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ABSTRACT The task priority planning problem is addressed in the task supervisor of null-space behavioral

(NSB) control for multi-agent systems. Traditional methods rely on pre-defined logic-based or fuzzy rules to

adjust task priority. In this work, a novel task supervisor is proposed using model predictive control (MPC)

techniques. At each sampling instant, the task priority planning problem is formulated as a switching mode

optimal control problem (OCP), which can be solved by efficient mixed-integer optimal control algorithms.

The optimal task priority order is obtained based on current and predictive information of agents, without

the need for a pre-defined rule. By explicitly introducing slack variables into constraints, the proposed MPC

method is flexible to cope with dynamic obstacles in unknown environments. Simulations with static and

dynamic obstacles show that the proposed method can provide significantly better control performance than

the traditional logic-based method using less priority switchings.

INDEX TERMS Multi-agent systems, behavioral control, task supervisor, model predictive control.

I. INTRODUCTION

Because of their agility and versatility, multi-agent systems

are widely applied in both military [1], [2] and civilian areas

[3]–[5]. Theoretic research on multi-agent systems have also

been widely addressed [6], [7]. Autonomous mobile robots

are typical multi-agent systems which usually work in an

unstructured environment and need to accomplish multiple

tasks such as moving through predefined via-points, avoiding

static or dynamic obstacles, forming a formation and flock-

ing. However, these tasks may conflict, e.g. an autonomous

mobile robot cannot move through a predefined via-point

while at the same time avoid an obstacle near the via-point.

The behavioral control, first proposed by Brooks [8], is one

popular control method to handle task conflicts and has

been studied intensively in the past decade. The traditional

methodology of the behavioral control mainly includes the

layered control approach [8] and the motor schema con-

trol approach [9], [10]. The layered control approach is a

competitive approach in which tasks with a lower priority

can only be executed after those with a higher priority have

been completed. The motor schema control is a cooperative
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approach in which the output of each task is summed up

with weights to generate the final task output. In this way,

no task is completely achieved. More recently, Antonelli and

Chiaverini [11] has proposed a cooperative approach named

null-space-based behavioral (NSB) control to solve task con-

flicts by assigning a priority to each task and designing

a priority-based task coordination scheme. The NSB method

guarantees that tasks with a higher priority can be executed

completely on one hand, and on the other hand tasks with

a lower priority are partially executed via null-space projec-

tion. Therefore, the NSB method is potential in nature in

handling task conflicts. However, the priority of tasks, which

is determined by the task supervisor, is usually set in advance

and is fixed during the entire task execution process [12],

[13]. This may degrade the control performance of the NSB

method and limit its application in dynamic and unknown

environments. For instance, setting the obstacle-avoidance

task as the top priority when obstacles are not present would

affect the performance of other tasks.

Some efforts have been made to tackle this problem. Finite

state automata (FSA) is a state transfer mechanism in which

system states automatically transfer from one to another

based on system current state and state transition trigger

conditions. In the context of NSB control, the planning of
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task priority is realized by designing the rules for state transi-

tion trigger conditions [14]–[17]. Alternatively, task priority

planning has been studied by designing certain fuzzy rules

using the fuzzy method for autonomous systems [15], [18],

[19]. However, all aforementioned methods require human

to design the planning rules for task priority planning in

advance. This is difficult when the number of tasks is large

and the environments are dynamic and unknown. In addition,

the planning of tasks priority, either using FSA or the fuzzy

method, only makes use of the current state of the agents

without future predictions.

It should be noted that advanced priority planning or

behavior switching algorithms have been studied in the field

of robots and multi-agent systems but not in the NSB control

framework. In [20], a model predictive control (MPC) algo-

rithm has been proposed to compute the switching time of

robot behaviors, given a known switching order in advance.

In [21] and [22], genetic algorithms have been exploited for

robot task switching and behavior selection, respectively.

In this paper, a novel task supervisor to dynamically plan

task priority in the NSB control is proposed using MPC tech-

niques. MPC as an advanced controller, has been employed in

robot and multi-agent systems mainly for trajectory tracking

and obstacle avoidance [23], [24]. Here, MPC works as a

high-level planner to provide dynamically the priority of

tasks. First, different task priority orders formulate multiple

composite tasks. Then, at each sampling instant, a switching

mode optimal control problem (OCP) is formulated by explic-

itly taking into account system dynamics and constraints.

The optimal composite task trajectory is obtained by solving

the OCP making use of current state and future predictions.

As a result, task priority planning can be realized on-line

without a pre-defined adjustment rule. Finally, a simulation

with static and dynamic obstacles is shown to demonstrate the

effectiveness of the proposed method. It can be found that the

predictive nature of the proposed method leads to earlier and

smoother switching compared to the traditional logic-based

method.

This paper is organized as follows. Section II briefly

introduces preliminaries of the NSB control and the basic

problem description. In Section III, the MPC based task

priority planner, which is the main contribution of the paper,

is presented. Section IV presents in detail a simulation in two

scenarios. Finally, a conclusion is drawn.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

A. ELEMENTARY TASK

In the NSB control, elementary tasks can be organized in

different orders. Then, tasks fusion is designed to obtain

different composite tasks with a priority order. Note that the

term ‘‘task’’ and ‘‘behavior’’ have the same meaning in this

paper, because the ‘‘behavior’’ is also named task or mission

in the behavioral control [13]. An elementary task is encoded

by a task variable ρ ∈ R
m, which is a function of the system

configuration x ∈ R
n, expressed as

ρ = g(x), (1)

with the corresponding derivative:

ρ̇ =
∂g(x)

∂x
v = J (x)v, (2)

where J (x) ∈ R
m×n is a configuration-dependent task

Jacobian matrix and v ∈ R
n is the stacked vector of the

agents’ velocities. By inverting the locally linear mapping

(2) into thee least square formulation (LSS), the reference

velocity vd can be computed by:

vd = J†ρ̇d = JT (JJT )−1ρ̇d , (3)

where ρd is the reference position, J† = JT (JJT )−1 ∈

R
n×m is the pseudo-inverse of Jacobian matrix. In practice,

the integration of the reference velocity would result in a

numerical drift of the reconstructed agent’s position. The

following closed-loop inverse kinematics (CLIK) form has

been used to compensate such drift:

vd = J†(ρ̇ + 3ρ̃), (4)

where 3 is a suitable constant positive-definite matrix of

gains and ρ̃ = ρd − ρ is the task error.

B. COMPOSITE TASK

A composite task is a combination of multiple elementary

tasks arranged in a prioritized order. Let ρb ∈ R
mb be the

task function, where b ∈ Nb, Nb = {1, . . . , h}, and mb is the

dimension of the b-th task space. Define a time-dependent

priority function y(b, t) : Nb × [0, ∞] → Nb that maps

the task function space to a priority space. Also define a

task hierarchical structure which complies with the following

rules [25]:
1) A task b of priority y(b, t) at time t must not disturb

task c of priority y(c, t) if y(b, t) ≥ y(c, t), ∀b, c ∈ Nb,

b 6= c.

2) The mappings from the velocities to the task

velocities are captured by the task Jacobian matrix

Jy(b,t) ∈ R
mb×n, b ∈ Nb.

3) The dimension of task b with the lowest priority may

be larger than n −
∑r|c6=b

c=1 mc so that the dimension n

is ensured to be greater than the total dimension of all

tasks.

4) The value of y(b, t) is assigned by the task supervisor on

the basis of the mission’s need and sensor information.
By assigning elementary tasks with a given priority, the

composite task velocity at time t can be expressed as

vd (t) = v1 + (I − J
†
1 J1(v2 + (I − J

†
2 J2(v3 (5)

+ . . . + (I − J
†
n−1Jn−1)vn))), (6)

where vb, b = 1, 2, . . . , h is the velocity of the task c with

priority y(c, t) = b.

C. TASK SUPERVISOR

A task supervisor is in charge of switching between the

defined composite tasks based on the current state of agents.

Assume that there are M composite tasks which are com-

posed of the same elementary tasks arranged in different
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FIGURE 1. Principle block diagram of a conventional logic-based task supervisor.

prioritized orders. Let vdb, b = 1, . . . ,M represent the

velocity of the b−th composite task. The principle block

diagram of a conventional task supervisor is shown in Fig. 1,

in whichRbc, b = 1, . . . ,M , c = 1, . . . ,M , b 6= c represent

the task switching trigger conditions designed by human

based on the state of agents. Once the task switching trigger

conditions are satisfied, the composite task is switched to

another, resulting in adjustment of task priority. An example

of the traditional task supervisor is to achieve priority switch-

ing between the motion task and the obstacle-avoidance task,

in which the task switching trigger conditions are designed

based on logic rules, i.e. if the distance between an agent

and an obstacle is greater than or equal to a safe distance,

the obstacle-avoidance task has a higher priority, otherwise

the motion task has a higher priority.

III. DYNAMIC TASK PRIORITY PLANNING

The traditional NSB method usually has a pre-defined and

fixed priority order during the entire task execution process,

i.e. y is a time-independent function. In this paper, a task

priority planning method is proposed using model predictive

control techniques.

A. OPTIMAL CONTROL FORMULATION

Consider a group of n (n ≥ 2) agents, and a set of h(h ≥ 2)

tasks for each agent. Define the state vector x as x(t) =

[x1(t)
⊤, . . . , xn(t)

⊤]⊤, each element of which represents the

state of an agent. Let us introduce a binary mode vector

w(t) = [w1(t)
⊤, . . . ,wn(t)

⊤]⊤ ∈ {0, 1}nM , each element

wi(t) ∈ {0, 1}M . The dynamics of an agent can be written

as a convex combination of dynamics in different modes:

ẋi(t) =

M
∑

j=1

w
j
i(t)v

j
d,i(t), i = 1, . . . , n (7)

wherew
j
i is the jth element ofwi and v

j
d,i is the jth task velocity

in the form of (5) of the ith agent. The total number of task

velocities M is computed by M = h!, the factorial of the

number of tasks h. This is because h tasks can generate h!

composite tasks with elementary task in different prioritized

orders. An important constraint of w is
M

∑

j=1

w
j
i(t) = 1, i = 1, . . . , n, (8)

which is called the special-ordered-set-of-type-one (SOS1)

[26], ensuring at least but only one active mode at any time

instant.

Define the tracking error for the ith agent as

ei(t) = ρid − xi(t), (9)

where ρid is the reference position for the ith agent. Define a

cost function

L(x,u) =

∫ T

0

n
∑

i=1

(

Ki‖ei(t)‖
2 + Pi‖ui(t)‖

2
)

dt, (10)

which consists of combined tracking errors from all agents

plus slack variables ui, i = 1, . . . , n, each weighted by

positive parameters Ki and Pi. As a result, an OCP can be

formulated as

min
x,w,u

L(x) (11a)

s.t. x(0) = x̂0 (11b)

(7), (8),

‖xi(t) − x iO(t)‖ ≥ di − ui(t), i = 1, . . . , n, (11c)

∀t ∈ [0,T ]

ui(t) ≥ 0, ∀t ∈ [0,T ], (11d)

where x̂0 is the initial sate, x iO(t) is the obstacle position

detected by the ith agent at time t , di is the safety distance

lower bound for the ith agent, and T is the prediction horizon.

The slack vector is u(t) = [u1(t)
⊤, . . . , un(t)

⊤]⊤. Constraint

(11d) ensures that all slack variables are non-negative,

making (11c) a soft constraint in case of local minimum

problems.

Remark 1: In case of dynamic obstacles, agents may

repeatedly violate the safe distance constraint in multiple

sampling instants even though they have already set the

obstacle-avoidance task as the top priority one. This case

is more complicated than the traditional local minimum

problem where agents stop moving because of two opposite

velocities from different tasks. For the traditional method,

additional algorithms, such as adding small measurement

noises [25] and introducing human intervention [27], are

required to handle the local minimum problem. However,

the proposed MPC method in the form of (11) can handle

dynamic obstacles and local minimum problems explicitly

and systematically by incorporating constraint (11c) and

(11d). In this way, agents can temporarily violate the safety

distance constraint in an optimal way depending on current

situation and return to other behaviors when possible.
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FIGURE 2. An illustration of the direct discretization method with N

initial guesses of X and N − 1 initial guesses of Ŵ.

B. REAL-TIME MODEL PREDICTIVE CONTROL ALGORITHM

During the task execution process, problem (11) must be

solved repeatedly with different initial states x̂0 updated

at every sampling instant, leading to a model predictive

control (MPC) framework. However, problem (11) contains

integer variables which is difficult to solve. In this paper,

we employ a real-time MPC algorithm [26] that can

efficiently solve (11) on-line, providing a dynamic task

priority planning. The algorithm employs a direct method

using ‘‘first discretize then optimize’’ methodology, and an

outer-convexfication with integer relaxation technique.

Divide the domain [0,T ] intoN intervals, characterized by

equidistant grid points

0 = t0 < t1 < . . . < tN−1 < tN = T ,

with 1t = T
N
. In each interval, the binary variables w

are assumed to be constant hence they can only change

values at grid points. The binary variables w are relaxed to

real variables satisfying ŵ(t) ∈ [0, 1]nM . Using multiple

shooting [28], problem (11) can be converted to a nonlinear

programming problem (NLP), written as

min
X,Ŵ,U

N
∑

k=0

L(xs|k,us|k) (12a)

s.t. xs|0 = x̂0 (12b)

xs|k+1 = φ(xs|k , ŵs|k ), k = 0, . . . ,N − 1 (12c)

M
∑

j=1

w
j
i,s|k = 1, i = 1, . . . , n, (12d)

k = 0, . . . ,N − 1,

‖xi,s|k − x iO‖ ≥ di − ui,s|k , i = 1, . . . , n, (12e)

k = 0, . . . ,N ,

ui,s|k ≥ 0, i = 1, . . . , n, (12f)

k = 0, . . . ,N ,

where

X = (x⊤
0|0, x

⊤
0|1, . . . , x

⊤
0|N )

⊤,

Ŵ = (ŵ⊤
0|0, ŵ

⊤
0|1, . . . , ŵ

⊤
0|N−1)

⊤,

U = (u⊤
0|0,u

⊤
0|1, . . . ,u

⊤
0|N )

⊤,

and s is the current sample, xs|k is the k−step predicted state

at sample s, xi,s|k is ith element of xs|k given by (7) and ui,s|k is

ith slack variable at sample s. An illustration of this discretiza-

tion at the initial guess is shown in Fig. 2. In (12), the function

φ : R
nnx × [0, 1]nM is obtained by solving the nonlinear

FIGURE 3. The continuous trajectory at the solution of (12) after
convergence is achieved.

dynamics (7) via numerical integration, e.g. the Eulermethod.

Constraint (12c) ensures that the state trajectory is continuous

over the entire prediction horizon at the solution of (12)

after convergence is achieved. An illustration of the state and

mode trajectory at the solution is shown in Fig. 3. The NLP

(12) can be solved efficiently by standard NLP solvers using

sequential quadratic programming or interior point methods,

without using integer optimization algorithms.

After solving (12), a sum-up-rounding (SUR) step can

be employed to obtain the binary variable W from Ŵ [26].

The SUR step reads as

g
j
s|k =

k
∑

r=0

ŵ
j
s|r1t −

k−1
∑

r=0

w
j
s|r1t, (13a)

w
j
s|k =

{

1 if g
j
s|k ≥ grs|k ∀r 6= j&j < r ∀r : g

j
s|k = grs|k

0 otherwise,

(13b)

for j = 1, . . . ,M and k = 0, . . . ,N − 1. For (13), we have

the following proposition.

Proposition 1: If ŵi(t) : [0,T ] → [0, 1]MN is measur-

able, and
∑M

j=1 ŵ
j
i(t) = 1 holds, then the function wi(t) :

[0,T ] → {0, 1}MN converted from (13) using zero-order hold

satisfies
∥

∥

∥

∥

∫ T

0

ŵi(τ ) − wi(τ ) dτ

∥

∥

∥

∥

∞

≤ 1t (14)

and wi(t) satisfies
∑M

j=1 w
j
i(t) = 1.

Proposition 1 is a given as Theorem 5 in [29], which

means that the approximation error of the SUR step can

be made arbitrary small by choosing a sufficiently small

grid length 1t . In practice, the upper bound of (14) is often

conservative, leading to even smaller approximation error.

In terms of computational cost, the SUR step can be neglected

when compared to solving (12).

In MPC, only the first element of the solution is fed

back to the system. At next sampling instant, the NLP (12)

and the SUR (13) are executed again using the latest state

measurement. The outline of the MPC algorithm is given in

Algorithm 1.

Remark 2: The proposed MPC by design is a centralized

planner. However, since each agent is independent, dynamics

(7) is usually separable. As a result, problem (11) can be split

into n smaller problems for each agent if no global tasks are

present, e.g. global formation.
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Algorithm 1 MPC Algorithm for Task Priority Planning

1: Input:

Number of grid points N , weighting parameters

Ki,Pi.
2: Initialize:

Initialize x0|0
3: for s = 0, 1, . . . do

4: Solve problem (12) and obtain ŵs|k for k =

0, . . . ,N − 1.

5: Obtain ws|k using (13) for k = 0, . . . ,N − 1.

6: Identify the index j of the non-zero element of ws|0,

trigger the composite task.

7: end for

IV. SIMULATION

In this section, simulations are conducted where three robots

perform the motion task and the obstacle avoidance task on

the ground. Comparisons are made between the proposed

MPC task priority planner and the traditional logic-based

planner with both static and dynamic obstacles.

A. TASK DESIGN

We consider two elementary tasks, namely the motion task

and the obstacle-avoidance task. They can form two com-

posite tasks in different priority orders. Other elementary

tasks, such as centroid and rigid formation [12] can also be

considered but omitted here for sake of simplicity.

1) MOTION TASK

In the motion task, robots are driven toward a target

point along a pre-determined reference trajectory. The

corresponding task function can be defined as

ρB = p ∈ R
2, (15)

where p = [px , py]
⊤ is the robot position coordinate. The

desired motion task velocity can be calculated as

vB = J
†
B(ρ̇B,d + 3Bρ̃B), (16)

where JB = I2 is the Jacobian matrix of motion task and

I2 is the identity matrix; J
†
B is the pseudo-inverse of JB.

Since JB is symmetric and idempotent, we have J
†
B = JB;

ρB,d is the desired task function; 3B is a suitable constant

positive-definite matrix of gains; ρ̃B = ρB,d − ρB is the

motion task error.

2) OBSTACLE-AVOIDANCE TASK

In the obstacle-avoidance task, robots must avoid obstacles

detected by their sensors along the reference trajectory. The

corresponding task function can be defined as

ρA = ‖p− pO‖ ∈ R, (17)

where pO = [pxO, pyO]
⊤ is the obstacle position coordi-

nate. The desired obstacle-avoidance task velocity can be

calculated as

vA = J
†
A3Aρ̃A, (18)

where JA = r̂T , r̂ =
p−pO

‖p−pO‖ ; J
†
A is the pseudo-inverse of JA;

3A is a suitable constant positive-definite matrix of gains in

TABLE 1. Parameter values used in the simulation.

FIGURE 4. Robot trajectories of the MPC and the logic-based method
when static obstacles are present.

FIGURE 5. Distances between the robots and the obstacles when static
obstacles are present.

the obstacle-avoidance task; ρ̃A = d−‖p− pO‖ is themotion

task error; d is the safe distance.

3) COMPOSITION TASK

In the first composition task, the obstacle-avoidance task has

higher priority, leading to the task velocity as

Composite task A: vd1 = vA + (I − J
†
AJA)vB, (19)

where I−J
†
AJA is the null space of the obstacle avoidance task.

In the second composition task, the motion task has higher

VOLUME 8, 2020 149647
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FIGURE 6. Tracking error of the robots when static obstacles are present.

FIGURE 7. Active mode of the robots during the task execution process
when static obstacles are present. Composite task A: obstacle-avoidance
task>motion task; Composite task B: motion task>obstacle-avoidance
task.

FIGURE 8. Robot trajectories of the MPC and the logic-based method
when dynamic obstacles are present.

priority, leading to the task velocity as

Composite task B: vd2 = vB + (I − J
†
BJB)vA, (20)

where I − J
†
BJB is the null space of the motion task.

B. SIMULATION CONFIGURATION

The objective of the motion task for the robots is to move

from the initial points to the target points. The pre-defined

FIGURE 9. Distances between the robots and the obstacles when
dynamic obstacles are present.

FIGURE 10. Tracking error of the robots when dynamic obstacles are
present.

FIGURE 11. Active mode of the robots during the task execution process
when dynamic obstacles are present. Composite task A:
obstacle-avoidance task>motion task; Composite task B: motion
task>obstacle-avoidance task.

reference trajectories of the three robots are given by

ρ1
d (t) = [1 + 0.9t, 1 + 0.9t], (21)

ρ2
d (t) = [−4 + 1.9t, 1 + 1.9t], (22)

ρ3
d (t) = [1 + 1.9t, −4 + 1.9t]. (23)

Parameters used in the simulation are shown in Table. 1. The

proposed MPC algorithm is compared against a traditional

149648 VOLUME 8, 2020
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FIGURE 12. Robot 1 trajectory using the MPC and the traditional method at different time instants when dynamic
obstacles are present. Distances from robot 1 to the dynamic obstacle are shown for both methods.

task supervisor based on trivial switching logic, i.e. if the

distance between the robot and the closest obstacle is smaller

than the safe distance, the robot performs the composite

task A, otherwise the composite task B is performed. Both

methods are implemented using the same parameters in Mat-

lab R2020a on a laptop running Windows 10 with AMD R5

4600H CPU at 3.00 Ghz and 16GB memory. The NLP (12)

is solved by Ipopt [30] using Casadi toolbox [31].

In all our simulations, the MPC algorithm has an average

runtime of 38 ms and a maximum of 49 ms. On the con-

trary, the logic-based method has a negligible execution time

for just implementing a if-else based piece of code. This

has demonstrated that the MPC algorithm is able to run in

real-time even though in a trivial Matlab implementation.

In next sub-sections, we show the proposed MPC algorithm

significantly outperforms the logic-based one at the cost of

such increased on-line computational burden.

C. RESULTS

1) STATIC OBSTACLES

In the first scenario, static obstacles are present at positions

given in Table 1. The trajectories of the proposed MPC and

the logic-based method are shown in Fig. 4. The distances

between the robots and the obstacles are shown in Fig. 5. The

tracking error is shown in Fig. 6.

It can be seen that the proposed MPC method significantly

outperforms the logic-based method using the same sam-

pling frequency. The trajectory of composite tasks is shown
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in Fig. 7. The logic-based method switches frequently to

avoid obstacles, leading to oscillations of trajectories and

violations of the safe distance when encountering obstacles.

On the other hand, the proposed MPC method smoothly

finishes tasks using only two priority switchings, without vio-

lations of the safe distance constraint. This can be explained

by the fact that the MPC method is able to predict obsta-

cles in advance hence to prepare priority switching earlier

(e.g. see Fig. 7, the MPCmethod always switches to compos-

ite task A earlier than the logic-based method). This demon-

strates the effectiveness of the proposed MPC algorithm and

its advantages over the traditional logic-based method.

2) DYNAMIC OBSTACLES

In the second scenario, we introduce a dynamic obstacle in

the path of robot 1, defined by

(pxO, pyO) = (10, 2.14t)m, (24)

meaning that the obstacle is moving in the y-direction at

px = 10m with a speed of 2.14m/s. At each sampling

instant, the proposed MPC method detects the position of

the dynamic obstacle and makes predictions using this infor-

mation without knowing the future position of the dynamic

obstacle. The trajectories of the proposed MPC and the

logic-based method are shown in Fig. 8. The distances

between the robots and the obstacles are shown in Fig. 9. The

trajectory of task priority is shown in Fig. 11. The tracking

error is shown in Fig. 10. It can be observed that the

logic-based method switches frequently but fails to avoid the

dynamic obstacle, leading to significant violations of

the safety distance constraint. The proposed MPC method

only temporarily and slightly violates the safety distance

constraint at around t = 5.2s, but quickly run away from the

obstacle thereafter (see Fig. 9). This is compatible in mode

switching behavior as shown in Fig. 11, where theMPC plan-

ner switches to composite task A after t = 4.2s but switches

to composite task B at around t = 5.1s when it founds the

obstacle is alsomoving in its direction. TheMPCplanner then

switches back to composite A immediately to escape from

the obstacle. This switching behavior is due to the prediction

capability of MPC to avoid obstacles in advance. The slight

violation of constraint is due to the introduction of slack

variables in (11) to avoid frequent oscillations and switchings.

To further understand how robot 1 avoids the dynamic

obstacle, Fig. 12 shows at different time points the trajectories

of robot 1 using both methods. Robot 1 has detected the

dynamic obstacle at around t = 4.3s using both methods.

The proposed MPC planner immediately switches from com-

posite task B to A while the logic-based method acts slower.

At t = 4.5s, the MPC planner has decided to bypass the

obstacle from its top (positive y direction). Then at t = 4.7s,

the MPC planner has predicted that the safety distance con-

straint would be violated and re-planned the trajectory to

bypass the obstacle from its bottom (negative y direction).

On the other hand, the logic-based planner is too close to

the obstacle at many time instants, constantly switching from

two composite tasks. This example has demonstrated the

prediction capability and flexibility of the proposed MPC

planner in unknown and dynamic environments.

V. CONCLUSION

In the NSB control for multi-agent systems, traditional

methods rely on pre-defined logic-based or fuzzy rules to

dynamically plan the task priority to obtain a composite task.

This paper has proposed a novel MPC-based task supervisor

to plan the task priority using current and predictive infor-

mation. At each sampling instant, the task priority planning

problem has been formulated as a switching mode OCP,

which can be solved by an efficient mixed-integer optimal

control algorithm. Simulation results with static and dynamic

obstacles have demonstrated the effectiveness of the pro-

posed method in dynamic and unknown environments and its

advantages over the traditional logic-based method.
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