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ABSTRACT

Web applications routinely handle sensitive data, and many
people rely on them to support various daily activities, so er-
rors can have severe and broad-reaching consequences. Un-
like most desktop applications, many web applications are
written in scripting languages, such as PHP. The dynamic
features commonly supported by these languages significantly
inhibit static analysis and existing static analysis of these
languages can fail to produce meaningful results on real-
world web applications.

Automated test input generation using the concolic test-
ing framework has proven useful for finding bugs and im-
proving test coverage on C and Java programs, which gener-
ally emphasize numeric values and pointer-based data struc-
tures. However, scripting languages, such as PHP, promote
a style of programming for developing web applications that
emphasizes string values, objects, and arrays.

In this paper, we propose an automated input test genera-
tion algorithm that uses runtime values to analyze dynamic
code, models the semantics of string operations, and handles
operations whose argument and return values may not share
a common type. As in the standard concolic testing frame-
work, our algorithm gathers constraints during symbolic ex-
ecution. Our algorithm resolves constraints over multiple
types by considering each variable instance individually, so
that it only needs to invert each operation. By recording
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constraints selectively, our implementation successfully finds
bugs in real-world web applications which state-of-the-art
static analysis tools fail to analyze.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging;
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Verification, Reliability

Keywords

Automatic test generation, concolic testing, directed random
testing, web applications

1. INTRODUCTION

Web applications continue to offer more features, handle
more sensitive data, and generate content dynamically based
on more sources as users increasingly rely on them for daily
activities. The increased role of web applications in impor-
tant domains, coupled with their interactions not only with
other web applications but also with users’ local systems,
exacerbates the effects of bugs and raises the need for cor-
rectness.

Testing is a widely used approach for identifying bugs and
for providing concrete inputs and traces that developers use
for fixing bugs. However, manual testing requires extensive
human effort, which comes at significant cost. Additionally,
QA testing usually attempts to ensure that the software can
do everything it ought to do, but it does not check whether
the software can do things it ought not to do; such function-
ality usually constitutes security holes.

Our goal in this work is to help automate the process of
web application testing. In particular, we seek to generate
test cases automatically that will achieve a designated code-
coverage metric: branch coverage or (bounded) path cover-
age. Previous work on concolic testing has helped to auto-
mate test input generation for desktop applications written
in C or Java [26, 27], but web applications written in script-
ing languages such as PHP (ranked fourth on the TIOBE



programming community index [2]) pose different challenges
that we must address.

First, PHP is a scripting language and not a compiled
language. Such languages, especially in the context of web
applications, encourage a style of programming that is more
string- and array-centric as opposed to languages like Java
where numeric values and data structures play a more cen-
tral role. In the limit, scripting languages allow for ar-
bitrary meta-programming, although most PHP programs
only make moderate use of dynamic features. Additionally,
PHP web applications receive all user input in the form of
strings, and many string manipulation and transformation
functions may be applied to these values.

Second, in order for automatic test input generation to
be useful, we need test oracles that will identify when com-
mon classes of errors have occurred. Several common classes
of errors in C programs are memory errors; Java has elim-
inated most memory errors, but Java programs may still
have null-pointer dereference errors. On the other hand,
PHP programs are entirely free of memory corruption er-
rors (barring bugs in the interpreter). Hence other kinds of
test oracles are needed.

Finally, much of the previous work on concolic testing is
designed only for unit testing. Because many value-based
and information flow-based errors (as opposed to memory-
based errors, for example) span multiple functions, we need
to make the concolic testing approach scale beyond single
functions.

This paper presents the first application of concolic testing
to web applications. We address the first challenge by mod-
eling string operations using finite state transducers and em-
ploying a constraint resolution algorithm that resolves con-
straints on string values. We address the second challenge by
developing a novel algorithm to check string values against
existing policies to prevent SQL injection attacks [28]. We
address the third challenge by using values collected at run-
time to construct a backward slice from where queries are
constructed and recording constraints only from that slice.

In this paper, we extend the concolic testing approach to
PHP web applications. To do so, we generate constraints
on string values by modeling string operations using finite
state transducers (FSTs) [19]. In PHP, not only do many li-
brary functions take arguments of one type and return values
of another, but the runtime system itself readily performs
many different dynamic type casts. Consequently, subex-
pressions of the constraints we generate may be over other
types including numeric types and arrays. To solve the con-
straints, we leverage the property of FSTs that they can be
inverted and borrow from existing work on language equa-
tions [15]. The concolic testing framework helps to resolve
constraints by supplying values from the program’s execu-
tion in place of intractable subexpressions. In order to model
precisely the semantics of PHP’s many library functions and
to support runtime type casts in generated constraints, we
approximate expressions by considering only one variable oc-
currence per expression at a time. In our evaluation, none
of the expressions had more than one variable occurrence, so
this approximation did not introduce any imprecision. We
evaluated our implementation on real-world PHP programs
with known SQL injection vulnerabilities that existing static
analysis tools fail to find. Our implementation took between
three and thirteen minutes on these subjects and successfully
found the vulnerabilities.
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user.php
10 isset ($_GET|[’userid’]) ?
11 $userid = $.GET[’userid’] $userid = ?7;
12 if (SUSER|[’groupid’] != 1)
13
14 // permission denied
15 unp_msg( $gp_permserror );
16 exit;
17}
18 if (Suserid = ’)
19
20 unp_msg( $gp_invalidrequest );
21 exit;
22
23  $userid = "00". $userid;
24 if (leregi(’00[0-9]1+’, S$userid))
25
26 unp_msg (
27 ’You entered an invalid user ID.’);
28 exit;
2 }
30 $getuser = $DB—>query ("SELECT * FROM"
31 ."‘unp user ¢ WHERE userid=’$userid’");
32 if (!$DB—is_single_row ($getuser))
33
34 unp_msg (
35 ’You entered an invalid user ID.’);
36 exit;
37}
38 .

Figure 1: Example PHP code.

2. OVERVIEW

This section provides an overview of our approach.

2.1 Example Code

Figure 1 shows some sample PHP source code that we will
use to present our approach. This code takes a user ID, and
attempts to authenticate the user to perform other actions.
If the user’s ID does not appear in the database, the program
exits with an error message. This particular code fragment
does not use dynamic features, but it still serves to illustrate
some of the main points of our algorithm. In the presence
of dynamic features, we simply record the concrete values
of interpreted strings and use those values in our constraint
generation and resolution.

2.2 Constraint Generation

As in the case of standard concolic testing, we instrument
the program in order to execute it both concretely, using
the standard runtime system, and symbolically. The testing
framework’s top-level loop executes the program, records
symbolic constraints, and uses the constraints to generate
new inputs that will drive the program along a different
path on the next iteration. Symbolic execution takes place
at the level of a RAM machine, which means that we main-
tain maps from names to symbolic locations, and a map from
symbolic locations to symbolic values. Therefore the anal-
ysis does not require any offline alias analysis. The testing
framework records a symbolic constraint for each conditional
expression that appears in the program’s execution.

On the first iteration, the testing framework executes the
program without providing any input parameters. When it
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Figure 2: An FST representation of concatenating
“00” to another string, and the FST’s inverse; o € .

encounters the isset conditional on line 10, it records the
constraint:

GET|userid]) € 0

and the program reaches line 21 and exits. Each of the
constraints it gathers is expressed as a language inclusion
constraint. For the next run, the testing framework inverts
this constraint:

GET(userid| ¢ 0 <  GET][userid] € X"

finds ¢, the empty string, as the shortest value in ¥*, and
reruns the program with the _GET parameters “userid” set
to “”. This illustrates a useful feature of our approach: we
do not need to specify interfaces for the PHP programs we
test, nor do we need a static analysis to infer them. When
the program expects a parameter that our testing framework
does not supply, that parameter will show up in a constraint
that, when inverted, will cause the parameter to be included
in the next run. This is not only the case when explicit
conditionals check whether variables are set, but also when
any uninitialized variables are used.

On the second iteration, the framework gathers the con-
straints:

[GET[userid] € X%, GET [userid] € {e}]

again reaches line 21 and exits. For this example, we assume
that the condition on line 12 holds. The testing framework
inverts the last constraint to perform a depth-first search of
the program’s computation tree:

[GET[userid]) € ¥*, GET [userid] ¢ {e}]
&  GET[userid] € ©*

Again the testing framework selects some shortest value in
¥ ", in this case ‘a.’

On the third iteration, the framework gathers the con-
straints:

[GET[userid] € ¥, GET [userid] ¢ {e},
OOGET[USCTZd] ¢ ‘C(AOO [0_9]+)]

Inverting constraints such as the last one here requires tech-
niques beyond those that have been proposed in the litera-
ture because this constraint includes a string operation, viz.
concatenation.

2.3 Constraint Resolution

The problem of satisfiability of word equations with reg-
ular constraints is PSPACE-complete [23]. However, our
constraint language is more expressive than this because
we include nondeterministic rational relations, expressed as
FSTs, and many classes of language constraints are unde-
cidable [15]. Consequently, we cannot solve precisely every
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Figure 3: An FSA representation of the ereg “00[0-
9]+” and its image over the FST in Figure 2b; o € X.

constraint in the language of constraints that may be gener-
ated. However, a benefit of the concolic testing framework is
that the constraint resolution algorithm can be incomplete
or even wrong, and no false positives will be reported. We
design our algorithm for the common case in which input
variables appear only on the left-hand side of each language
inclusion constraint.

As Section 1 states, our algorithm uses finite state trans-
ducers (FSTs) to invert string operations. Figure 2a shows
an FST the represents the curried function “00.”, i.e., the
function that prepends the string “00” to its argument. The
first two transitions each read nothing and output “0” and
the third transition outputs whatever it reads. FSTs can
be inverted by swapping the input symbol with the output
symbol on each transition. Figure 2b shows the FST in-
verted.

Figure 3a shows an FSA representation of the language
of strings that match the regular expression on line 24 of
Figure 1. Because the regular expression does not have an-
chors (‘~7 for “beginning of the string” and ‘¢’ for “end of the
string”), the pattern must only appear somewhere in the
string, as the FSA shows. Because the FST in Figure 2b
represents the inverse of prepending “00,” this FST can be
applied to the FSA in Figure 3a to produce the FSA in Fig-
ure 3b. The language of this FSA represents the language of
values for GET [userid] for which the conditional expression
on line 24 will evaluate to true. As before, the language of
this FSA must be intersected with the languages of the other
FSAs for the same variable in order to find the language of
values that will cause the program to take a new path in
its computation tree. A new value, such as “0” can then be
selected for the userid GET parameter.

2.4 Test Oracles

In order to be useful, automatic test input generation re-
quires a test oracle that will give feed back on each exe-
cution of the program. Typically this feedback takes the
form of pass or fail. In the case of testing C programs,
example test oracles include assert statements, and tools
like Valgrind [20], which monitors the memory and checks
for memory errors such as buffer overflows and double-frees.
Scripting languages, however, are not vulnerable to mem-
ory corruption errors, and although programmers use exit
statements, in practice, very few use assert’s.

The same need for test oracles arises with fuzz testing and
testing based on a preset list of inputs, and currently at least
two kinds of oracles are used. First, security testers often
see whether the input causes the web browser to pop up an
alert window. If it does, this indicates a cross-site scripting
(XSS) vulnerability. Second, testers check to see whether
corresponding pages of sites written to be configured for



multiple natural languages have the same structure. If they
do not, this indicates that some data is missing in one of the
languages.

These test oracles are available for our setting as well, but
because our testing framework has full view of all the data
values, we can use a more sophisticated oracle. Grasp [9]
is a modified version of the PHP interpreter that performs
character-level tainting [21], and allows security policies to
be defined on strings based on tainting. A typical exam-
ple of such a policy defines SQL injection attacks as SQL
queries in which characters in tokens other than literals are
tainted, or more generally, only syntactically confined sub-
strings are tainted [28]. Given the SQL grammar (CFG)
G = (V,3,R,S) and a query string o = 010203 € X*, 02 is
syntactically confined in o iff there exists a sentential form
01Xo3 such that X € V and S =% 01 X035 =§ 010203 [29].
We can also use other taint-based policies, such as the pol-
icy that tainted strings in the web application’s output doc-
ument must not invoke the clients JavaScript interpreter.
This is a less heuristic approach to finding XSS vulnerabili-
ties.

An advantage to using taint-based policies such as the
ones described above is that we can attempt to generate in-
puts that will result in failing runs and so discover bugs.
In the case of SQL injection vulnerabilities, prior to each
call to the query function in the database API, we apply an
implicit SQL conditional to the string value of the query.
That conditional does not appear in the program or in the
execution of the program; it is simply recorded as a con-
straint in our symbolic execution. The constraint specifies
that substrings in the query from user input are syntactically
confined. In order to invert this constraint, we construct a
transducer that inverts the operations that constructed the
query string, just as before. We then construct the image of
the SQL CFG over that transducer. The image of a context-
free language represented by a CFG over an FST can be
constructed using an adaptation of the CFL-reachability al-
gorithm [24] to construct the intersection of a CFG and an
FSA [12].

The structure of the resulting CFG G’ corresponds to the
structure of the SQL CFG such that for a PHP variable v
whose value is used to construct the query string, we extract
a sub-grammar G, from G’ such that v € £(G). The SQL
predicate checks symbolically whether all possible values for
v are safe based on the structure of G,. In the case of our
running example, this predicate does not hold. Rather than
inverting it by taking its complement, we extract from G,
G, the grammar for values for v where £(G,,) C L(G,) and
every string in £(G’,) represents an attack input. G, can be
constructed because it is based on the structure of G,.

To resolve the constraints on v, we take the intersection of
L(G,,) with the intersection of the other regular languages
that bound v’s range. The result is a CFG, and finding a
word in the language of a CFG can be done in linear time.
Such a word will then be supplied as input for the next test
run, and if it indeed violates the security policy, the runtime
system will catch it. Because the intersection of two CFGs
cannot be constructed in general, we only handle one SQL
constraint on each variable at a time. In the case of our
running example, the result of resolving the SQL predicate
is too involved to show in a meaningful picture, but the
algorithm will produce a string like “0’ OR ’a’=’a,” which
will result in an attack.
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e — ebinope | ¢ | (cast)e

| flee) | oed | v
bin_.op  —  str_op | num_op | bool_op
f —  str_f | num_f| boolf | arr_f
strop  — (concatenation)
str_f —  trim | add_slashes | implode | ...
numop — + | — | x|+ | %
num_f  — count | strlen |...
boolLop — =|#|>]>]|<|<
bool f —  isset | is_int | ereg | ...
arr_f —  explode | split | array_combine |. ..
cast — int | float | string | bool | array

Figure 4: Expression language.

2.5 Selective Constraint Generation

In real-world programs, much of the program’s execution
has little to do with the property of interest. For example,
a web application page that constructs a query may also
instantiate a timer class to limit the execution time of the
page, construct from configuration files HTML fragments
that have text in the users language, and other such opera-
tions. Gathering constraints on unrelated parts of the code
adds unnecessary overhead both to the constraint generation
and to the constraint resolution. Previously, however, au-
tomated input test generation efforts did gather constraints
for the entire execution because: (1) the points of possible
failure may not be known statically; and (2) it may be dif-
ficult to compute a backward static slice from failure points
that are known.

We propose an iterative approach to narrow the focus of
our constraint generation to constraints that are relevant to
possible failures. First, we identify points of possible failure.
In the case of SQL injection, these are the program points
where the API function is called to send a query to the
database. We then add all functions in which these points
occur to a set of functions to be analyzed. We then execute
the program (i.e., load the page) and gather constraints from
only the functions in this set. If the initial execution does not
encounter a query function and hence gathers no constraints,
we instrument the top-level file and in successive iterations
instrument included files until a query function is encoun-
tered. We resolve control dependencies by recording a stack
trace at the beginning of the function call. Those functions
that invoked the analyzed functions then get added to the
set of functions to analyze. We resolve data dependencies by
examining symbolic values, for example, the symbolic value
of the constructed query, and where branches terminate at
function calls, we add those functions to the set as well. We
then re-execute the program gathering constraints from all
of the functions in the set, and repeat this process until no
more dependencies exist. This process approximately com-
putes a backward slice, but we use runtime data to compute
it even in the presence of dynamically constructed function
call names and variable names. By gathering constraint se-
lectively, we reduce by several orders of magnitude the size
of the constraint set to gather and resolve. Reducing the
constraint set size facilitates scaling to larger programs, as
our evaluation shows.



SINGLEOCC(t)

1 switch ¢
2 case v :
3 return {¢}
4 case c:
5 return {}
6 case (cast)e :
7 r—=0
8 ss < SINGLEOCC(e)
9 for each s in ss
10 do r «— rU{(cast)s}
11 return r
12 case e1 bin_op es :
13 r—0
14 $1 «— SINGLEOCC(ey)
15 c2 — GETCONCRETE(e2)
16 for each s in s
17 do r «— rU{s bin_op c2}
18 s2 «— SINGLEOCC(e2)
19 c1 < GETCONCRETE(e1)
20 for each s in so
21 do r — rU{c: bin_op s}
22 return r
23 case f(args list) :
24 r—{}
25 cc +— map GETCONCRETE args
26 for i in 0 to length(args)
27 do s1 < SINGLEOcC(args|i])
28 if0#s
29 then cs « cc
30 csfi] «— s1
31 for each s in s
32 do r —ruU{f(es)}
33 return r
34 case ...:
Figure 5: Algorithm to construct sets of single

variable-occurrence expressions.

3. ALGORITHM

Figure 4 gives the grammar for the Boolean expressions
from a PHP-like language, and the grammar implicitly de-
fines the structure of the expressions’ abstract syntax trees.
The grammar includes some representative functions that
return values of types string, Boolean, and array, as well as
values of numeric types. The constraints recorded from the
execution of the subject program come from this grammar.
Although the grammar does not specify the arity of each
function, PHP’s runtime system executes only programs in
which functions have the right number of arguments. Since
we analyze constraints collected from a run of the program,
the PHP runtime system guarantees that each function will
be passed the right number of arguments.

The PHP runtime performs runtime casts among many
types automatically. For example, PHP will not throw an
exception when trying to execute (3 + “a”); rather, because
the “4+” operator takes two integers as arguments, the run-
time system will automatically cast “a” to an integer and
evaluate the expression. Because the string “a” does not
represent a numeric value, the runtime system will cast “a”
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¢ — e€eL L is a regular language
| eopi integer
| eopf float
| e=1b Boolean
|  efindex/ ¢ constraint on array element
| |e|opi constraint on array length
inder — i integer index
| s string index
| T unknown index
op - =[#F[>]=2]<[<

Figure 6: Constraint language.

to 0. In addition, many functions, such as the length func-
tion, take arguments of one type and return arguments of
another.

Previous work on concolic testing solves constraints by
selecting a theory and replacing expressions that lie out-
side of the chosen theory with the corresponding concrete
value gathered from an execution. PHP’s propensity to con-
vert between types makes it difficult to identify a decidable
theory that covers most of the constraints that a program
execution will generate. Consequently, we adopt a differ-
ent approximation strategy from the approach proposed in
previous work on concolic testing. For each variable occur-
rence in a Boolean control expression encountered in a test
execution, we create a copy of the expression and set all
other variable occurrences in the expression to their con-
crete values from the execution. The SINGLEOCC function
in Figure 5 shows how this operation is performed on a rep-
resentative set of expressions. It returns a set of expressions
where each expression in the set has only a single variable
occurrence and each subexpression that does not depend on
that variable is replaced with its concrete value. Note also
that certain subexpressions, such as function names, are re-
placed automatically with their concrete values.

The constraint gathering phase collects a list of Boolean
control expressions along with their runtime values, each one
being either true or false. In order to generate a set of input
values to take a new program path, we select from the list an
expression e to invert and discard the expressions following
e in the list. We apply SINGLEOCC to each expression in the
remaining list. The result is a list of expressions, each with a
single variable occurrence, and each with a Boolean value to
which it ought to evaluate in order for the new input values
to drive execution along the designated path.

The function SOLVEFOR in Figure 11 generates a con-
straint on the variable in an expression by solving the ex-
pression against a constraint. We pass to it an expression
from the list of Boolean control expressions along with the
expected Boolean value as a constraint. Figure 6 shows the
language of constraints for this algorithm. Each constraint
form has a hole, designated with “e”, for the expression it
constrains. The language includes constraints on integer,
decimal, Boolean, string, and array values. The constraints
on Boolean values are simply equality to Boolean constants.
When SOLVEFOR is called with an initial expression and
Boolean value, the constraint says that the value of the ex-
pression equals the given Boolean value. The constraints on
string values are regular language membership constraints.
The constraints on arrays include length constraints and el-
ement constraints. The language does not, however, include



cast true | false
(int) i 0
(foat) 1.0 0.0
(string) “17 “@
(array) | [true] | [false]

Figure 7: PHP’s rules for type conversion from
Boolean.

MAKEBOOLCONSTRAINT(t)
1 switch ¢

2 case b:return b

3 case op n when —(0opn) and —(1opn):

4 raise Unsatisfiable

5 case opn when 0opnand —(1opn):

6 return false

7 case opn when —(0opn)and 1opn:

8 return true

9

case opn when Oopnand 1opn:

10 raise Unconstrained

11 case op n when z op n= = # 0:return true
12 case € L when 1¢ L and €¢ L:

13 raise Unsatisfiable

14 case € L when 1€ £ and € ¢ L : return true
15 case € L when 1¢ £ and ¢ € £ : return false
16 case € L when 1€ L and e€ L:

17 raise Unconstrained

18 case length op i when 0 opi:

19 raise Unconstrained

20 case length op i : raise Unsatisfiable

21 case [indez|t' : return MAKEBOOLCONSTRAINT(t)

Figure 8: Algorithm for converting arbitrary con-
straints to Boolean constraints.

standard Boolean operators, such as conjunction and dis-
junction, because it is designed for expressions with a single
variable occurrence.

The SoLVEFOR function is designed to retain as much
precision as possible across arbitrary type conversions. It
does not require that expressions have the same type as the
supplied constraint. Rather, it converts the constraint to
have the same type as the expression. Converting the type of
the constraint requires working backward across PHP’s type
conversion rules. To illustrate, Figure 7 shows the rules for
converting Boolean values to integer, floating point, string,
and array values. Figure 8 shows the rules for converting an
arbitrary constraint. The following contrived example helps
to illustrate this point:

step | expression constraint

1 5 + ereg(“"[a-z]*$”, x) (=5)

2a ereg(“"[a-z]*$", x) (=0)

2b | ereg(“ [a-z]*$”, x) (false)

3 |x (ZCA"9))

The expression and the constraint in step 1 both have type
integer, so the 5 can be subtracted from both. The ereg func-
tion in step 2a returns a Boolean value, but the constraint
is over integers. According to the type conversion rules in
Figure 7, false converts to 0, which satisfies the constraint,
and true converts to 1, which does not. The constraint then
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IMAGE(A, F)

// Image of FSA A over FST F
2 (Q17E7817f17617L1)<_A
3 (Q2,%, 52, f2,02, La) — F
4 §—0;Q—0;L—0

5 61 < 61;05 « Jo

6 for each g€ Q;
7
8
9

—_

do &1 « &1 U{(q,€,9)}
for each g € Q>
do &5 «— 55 U{(q,¢,¢6,q9)}

10 for each (gs1,%,q¢1) in 61

11 do for each (gs2,%,0,q:2) in o2

12 do § «— 0 U{((gs1,¢s2),0, (qe1,q:2)) }

13 for each ¢1 in Q1

14 do for each ¢z in Q2

15 do Q — QU {(q1,¢2)}

16 if ¢1 € domain (L)

17 then L — LU{(q1,q2) — Li(q1)}
18 (Q727 (51782)7(f17f2)767L)

Figure 9: FSA image construction.

INVIMAGE(a : FSA, f : FST)
1 a2 «— COMPLEMENT(a)
fo = INv(f)

as — IMAGE(az, f2)

a4 — COMPLEMENT(as3)
return a4

T W N

Figure 10: Algorithm to find the pre-image of an
FSA over an FST.

gets converted to false in step 2b. The function ereg returns
false when the value of its second argument is not in the
language represented by its first argument, so step 3 fin-
ishes with the variable x as its expression and a constraint
specifying a language in which the value of x lies.

As Figure 8 shows, certain type conversions lose all con-
straint on the value of the expression (as on lines 10 and
17), and other type conversions are inconsistent with the
constraint (as on lines 4 and 13). When inconsistencies oc-
cur, the algorithm fails to find input values for a certain
path. Converting constraints to Boolean constraints does
not require approximation, but converting to other types
requires approximation in some cases.

Figure 9 gives an algorithm for finding the image of an
FSA over an FST. Figure 10 shows the algorithm that calls
IMAGE to find the maximal pre-image of a regular language
over an FSA. The SOLVEFOR function uses the INVIMAGE
routine for solving over PHP’s string functions, as on line
19 in Figure 11. Because FSTs may be nondeterministic,
applying the inverse of an FST to an FSA directly will not
yield the maximal pre-image; the complement of the pre-
image of the complement of the language yields the maximal
solution.

Section 2.4 describes an artificial SQL predicate that our
instrumentation inserts into programs wherever the SQL
query function is called. This predicate initially takes the
form of “e € L(Gsgr,),” where Gggp, is the SQL grammar.
Resolving this predicate determines whether SQL injection
attacks are possible, and if so, generates input that will cause



SOLVEFOR(e : expr, t : constraint)
switch e

case c:

raise ConstantExpression

case v :
return v,t
e +c:
op i < MAKEINTCONSTRAINT(¢)
t' —op (i—c)
return SOLVEFOR(e',t’)
ereg(reg,e€’) :
b «— MAKEBOOLCONSTRAINT(t)
fa — REGTOFsA(reg)
if not b

then fa «— COMPLEMENT(fa)
t' «—€ L(fa)
return SOLVEFOR(e’,t")
stripslashes(e') :
€ L(fa) — MAKESTRCONSTRAINT(t)
fa «— INVIMAGE(fa, fstripsiashes )

case

case

case

O e e T el T S S S S
O O 0T UUE WN O OO Uk WN -

t' «—€ L(fa)
21 return SOLVEFOR(e’,t")
22 case count(e’) :
23 t1 < MAKEINTCONSTRAINT(t)
24 to < length t1
25 return SOLVEFOR(e', )

Figure 11: Algorithm to solve for variables.

an attack. The algorithm for resolving this predicate pro-
ceeds initially as the algorithm for resolving other predi-
cates: operations on the single occurence of a variable are
successively inverted and applied to the grammar. The im-
age of a context free grammar over a finite state transducer
is again context free. We need only consider each query site
individually, so other SQL predicates are excluded from the
symbolic expression and the intersection of two context-free
grammars will not be needed. This resolution produces a
predicate that has the form “v € £(G)” for some grammar
G. If other regular language predicates on the variable v
exist, the predicates can be combined by computing the in-
tersection of the regular languages and G.

The CFG representation G2 of the image of a CFG Gi
over an FST or the intersection of a CFG G; and an FSA
can be constructed such that each nonterminal in G> cor-
responds to some nonterminal in G1 (¢f, Figure 7 in [29]).
This means that for a predicate “v € L(G),” the symbols in
G can be related to the symbols in the SQL grammar Gsqr,-
Let PSQL(Xl) = Xy if X7 is a nonterminal in G, X2 is a
nonterminal in Gsgr,, and X1 was constructed based on X».
The grammar G then describes how the initial values of v,
after being transformed by the program and incorporated
into queries, will relate to the SQL grammar. G is con-
structed conservatively, so that it may describe some initial
values of v as being incorporated into queries in ways that
they will not.

Let G be precise if (1) every string in £(G) is a value for
v for which the program will take the same path as in the
logged execution provided that the other inputs remain the
same, and (2) every string value, after being transformed
and incorporated into a query, will be parsed under G,
as given by the correspondence between the symbols in G

255

and the symbols in Ggqr. If G = (V,X, R, S) is precise,
then a string s € £(G) will cause an attack iff there exists
no X such that the following conditions hold:

e s€ L(V,X,R,X) and

e for all sententials forms ~ such that X =" v ="
s, if v = aXi or v = Xja, and if a = s, then
PSQL(Xl) éESQL €.

Such a string s € L(G) exists for G = (V, X, R, S) if for
some X € V and some X1 — aXf3, L(V,X,R,X) € {e}
and either

o 3=¢, FOLLOW (X) € {¢}, and a =* X20/, or
e a=¢, PRE(X) € {¢}, and 8 =" 3'Xa,

where € € L(V,X,R, X2) and ¢ & L(Vsor, X501, Rsqr,
Psqr(Xz2)), and where FOLLOW (X) is the follow set of
X and PRE(X) is the follow set of X in the right-to-left
direction. Standard algorithms exist for finding the follow
set of a nonterminal and determining whether a nonterminal
can derive €. In order to generate a string that will cause
an attack, we identify an X as described above and derive
a string through it, including a non-empty string from X'’s
follow/pre set and e derived from Xo.

4. EVALUATION

This section discusses our implementation and the test
cases we used, and then presents the results of our evalua-
tion.

4.1 Implementation

As previously discussed, our approach has two phases:
constraint generation and constraint resolution. PHP is
an interpreted language, so the constraint generation phase
could be implemented directly in the interpreter. However,
it is not clear how the first phase could avoid generating
unnecessary constraints if the interpreter has only the web
application code. Consequently, we chose to implement con-
straint generation at the language level. We wrote a plugin
to phe, an open source PHP compiler front-end [7], to per-
form a source-to-source transformation on the PHP code
that we want to gather constraints from. The plugin consists
of about 2200 lines of C++, and it wraps each statement in
a function call. The wrapper functions write to a file a trace
log of the program execution. Additionally, on evaluated
strings in transformed code, the transformed program first
passes the code to be executed through the source-to-source
transformation so that the new code will also be logged.

The second phase reads in the log and symbolically exe-
cutes the trace. It produces a list of Boolean control expres-
sions where each subexpression is annotated with a concrete
value from the execution. This phase is implemented using
about 5200 lines of OCaml in addition to Minamide’s finite
automata and regular expression libraries [19].

4.2 Test Subjects

We selected three real-world PHP web applications with
known SQL injection vulnerabilities to evaluate our imple-
mentation. The first, Mantis 1.0.0rc2, is an open source bug
tracking system, similar to Bugzilla. It has an SQL injection
vulnerability in its “lost password” page, and the top-level
PHP file for this page includes transitively 27 other files for



gpc-api.php

46 function

47 gpc_get_string( $p_var_name,

48 $p_default = null ) {
49

50 $args = func_get_args ();

51 echo "args = ";

52 $t_result =

53 call_user_func_array ( ’gpc_get’,
54 $args );
55

56 if ( is_array( S$t_result ) ) {

57 error_parameters ( $p_var_name );
58 trigger_error (

59 ERROR_.GPC_ARRAY_UNEXPECTED,
60 ERROR );

61 }

62

63 return $t_result;

64 }

Figure 12: Input handling code in Mantis.

a total of 17,328 lines of PHP in the page. The second,
Mambo 4.5.3, is an open source content management sys-
tem. It has an SQL injection vulnerability in its “submit
weblink” page, and the top-level PHP file for this page in-
cludes transitively 23 other files for a total of 13,248 lines
of PHP in the page. The third, Utopia News Pro 1.3.0, is a
news management system. It has an SQL injection vulner-
ability due to insufficient regular expression filtering in its
user-management page. It includes transitively 6 other files
for a total 1,529 lines of PHP.

Both of the first two web applications we tested use dy-
namic features for parts of the code that are relevant to
query construction. First, both web applications include
files dynamically by specifying the names of files to include
via dynamically constructed string values. Some static ana-
lyzers require user intervention to provide static file names
in order to get all of the code that the application will use,
although others use constant propagation or related tech-
niques to construct some file names automatically.

Second and more importantly, both use dynamic features
in handing user input. Figure 12 shows the gpc_get_string
function from Mantis’ gpc_api.php file (“gpc” stands for GET-
POST-COOKIE, the three primary vehicles for delivering

mambo.php
1973 function
1974 mosGetParam ( &8$arr , $name, $def=null,
1975 $mask=0 ) {
1976 if (isset( $arr[$name] )) {
1977 if (is_array(S$arr[$name]))
1978 foreach ($arr[$name] as
1979 $key=>$element )
1980 mosGetParam ($arr [$name], S$key,
1981 $def, $mask);
1982 else {
1983 if (!($mask&MOSNOTRIM))
1984 $arr [$name] =
1985 trim( $arr [$name] );
1986 if (!is_numeric( $arr[$name] )) {
1987 if (!($mask&MOSALLOWHTML))
1988 $arr [$name] =
1989 strip_tags(3arr[$name]);
1990 if (!($mask&MOSALLOWRAW)) {
1991 if (is_numeric(3$def))
1992 $arr [$name] =
1993 intval($arr [$name]);
1994 }
1995 }
1996
1997 return $arr[$name];
1998 } else {
1999 return $def;
2000  }
2001}

user input to the application server). The call to func_get_args()

on line 50 returns as an array the list of arguments that was
passed to the user-defined function in which it is called. The
call to call user_func_array() on line 53 calls the function
named by the string value of the first argument passing ar-
ray in the second argument the function as an argument list.
In this case, it is the function gpc_get that retrieves input
values directly. Figure 13 shows the mosGetParam function,
the function used for getting input values, from Mambo’s
mambo.php file. This function takes as arguments an array
reference and the string value of the name of an index and
returns the value of the appropriate array element. In some
calls to this function, the array passed is itself a dynamically
index element of an array (e.g., GLOBALS).

We tried to analyze both web applications using two static
analyzers: Pixy [14], and Wassermann and Su’s tool [29],
which is based on Minamide’s PHP static analyzer [19]. Be-
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Figure 13: Input handling code in Mambo.
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Figure 14: Trace log file data.

cause of dynamic features such as those shown above, both
failed to find any SQL injection vulnerabilities.

4.3 Evaluation

As previously stated, the first phase of our analysis per-
forms a source-to-source translation on PHP files so that
the resulting files, when executed, will write to a file a trace
log of their execution. For all execution and logging experi-
ments, we set the maximum execution time at 5 minutes per
iteration (execute, log, resolve constraints). The first set of
experiments we ran shows demonstrates that logging the
whole trace can be prohibitively expensive. Figure 14 shows
the execution times and corresponding log sizes for Mantis
when increasing numbers of functions were translated and
executed. For the assertion we were checking, four functions
proved to be sufficient to cover the backward slice. When
all of the code was translated and executed, the page failed
to load in our browser before timing out. At that point, the
log file size was 2.9 GB. In this experiment, when a file was
to be included, our translation dynamically translated the
file, wrote it to a new file, and included the new file. This



Test Case Inputs Time Max Log

Generated | (mm:ss) | Size (KB)
Mambo 4 13:02 65
Mantis 5 03:38 19
Utopia News Pro 23 05:14 17

Figure 15: Iterations to find an injection vulnerabil-
ity.

dynamic translation added to the execution time, but not
to the log file size.

In our experiments, only the conditional expressions on
constructed queries in our added assert statements had more
than one variable occurrence. This means that for the condi-
tional expressions in our experiments, our algorithm did not
make any approximations by considering only one variable
occurrence per expression instance.

Figure 15 shows for each program in our evaluation how
long it took to find an input that caused an SQL injection at-
tack in terms of the number of test inputs generated and the
total time to generate them. Mambo and Mantis required
relatively few test inputs before they generated an attack.
This is because in each of their pages, the query constructed
at the vulnerable program point plays a central role in the
page. If the inputs that get included in the query are not
present, the page produces an error message before it has
done much else. Once the inputs are provided that cause
the page to produce a query successfully, the execution also
encounters the implicit conditional inserted by our source-
to-source transformation that checks whether the query is
an attack. The next input will then produce an attack. In
contrast, our implementation produced 22 inputs to Utopia
News Pro before producing one that results in an attack.
This is because the page we tested performs several roles
in the application and essentially has a large switch-case
statement on input values to select which action it should
take. The vulnerable program point in this page was not
reached until several other branches of the switch-case state-
ment had been tried. Although Mambo required the fewest
inputs of our test cases to reach an injection attack, it took
the most time. This was because, as indicated by the max-
imum trace-log size, the page performed more operations
before reaching the vulnerable program point than it did
for Mantis or Utopia News Pro. Consequently, there were
more constraints to be resolved for each path, and for each
input generated, our implementation attempted to resolve
constraints for several paths that proved to be unsatisfiable.

5. LIMITATIONS

This section discusses some limitations of our approach.

Previous work on leveraging symbolic and runtime values
for input test generation falls back on concrete values when
the symbolic value being addressed lies outside the theory
of the resolution algorithm’s decision procedure. Our con-
straint resolution algorithm generates constraints only based
on one variable instance per value. Therefore it may under-
approximate the symbolic values of variables when program
predicates depend on multiple variables, and it may miss
paths that other resolution algorithms would find. In prin-
ciple our constraint resolution algorithm could be enhanced
to include multivariate constraints in some cases, but we
leave that to future work.
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Our approach of logging files selectively is effective only
when the points of possible failure are known and relatively
localized, as is the case with SQL injection, where the pos-
sible failure point is where the program sends queries to the
database. If the problems of interest are potentially more
ubiquitous in the program code, as with arbitrary runtime
exceptions, logging selectively will be less effective. Logging
the whole execution trace would address that problem, but
it is prohibitively expensive. We expect that modifying the
PHP interpreter to generate symbolic constraints directly
may alleviate some of the expense of execution time, but
that may make selective logging difficult.

At present, our implementation is not fully automated.
The web page must be manually loaded (e.g., by clicking
“g0”), the analyzer must be manually invoked, and analyzer
writes the next inputs to a file, so they must be manually
provided to the URL. However, in principle, nothing about
our approach requires user interaction.

6. RELATED WORK

In this section, we survey closely related work.

6.1 Test Input Generation

Traditional work on testing has generated random val-
ues as inputs [6, 17, 22]. Randomly generated input val-
ues will often be redundant and will often miss certain pro-
gram behaviors entirely. Test input generation that lever-
ages runtime values, or concolic testing, has been pursued
by multiple groups [3, 4, 5, 10, 26, 27]. These approaches
gather both symbolic constraints and concrete values from
program executions, and use the concrete values to help re-
solve the constraints to generate the next input. Previous
work on concolic testing handles primarily constraints on
numbers, pointer-based data structures, and thread inter-
leavings. This is appropriate for the style of programming
that languages like C and Java encourage, but scripting lan-
guages, especially when used in the context of web appli-
cations, encourage a style in which strings and associative
arrays play a more central role.

Perhaps the work most closely related to ours is by Emmi
et al., in which they augmented concolic testing to analyze
database-backed Java programs. They added support for
string equality and inclusion in regular languages specified
by SQL LIKE predicates [8]. Our work is distinguished from
theirs in at least the following aspects. They support a form
of multi-lingual programming in which Java programs gener-
ate SQL queries, whereas we support a setting in which more
general meta-programming is possible. They do not support
any string operations, although they mention that string
constraints with concatenation can resolved in PSPACE;
where as we support concatenation as well as many other
string operations that PHP provides, although this requires
us to make some approximations in our constraint resolution
algorithm. They check for the same properties as standard
concolic checking, whereas we check for security problems
common among web applications.

6.2 Web Application Testing

Some previous work on web application testing has fo-
cussed on static webpages and the loosely structured control
flow between them (defined by links), and other work has
focussed on the server-side code, often carrying over tech-



niques from traditional testing. Early work on web appli-
cation focussed primarily on static pages and the coverage
metric was page-coverage. Ricca and Tonella propose a tech-
nique for using UML models of web applications to analyze
static web pages via testing [25]. Kung et al. model web ap-
plications as a graph and develop tests based on the graph in
terms of web page traversals [16]. The tool Veriweb explores
sequences of links in web applications by nondeterministi-
cally exploring action sequences (i.e., sequences of links) [1].
This tool provides data to forms using name-value pairs that
provided by the tester.

Other testing techniques that attempt to test the effects of
input values on web applications, but they require interface
specifications and cannot guarantee code coverage without
extensive user interaction. In some cases automated tech-
niques derive the interface specifications [11] and in others
developers must provide them [13], but either way, the test-
ing system essentially performs fuzz testing that may be con-
strained by user-provided value specifications. Other testing
mechanisms provide more reliable code coverage, but they
repeatedly prompt the user for new inputs, so they sacrifice
automation [18].

6.3 Static Analysis of PHP Web Applications

Static analysis of web applications is related to our work
in the sense that it also attempts to find the same classes
of bugs as our approach does. Jovanovich et al. developed
Pixy as a taint-based analysis of PHP programs with con-
stant propagation [14]. Xie and Aiken developed a similar
analysis but sacrificed some precision in favor of scalability
by using block and function summaries [30]. Because these
analyses do not consider dynamically constructed string val-
ues, they can only check whether raw user inputs flow into
sensitive sinks, although most injection vulnerabilities do
fall into that category. Minamide constructed a string anal-
ysis that represents sets of string values using context-free
grammars, although this is a more expensive analysis than
standard taint analysis [19]. Wassermann and Su modified
his analysis to add taint annotations to the generated gram-
mars so that more expressive policies could be checked [29].

All of these techniques have limited effectiveness, because
PHP supports dynamic features, in which the runtime sys-
tem interprets data values as code, and dynamic features
inhibit static analysis. The standard dynamic features PHP
provides allow string values to specify: the name of a file to
include, the name of a variable to read/write, the name of
a method to invoke, the name of a class to instantiate, and
the string representation of code to execute. All of the static
analyses for PHP described above either fail on dynamic fea-
tures, treat them optimistically (i.e., ignore them), ask the
user to provide a value for each one, or do some combination
of the three. Many PHP applications use dynamic features
extensively, for example, to implement dynamic dispatch for
dynamically loaded modules or for database handling code.
On such code, static analysis fails to produce useful results.

In most real-world PHP programs, however, the values of
interpreted strings come only from trusted values such as
constant strings within the PHP code, for example in a fac-
tory pattern; column names from a known database schema;
or field names from a protected configuration file. In such
cases, the values of interpreted strings depend only indirectly
on user input, and for any given run, the predicates on user
inputs are not dynamically constructed.
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7. CONCLUSIONS

In this paper we have presented an approach for analyzing
web applications by generating test inputs for them auto-
matically using information from previous executions. This
approach handles dynamic language features more grace-
fully than static analysis. We also explored new techniques
in both the constraint generation and the constraint resolu-
tion phase. By projecting the trace onto a backward slice
from the assertion of interest, we generated several orders of
magnitude fewer constraints, and improved the scalability
of the approach. By considering only one variable occur-
rence per expression, we improved the precision with which
our constraint resolution algorithm models the semantics of
operators and library functions.

In this paper, we have primarily considered a test oracle
for SQL injection. In the future, we would like to explore
other general test oracles. For example, in many web-based
medical records systems, confidential information should not
flow to certain classes of users. We are interested in explor-
ing how multiple test executions can be compared to detect
information leakage, and how inputs that will leak confiden-
tial information can be generated. The challenge will be
in determining which predicates to target and in how new
input values are selected.

We are also interested in exploring some implementation
trade-offs further. For example, we would like to experiment
with a constraint generation implementation that works as
part of the runtime system, so that more can be done with-
out tampering with the program. Part of the challenge will
be in whether constraint generation can be done selectively
but without the aide of a backward slice.
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