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Dynamic Testing and Diagnostics of 
A/D Converters 

M. VANDEN BOSSCHE, J. SCHOUKENS, AND J. RENNEBOOG 

Ah.sfrrrcf -A method is derived to measure the integral and differential 
nonlinearity of an ADC using a sinewave with unknown amplitude and 
offset. The uncertainty of the measurement is also estimated. In a second 
phase, the integral nonlinearity is analyzed, using Walsh Transforms, to 
identify the nonlinearity at the bit level of the ADC. 

I. INTRODUCTION 

D URING THE PAST years, the importance of digital 
signal processing has grown very rapidly. At the 

same time, the performance of the ADC, which transforms 
the analog signals to digital ones, has been improved. To 
have an idea of its real performance, it is necessary to 
measure its transfer characteristic. 

Classically, this was done in a static way. However, a 
number of imperfections will not be detected by these 
tests. To improve the knowledge of the behaviour of an 
ADC, a dynamic test is set up. 

The most common dynamic tests used nowadays, are 
histogram and beat frequency testing [l]. These methods 
give a good qualitative idea of the ADC performance. The 
method, presented in this paper, will give a quantitative 
evaluation of the ADC under test. This gives the possibil- 
ity to correct the dynamic behaviour of the ADC. 

The ADC is excited with a signal with a known prob- 
ability density function (PDF). A great number of samples 
are taken and an estimate of the real PDF is made. By 
comparing the measured PDF with the theoretical one, it is 
possible to derive the differential and integral nonlinearity. 
The main idea of this test has already been developed by 
many authors [2]-[4]. In these articles, a triangular wave- 
form was used because its PDF is very simple. The funda- 
mental drawback of this choice is the distortion of the 
waveform. However, a sinewave can be generated with a 
very low distortion, even at high frequencies. 

Starting from this idea, an analogous approach was 
developed as explained in [l] and [5]. The transfer char- 
acteristic iscalculated and the Integral Nonlinearity (INL) 
and Differential Nonlinearity (DNL) are derived. To use 
these results, it is necessary to have an idea about the 
uncertainty on them. A simple statistical analysis will give 
the solution. 

The concepts of INL and DNL are applicable on all 
ADC’s. 
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In a second step, it is possible to make a diagnostics to 
identify which bits are responsible for the nonlinearity, 
using the Walsh Transform. These diagnostics are related 
to the working principle of the ADC. In this paper, Ana- 
log-to-Digital converters will be considered which are based 
upon binary-weighted bit voltages, currents, and the 
successive approximation principle. 

The knowledge of the analysis can be used to correct the 
transfer characteristic of the ADC. 

II. MEASURINGTHE INL ANDTHE DNL 

11.1. Deriving the Transfer Function of the ADC 

The PDF of a sinewave y(t) = A-sin& + B is given by 

f(Y) = 

During the experiment, a great number of sample points 
are taken of the sinusoid. The signal can be sampled at 
random (random sampling method) or at equidistant points 
(asynchronous sampling method). In the last case, the 
sample frequency has to be chosen in such a way that the 
ratio of the sampling frequency and the frequency of the 
sinusoid is a rational number given by the ratio of two 
prime numbers. After the completion of the experiment, a 
vector P can be defined in which the k th element is given 
by 

Pk = nk/N (2) 

with nk being the number of samples on the k th level of 
the ADC and N the total number of samples. 

The values pk can be considered as an estimate of the 
probability to excite the kth level of the ADC. The prob- 
ability Qi to realize a measurement y < UB,, with UB, the 
upperbound of the i th level, is 

Qi 7 P( y < UBi) = i pj 
j=l 

measured 

theoretical. (3) 

This integral depends upon the value of the amplitude A 
and the offset B of the applied sinewave. In practical 
setups, it is not always possible to know these values. A 
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Transfer Function of 5 - Bit ADC (Simulation) 
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Fig. 1. Transfer function of the simulated ADC. 

and B can be eliminated using a linear transformation The integral nonlinearity is defined as the difference be- 
y=Ay’+B-y’=(y-B)/A 

ubj = (Vi; - B)/A (Fig. 1). 

tween the measured transfer characteristic and the best 

(4 
fitted straight line. This line is given by a linear regression 
analysis 

The shape of the transfer characteristic is not changed 
by this transformation. Combining (4) and (3) the follow- 
ing relation is derived: 

ub, = - cos TQ;. (5) 
With this relation, it is possible to make an estimate of 

the scaled transfer function, using the results of the mea- 
surement, stored in P. Starting from this transfer function, 
the DNL and INL are calculated. 

INL = 
measured characteristic - regression characteristic 

1, 
LSB. 0) 

11.3. Study of the Uncertainty on the Measurements 

The measurements of the INL and DNL are a result of a 
stochastic process analysis (the random sampling of a 
sinusoid). This implies, that even in a noiseless process, 
there will be an uncertainty in these results. It is very 
important to have an idea of the uncertainty, to design the 
experiments and to interpret the results. 

In Appendix I, it is proven that the standard deviation 
u “,, and the crosscorrelation (I,~ ub are given by 

u uh, = /[r2Qi(l - Qi)sin2nQi]/N 
II.2. Determination of the DNL and INL 

The differential nonlinearity of the ith level is defined as 
the ratio 

DNLi = 
UB, - UBipl 

-1 
LR 

in Least Significant Bit (LSB) with L, the reference length 
of a level and with the transformed variables 

LR 
with lr = 7 (Fig. 1). 

DNL, = 
ubi - ubipl 

1, 
-1 LSB 

%h,uh, = /[Ir2Qi(l-Qj)sin7iQjsin7rQj]/N, 

with Qj > Qi. (8) 

From these results the following expressions are derived: 

uINL,, = %hi 11, in LSB 

uDNL, = , \i[ dh + uu”b,-, - 2u,2b,uh,-, /I,* 1 in LSB.’ (9) 

(6b) The ‘maximal uncertainty occurs for Qi = 0.5. The follow- 
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ing approximations can then be used: 

uINL,_ = 7r/(21,)4/4R in LSB 

uDNL,,,_= \Ilrlo.,/(@) in LSB 

=#i/l/fi if I,,, = I, 00) 
with l,, the length of the level containing the value ub = 0 
(Q = 0.5) The last result is found by substituting the values 
Q, = 0.5 - AQi and Qj = 0.5 + AQj, with AQi and AQj -+K 
1, in relations (8) and (9) and using a linear approximation 
of relation (5) in Q = 0.5. 

These results are derived for the random sampling 
method. If the asynchronous sampling method is used, it 
can be proven that the uncertainties are smaller. In that 
case the l/$v law becomes a C”l/N law. Indeed, the 
sampling rate is chosen in such a way that an entire 
number of periods of the sinusoid is measured for the first 
time after N sampling points. The number of samples nk 
on the k th level is proportional to N. The maximal varia- 
tion of nk is 1. Using relation (2) the maximal variation of 
pk = n,/N is given by jAp,l is l/N. From this result, it is 
easily seen that the uncertainty on the DNL and INL is 
proportional to l/N. 

III. DIAGNOSTICS ON ADC 

III. I. Introduction 

Using the knowledge of the INL and DNL, it is possible 
to run diagnostics on the INL to extract information at the 
bit level. This technique can be used by the ADC hardware 
designer to qualify his prototype. The INL and the DNL 
will give him the information about the acceptance of his 
product. If improvement of the prototype is necessary, the 
diagnostics of the ADC will provide a straightforward 
feedback to the ADC designer by indicating which bit(s) is 
(are) wrong. The diagnostic technique will give also the 
possibility of compressing the great amount of data from 
high resolution ADC’s, offered by the INL and DNL 
(2 x 2N information items, N-bit ADC), into the essential 
information on the bit level (N information items). 

111.2. Bit Failure, Manifesting in the INL and DNL 

To develop a diagnostic method, the effect of bit failure 
on the INL and DNL must be considered. The effect is 
illustrated by a simulation of a 5 bit Successive Approxi- 
mation Register (SAR) ADC (fifth bit: Most Significant 
Bit, first bit: Least Significant Bit) with a full scale range 
from - 1 to + 1 V (digitizing step: l/16 v). Enlarging the 
weight of the 4th bit (23) by 10 percent compared to the 
ideal situation, a bit failure was introduced. This will result 
in an INL of 0.8 LSB and a DNL of 0.8 LSB. The 
asynchronous sampling technique is used to simulate the 
measurements. 100 000 samples were taken into account to 
get small uncertainties on the INL and the DNL 
(a INL 3 uDNL < 0.08 LSB). Fig. 1 shows the transfer func- 
tion of this ADC. The INL (Fig. 2) and the DNL (Fig. 3) 
do reflect the failure of the ADC. It can be seen that the 
INL is an integrated form of the DNL. The 95-percent 

error estimation band gives an idea about the significance 
of the measurement procedure. It must be noticed that the 
error band is calculated for a random sampling process. 

111.3. Fourier Transform - Diagnostics 

It is possible with Discrete Fourier Transform-tech- 
niques (DFT) to detect the repetition of the peaks in the 
DNL and the square waves in the INL. The DFT is 
applied to the INL and DNL (Figs. 4 and 5). 

Because the INL can be considered as an integrated 
form of the DNL, the l/j+function (integration effect, 
represented in the Fourier Transform) is reflected in the 
INL. The small constant peaks on Fig. 5 are due to small 
aberrations of the calculated reference level. This aberra- 
tion introduces also the small constant peaks on Fig. 3 
(DNL). Applying a DFT to this kind of signal, a new 
signal with constant peaks is created, as illustrated in Fig. 
5. In actual experiments, the ADC is considered as a black 
box with no additional information. Therefore, it is neces- 
sary to estimate the length of the reference level I, (equa- 
tions (6a) and (6b)). This is accomplished by taking the 
mean of the length ( ubi - ubiPl) of all the levels. The 
reference level is not calculated as 1, = 2/,N, where 2 is 
the full scale range of the normalized ADC. This is due to 
the practical realization of the experiment. It is almost not 
possible to apply a sinewave to the ADC, covering exactly 
its full scale range without creating saturation effects in 
the lowest and highest ADC-level. This saturation would 
cause deformation of the probability density function, 
which must be avoided. For this reason, only a subrange of 
the ADC is analyzed. This subrange can be chosen as near 
as possible to the full scale range. In this case, an aberra- 
tion of the reference level, only introduces a gain error on 
the INL, in opposite to the DNL where small parasitic 
peaks appear. Because of the behavior of the INL, due to 
bit failure, the sine-cosine functions are not of the ap- 
propriate class to analyze the DNL and INL. It becomes 
difficult to separate the effect of different bit failures when 
they start to interfere or if bit-intermodulation does occur. 
The use of the word “bit-intermodulation” describes the 
behavior of bits, influenced by the appearance of a certain 
other bit. This phenomenon will be mentioned later. 

III. 4. Walsh Transforms 

The effect of the bit failure on the INL, imposes as the 
appropriate class of functions the use of the Walsh trans- 
forms. In this way, all the problems, coming along with 
DFT, are avoided. The Walsh functions are adequate to 
study step-like signals and are defined as follows: 

01) 

where 
nppl, npp2; . -, no binary representation of n, 
tp-1, tp-2,. ’ -7 to binary representation of t, 
n the order of the Walsh function, 
t the argument (often: time representa- 

tion). 
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Integral Non - Linearity (5 - Bit ADC) 
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Fig. 2. The integral nonlinearity of the simulated ADC. 
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Fig. 3. The differential nonlinearity of the simulated ADC 
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Fourrier Transform of INL (5 - Bit ADC) 
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Fig. 4. The Fourier transform of the INL of the simulated ADC. 
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Fig. 5. The Fourier transform of the DNL of the simulated ADC. 
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Fig. 6. Example of the Walsh function O-7. 

In Fig. 6, a few Walsh functions (sequence ordered) are 
illustrated as example. 

The Walsh functions are an orthogonal complete set of 
functions, that results in the Walsh transforms: 

N-l 

xi= c X,WAL(n,i) 
n-0 

X, = ; &WAL(n, i). 
I-O 

(12) 

Implementing the Fast Walsh Transform, the sequence 
ordered algorithm was chosen. The sequence order, which 
stands for the number of transitions between - 1 and + 1, 
can be compared to frequency in Fourier analysis, and to 
the effects of bit failure on the INL. 

111.5. Characterization of Bit Failure 

To characterize the bit failure, the general working 
principle of the ADC has to be considered. This paper 
studies a Successive Approximation ADC with binary- 
weighted voltages or currents. The reference voltage, used 

in such an ADC, can be mathematically represented 

n -bit ADC: 
bit pattern: pn-,pnP2 * * *p. with pi = 0 or 1 

v,, = pn-,w,-,2”-l + . . . + PoWo2? 

Ideal linear ADC: 

w,-,= “. =w, 

= W: quantization step (Weighting Values) 

+ KefN = ( p,-12”-1+ . . . + po20). w. (13) 

The reference voltage I&, is formed by switching in 
resistors of an R -2 R-bridge. Inaccuracies on the resistors 
do cause errors on the weighting value W ( = on the 
quantization step). The bit diagnostics consist of estimat- 
ing the error SW, on the weighting value Wand the sign of 
the error (6%: positive or negative). Knowing this error 
contributes to the possible improvement of the perfor- 
mance of the ADC during design.and production. 

Referring to the simulation, mentioned-earlier, enlarging 
the weight of bit 4 by 10 percent means that SW, = O.lW. 
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Walsh Transform of INL (5 - Bit ADC) 
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Fig. 7. Walsh transform of the INL of the simulated ADC. 

Suppose: error on bit i + 1 (2’) 
+w,=w+srq 

<ef = 6:ef N + pis&2’ = F/,,fN + 6V. (14) 
The deviation of VrefN( = 6w2’) will influence the point 

of switching in bit i + 1, compared to the applied voltage. 
If SW, is positive, the decision to switch in bit i + 1 will be 
delayed, if SWi is negative, the decision will be accelerated. 
Due to the deviation, the voltage, corresponding to the 
beginning of the levels involved, will be shifted over 6K.2’ 
= 6V. This results in an INL of &f/W, each time the bit is 
evaluated: 

sv SW,” -=- 
w w 

LSB. (15) 

The relative error on the weighting value can be repre- 
sented by 

SWi 
- *loo. 
W 06) 

Applying the Walsh Transform to an INL with step 
6V/ W, will result in a value 6V/2W on sequence number 
2N-’ - 1 (N-bit ADC). The factor 2 results from the Walsh 
function which toggles between - 1 and 1 with amplitude 
1. If a failure occurs on bit i + 1, during the ADC-test, the 
Walsh Transform will give a value ai on the sequence 
number 2N-i - 1 (N-bit ADC), as stated before. 

Refering to (14) and (15), this value can also be calcu- 
lated’ as a function of the error SW, and the bit-weighting 

factor W 
6V 6IK2’ 

a,===--@. (17) 
The relative error, on the weighting value, derived from 

the Walsh transform, can be calculated as follows: 
SW, 2.ai 

si = y- -100 = 2’ -100. 

Until now, the sign of a, has not been considered. It 
gives information about the direction of deviation from the 
ideal ADC. The sign depends on the form. of the Walsh 
functions. Comparing the Walsh functions of Fig. 6 with 
the INL of the j-bit ADC simulation (Fig. 2), where SW, 
was positive, one concludes that the Walsh function 
Wal(3,t) with a negative coefficient describes the INL 
completely. So, if the Walsh coefficient is negative, the 
error 6W on the weighting value W is positive and vice 
versa. 

This technique can be demonstrated by processing the 
information, obtained by the simulation. In Fig. 7, the 
Walsh Transform of the INL of the example in Section 
III.1 is shown. Analyzing this Walsh Transform, results in 
the following conclusions: 

N=5 (5-Bit ADC) 

Consider Fig. 7 + Sequence Number = 2N-i - 1 = 3 
-+i=3 
+ Bit failure on bit 4(23) 
+ a3 = -0.39 
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Integral Non - Linearity (10 - Bit ADC) 
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Fig. 8. The integral nonlinearity of the tested ADC (10 bit). 

Differential Non - Linearity (IO - Bit ADC) 

Fig. 9. The differential nonlinearity of the tested ADC (10 bit) 
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Fig. 10. (a) The Walsh transform of the INL of the tested ADC. (b) Zoom on Fig. 10(a). 
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INL, = - 24 = 0.78 
compare with given value: 0.8 LSB 

%i3 = - 2a,/23..100 = 9.8 ’ 

(compare with lo-percent error on weighting value) 

These values correspond within the uncertainty to the 
given parameters in the simulation. 

III.6. Application on a IO-bit SAR-ADC. 

The previous techniques have been applied to a real 10 
bit SAR-ADC, preceded by a track-and-hold circuit and 
used in a data acquisition channel. 

Figs. 8 and 9 show the INL and DNL. The INL-char- 
acteristic shows a nonstochastical deviation, due to the 
nonlinearity of the track-and-hold. This was confirmed by 
a spectral analysis, made after the track-and-hold. 

In Fig. 10(a), the resulting Walsh transform, applied to 
the INL is illustrated. The influence of the bit failure is 
easily seen. The bits, which are wrong, are indicated on the 
figure. To find these bits, the results of the Walsh Trans- 
form of the INL are scanned by looking at the components 
with sequence number 2N-’ -1. If only bit failure occurs, 
as described in Section III.5 ( = single-bit failure), the 
Walsh Transform results in components with only se- 
quence number 2N-i - 1 ( = odd number). Again looking 
at Fig. 10(a), one sees important components with an even 
number (sequence number 2 and 6). These are caused by 
the non-linearities of the track-and-hold, which also re- 
flects the parabolic evolution ( = even function) of the 
INL. This effect, however, will not disturb the odd compo- 
nents, describing single-bit failure. 

Investigating bits 2, 3, and 5 on Fig. 10(a), another 
effect is illustrated. The components, corresponding to 
these bits, are accompanied by components with sequence 
number 2N-i - 2. This effect can probably be explained by 
bit-intermodulation. The meaning of bit-intermodulation 
in SAR-ADC’s is that an error occurs on a lower bit 
because a higher bit is switched on. This phenomenon will 
be subject to further investigations building a fitting model 
and extracting quantitive information. 

IV. CONCLUSION 

A method is presented to measure and analyze the 
characteristics of an ADC. It is shown that it is possible to 
extract the information concerning the nonidealities from 
the bit-level. Using these techniques, the analysis can be 
done on 2 levels. 

The first level ( = INL- and DNL-analysis) is used by 
the designer of high-performance Digital Signal 
Processing-applications to evaluate the heart of his system, 
the ADC. 

While the designer will use the second level ( = Walsh 
analysis + information extraction on bit level) to evaluate 
and correct his ADC-hardware. 

I t N 

t 
Ni 

‘. 
ij 

I I . 

Nj 
’ N ’ 0 

Fig. 11. Study of the cross correlation of N, and N,. 

APPENDIX I 
To estimate the uncertainty on the DNL and INL it is 

necessary to know the probability distribution of the cum- 
mulative probability Q. The variance and cross-correla- 
tion of ubi is derived using linear approximations. 

To realize the value Q, it is necessary to have N, 
measurements with a value < UB, and (N - N;) measure- 
ments with a value > UB,. The distribution of Qj is a 
binomial distribution, which can be very well approxi- 
mated by a normal distribution [7] 

P(Q;) = CNN’P( meas<UBi)N’(l-P(meas>UB,))N-N’ 

=C$QF(l-Qi)“-” 09) 
with Q; the estimated value of Q,. 

The mean and standard deviation is given by [7] 

PQ: = Qi, UQ; =~~. (20) 

This means that Q, is an unbiased estimate of Qi. For this 
reason no difference is made in notation for the measured 
and true value of Qj in the other parts of the text. 

It’s also necessary to know the covariance between Qi 
and Qj. Considering Fig. 11 the following relations can be 
made: 

u&) = E[dq.dN,] (21) 

with dNj, dNj the deviations of Ni, Nj to the expected 
values E[ N,], E[ N,] 

Nj=Ni+N,j+dNj=dNi+dN,j. 

Equation (21) becomes 
2 

‘NY, 
2 

= ‘it, + ‘N, N,, . (2-4 

On the other hand, we have the following relation: 

N, + N, j + No = N = de + dNO = - dNij - dNi 

or 

‘No , ,, 2 =a; +a; +2u;, I 8,. 
From this relation, u; N , ,, is derived and substituted in (22) 

4,T = [ 4, + Go - 4 /2 

which can be further reduced, using 

u; = NQi(l - Qi) 

u;;= NQa(l- Q,) 

u; ‘J = NQij(l - Qij) 

Authorized licensed use limited to: GOVERNMENT COLLEGE OF TECHNOLOGY. Downloaded on August 01,2010 at 19:30:42 UTC from IEEE Xplore.  Restrictions apply. 



785 VANDEN BOSSCHE et al.: A/D CONVERTERS 

with 

Q, = P(meas > ub,) 

Qij=P(UBi<meas<UBj) =1-Qi 

Finally, (23) results in 

u,?,~ = NQ,Qo = NQi(l - Qj) 
and 

u~,Q, = Qi (l- Qj)/N* 

Qj. 

(24 

To derive the variance u,‘, the relation (5) ub, = - cos TQ, 
is used. Differentiation gives 

-dub, = r sin TQ, dQ, 

and 

u,‘h = E [ dub, dub,] = r2 sin*rQ& 

= r2 sin21rQiQi(l - Q;)/N. 

In the same way it is found that 
2 

%b,ub, = E[dub,dub,] = vr2 sin aQ, sin rQ,Qi (1 
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