
preparation in this work. He also made a distinction between
internal processes and external timing and attempted to explain
the often observed overshoot for step responses and showed
that period correction is slower for undetected than for detected
changes, even when they were of the same magnitude (Repp,
2001a,b), implying that phase correction is rapid and automatic,
whereas period correction can be dependent on awareness of a
tempo change (Repp, 2001a,b) (Hary and Moore, 1985) reported
adaptation to subliminal step changes to be very slow and
gradual. Thaut M. H. et al. (1998) investigated the adaptation by
five subjects to an unexpected step change of 2, 4, or 10%, for
an input interval of 500 ms in a finger-tapping task and reported
a strategy shift based on the percentage of the introduced step
change. They also reported a relatively rapid adaptation to both
large and small step changes, though the overshoot occurred
only after large, detectable changes. Repp and Keller (2004)
observed the suppression of period correction, but not phase
correction, when asking participants to continue tapping at the
initial tempo and ignoring the step change. They concluded
that phase correction is a lower-level cognitive process, whereas
period correction could have higher-level cognitive components.
Repp (2002) also considered phase correction to be purely
specific to SMS tasks whereas period correction could be more
related to expressing timing in music. It is reported that over-
correction above the threshold of awareness happens as a result
of participants adjusting the timing of their taps by a larger
amount than would be necessary to compensate for the full
asynchrony (Van Der Steen and Keller, 2013). The observation
of overshoot has also been reported for continuous, rather than
sudden, step-changes. Schulze observed a systematic alternation
of under-adjustment and over-adjustment of period and phase
correction in synchronization with a metronome that smoothly
changed tempo, from slow to fast (accelerando) or from fast to
slow (ritardando) (Schulze and Vorberg, 2002). For experiments
combining step changes with phase see Large et al. (2002), and
with antiphase tapping, see Thaut and Kenyon (2003).

Fraisse and Repp (2012) reported a situation in which
participants began to synchronize with a sequence when its
tempo was not known in advance and observed that about three
taps were needed to tune in to a sequence if the tapping started
immediately after the first tone. From the third stimulus (or the
third cycle in the case of a simple repeated rhythm) onward,
simultaneity was achieved with an error of less than 50 ms.

Discrete and Continuous Approaches to
SMS
In studies of SMS, there are two main theoretical approaches:
information processing and dynamic systems theory (Torre
and Balasubramaniam, 2009). Information-processing theory
describes the rhythmic responses and stimuli as event-based
discrete time series and aims at describing hypothetical internal
processes underlying the behavior (Repp, 2005). Dynamic
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systems theory approaches, on the other hand, is less focused
on the inner-workings of the systems, usually takes a black-box
approach, and is concerned with the mathematical description of
the observable synergies. Given that the focus of dynamic systems
theory is on continuous, non-linear, and within-cycle coupling
(Large, 2008), it has typically been used for continuousmovement
tasks, such as circle drawing in sync with external stimuli
(Todd et al., 2002; Repp, 2005). Comparing the results obtained
from series of time intervals produced in discrete finger-tapping
tasks with the spectral analysis of synchronization-continuation
experiment reveals that movements that are organized as a
series of discrete contacts are consistent with an event-based
timing model and require more explicit temporal control than
continuousmovements such as the oscillatorymotion of the hand
(Delignières et al., 2004). Although dynamic systems theories are
general enough to encompass both continuous and discrete forms
of periodic movements, they have primarily been used to analyze
continuous movement tasks (Repp, 2005). Moreover, when the
temporal goal is defined externally (e.g., by a metronome), timing
initially requires an event-based representation but after the
first few movement cycles, control processes become established
that allow timing to become emergent and continuous (Ivry
et al., 2002; Zelaznik et al., 2005). It is also shown that event-
based and emergent timing can coexist in a dual-task of discrete
(rhythmic tapping) and continuous (circle drawing) (Repp and
Steinman, 2010). These observations imply that both continuous
and discrete processes might be involved in discrete finger-
tapping tasks and point to the potential suitability of dynamic
modeling in tasks of discrete finger-tapping.

A central hypothetical notion in the dynamicmodeling of SMS
is the “internal timekeeper” that keeps track of time intervals
of the perceived rhythm of a metronome, other musicians, or
a self-paced rhythm. Many attempts at modeling SMS behavior
use this notion as a basis for models of phase or period error
correction processes by assuming a quantifiable correction of the
timekeeper interval that ultimately affects the generated output
(Michon and Van der Valk, 1967; Wing and Kristofferson, 1973;
Mates, 1994; Thaut M. H. et al., 1998). Michon and Van der Valk
(1967) introduced regularly time-sampled analysis to SMS and
dynamic modeling of rhythmic behavior. He proposed a time-
order representation that transforms the data from an irregularly
sampled format to a regular time series, enabling discrete-
time analysis that is otherwise inapplicable. Such representation
has since been used by those taking an information-processing
approach to the dynamic modeling of rhythmic behavior (Wing
and Kristofferson, 1973; Mates, 1994).

Approach in the Present Study
As reviewed in section “Study of Sudden Step Changes,” literature
on SMS research tends to describe the qualitative difference
between subliminal and supraliminal step-changes in terms of
the existence of, or the magnitude of, an overshoot in the output
intervals. Furthermore, the time of adaptation has been used to
describe this difference, either expressed directly as the time, or
in terms of the number of tap/tones that it takes for adaptation
to take place. Such a tendency reflects a tradition of studying
the signals from SMS experiments merely in the time domain.

The existence or the relative size of such an overshoot, as well
as the time of adaptation, can be better formulated by a new
set of parameters that are described in the frequency domain.
This study will hence present a model that introduces a new
set of parameters, which leads to a better understanding of
the behavior. The new parametrization uses parameters such
as frequency of oscillation and damping ratio and can account
for such observable qualities in the time signals. To do so, we
introduce system identification as a new approach to model SMS
as a dynamic system. The simple scenario here is demonstrated
to study the response of the “system,” a human in an SMS task, to
a stimulus with a step-wise changing tempo.

As introduced above, we are dealing with a discrete task of
generating rhythmic impulses, but we take a continuous-time
approach as in dynamic systems theory. The difficulty in such
an approach to SMS, as reported by Michon and Van der Valk
(1967), is that the discrete nature of typical tapping/clapping
experiments obstructs the underlying continuous process from
manifestation. The goal is to determine such a continuous
process, while the task is discrete, and the inter-sample behavior
of the system is not accessible in our limited experimental
setup. The behavior of a human subject is assessed merely
at its input/output level and sampled only at the time of
performed onsets. We do not have access to intermediate
data related to the behavior of the system between the two
onsets, such as electrophysiological monitoring of the brain
activity, brain imagery, or any other behavioral data collected
from the subjects at a higher sampling frequency than the
frequency of the rhythmic SMS task. In this context, the term
inter-sample behavior relies on the assumption that there is a
continuous internal process, which is reacting to discrete events
(Wing and Kristofferson, 1973).

To overcome the problem of unknown inter-sample behavior,
we will first upsample the sampled data collected at the
input/output level of the human subject such that the temporal
signals of pulses can be viewed as continuous-time signals in this
analysis1 We will then use a dynamic systems approach with a
tool which, to our best knowledge, has not been applied in the
study of SMS: so-called system identification, which is a standard
tool in cybernetics, control theory and systems theory.

In control theory, signal processing, and cybernetics, state-
space models mathematically describe a physical system2 by a set
of input, output and state variables. These models can be non-
linear if they do not satisfy the properties of superposition3. They
can also be time-variant, i.e., the state variables of the model
can change over time. We will show in the result section “Event
and Interval Variables and the Choice Between the Period Error
Correction and Phase Correction Process” that the system which
we are trying to model shows non-linearity, e.g., halving the
step size of the input would not cause a halved output but will

1Our upsampled signals are still discrete-time signals, but the sampling frequency
is high enough that a continuous-time analysis can be used.
2Such as a participant at a sensorimotor task.
3Superposition properties imply that the net response caused by two or more
stimuli is the sum of the responses that would have been caused by each stimulus
individually.
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instead change the behavior of the system. Therefore, our model
parameters can depend on the size of the step-change.

The non-linear behavior of humans can be attributed to the
finite thresholds of perceptual systems, as well as the human
ability to learn and adapt to situations. This is because the human
tracker is more adaptive than a fixed linear system and takes
advantage of the predictability in a tracking task. Additionally,
humans may not respond based on moment-to-moment input,
as expected from a linear system, but would instead detect and
respond to patterns when they are present (Jagacinski and Flach,
2018). This makes the identification of a fixed human transfer
function impossible. Non-linear models could have been used to
identify a control system vary, and many such possibilities exist
(Cloosterman et al., 2010; Strogatz, 2018).

However, as we will discuss in section “Results,” it is possible
to view this particular non-linear system as a system that behaves
as a linear, time-invariant system (LTI) for one particular input
signal. The system parameters will change gradually when the
input signal changes gradually. This reduction, however, usually
requires cutting down some dimensions of the data. In this
paper, we will model each participant at a fixed tempo step
with an LTI system using the System Identification ToolboxTM

in MATLAB©. This toolbox uses an iterative prediction-error
minimization method to update the initial model parameters
to fit the given input and output data in a discrete-time state-
space model. Using this method, we can identify the relationship
between the input and output of a linear time-invariant single-
input single-output (SISO) system.

Due to the noisy character of the data, quite a large number
of variations and repetitions were used, and this scale, together
with the exploratory scope, limited the feasibility of a larger-
scale experiment. To get enough experimental data to use with
this method, then, a series of tests with finger-tapping tasks in
response to stepwise tempo changes for isochronous clicks as
stimuli were run with three participants.

Event and Interval Variables and the
Choice Between the Period Error
Correction and Phase Correction Process
Consider a one-to-one task for a person who tries to synchronize
responses Rj to a sequence of stimulus pulses Sj. Mates referred
to the time instants of stimulus and response events as “event”
variables (“reading of a clock”), and used capital letters (Mates,
1994). Temporal differences between two event variables were
then used for creating a new, derived set of data-points: interval
variables, symbolized by lower-case letters. For example, the
difference between two adjacent elements of Rj, is known as inter-
response interval or IRI, denoted by rj = Rj − Rj−1. Similarly,
sj = Sj − Sj−1 is another interval variable called inter-stimulus
interval or ISI. It is also common in the SMS literature to use the
term IOI to refer to either ISI or IRI, an interval variable whether
it is from the stimulus or the response.

In the SMS literature, two error correction processes are
thought to be underlying auditory sensorimotor behavior. For
the successful accomplishment of a SMS task, both types of event
and interval variables need to be in sync, as perceived by the

person. In other words, the successful production of a sequence
of motor acts in synchrony with a rhythmic sequence of stimuli,
requires both synchronization of time events and minimization
of the discrepancy between the time intervals. Two internal
error correction processes are usually defined in the studies of
SMS corresponding to the two mentioned coordination tasks
(Mates, 1994).

A phase error correction process deals with the correction
of synchronization error (or asynchrony), the time difference
between the input stimuli and output response, Rij − Sij. A period
error correction process, on the other hand, tries to correct
the mismatch between the input and output intervals, IRI and
ISI, for example to minimize the value of rj − sj which is also
known as discrepancy. When the data is collected only at a
final input/output endpoint, these processes are not uniquely
identifiable or separable from each other. We cannot tell to
which extent each process has contributed to the shifting of
the timestamp of a performed onset. Moreover, simulations
have shown that their identified parameters can be highly
interdependent (Schulze and Vorberg, 2002). Therefore, many
studies have attempted to isolate only period correction by using
step changes, or phase correction by using phase perturbations
(Repp, 2005; Repp and Su, 2013).

The phase error correction process deals with precision in
timing, while period error correction is in charge of the rhythm
stability. There is a logical assumption that in a rhythmic SMS
task, the latter is prior to the former, i.e., in the absence of a
stable rhythm during an SMS task, subjects would not prioritize
timing accuracy. The adjustment of the interval variables (coping
IRI with ISI) is necessary for the synchronization of the
event variables. Mathematically speaking, in the presence of a
considerable discrepancy where interval variables are not in sync,
temporal synchronization between the event variables will be an
accidental match and cannot last during the upcoming intervals.
Therefore, the phase error correction mechanism will fail to
improve the timing accuracy in the absence of a stable rhythm.
This consideration allows us to assume that in the presence of
considerable interval discrepancies, the phase correction process
is shut down or negligible, and the period correction is the only
active mechanism. The correction of asynchrony comes to the
play only after the subject has caught up with the tempo change.

It is thus reasonable that in this study dealing with a sudden
step-change in tempo, we will only model the period error
correction process.

EXPERIMENTAL APPROACH

The current study uses the experimental approach from a
previous study, where amore detailed version of themethodology
and the experimental setup is explained (Darabi et al., 2010).
Here a somewhat brief description is given, with specifications
of modifications from the previous study. A finger-tapping
task is given to a participant by presenting a click sequence
over headphones. The participant is given the task of following
the click sequence stimulus by tapping on the space bar of a
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MacBook Pro laptop computer. At some randompoint, the inter–
click period is changed suddenly, and the response to these
step changes is collected. In the previous study, 12 persons
participated, and three different step changes were tested. Only
three participants were used in the current experiment, but
a more fine-grained range of 27 step changes were tested,
each with 60–240 repetitions to reduce the effect of the noisy
character of the data.

Black-Box Approach
The internal workings of the synchronization mechanisms are
still debatable due to the complex nature of the processes (Buhusi
and Meck, 2005; Zatorre et al., 2007; Shadmehr et al., 2010).
In the current work, we will not try to break down the system
into smaller parts or speculate about the inner workings of the
tempo perception and action processes. Instead, we will take
a “black-box” approach of treating the system as a whole and
assessing its behavior through a transfer function that describes
the mathematical relationship between its input and output. The
system would then be a human performing a rhythmic task. The
input is the timestamps of onsets produced by the metronome
before and after a tempo change, and the output is the sequence
of taps generated by the participant in response to that change.
The raw data must be processed before being used in our systems
modeling approach as described in section “Data Preperation.”

Experimental Setup
The sensorimotor task was finger-tapping in one-to-one to a
regular sequence of heard impulses (via a headphone) and to keep
the synchrony by coping with a new tempo as quickly as possible
after its sudden introduction. The auditory sequences of input
clicks of 3 ms long were generated by a computer application
developed in Max/MSP [Computer software] (2018) and run
under MAC OSX Lion, and generating the output was done
by hitting the index finger on a MacBook Pro’s space button.
The same computer was used for all experiments, and the time
resolution for the registration was 1 ms. The total closed-loop
delay was investigated by making the application respond to
the impulse sounds (clicks) that were created by triggering an
auditory impulse detector instead of pushing the space button.
The round-trip delay was 10 ms, and it was estimated that also
with the keyboard input device, the delay was less than 10 ms. As
a result, the timestamps might have an error of maximum 10 ms.

To perform the task, three trained participants from the
pool of 12 subjects in the previous study (Darabi et al., 2010)
participated in the current experiment; two men (aged 31 and
33) and one woman (aged 32). The age of the participants
was considerably below 66 and hence in the range that the
errors of asynchrony are reported to be minimal (Drewing et al.,
2006). Subjects were not particularly trained as musicians but
were familiar with the test because of their participation in
the previous study.

The test was carried out in a quiet room. To decrease the
uncertainty of the motor action, the subjects were instructed to
use the wrist and not arm and to take an abrupt, pulsed release
of the downward force on the space key (Elliott et al., 2009). Both
arrays of impulse timestamps generated by the application, and

detected from user tapping, were recorded and saved in an XML
format for post-processing.

The stimulus in this study emulated a step-metronome, a
metronome jumping from one temporally regular (isochronous)
sequence of click sounds to another. Each session included a
randomized number of 27–40 repetitions between two tempos.
Half of the repetitions, with a sudden decrease in tempo, were
called positive steps due to an increase in the size of IOIs,
and the other half, negative steps, had a sudden increase in
the tempo. The number of clicks before a step-change was
also randomized with the value changing between 10 and
30 throughout each session, to make the upcoming tempo
change unpredictable for the participant. The participant would
know that after a positive step, there would be a negative
one with the same size, and vice versa, but could not know
when the change would occur. Each participant took part in
twenty-seven different tempo step sessions changing between
100 bps and a higher tempo (in a range of 102–200 bpm)
back and forth. Each participant, for each of the tempo steps,
took part in two to six sessions. Participants were blindfolded
during all trials, and an assistant was present to monitor all
experiments (Figure 1).

In the previous study the influence of some factors was
found to be negligible, and as a consequence, those factors
were kept constant in the current study. The effect of the
lab conditions was studied in the previous work by carrying
out the experiments in a normal quiet room as well as in
an anechoic chamber. The effects of this factor were not
statistically significant, and thus an anechoic chamber did not
seem to be a necessity. Therefore, all trials in the current
study were performed in a fairly damped and quiet room.
Also, since other researchers reported that measurements
using a keyboard might be subject to uncertainty in time
recording (Shimizu, 2002), in the previous study, we examined
two means of hand-clapping and finger-tapping in similar
conditions and they led to indistinguishable results. Thus, only
finger-tapping was chosen as the medium of motor act in
this experiment.

Among four methods of up-sampling investigated in the
analysis of the recorded trials in the previous study, a so-called
cubic Hermite interpolation (PCHIP) was chosen, in which each
piece between two samples is a third-degree polynomial4.

Narrowing down the experimental factors enabled us to
cover a larger number of tempo changes and to collect many
more repetitions from fewer participants in the current study.
Michon showed in his step change study that by averaging
the data over 10 tests, the noise of the inaccuracy was
effectively reduced to a negligible component (Michon and
Van der Valk, 1967). These numbers of repetitions were tried
out in the previous study but were not considered sufficient
to reduce the noise for the system identification methods
used, especially for the small tempo steps. Small tempo steps
required more repetitions due to the higher ratio of jitter
and other noise compared to the size of the step. The
number of repetitions collected for each step change, and each

4https://www.mathworks.com/help/matlab/ref/pchip.html
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FIGURE 1 | Illustration of the sensorimotor task.

participant, were hence between 60 and 240 depending on
the tempo change.

To summarize the comparison of data collection to
the previous study, we chose a quiet but not anechoic
room as environment; used finger-tapping on a computer
keyboard for collecting the responses (clicks), and limited
the experiment to three instead of twelve subjects. On
the other hand, we expanded the number of tempo steps
from 3 to 27 for each positive and negative jump and
also collected hundreds instead of dozens of repetitions
per each subject/tempo step to reduce the effect of
random variations and thereby improve the input data to
the model fitting.

DATA PREPERATION

The raw data collected from the experiment comprises of two
sets of timestamps, of the stimuli “clicks” (which included
a step-change in tempo) and the response “taps.” Since the
experiment deals with a one-to-one clicking task, there should
nominally be the same number of click and tap timestamps.
Our black-box approach uses a SISO system model, and the
properties/parameters of that system which best fit the observed
data points are found with the same tool as in the previous
study: an iterative function in MATLAB’s system identification
toolbox called pem5 This function takes in two discrete-time
signals as input and output (see section “Data Analysis”). As
a first step of data preparation, the long sequences of clicks
and taps in each session are split up into shorter sequences,
one for each step-change in tempo. Then the timestamp

5Prediction-error minimization https://ww2.mathworks.cn/help/ident/ref/pem.
html

data must be converted to time signals that can be used
by this function.

Breaking Down the Raw Data Into
Repetitions
Each session was recorded as a long sequence of timestamps,
collected for repetitions of the same step-change. The sequence
was cut up into N sequences of single step repetitions with
an increase in the IOI (known as positive steps) as well as N
sequences with a decrease in the IOI (i.e., negative steps). The
index i represented the repetition number. Each of the repetitions
then contained a sequence of stimulus timestamps, Sij, for the
jth click of the ith repetition, as well as a sequence of response
timestamps, Rij for the jth tap of the ith repetition.

The input sequences were cut so that they included two
stimulus clicks at the pre-step tempo, but contained various
numbers of clicks after the step. Since the corresponding response
sequences were cut at the same points, they also had different
numbers of post-step taps, but many enough that the responses
were judged to come reasonably close to a stationary state after
the introduction of the new tempo.

The raw data values, stimulus timestamps Sij, and the response
timestamps Rij were stored in two matrices, but given the
different lengths of various repetitions, the values after the ending
of shorter sequences were ignored.

The application produced the stimulus clicks as a metronome,
so the stimuli Sij was supposed to be the same as the nominal

value, (=Ŝj) for all i and j. Although a ± 1 ms “noise” was
detected due to the temporal resolution of the timestamping of
the application.

Figure 2 visualizes the matrix Rij by showing all repetitions
for one subject and one specific tempo step against the nominal
values of Ŝj .
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FIGURE 2 | Visualization of the “event” variables for a specific subject/step size and for both positive/negative cases (Positive steps start in the range of

103–200 bpm and with an increase in ISI/IRI, or a decline in tempo jump to 100 bpm. Negative steps begin with 100 bpm in the tempo and with a decrease in the

IOI, jump to a higher tempo.). (Top) A positive step: 102 repetitions of one participant’s responses to a tempo change from 115 to 100 bpm (increasing ISI from

0.522 to 0.6 s). The solid line shows where a stimulus onset was expected by the subject but occurred later due to the increase in ISI. (Bottom) A negative step: 103

repetitions of the same participant responding to the tempo change from 100 to 115 bpm (decreasing ISI). The solid line shows that the first click after the tempo

change, arrived slightly later than expected. The horizontal axis is transformed to time instead of tap index to mark at which timestamp the input and output onsets

have occurred.

Treating Multiple Taps and Missed Taps
Sometimes a participant produced more than one tap for one
particular stimulus click. We had to make sure that the index j of
the output Rij was associated with the correct input Sij. Therefore,
for each repetition i we let only the tap closest to the nominal
Ŝj be indexed as Rij, which automatically excluded accidental
double-tap responses.

It also happened that a participant performed the tapping
too softly, such that the impulse detecting sensor would not
register the created response (a space key in this case). By the

rule described above, a missing tap would cause the tap before or
after itself to be assigned to two consecutive indices, Rij and Rij+1.
An additional rule was then proposed that each tap should have
only one index, and in the case of Rij = Rij+1, the closest nominal
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stimulus to the tap’s timestamp, between Ŝj and Ŝj+1, would define
its index, while the other one will be assigned a NaN value6.

Aggregating Response Data Over
Repetitions
To convert matrices Sij and Rij to time signals that can be used
by the model fitting algorithm, they should first be aggregated
over the repetitions i into vectors Ŝj and R̂j. This is trivial for the
input stimuli because the metronome timestamps vary negligibly
(±1ms) over repetitions of the same step size, i.e., Ŝj ≃ Sij for any

i. Aggregating the matrix Rij into a representative R̂j array for all
repetitions was done as follows.

First, after the re-indexing process described in section
“Treating Multiple Taps and Missed Taps,” all response events,
Rij, events that were assigned to the same index j were grouped in
the cluster. Rj = {Rij|∀i}

Next, outliers were removed within each cluster Rj.
Sometimes, a tap was mistakenly performed off-phase due
to a lack of attention or some other reason. Such taps that were
three standard deviations away or more from the mean of Rj,
were marked as outliers and excluded. This led to the exclusion
of around 1.7% of the responses/taps in our dataset7.

After grouping events and excluding outliers, a single value
should represent all taps in each cluster, Rj, across the repetitions.
With the further considerations, the mean across repetitions i
for each Rj, was considered an acceptable candidate. We know
from the properties of asynchrony in rhythmic tasks that the
distribution of the responses/taps is not always Gaussian around
an intended timestamp. Instead, the deviation from the intended
timestamp follows a power law with an exponent that depends on
the rhythm frequency (Hänggi and Jung, 1995). Such a “colored
noise of asynchrony” is known as a 1/fB characteristic (Torre and
Wagenmakers, 2009). Because our trials were between 100 and
200 bpm, the maximum tempo was only twice the minimum,
and for such a narrow range of inputs, the color of the noise will
not have a significant influence on the calculation of the mean
value. Therefore, we ignored such spectral aspects of the noise.
Furthermore, such 1/fB-noise is attributed to sustained attention
processes and fatigue in long trial sequences (Pressing and Jolley-
Rogers, 1997), but trials in our experiment were divided by
random breaks to reduce the effect of fatigue on the performance.
Distribution of asynchrony in other isochronous finger-tapping
experiments, which are performed on a similar limited range
of tempos, has also been shown to be Gaussian (Aschersleben,
2002). Based on these considerations, we assumed that we could
represent the set of all taps that correspond to the same tap index
by their arithmetic mean, R̂j .

Note that in the same way that we can aggregate one
participant’s data over all repetitions of the same step size
and direction, we can also aggregate over the pool of data

6In the previous study, missed taps or claps were treated differently by inserting
a hypothetical tap, i.e., dividing the IRI by two or a higher integer, if one or more
onsets were missed in a trial.
7The expected value here is 0.3% since in a normal distribution 99.7% of
observations are supposed to fit within three standard deviations.

from the three participants, although still for the same step
size and direction.

Calculating ISI and IRI Based on
Aggregated Events
As discussed in section “Event and Interval Variables and
the Choice Between the Period Error Correction and Phase
Correction Process” concerning the nature of the SMS task at
hand, a sudden change in the interval, the focus would be on
the period error correction and not the phase error correction
process. This preference implies that instead of focusing on
the properties of asynchrony between the input stimulus and
output response, Ŝj and R̂j, as aggregated event variables,
we are interested in the comparison between the values of
interval variables.

We can obtain the aggregated intervals by calculating the
time difference between two consecutive values of the aggregated
events, r̂j = R̂j − R̂j−1, and ŝj = Ŝj − Ŝj−1. In the same way as for
the event variables, interval values that deviated more than three
standard deviations from each mean were considered as outliers
and were discarded. This leads to the exclusion of another 2.4%
of datapoints in our dataset.

Transforming Index Number to Time
The aggregated ISIs and IRIs have so far been denoted with index
number j. The next step is to transform the index number to the
actual time of the events. This transformation is demonstrated
for one example of data points, as given in Table 1, showing that
ISIs (ŝj = Ŝj − Ŝj−1) can be described as a function of the time

of Ŝj instead of the index j. Similarly, IRIs (r̂j = R̂j − R̂j−1) are

expressed as function of the time R̂j
8.

Upsampling the Signals
The representation of the average IRI, R̂j, is smoother than any of
the individual repetitions, but is still a sequence of discrete events.
At this stage, we upsample the input ISI and output IRI data to
signals with a considerably higher time resolution considerably
higher than IRI or ISI intervals, by regularly inserting several

8These are functions of irregular time points and can be upsampled/interpolated
to be functions of regular time sample points, as described in the next section.

TABLE 1 | One example of data points: the event times, Ŝj and R̂j , are for 5–6

clicks/taps during an IOI step of 0.522–0.6 s (a tempo change from

115 to 100 bpm).

j Ŝj R̂j ŝj r̂j

0 0 0.011 – –

1 0.521 0.533 0.521 0.522

2 1.12 1.053 0.599 0.521

3 1.719 1.687 0.599 0.624

4 2.32 2.311 0.601 0.633

5 2.919 2.923 0.599 0.611

Due to the small temporal uncertainty of the experimental system the clicks, Ŝj , do

not occur exactly at an integer multiple of 0.522 s or 0.600 s. The interval variables,

ŝj and r̂j are computed as the difference between consecutive events.
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values in between these irregularly sampled data-points. This
conversion assumes a short enough “time quantum” as the
indivisible unit of time that can be shared among all trials and
will result in time signals with a regular, but higher frequency
of sampling, namely s(t) and r(t), respectively, for stimulus
and response, as seen in Figure 3. These new signals, although
still discrete-time signals, are quite smooth and represent the
hypothetical continuity of the internal timekeeper’s tempo with
a higher regular frequency of sampling. In the previous studies
(Darabi et al., 2010), given the advice of sampling at ten times
the dominant frequency of the system (Söderström and Stoica,
1989; Ljung, 1999) we chose the up-sampling frequency as 60 Hz.
Also, four different methods of interpolation were computed:
staircase, linear, cubic spline, and shape-preserving piecewise
cubic. Among these four, shape-preserving, or PCHIP, was
chosen to sample the output IRI in which the piece between two
samples is interpolated with a third-degree polynomial. In this
work, we use the same interpolation method for IRI outputs.
For the input ISIs, we use a staircase interpolation with some
considerations as explained in section “Defining the Time of the
Step-Change” onwhere tomark the timestamp of the step change.

Defining the Time of the Step-Change
During each click sequence, the participant will develop an
anticipation of when the next stimulus click is supposed to come.
Therefore, a change in tempo will be detected differently in the
two cases: either a new click arrives earlier than anticipated,
which happens in the case of a step-down in IOI (a step-up in
tempo), or a new click does not come at the expected time, which
occurs during a step-up in IOI (a step-down in tempo).

Due to this consideration, we define the start of a step
differently for negative and positive cases. For the negative steps,
where a click arrives earlier than anticipated, the timestamp of
that click’s arrival will define the start of the step-change9 For
the positive steps, however, we define the start of the step-change
to be when the click was anticipated but did not arrive, instead
of the late arrival of the click, e.g., the dashed line in Figure 2

(bottom) instead of the third solid line where the first onset of the
new rhythm has arrived. This replacement is also visible in the
negative step of Figure 3 and will impact the quantity of the delay
reported in the model fitting (see “Results” section).

Also, the model fitting algorithm assumes that the response
to a step input always happens sometime after the step has
occurred. Therefore, in order to make sure that the jump in
the oversampled IRI signal certainly happens after the step-
change definition, we offset the IRI signal by adding a large
enough processing delay (1 s, for example). This value will
later be subtracted from all the delays estimated by the model
fitting algorithm.

Normalization
The model fitting algorithm assumes that all signals, input and
output, have the value zero before the time zero. In order to satisfy

9This will translate to a setting of kind = previous in staircase interpolation
functions which simply return the previous value of the point (the initial ISI) until
the new stimulus arrives as seen in the negative step of the Figure 3.

this condition, we scale signals s(t) and r(t), with the same scale
factor, so that the input signal s(t) begins with 0 and ends with+1
for positive or −1 for negative steps, as seen in Figure 4.

At this stage, the upsampled ISI and IRI signals are ready
to be provided to the model fitting algorithm, which is the
pem function in MATLAB’s System Identification ToolboxTM, as
mentioned earlier. This function, by minimizing the normalized
root mean square error (NRMSE), estimates parameters that
produce modeled output curves to fit as close as possible to the
observed signals.

DATA ANALYSIS

The stimulus input, s(t), and the response output, r(t), prepared
as described in the previous section, are functions of time, but
a Laplace transformation allows a formulation of the system
model in the complex frequency domain (the s-domain), as
described in section “Approach in the Present Study.” Such a
model describes the transfer characteristics from the input to
the output signals (Widder, 2015). The theoretical model that
describes the relationship between these two is written in the
complex frequency domain as a function of s = σ + jω, after
applying a Laplace transformation and in the form of a rational
transfer function, G (s) = A(s)/B(s), where A(s) and B(s) are
polynomials (Trumper, 2004). The zeros of the system are the
roots of the numerator polynomial, A(s), and the poles are the
roots of the denominator, B(s).

As mentioned in section “Approach in the Present Study,” the
used software tool for fitting model parameters to experimental
data allows a model complexity up to three poles and one
zero. We will start with the simplest form of transfer function
with a gain, one real pole, and a delay. Then we will add
more poles and a zero to improve the fit. This step-by-step
increase in the complexity reveals how each added parameter can
capture a qualitative feature in the observed signals, and thereby
improve the least-squares fit10 Fit ratios, normalized root mean
squared errors, for four different models are given in Figure 4,
for one example, which is the same case as in Figures 2, 3.
Figure 5 depicts how much the inclusion of each parameter
would improve the fit ratio across all step sizes, where each step
contains data merged from three participants. It is unsurprising
that including more model parameters improves the fit; however,
not all parameters play the same role. We will introduce them
in this section and discuss them in the results section separately
to demonstrate how different parameters play different roles in
their qualitative impact on the shape of the signal by adding
features such as delay, oscillation, overshoot without a following
undershoot, etc.

The First Real Pole and a Time Delay
(P1D)
We begin with a rational transfer function, G(s), that has a
proportional gain Kp and a time constant Tp1. Typically, the

10Minimizing the sum of squared residuals in the comparison between the
modeled and the observed signals.
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FIGURE 3 | Aggregated stimulus and response intervals over repetitions for the same subject/step size as Figure 2 and Table 1. ISI, ŝj = Ŝj − Ŝj−1 (�), and IRI,

r̂j = R̂j − R̂j−1 (�), are plotted as function of time instead of index number. The output r(t) is upsampled with the PCHIP algorithm and the input s(t) with staircase

interpolation, both at 60 Hz sampling rate. Note that for the positive steps (increasing IOI, decreasing tempo) the arrival of the oversampled input step is marked

slightly (This shift is only considered for positive steps where IOI increases. It is the same as the temporal distance between the solid line and the third dashed line in

Figure 2, which in seconds amounts to 60/endtempo(bpm)−60/starttempo(bpm)) earlier than the arrival of the first onset of the new rhythm.

output follows the input after some delay, so we also define a
“transport delay” TD in the time domain which is represented by
an e−TDs term in the complex frequency domain11.

GP1D (s) = Kp
1

1 + Tp1 s
e−TDs (1)

p1 =
−1

Tp1
(2)

11Note that as mentioned in 3.7, before feeding the signals to the system
identification toolbox, we offset the output by adding an additional processing
delay. Hence, this value should be subtracted from the estimated value of the TD.

This system, which allows a single pole p1 and a transport delay
TD, is called P1D. As shown in Figure 4, this model cannot
generate an oscillation, which leads to a low fit ratio of 66 and
63% for the positive and the negative examples.

Adding the Second Pole (P2DU)
In the example of Figure 4, the output r(t) for the P2DU
model shows an overshoot and a subsequent oscillation around
the input s(t), whereas the P1D can not capture this quality.
Exhibiting an overshoot is a sign of an oscillatory system, which
needs at least two complex poles, i.e., (1 + Tp1 s)(1 + Tp2 s) in the
denominator, where p1,2 = −1/Tp1,2 . This denominator term can
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FIGURE 4 | Measured data, ISI and IRI, as well as output signals from simulations with the four models defined in section “Data Analysis.” The input s(t) and the

output r(t) amplitudes are normalized. In addition, a processing delay of 0.4 s has been added to the output signal, before the model fitting.

be rewritten in the form of a second-order polynomial, based on a
period Tω (alternatively described by the frequency of oscillation
fω) and a damping ratio ζ:

GP2DU(s) = Kp
1

1 + 2ζTωs + (Tωs)
2
e−TDs (3)

p1,2 =
−ζ ±

√

ζ2 − 1

Tω

(4)

Tω =
1

fω
=

2π

ω
(5)

If ζ < 1, then according to Eq. 4, poles will have imaginary values
and the system, known as underdamped12 will oscillate and
exhibit an overshoot. In overdamped systems (ζ > 1), both poles
are real, and the output will follow the input without oscillation.

The Zero (P2DUZ)
If α < 1, a second-order oscillator such as P2DU, in addition to an
overshoot of the size α, also shows a subsequent undershoot of the
size of α2, followed by an overshoot of α3, etc. This is because this
model only has a frequency of oscillation and a damping ratio,
which causes the system to show a secondary undershoot of the
same peak ratio as that of the initial overshoot.

12Allowing a system to oscillate in pem function is simply achieved by including
the letter U (for underdamped) in the name of the model.
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FIGURE 5 | Fit ratios for four models (P1D, P2DU, P2DUZ, and P3DUZ), on data aggregated over three participants. Negative steps are depicted with (∨) and

positive ones with (∧).

In order to capture the more complex response (overshoot
without a following undershoot), we introduce a zero, an extra
term in the numerator of the transfer function (Trumper, 2004):

GP2DUZ (s) = Kp
1 + Tzs

1 + 2ζTωs + (Tωs)
2
e−TDs (6)

z = −
1

Tz
(7)

According to Eq. 7, any of the previous systems without a zero,
have Tz = 0 and can be thought as having an infinite z. As seen
in both Figures 4, 5, introducing a zero can lead to a substantial
improvement in the fit ratio.

The Third Pole (P3DUZ)
Finally, a third pole can be given by a third-order denominator;
multiplying the complex conjugate pair with another linear term
to achieve the most general form of the model:

GP3DUZ (s) = Kp
1 + Tzs

(

1 + 2ζTωs + (Tωs)
2
)

(1 + Tp3s)
e−TDs (8)

p3 = −
1

Tp3

(9)

According to Eq. 8 depending on the complexity of the model we
have up to six parameters to study in the “Results” section: the

gain Kp, the delay TD, the first two poles represented by Tω and ζ,
the third pole defined by Tp3, and the zero defined by Tz . Table 2
shows the inclusion of these parameters in each model.

RESULTS

In this section, in order to describe the relationship between input
ISI and output IRIs, we will estimate the model parameters of the
transfer function in the Eq. 8, i.e., gain

Kp, delay TD, up to three poles defined by Tp1,2,3, and one
zero Tz . Their qualitative impacts on the shape of the response
signal, as well as their trends, as a function of step size will
also be discussed.

TABLE 2 | Model parameters to describe the relationship between ISI and IRI.

Model P1D P2DU P2DUZ P3DUZ

Gain Kp Kp Kp Kp

P1,2 Tp1 Tω Tω Tω

P1,2 – ζ ζ ζ

Delay Td Td Td Td

Z – – Tz Tz

P3 – – – Tp3
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FIGURE 6 | The stimulus signal, s(t) (black), observed step response aggregated over participants, r(t) (thick gray signal), and modeled response for all models,

mP2DU (t), mP2DUZ (t), and mP3DUZ (t) (thin colored curves). The axes are the same as in Figure 4 with a normalized unit step input. The numbers in the corner of the

charts represent the initial tempo for the positive steps (left) and the destination tempo for the negative steps (right) in bpm, while the base tempo is 100 bpm.

General Characteristics of Step
Response Signals in Time Domain
Figure 5 depicts the normalized least square fit for 27 negative
and positive steps, aggregating over the three participants. We
can see that moving toward more complex models improves
the fit overall.

In Figure 6, corresponding time signals are shown for all
tempo steps aggregated over three participants, both negative
(left) and positive (right). The black curve, s(t), shows the

stimulus step input, the thick gray curve depicts the observed

aggregated response, r(t), and thin curves with the same color
code as Figures 4, 5 show how each model produces the
step response. We can observe that mP2DU(t), mP2DUZ(t), and

mP3DUZ(t) can capture the overshoot due to the inclusion of two

complex poles (P2) and the letter U. All models include the letter

D and thus capture the delay. The models P2DUZ and P3DUZ,

due to the inclusion of a zero (Z), allow for a proportionally

smaller undershoot after the initial overshoot.
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As a general observation, the model parameters will vary
across step sizes. Such dependence indicates a non-linear system,
which is a common observation in SMS research (Schulze et al.,
2005; Bavassi et al., 2013). This non-linearity means that the
same LTI system, no matter its complexity, cannot account for
modeling a single participant’s SMS behavior in response to a
sudden step-change in IOI. However, toward the end of this
section, we will introduce one model that allows changing its
parameters with the change in step size, as a workaround for
the non-linearity problem. We will limit that model to the step-
changes of 12% or higher. This limitation is because despite
collecting more repetitions for smaller steps (in the range of 102
to 110 bpm13, the response signals and their modeled curves in
Figure 6 still appear noisier than for the larger steps, as it can also
be seen with the lower fit ratios in Figure 5.

Figure 7 reflects a regime shift at around 112 bpm, especially
for the models P2DUZ and P3DUZ. The transition at this
tempo, which matches the threshold between the subliminal and
supraliminal steps, demonstrates that our “black-box approach”
that disregards the system’s inner workings, can still shed light on
how different brain structures may be involved in an SMS task,
and is in agreement with neurophysiological insights regarding
different correlates involved in adaptation to subliminal or
supraliminal changes.

Some previous behavioral studies indicate that period and
phase correction processes are separate behaviors, with the
former being a higher-level cognitive process, while the latter
an automatic and related to lower-level cognitive processes
(Repp and Su, 2013). Repp (2002); Repp and Penel (2002)
showed that period correction is under conscious control,
while phase correction can be diminished by conscious effort
although never shut off completely. Friberg and Sundberg (1995)
claimed that the occurrence of overshoot in response to a
step-change in tempo does not depend on the amplitude of
the step-change, but rather on the awareness that the step-
change has taken place. Schulze defined two linear models which
used a different terminology by calling the phase and period
correction respectively “asynchrony-based” and “interval-based”
and showed that even if an asynchrony-based model matches
the data qualitatively, to fit the data quantitatively, we need to
consider another, interval-based correction process that adjusts
the period, although, it can switch on and off during a trial
(Schulze et al., 2005).

There are also neuroscientific studies pointing to different
neural correlates of subliminal vs. supraliminal errors.
Bijsterbosch et al. (2011a,b) focused on the role of the cerebellum,
the part of the brain at the back of the skull controlling muscular
activity. Their fMRI imaging showed that the right cerebellar
dentate nucleus and primary motor and sensory cortices were
activated during regular timing and during the correction of
subliminal phase errors. The correction of supraliminal phase
errors led to additional activations in the left cerebellum and
right inferior parietal and frontal areas. They also showed that

13Due to the higher ratio of jitter and other noise compared to the step size (section
“Experimental Setup”) while normalizing all steps to the same value (section
“Normalization”).

FIGURE 7 | Gain (Kp), delay (TD), damping ratio (ζ), oscillation period (Tω),

zero (TZ-values), and the third pole (TP3-values). The parameters of the

aggregated data over participants for negative (∨) and positive (∧) steps, as

reported by the relevant models.
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suppression of the left but not the right cerebellum with theta
burst TMS14 significantly affected supraliminal error correction
(Bijsterbosch et al., 2011b). More recent work provides clues
that different cortical mechanisms may be employed when
correcting for errors in SMS that increase tap-tone asynchrony
compared with those that decrease it (Jantzen et al., 2018).
Although the specific involvement of the left cerebellum in the
correction of supraliminal errors is widely agreed upon, other
neural structures such as prefrontal and frontal motor areas
and the basal ganglia (Zatorre et al., 2007) are reported to show
differential involvement in subliminal vs. supraliminal error
correction (Praamstra et al., 2003; Thaut M. et al., 1998; Thaut
et al., 2009; Schwartze et al., 2011).

The Gain Factor (Kp)
The experiment is based on a 1:1 synchronization task, and
the stationary response signal settles and approaches the
input signal. Therefore, the gain Kp takes a value around
1 as expected15, see Figure 7, the first row, for negative
and positive steps.

The Delay Parameter (TD)
It takes time to perceive and react to a sudden change in
the tempo, so the model fitting algorithm is expected to
report a positive delay. After the considerations in section
“Defining the Time of the Step-Change,” illustrated by Figure 3,
the delay is measured with respect to when the step jump
in the input signal is defined, i.e., the first chance the
participant has to detect a change and differs for the two
step directions. A processing delay was added, as described in
section “Defining the Time of the Step-Change,” so the same
delay has to be subtracted from the model fitting algorithm’s
estimate of TD. The results in Figure 7 (the 2nd row) show
that despite this up/down-difference, the three models, P2DU,
P2DUZ, and P3DUZ, lead to similar values for negative
and positive steps.

P2DU is constrained to assume the following oscillations
after the initial overshoot, affecting the estimation of the
system’s delay. As a result, after subtracting the processing
delay, this model exceptionally reports negative values for the
delay. For the three other models, the model fitting estimates
a relatively constant delay for the supraliminal tempo steps
equal to or above 112 bpm, where the size of the steps, exceeds
around 12% for negative steps and 11% for positive ones. For
the subliminal range, i.e., below the threshold for conscious
perception (Thaut M. et al., 1998; Repp and Steinman, 2010),
the estimates are too noisy to justify a constant value for
the entire range. Table 3 gives the mean value of delays that
resulted for P2U, P2DUZ, and P3DUZ, for the range equal to,
or above, 112 bpm.

14Transcranial magnetic stimulation (TMS) is a non-invasive method used to
stimulate small regions of the brain.
15One could explain that the gain factor estimate differs from 1 by suggesting that
it may take longer than the participants’ available time series to settle to the final
tempo.

TABLE 3 | Mean delay values for supraliminal step changes (±115 bpm or larger)

as estimated by three models, extracted from aggregated data over

three participants.

Model Td Negative Td Positive

P1D 145 ms 111 ms

P2DU 125 ms 101 ms

P2DUZ 54 ms 45 ms

Damping Ratio (ζ)
Figure 7 (the 3rd row) shows the damping ratio of aggregated
data over three participants for negative (∨) and positive (∧)
steps, as estimated for the P2DU, P2DUZ, and P3DUZ models.
Note that according to Eqs 3, 6, and 8, this parameter is defined
only for models containing at least two poles and is absent from
Eq. 1 associated with P1D.

We can observe that there is some disagreement in how
different models estimate the value of the damping ratio as it can
be affected by the introduction of a zero, or a third pole. However,
while within the noisier subliminal range, it can sometimes
exceed one, all models estimate it below 1 for tempo steps above
112 bpm. As described in section “The Zero (P2DUZ),” ζ = 1 is
the critical boundary between the underdamped and overdamped
systems. From a dynamic system point of view, when ζ < 1,
the underdamped system exhibits the oscillation of the output
around the step input, which causes a more visible overshoot in
the step response, as seen in the time signals for all step changes
above 112 bpm in Figure 6.

Such a qualitative distinction between the two subliminal and
supraliminal regimes has been made in research on SMS. Repp
(2003) and Thaut M. et al. (1998) have reported an overshoot
in a human’s response to supraliminal tempo step-changes
above consciousness of sensation. Such an initial overshoot
is reportedly caused by an overestimation of the new tempo
(Repp, 2005; Repp and Su, 2013), before synchronization occurs
within a few taps (Mates, 1994). However, for the subliminal
steps, only a gradual adaption to the new rhythm was observed,
without any detectable overshoot, Repp (2010) and Thaut
and Kenyon (2003). Friberg and Sundberg (1995) have also
discussed the presence or the absence of an overshoot based
on the awareness of the step-change having taken place or
not. They argued that for a period correction process to take
place, there has to be an awareness that the step-change has
occurred. They have concluded that period error correction
can be a higher-level cognitive process, while phase correction
is automatic and related to lower-level cognitive processes.
The differentiation of the responses between supraliminal and
subliminal tempo could be associated with different brain
circuitry, further discussed in the discussion part (section
“Future Work”).

Our results also show that the overcorrection in the
supraliminal range consistently occurs even when the tempo
doubles or halves, from 100 to 200 bpm and vice versa.
This observation is consistent with Repp (2011) who reported
overcorrections of IRIs for the cases where the IOIs changed as
much as a tripling from 400 to 1200 ms.
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FIGURE 8 | Linear regression estimates for the observed values of the P2DUZ model parameters, i.e., delay (TD), damping ratio (ζ), oscillation period (Tω), and zero

(–1/TZ ), for negative and positive step sizes in the supraliminal range (base tempo = 100 bpm).

Oscillation Period (Tω)
The next parameter is the oscillation period, Tω, which,
similar to the damping ratio, is only valid for models
with at least two poles. Despite the expected noisier
results within the subliminal range, Figure 7 (the 4th
row) shows that the oscillation period for aggregated
data can sometimes exceed a certain threshold within
this range. A larger oscillation period, or, equivalently, a
lower frequency of oscillation (fω), means a longer time of
adaptation to the tempo, i.e., a larger number of taps after the
introduction of tempo step.

The behavioral difference between the subliminal and
supraliminal ranges is, in this case, also in agreement with

the literature. Thaut M. et al. (1998) have reported that

adaptation to step-changes exhibited different patterns in these

two regimes, adapting rapidly after large step-changes but only
very gradually after small step-changes. Hary and Moore (1985)

also showed with computer simulations that for subliminal step-
changes, period correction gets very slow and gradual. Thaut
and Kenyon (2003) reported similar results in an antiphase
tapping step-change experiment. In the synchronization of
rhythmic arm movements to a syncopated metronome, small
tempo shifts of +2% or −2% were inserted in the metronome’s
stimulus frequency, and the response interval showed a more
rapid adaptation to the frequency-incremented stimulus period
(Repp, 2005).
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FIGURE 9 | Linear regression estimates the observed values of the P3DUZ model parameters, i.e., delay (TD), damping ratio (ζ), oscillation period (Tω), zero (–1/TZ ),

and the third pole (–1/Tp3), for negative (up to 100% increase in tempo) and positive step sizes (up to 50% decrease in tempo) in the supraliminal range (base

tempo = 100 bpm).
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Zero (−1/Tz) and Overshoot Without
Undershoot
Another quality of the output signal r(t), as seen in Figures 4, 6,
is that even if there is a considerable overshoot, the output will
settle with a minor or non-existing undershoot [in agreement
with Pressing (1998, 1999)]. This is true for both negative
and positive steps.

As mentioned in section “The Zero (P2DUZ),” the inclusion
of two complex poles can allow for an overshoot but cannot kill
off or reduce the size of a second undershoot when the modeled
output oscillates around the input step. This quality is observable
in Figure 4, where the P2DU modeled output (the green curve),
as opposed to the actual input, assumes a second and even a
third undershoot until the model adapts to the step-change16 The
blue and red curves (P2DUZ and P3DUZ) in Figure 4, however,
display an insignificant, or a relatively smaller, undershoot in
accordance with the observed signal. The ability of the model
to exhibit an overshoot without an undershoot of the same ratio
implies the existence of an additional zero17 see section “The Zero
(P2DUZ).”

Figure 7 (the 5th row) shows the estimated zero for the
aggregated data over three participants. Values of Tz are positive,
meaning that the zero (z = −1/Tz = x + iy) is in the left half
of the complex frequency plane. As the zero’s absolute value
increases, and it moves further into the left half-plane (LHP), the
step response of this system starts to resemble the step response
of the system without a zero. The time-domain effect of a LHP
zero on the step response is to increase the overshoot, decrease
the peak time, and decrease the rise time; the settling time is not
affected too much. In other words, a LHP zero makes the step
response faster (Baryshnikov, 2014).

The Third Pole (−1/Tp3)
The last parameter is only valid for the P3DUZ model. This
additional parameter will increase the fit ratio compared to
simpler models, including P2DUZ, as seen in Figure 5. The last
row of Figure 7 shows the value of the third pole as a function of
the step size for data aggregated over the three participants.

A Unified Model
We have so far observed how each of the model parameters vary
systematically with the step-change size. In an attempt to present
a unified model that accounts for all step-changes, we can derive
linear relationships for each parameter’s dependency on the step
size. We represent the independent variable, or the step-change
size, in its relative form. Therefore, we obtain1, or the percentage
of relative change in tempo from tstart to tend, from the Eq. 10, for

16This will result in a lower model performance for P2DU compared P2DUZ
and P3DUZ for two reasons: first due to larger residuals where an undershoot is
wrongfully modeled when the output has seemingly reached the input. Second,
because the model has to underestimate the actual overshoot, as well as the
estimated delay, to maximize the fit.
17Including a third pole without a zero can also capture this feature but, based on
the study of the fit ratio and the large noise in the performance of P3DU model
in the toolbox which was observed during the preparatory stages of this work, we
chose to not include a pole before a zero was introduced.

TABLE 4 | Intercept (α) and slope (β) in the linear regression α+β1, for predicting

P2DUZ and P3DUZ parameters including delay (TD), damping ratio (ζ), oscillation

period (Tω), zero (−1/TZ ), and the third pole (−1/Tp3) (for the P3DUZ model), for

the supraliminal step sizes, negative or positive based on a tempo step’s relative

jump from a baseline of 100 bpm.

Model P2DUZ P3DUZ

Parameter (α−, β−) (α+, β+) (α−, β−) (α+, β+)

Kp (1, 0) (1, 0) (1, 0) (1, 0)

TD (0.1150,

0.0161)

(0.1281,

−0.077)

(0.0296,

0.0403)

(0.0416,

0.0135)

ζ (0.6865,

−0.307)

(0.7303,

0.3830)

(0.7500,

−0.422)

(0.6114,

0.6903)

Tω (0.3416,

−0.168)

(0.3649,

−0.271)

(0.2563,

−0.112)

(0.3093,

−0.458)

Tz (0.8466,

−0.727)

(1.0063,

−0.375)

(0.7663,

−0.025)

(1.2166,

−0.655)

Tp3 (0,0) (0,0) (0.395, 0.6563) (0.3272,

0.0566)

negative and positive steps:

1∓ =
±tend ∓ tstart

tstart
(10)

Due to the noisy measurement for subliminal step-changes, we
will limit our model only to the supraliminal range, equal to or
above step changes related to 115 bpm, i.e., 1− > 15%, and
1+ < 13%. The gain Kp is set to 1 due to the considerations in
section “The Gain Factor (Kp).” We also choose the two best-
fitting models according to Figure 5. Therefore, Figure 8 shows
how a linear regression can predict the observed values of four
of the parameters of the P2DUZ model. Figure 9 applies the
linear regression for the same parameters, as well as the third
pole −1/Tp3, of the P3DUZ model. The thicker line fit represents
the aggregated data over three participants. Individual regression
fits (the thinner lines) did not seem to offer any information,
even though proper significance tests have not been performed.
Therefore, the coefficients are only reported for the aggregated
data. The linear predictor would estimate the value of each
parameter based on the relative change in the step size, or 1. As
an example, the estimated value of the third pole of the modeled
output using P3DUZ, in response to a sudden tempo decrease
of proportion 1 can be predicted from −1/Tp3−, where TP3− =

αTP3− + βTP3 − 1. The numerical values of the linear regression
coefficients, α, and β, can be picked fromTable 4 for both negative
and positive step changes.

CONCLUSION

Three human subjects participated in an SMS experiment where
each participant was presented with a randomized set of 27
sequences of click sounds that started from a 100-bpm base
tempo. The tempo was then changed in steps to and from a
range of 102–200 bpm, back and forth. All participants’ tap
responses were aggregated over 60–240 repetitions for each
tempo step size. The discrete tap-events were upsampled to a
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sampling frequency of 60 Hz, to give a sampled input stimulus
interval signal and a representative output interval signal. Using
models from control theory to study the period error correction
process in this behavioral SMS task, we fed these signals to a
system identification algorithm. We argued that at a minimum,
the inclusion of two complex poles, a delay, and one zero is
necessary to capture the qualitative features of inter-response
intervals, while an additional third pole can improve the model
performance, in terms of least-square fit ratio, even further.

Results revealed a qualitatively distinct behavior under two
regimes in agreement with the SMS literature. For the subliminal
step-changes below the tempo change’s conscious awareness,
despite the noisy measurements, a slow, gradual adaptation to the
new rhythmwas observed with an absent or a minimal overshoot.
For larger step-changes, supraliminal steps, there was a relatively
faster adaptation with an overshoot, without a considerable
following undershoot. For the latter range, the model parameters
of a P3DUZ model were described as a function of the step-
size function, using a linear regression. Very small differences
could be observed for the three individuals, so general linear
relationships were derived.

FUTURE WORK

Due to the labor-intensive, repetitive, experimental effort for
gathering data with little noise, that spanned a large number of
steps, the inclusion of more than three participants was deemed
unfeasible in the scope of this study. This issue could be addressed
in future studies by including other methodologies that could
collect data from a larger set of participants.

This study dealt with the tempo adaptation and the period
correction process. Separate efforts should be made to analyze the
properties of asynchrony by studying the phase error correction,
the other SMS’s process. Therefore, a similar experimental
setup could be studied with a potentially different theoretical
framework addressing the synchronization of event variables
instead of interval variables. The smaller the change in the tempo,
the longer it will take for the asynchrony to accumulate for the
participant to detect that there has been a change. Therefore, the
study of properties of asynchrony is particularly crucial for the
subliminal range where the synchronization mechanism can be
different. Thus, the relative change will worsen, the smaller the
step, below the critical tempo change threshold.

This study focused on a simple sensorimotor task of in-phase
finger-tapping in one-to-one to an auditory sequence of clicks,
and was primarily presented to detail the methodology. Other
discrete SMS tasks of anti-phase tapping, off-phase tapping (2:1,
1:2, 1:3, etc.), used with other mediums of hand-clapping, hitting
different weights against a pad or other musical instruments can
be investigated. In addition to the study of the auditory channel,
visual or tactile stimuli can also be incorporated. Other types of
inputs such as ramp tempo changes could as well be used, as
previously included in a pilot project leading to the current work
(Forbord, 2010).

The gradual change of the model parameter values, as the
tempo step size changed, might be used as a guide toward
developing a complete non-linear model. Such a non-linear

model could then possibly handle general input signals with a
rhythmic content, rather than just tempo step changes.

Finally, the current black-box approach models the whole
system from sensory to action circuits. More detailed processes
underlying SMS can further be investigated by breaking the
system into smaller parts, such as an internal timekeeper,
musculoskeletal system, and a controller inspired by Bégel et al.
(2017). Penetrative methods such as EEG or fMRI in collecting
intermediate signals can help revealing the transfer function for
sensory, processing and motor subsystems separately to reveal
each of these block’s transfer function. This requires accurate
measurement and more advanced experimental setups with
penetrative measurements within the sensorimotor circuitry.

Further studies that can use a similar methodology with
other SMS tasks, or musically expressive Also, follow-up studies
could possibly refine the methodology to make it less labor-
intense. Although we have investigated the dependency of our
parametrization on the size of the step change linearly, more data
could reveal higher-order terms works.
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