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Dynamical Systems Theory

x ′

i = fi(x1, x2, · · · , xn), 1 ≤ i ≤ n

Goal: characterize the asymptotic behavior, as t → ±∞ of every
solution, or, of almost every solution, or, of almost every solution of
almost every f , or, · · ·

ω-limit set of solution x(t):

{y : y = lim
m→∞

x(tm), tm → ∞}

Goal Reached for n = 1, 2; Little known for n ≥ 3.
Restrict to special systems: Hamiltonian, Gradient,etc.
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What’s special about dynamical systems arising in biology?

What’s special about systems arising in biology?

x ′

i = fi(x1, x2, · · · , xn) = fi(x), 1 ≤ i ≤ n

Variables tend to be positive: x ≥ 0, i.e., all xi ≥ 0.

Theorem: Assume:

1 solutions of initial value problems with x(0) ≥ 0 exist and are unique.

2 ∀i, ∀x ≥ 0 : xi = 0 ⇒ fi(x) ≥ 0.

Then
x(0) ≥ 0 ⇒ x(t) ≥ 0, t > 0.
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Systems with Defined Feedback Relations

Systems with Defined Feedback Relations

Positivity may lead to defined feedback relations among variables:
Rate of change of xi depends positively or negatively on xj , j 6= i :

Either

∀x ,
∂fi
∂xj

(x) ≥ 0, i 6= j

"xj activates xi "
or

∀x ,
∂fi
∂xj

(x) ≤ 0, i 6= j

"xj inhibits xi "

Can we exploit DFR to circumscribe asymptotic behavior of solutions?

H.L. Smith (ASU) Dynamical Systems in Biology ASU, July 5, 2012 5 / 31



Systems with Defined Feedback Relations

Systems with Defined Feedback Relations

Positivity may lead to defined feedback relations among variables:
Rate of change of xi depends positively or negatively on xj , j 6= i :

Either

∀x ,
∂fi
∂xj

(x) ≥ 0, i 6= j

"xj activates xi "
or

∀x ,
∂fi
∂xj

(x) ≤ 0, i 6= j

"xj inhibits xi "

Can we exploit DFR to circumscribe asymptotic behavior of solutions?

H.L. Smith (ASU) Dynamical Systems in Biology ASU, July 5, 2012 5 / 31



Systems with Defined Feedback Relations

“Signed Influence Directed Graph" for DFR System

1 Vertices: the dependent variables xi .
2 + directed edge from xj to xi if ∂fi

∂xj
(x) ≥ 0.

xj xi-
+

3 − directed edge from xj to xi if ∂fi
∂xj

(x) ≤ 0.

xj xi-
−

4 No directed edge from xj to xi if ∂fi
∂xj

(x) ≡ 0.
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Systems with Defined Feedback Relations

DFR and the Jacobian Df (x)

Prey-Predator:
[

∗ −
+ ∗

]

Competition:
[

∗ −
− ∗

]

x1 x2-
�

+

−

x1 x2
-�

−
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Systems with Defined Feedback Relations

Repressilator with 2 genes

xi = [protein] product of gene i
yi = [mRNA] of gene i .
xi−1 represses transcription of yi :

x ′

i = βi(yi − xi)

y ′

i = αi fi(xi−1) − yi , i = 1, 2, mod 2

where αi , βi > 0 and fi > 0 satisfies f ′i < 0.

y2 x2

y1 x1

-
+

-+

PPPPPPPPPi

−

− ���������)
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Systems with Defined Feedback Relations

HIV-T-cell dynamics

T = T cell density in blood
I = infected T cell-density
V = HIV virus density
N = # virus released

T ′ = δ − αT + pT (1 −
T

Tmax
) − kVT

I′ = kVT − βI

V ′ = βNI − γV − kVT

I V� -

T

�
�

�
�

�	

+

+

@
@

@
@

@I
−

@
@

@
@

@R
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Cooperative Systems

Cooperative Systems

A system is cooperative if

∂fi
∂xj

(x) ≥ 0, i 6= j .

It is cooperative and irreducible if the Jacobian matrix is irreducible.

Component-wise partial order:
1 x ≤ y ⇔ ∀i , xi ≤ yi .
2 x < y ⇔ x ≤ y ∧ x 6= y .
3 x ≪ y ⇔ ∀i , xi < yi .

x1

x2

x•

y•

A Cooperative Irreducible system is strongly order-preserving in
forward time: x(0) < x̄(0) ⇒ x(t) ≪ x̄(t), t > 0.
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Cooperative Systems

Behavior of Cooperative Irreducible Systems

Theorem [Non-ordering of Limit Sets] No pair of points of ω(x) are
related by <.

Theorem [Limit Set Dichotomy] If x < y then either

(a) ω(x) < ω(y), or

(b) ω(x) = ω(y) ⊂ Equilibria.

Theorem (M.W.Hirsch): For almost every x(0), the solution x(t)
converges to equilibrium.

Theorem: ∄ an attracting periodic orbit.
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Cooperative Systems

Competitive Systems

A system is competitive if

∂fi
∂xj

(x) ≤ 0, i 6= j .

x ′ = f (x) is competitive ⇔ x ′ = −f (x) is cooperative.

Time reversal flips sign on every arrow!

Theorem (Hirsch): The flow on a limit set of an n-dimensional
competitive or cooperative system is topologically equivalent to the flow
of a general (n − 1)-dimensional system on a compact invariant set.
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Cooperative Systems

A Generalization of Cooperative Systems

Suppose x ′ = f (x) can be decomposed x = (x1, x2) ∈ Rk × Rn−k

x ′

1 = f1(x1, x2)

x ′

2 = f2(x1, x2)

diagonal blocks ∂fi
∂xi

(x) have nonnegative off-diagonal entries.

off-diagonal blocks ∂fi
∂xj

(x) ≤ 0 have nonpositive entries.

Jacobian =









∗ + − −
+ ∗ − −
− − ∗ +
− − + ∗









Components cluster into two subgroups. positive within-group interactions,
negative between-group interactions.

Then change of variables y = (y1, y2) = (x1,−x2) yields a cooperative system
in the usual sense!
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Cooperative Systems

Repressilator with 2 genes is cooperative

xi = [protein] product of gene i
yi = [mRNA] of gene i .
xi−1 represses transcription of yi :

x ′

i = βi(yi − xi)

y ′

i = αi fi(xi−1) − yi , i = 1, 2, mod 2

where αi , βi > 0 and fi > 0 satisfies f ′i < 0.

Jacobian =









∗ + 0 0
0 ∗ − 0
0 0 ∗ +
− 0 0 ∗









Gardner et al, “Construction of a genetic toggle switch in E. coli", Nature(403),2000.
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Cooperative Systems

Dynamics of Repressilator

Equilibria u = (x1, y1, x2, y2) are in 1-to-1 correspondence with fixed
points of increasing map g ≡ α2f2 ◦ α1f1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x2

g(
x2

)

Fixed Points of g

Theorem: If g has no degenerate fixed points, ∃ odd number of equilibria
u1, u2, · · · , u2m+1 indexed by increasing values of x2. u2i+1 are stable, u2i are
unstable. If B(ui) denotes the basin of attraction of ui , then

∪odd iB(ui )

is open and dense in R4
+

. u1 is globally attracting if m = 0.
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Cooperative Systems

Competition in Two Patches yields cooperative system

x ′

1 = x1(r1 − a1x1 − b1y1) + d(x2 − x1)

x ′

2 = x2(r2 − a2x2 − b2y2) + d(x1 − x2)

y ′

1 = y1(s1 − c1x1 − d1y1) + D(y2 − y1)

y ′

2 = x1(s2 − c2x2 − d1y2) + D(y1 − y2)

Jacobian =









∗ + − 0
+ ∗ 0 −
− 0 ∗ +
0 − + ∗









Jiang & Liang, Quart. Appl. Math. 64 (2006):
System is cooperative and competitive! Has 2 − D dynamics-a limit set
containing no equilibrium is periodic orbit.
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Cooperative Systems

Is my system x ′ = f (x) Cooperative? Competitive?

For Cooperative:
1 DFR system: no sign change of ∂fi

∂xj
(x), i 6= j .

2 sign symmetry: ∂fi
∂xj

(x)
∂fj
∂xi

(y) ≥ 0, i 6= j ,∀x , y .

(no predator-prey-like relations.)

3 every loop in undirected*, signed, incidence graph for Jacobian
( ∂fi

∂xj
(x))i ,j has even # of negative edges.

*just drop arrows on signed influence directed graph.

For Competitive:
1 as above
2 as above
3 as above except even # of positive edges in every loop.
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Cooperative Systems

2-gene repressilator is competitive & cooperative

xi = [protein] product of gene i
yi = [mRNA] of gene i .
xi−1 represses transcription of yi :

x ′

i = βi(yi − xi)

y ′

i = αi fi(xi−1) − yi , i = 1, 2, mod 2

where αi , βi > 0 and fi > 0 satisfies f ′i < 0.

even number of + and even number of − edges!

y2 x2

y1 x1

-
+

-+

PPPPPPPPPi

−

− ���������)
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Cooperative Systems

MAPK intra-cellular signaling Cascade is cooperative

x ′ = −
v2x

k2 + x
+ v0u + v1

y ′

1 =
v6(ytot − y1 − y3)

k6 + (ytot − y1 − y3)
−

v3xy1

k3 + y1

y ′

3 =
v4x(ytot − y1 − y3)

k4 + (ytot − y1 − y3)
−

v5y3

k5 + y3

z′

1 =
v10(ztot − z1 − z3)

k4 + (ztot − z1 − z3)
−

v7y3z1

k7 + z1

z′

2 =
v8y3(ztot − z1 − z3)

k4 + (ztot − z1 − z3)
−

v9z3

k9 + z3

Molecular Systems Biology & Control, E. Sontag

input u

x

y1 y3

z1 z3

?output

?





�

J
JĴ
+−

?

�
�

�
�/

+−

-�−

-�−
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Competitive systems in R
3

Competitive Systems in R3

Corollary[Hirsch]: A Limit set containing no equilibria is a periodic orbit

Influence graph must have even # of + edges in each loop.

x1 x2+

x3

�
�

�
�

�

+

@
@

@
@

@
−

x1 x2−

x3

�
�

�
�

�

−

@
@

@
@

@
−
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Competitive systems in R
3

Classical Lotka-Volterra Competition

x ′

1 = x1(r1 − c11x1 − c12x2 − c13x3)

x ′

2 = x2(r2 − c21x1 − c22x2 − c23x3)

x ′

3 = x3(r3 − c31x1 − c32x2 − c33x3)

Hirsch’s “Carrying Simplex"

M.L. Zeeman: 33 dynamically distinct phase portraits

How many limit cycles? Three!
Hofbauer & So, Gyllenberg & Ping Yan
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Competitive systems in R
3

Examples with one negative edge (term in red)

classical S → E → I → R

S′ = µ − µS−σIS

E ′ = σIS − (µ + γ)E

I′ = γE − (µ + ρ)I

predator-prey with stage structure

x ′ = x(r − ax)−bxy2/(1 + cx)

y ′

1 = kbxy2/(1 + cx) − (m + d1)y1

y ′

2 = my1 − d2y2

Goldbeter’s model for Mitotic Oscillator

C′ = vi−vdX
C

Kd + C
− kdC

M ′ = VM1
C

Kc + C
1 − M

K1 + 1 − M
− V2

M
K2 + M

X ′ = VM3M
1 − X

K3 + 1 − X
− V4

X
K4 + X
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Competitive systems in R
3

Virus dynamics model is competitive

T ′ = δ − αT + pT (Tmax − T )/Tmax−kVT

I′ = kVT − βI

V ′ = βNI − γV−kVT

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Periodic Virus Dynamics

time

T,
T*

,V

T V 

T* 

Smith & de Leenheer, SIAM Appl. Math. 63 (2003)
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Monotone Cyclic Feedback Systems

Monotone Cyclic Feedback Systems

single-loop DFR system:

x ′

1 = f1(x1, xn)

x ′

2 = f2(x2, x1)

...

x ′

n = fn(xn, xn−1)

where

δi
∂fi

∂xi−1
> 0, δi ∈ {−,+}

x4 x3

x1 x2

�
δ4

-
δ2

?

δ3

6

δ1

Mallet-Paret & H.S., Poincaré-Bendixson theorem for MCFS, J. Dynam. & Diff. Eqns. (2) 1990
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Monotone Cyclic Feedback Systems

Monotone Cyclic Feedback Systems

Theorem: A limit set L of a bounded solution of a MCFS is either:

an equilibrium

a periodic orbit

a set of equilibria and orbits connecting them.

Moreover, Πi : Rn → R2 defined by Πix = (xi , xi−1) is injective on L.
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Monotone Cyclic Feedback Systems

Repressilator with n genes is a MCFS!

xi−1 represses transcription of yi :

x ′

i = βi(yi − xi)

y ′

i = αi fi(xi−1) − yi , i = 1, 2, 3 mod 3

where fi ≥ 0 satisfy f ′i < 0.

y2 x2

y1 x1

y3 x3

-+

-+

-+

���������)

−

���������)

−

?�

6







�

−
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Monotone Cyclic Feedback Systems

Results for n-gene repressilator

Theorem:
1 if n even, then almost all orbits converge.
2 n odd, then stable periodic orbits may exist.

Hofbauer et. al., A generalized model of the repressilator. J. Math. Biol. 53 (2006)

H.L. Smith (ASU) Dynamical Systems in Biology ASU, July 5, 2012 27 / 31



Conjectures of R. Thomas

Basic Definitions

R. Thomas* formulated conjectures about the possible dynamics a
system could have based on its signed directed influence graph.
Below are some key points required to formulate his conjectures.

1 Partial derivatives may have different signs in different regions of
phase space! The graph G depends on the point x in phase
space: G = G(x).

2 G includes signed self-loops i → i with “+” sign if ∂fi
∂xi

(x) > 0 and
“-” sign if partial derivative is negative.

3 G is a directed graph (edges have direction).
4 A circuit in G is a sequence of distinct vertices i1, i2, · · · , ip so that

there is an edge from ik to ik+1, 1 ≤ k < p, and from ip to i1.
5 the sign of a circuit is the product of signs of its edges.

*On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained

oscillation, Springer Ser. Synergetics 9, 180-193, 1981
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Conjectures of R. Thomas

Thomas’s Conjectures

Conjecture 1: A positive circuit (even # negative edges) in G(x), for
some x , is a necessary condition for multistationarity (more than one
equilibrium).

Conjecture 2: A negative circuit of length at least two is a necessary
condition for stable periodicity.

Conjecture 3: Chaotic dynamics requires both a positive and a
negative circuit.

More recent reference: Kaufman, Soul, Thomas, A new necessary condition on interaction graphs for multistationarity, T. Theor.

Biol. 248 (2007), 675-685
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Conjectures of R. Thomas

Examples

1 predator-prey system has a negative circuit so cannot have two
coexistence equilibria but can have stable periodic solutions.

2 competitive system has positive circuit so can have
multistationarity but not stable periodic solutions.
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Summary and References

References for competitive and cooperative systems

Monotone Dynamical Systems, H.S. & M. Hirsch, Handbook of
Differential Equations , Ordinary Differential Equations ( volume 2), eds.
A.Canada, P.Drabek, A.Fonda, Elsevier, 239-357, 2005.

Monotone systems, a mini-review, H.S. & M.W. Hirsch, in Positive
Systems. Proceedings of the First Multidisciplinary Symposium on
Positive Systems (POSTA 2003). Luca Benvenuti, Alberto De Santis and
Lorenzo Farina (Eds.) Lecture Notes on Control and Information
Sciences vol. 294, Springer Verlag, Heidelberg, 2003.

Monotone Dynamical Systems: an introduction to the theory of
competitive and cooperative systems, Amer. Math. Soc. Surveys and
Monograghs, 41, 1995.

Systems of ordinary differential equations which generate an order
preserving flow. A survey of results, SIAM Review 30, 1988.

The Poincaré-Bendixson theorem for monotone cyclic feedback systems,
with J.Mallet-Paret, J. Dynamics and Diff. Eqns., 2, 1990, 367-421.
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