
Paper Number 39 

Dynamic Testing of Precast, Post-Tensioned Rocking 

Wall Systems with Alternative Dissipating Solutions 

D. Marriott, S. Pampanin & D. Bull 

University of Canterbury, Christchurch, New Zealand. 

A. Palermo 

Technical University of Milan, Italy. 

 
2008 NZSEE 

Conference 

ABSTRACT: During the past two decades, the focus has been on the need to provide communities 

with structures that undergo minimal damage after an earthquake event while still being cost 

competitive. This has led to the development of high performance seismic resisting systems, and 

advances in design methodologies, in order respect this demand efficiently. 

This paper presents the experimental response of four pre-cast, post-tensioned rocking wall systems 

tested on the shake-table at the University of Canterbury. The wall systems were designed as a retrofit 

solution for an existing frame building, but are equally applicable for use in new design. Design of the 

wall followed a performance-based retrofit strategy in which structural limit states appropriate to both 

the post-tensioned wall and the existing building were considered. 

Dissipation for each of the four post-tensioned walls was provided via externally mounted devices, 

located in parallel to post-tensioned tendons for re-centring. This allowed the dissipation devices to be 

easily replaced or inspected following a major earthquake. Each wall was installed with viscous fluid 

dampers, tension-compression yielding steel dampers, a combination of both or no devices at all – thus 

relying on contact damping alone. The effectiveness of both velocity and displacement dependant 

dissipation are investigated for protection against far-field and velocity-pulse ground motion 

characteristics. 

The experimental results validate the behaviour of ‘Advanced Flag-Shape’ rocking, dissipating 

solutions which have been recently proposed and numerically tested. Maximum displacements and 

material strains were well controlled and within acceptable bounds, and residual deformations were 

minimal due to the re-centring contribution from the post-tensioned tendons. Damage was confined to 

inelastic yielding (or fluid damping) of the external dampers. 

1 INTRODUCTION 

In recent literature the performance of structures with unbonded post-tensioning undergoing controlled 

rocking at discrete locations has highlighted significant improvements to their structural performance 

when compared to equivalently reinforced monolithic counterparts; for use in buildings (Priestley et 

al. 1999), (Kurama 2002), (Pampanin 2005) and bridge systems (Mander and Cheng 1997), (Palermo 

et al. 2005). This enhanced performance relates to inelastic deformation being lumped to a number of 

specifically designed and detailed, discrete rocking interfaces. An example is presented in Figure 1 be-

low where a post-tensioned pre-cast rocking wall unit is installed with replaceable externally mounted 

mild steel dampers. The dampers are designed to yield in tension and compression only (defined as 

TCY mild steel dampers) and are restrained against buckling. Upon loading of the wall the rocking of 

the interface (Figure 1, Right) elongates both the steel dampers and post-tensioned tendons in tension. 

The ratio of the prestressed reinforcement (and axial load) to the non-prestressed reinforcement dic-

tates the energy dissipation and re-centring of the wall system – these two parameters give an indica-

tion of the expected maximum displacement and residual deformation of the wall system following 

dynamic response. This technology has been codified both internationally (ACI:T1.2-03 2007) and na-

tionally in Appendix B of the New Zealand code (NZS3101 2006) and is termed Hybrid or Controlled 

Rocking Technology. 

Previous experimental work specifically concerned with unbonded post-tensioned wall systems dates 

back to (Mueller 1986) who tested a series of pre-cast walls for use in regions of moderate seismicity. 
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The experimental testing exhibited a significant amount of stiffness degradation and energy dissipa-

tion. As part of Phase III of the United States PRESSS program (PREcast Seismic Structural Systems 

(Priestley et al. 1999)), a 60% scale prototype building was constructed and tested (Pseudo-dynamic 

testing) comprising of a precast post-tensioned coupled wall system orthogonal to a hybrid moment re-

sisting frame system. The coupled walls experienced only loss of cover concrete to the toe regions 

while dissipation via U-Shaped Flexure Plates (UFP) was found to be very stable after being tested to 

150% of the design level ground motion. 

Further to the United States PRESSS program, a significant amount of work (largely analytical) was 

undertaken to further understand the behaviour of unbonded post-tensioned precast wall systems for 

use in seismic regions (Kurama et al. 1998a), (Kurama et al. 1998b). This work was extended to in-

clude the response of hybrid rocking wall systems with externally mounted viscous dampers (Kurama 

2000), originally limited to internally grouted mild steel reinforcement (Kurama 2002). 

Past research at the University of Canterbury has also investigated similar systems with minor varia-

tions on the detailing of the precast wall unit – specifically concerning protection of the rocking toe 

region (Rahman and Restrepo 2000), (Holden 2001). 

While a significant amount of analytical and experimental research has been carried out to quantify the 

performance of post-tensioned wall systems, the response has yet to be confirmed through dynamic 

testing. Furthermore, issues relating to the energy dissipation occurring due to the rocking impact of 

the wall-foundation (defined as contact damping) can only be addressed through such test methods. In 

fact, some uncertainties exist in design in order to determine the total damping (hysteretic plus con-

tact) to be assigned directly to the rocking mechanism of such systems.  

Moreover, while viscous dampers have been proposed for hybrid systems, the combination of both 

viscous and mild steel devices for protection against both near-field and far-field earthquake ground 

motions has been previously limited to analytical studies (Kam et al. 2007). This paper attempts to ad-

dress these issues and to quantify the dynamic response, from a performance-based design point of 

view, applicable to a retrofit intervention of an existing frame building or for new design. 

 

Figure 1: Post-tensioned precast rocking wall system with externally mounted mild steel dampers (Left), 

Mechanics of a controlled rocking wall system (Right) 

2 PERFORMANCE BASED DESIGN OF PRECAST POST-TENSIONED WALLS 

Performance-based design has emerged as a more rational approach for the design of structures, 

furthermore it is now recognised that emphasis should be placed on the displacement/deformation 

response of a structure as opposed to its strength. Hybrid systems with controlled rocking mechanisms 
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are well suited to such a design methodology as material strain limits can be controlled with greater 

confidence when compared to traditional reinforced concrete monolithic solutions. 

Performance-based design sets out to assign structural performance levels (which encompass a series 

of structural limit states, in turn defined by material limit states) to seismic hazards which are defined 

by earthquake intensities, generally in the form of Peak Ground Acceleration (PGA) and also 

influenced by the importance of the structure. Assigning a structural performance level to a seismic 

hazard defines a structural performance objective. This concept is summarised as a chart in Figure 2 

(Left). The idea of a performance-based design is that multiple performance objectives are defined for 

a single structure to ensure a higher level of performance against a spectrum of anticipated earthquake 

intensities (seismic hazards). Each structural performance level can be assigned to a corresponding 

seismic intensity, resulting in a multi-level design spectrum, defining a performance based design 

matrix. An example of such a design matrix is presented in Figure 2 (Right), reproduced from the 

SEAOC Bluebook (SEAOC 1999), illustrating three sets of performance objectives (one basic 

objective and two enhanced objectives for greater structural importance).  

 

Figure 2: Left: Performance based design flow chart, Right: Performance based design matrix (SEAOC 

1999) 

The SEAOC blue book (SEAOC 1999) provides a very descriptive performance-based seismic design 

philosophy. A similar philosophy is incorporated within FEMA 450 (BSSC 2003) for the design of 

new structures and FEMA 273 (BSSC 1997) and FEMA 356 (ASCE 2000) for the rehabilitation of 

existing structures. In addition to the documents above, a number of publications have been produced 

refining the performance-based design philosophy to its current state-of-the-art (fib 2003a), (fib 

2003c), (Priestley et al. 2007). 

2.1 Seismic Hazard (Earthquake Intensity) 

A seismic hazard model is generally adopted within most seismic codes which relate the reoccurrence 

interval of an earthquake e.g. the return period or a probability of exceedance, to a scaled design 

spectrum through a seismic risk factor (defined as ‘R’ in (NZS1170.5 2004)).  

It is interesting to note that a number of codes adopt slight variations for their hazard model 

relationship. Figure 3 (Left) compares the seismic hazard model of the New Zealand (NZS1170.5 

2004), Californian (SEAOC 1999), European (Eurocode:8 2003) and the U.S. (BSSC 2003) seismic 

provisions. While they all follow a similar trend, it is important to note the large differences beyond 

the design level event i.e. return periods greater than 475-500 years. 

Within a performance-based design three or four seismic hazards are generally defined with increasing 

earthquake intensity, ranging from frequent to very rare (Maximum Considered Event – MCE). FEMA 

450 (BSSC 2003) outlines three seismic hazard levels which are used herein and summarised in Table 

1. Note that for NZS1170.5 2004 a seismic risk factor of R=1.5 corresponds to a return period of 

1500 years as opposed to 2500 years for FEMA 450. 
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Table 1: Seismic hazard levels 

Earthquake Intensity Return period 
Probability of exceedence in 

50 years 

Seismic risk factor 

(NZS1170.5) 

Adopted seismic risk 

factor (FEMA 450) 

Frequent 72 years 50% 0.43 0.5 

Rare (Design level 2/3MCE) 475 years 10% 1.0 1.0 

Very Rare (MCE) 2500 years 2% 1.7-1.81 1.5 

1 For high seismicity, NZ1170.5 imposes an upper limit on the PGA to be used for design and in some cases R may be required to be less 

than 1.8. 

2.2 Structural performance limits specific to precast post-tensioned walls 

The structural performance levels encompass a set of structural limit states (generally related to 

material or ductility limits) and/or displacement (i.e. inter-storey drift) limit states. For post-tensioned 

pre-cast walls, the following structural performance limit states are identified below and presented 

graphically in Figure 3 (Right). 

 

Figure 3: Left: Comparison of the seismic hazard model between various codes, Right: Performance-limit 

states for precast post-tensioned walls  

Decompression is the deformation state where the strain at the outer most fibre approaches zero and 

rotation of the base is initiated. The neutral axis depth (c) is located at the edge of the section (c=Lw), 

and defines a sudden reduction in stiffness when compared to the gross section stiffness. 

Geometric non-linearity occurs when the neutral axis of the section approaches the mid height of the 

section (c=Lw/2), and defines a gradual and further reduction in stiffness. 

Yielding of the mild steel reinforcement can occur either before or after the geometric non-linearity 

point depending on the section dimensions and location of the steel reinforcement. Stiffness further 

reduces with strength continuing to increase due to the elongation of the prestressed reinforcement due 

to the continued opening of the gap at the base of the wall. 

Yielding of the prestressed reinforcement should be treated on a case-by-case basis. Prestressing 

strands are inherently brittle with little ductile capacity and as a result have little dependable post-yield 

deformation. The re-centring capacity of the section can be jeopardised if yielding of the prestressed 

reinforcement occurs due to a reduction of the prestress load, however some permanent displacements 

may be tolerated for very rare earthquake events. A reduction in the prestress force can be detrimental 

in some cases – such as a beam-column joint relying on shear transfer through friction at the beam-

column interface. 

Rupture of the mild steel reinforcement can generally be manipulated or controlled for hybrid 

sections by specifying an appropriate yielding region (unbonded length). Rupture of the mild steel 

will, in general, not equate to a total loss in stability due to significant redundancy being provided by 

the post-tensioned tendons (and possibly additional mild steel reinforcement that has not yet ruptured). 

For this reason rupture of the mild steel may be tolerated for rare events. This is especially the case if 

the dissipation is in the form of external, replaceable devices where the full structural integrity can be 
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reinstated immediately following a major earthquake event. 

Rupture of the prestressed reinforcement or confinement reinforcement will result in a sudden loss of 

lateral stability and will in general define the true ultimate limit of the structure. 

Other structural performance limit states include mechanisms resulting from sliding at the rocking 

interface, shear failure of the wall section and the sliding shear between the precast wall panels, 

however these can be prevented or minimised considering higher mode effects and over-strength 

actions. 

2.3 Performance Objectives for post-tensioned precast walls 

Hybrid structures are inherently high performing and are generally associated with low damage – 

hence, if designed to achieve a certain performance level, may in fact achieve much higher levels 

when considering residual deformations, repair and downtime. Following on from FEMA 450 and 

combining recommendations from elsewhere ((Kurama et al. 1999), (fib 2003c), (Priestley et al. 

2007)), three performance objectives are identified for precast post-tensioned wall systems (non-

structural performance levels are not considered). 

Immediate occupancy: Negligible damage to the structural system where, under a very frequent event 

(return period of 72 years), the dissipaters may or may not have yielded (εs less than or equal to εyield). 

Concrete strains should be relatively low (εc less than 0.004), and the tendons should be within their 

linear elastic limit. At this limit state permanent displacements are negligible. 

Damage Control: Significant structural damage has occurred with some loss in strength and stiffness 

but still retains significant margin against collapse. Some permanent displacements may exist but are 

minimal. Under a rare earthquake event (2/3 MCE level) the dissipaters may exceed yield (some 

dissipaters may have in fact ruptured) and rupture should be avoided (εs less than 0.05 or 0.06εsu). 

Yielding of the tendons is to be avoided to ensure significant margin against collapse and to control 

residual displacements - Appendix B of the New Zealand concrete code specifies εpt to be less than 

0.9εpt,yield. The concrete strains are well within the non-linear range εc=0.02 but can be accommodated 

through proper detailing of the rocking section (stirrup confinement and/or additional steel confining 

plates located at the edge of the wall section). 

Collapse prevention: The gravity load carrying capacity of the structural system is maintained. 

Structural damage is significant and a majority of the stiffness is lost, combined with some loss in 

strength. Some permanent displacements are tolerated. Under a very rare earthquake (MCE level 

event) a majority of the dissipaters may have ruptured (if rupture is to be prevented εs should be less 

than 0.08). The tendons may yield but should not exceed rupture (εpt less than εpt,u). Furthermore the 

integrity of the confined concrete core can be maintained by preventing rupture of the confinement 

reinforcement through limiting the concrete strains to 1.5 times that above (Priestley et al. 2007). 

Furthermore, shear failure of the section and slip of the precast wall panels should be avoided, while 

preventing slip between the foundation and the rocking interface will ensure a more reliable 

performance. 

2.4 Design considerations for retrofit of existing frame buildings using post-tensioned walls 

The above performance objectives are specific to post-tensioned walls alone. In a retrofit intervention, 

where a post-tensioned wall is located in line with an existing reinforced concrete frame, creating a 

dual system, the performance objectives must consider the system as a whole. Performance limit states 

are likely to be governed by the performance limit states of the existing building. Each structural 

element must be considered i.e. beams, columns, beam-column joints etc, with each structural element 

having its own structural performance limits. Following an assessment of the existing building to 

determine a hierarchy of strength and failure mechanism, a set of performance limit states can be 

defined at each of the beam column joints regions. A performance-based retrofit procedure which 

limits the deformation of the most critical structural elements to allowable levels i.e. joint rotations 

and/or member curvatures, has be proposed in a previous publication (Marriott et al. 2007a). Further 

details of performance limit states for existing buildings are available in literature within the following 
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documents; FEMA 356 (ASCE 2000), fib Bulletin 24 (fib 2003b) and the NZSEE guidelines (NZSEE 

2005). 

The post-tensioned wall system tested herein was considered as a retrofit solution for an existing, 3-

story, prototype RC frame building. An assessment of the prototype building, considering principal 

tensile joint stresses, revealed that the beam-column joint was the critical element at almost every 

joint. The design therefore targeted an inter-story drift of 1% corresponding to a moderate level of 

joint damage. Depending on the reinforcement joint detailing, at this level the exterior beam-column 

joints are likely to suffer some strength degradation but repair should be possible. Furthermore, under 

a very rare event, a limiting inter-story drift of 1.5% would ensure that while extensive damage to the 

exterior joints would result in a significant reduction in capacity (and possibly irreparable damage), 

the gravity load carrying capacity of the joint, and hence the frame, should be maintained. In fact, the 

loss in lateral capacity of the frame due to the deterioration of the exterior beam-column joints will be 

compensated for by the increase in lateral capacity of the post-tensioned wall (high post-yield stiffness 

inherent of post-tensioned systems).  

3 EXPERIMENTAL PROGRAMME 

An extensive experimental programme was undertaken at the University of Canterbury to investigate 

both the cyclic and dynamic performance of post-tensioned rocking wall systems with alternative 

dissipation mechanisms.  

The experimental programme is divided in two phases, in Phase I the high speed cyclic response of 

post-tensioned rocking wall systems is investigated at increasing levels of amplitude and frequency 

from 0.1Hz through to 2.0Hz. 

In the second phase the dynamic response was investigated through free vibration testing and 

earthquake excitation. The dynamic testing was concerned with the response of the wall units to both 

near-field and far-field ground motions to investigate the effectiveness of velocity dependant and 

displacement dependant dissipation. This paper focuses on the experimental response of the post-

tensioned walls subjected to earthquake excitation. 

The shake-table test setup is presented in Figure 4. The mass of the system was provided via a 3840kg 

concrete block suspended by the workshop crane. This pendulum system proved very effective in 

providing a consistent driving mass. Furthermore, the mass was monitored about 5 degrees of freedom 

to ensure a majority of the energy was transmitted in the principle direction of motion. Out-of-plane 

restraint of the wall was provided by rigid steel channels with rollers located between the wall and the 

steel channels to prevent friction entering the system. 

 

Figure 4: Shake-table test setup; Left: Front elevation of the experimental test, Top Right: Section plan of 

the precast wall section, Bottom Right: Plan view of the experimental test 
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4 CONSTRUCTION DETAILS OF THE POST-TENSIONED WALL UNITS 

A total of five wall units were tested with or without dissipation and consisting of viscous devices, 

mild steel tension-compression-yielding devices (TCY devices) or a combination of both viscous and 

mild steel devices. All five wall units were post-tensioned, such that their monotonic backbone 

envelopes were similar. Due to space limitations, the results of four wall units are presented herein. A 

summary of the wall units are presented in Table 2 outlining the post-tensioning details and dissipation 

content. 

Table 2: Wall test unit details 

Test Post-tensioning details Damper device details 

HY0MS-0V 2 tendons each stressed to 50kN - 

HY0MS-4V 2 tendons each stressed to 30kN 4 viscous dampers (supplied by FIP Industriale) 

HY2MS-4V 2 tendons each stressed to 20kN 4 viscous dampers plus 2 TCY mild steel dampers 

HY2MS-0V 2 tendons each stressed to 40kN 2 TCY mild steel dampers 

Details of the TCY mild steel dampers and the viscous dampers in presented in Figure 5. Typical axial 

load versus axial displacement graphs for each are also shown. The viscous dampers used in this 

investigation were highly non-linear, resulting in a relatively small velocity dependency on the damper 

force. Both devices provide very stable dissipation; specifically the TCY mild steel damper provides 

very stable behaviour when loaded in compression – confirming the efficiency of the anti-buckling 

steel tube system adopted. 

 

Figure 5: Damper details; Top: TCY mild steel damper, Bottom: FIP Industriale viscous damper 

 

Details of the four wall units are further illustrated in Figure 6. Wall unit HY0MS-0V has no dissipation 

devices and relies on contact damping alone, HY0MS-4V comprises of 4 viscous dampers (supplied by 

FIP Industriale), HY2MS-4V comprises of 4 viscous dampers and 2 TCY mild steel dampers (fabricated 

in-house) and HY2MS-0V comprises of 2 TCY mild steel dampers.  
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Figure 6: Wall units; Left: Unit HY0MS-0V, Centre Left: Unit HY0MS-4V, Centre Right: Unit HY2MS-4V, Right: 

Unit HY2MS-0V. 

5 CONSTRUCTION PROCESS OF THE PRECAST WALL UNIT 

5.1 Precast concrete wall and foundation construction 

Construction details of the precast wall were typical of precast construction with the inclusion of two 

PVC ducts running the height of the wall to locate the unbonded tendons. A fabricated steel plate 

confining toe was cast within the precast unit (Figure 7: Top Left and Right). This confining bracket 

would limit and prevent any damage to the concrete around the toe region as the wall rocked from toe 

to toe. The precast foundation was constructed with a pocket on the underside to allow access to the 

anchorages for the post-tensioned tendons. A recess was also cast into the top of the foundation to 

accommodate the precast wall (Figure 7: Bottom Left and Figure 8: Left). When the wall was lowered 

into position and located within the foundation recess, a high flow epoxy grout (Sikadur 42) was 

pumped under pressure beneath the rocking interface (Figure 8: Right). This provided ample shear 

transfer between the wall and foundation whilst also preventing slip along the rocking interface. 

 

Figure 7: Construction of the precast wall unit and precast foundation; Top Left: Steel confining plates, 

Bottom Left: Precast foundation, Right: Wall reinforcement 

 

Figure 8: Construction detail of the rocking interface; Left: 18mm recess cast into precast foundation, 

Centre: Location of the precast wall within recess, Right: Grouting of the rocking interface 
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5.2 Connection details of the external devices 

The external devices were connected to the wall by stiff steel brackets. These steel dissipater brackets 

were bolted to a steel plate which was fixed rigidly to side of the precast concrete wall. The 

construction of this rigid steel plate connection is shown in Figure 9: the surfaces of the steel plates 

and the concrete wall were sufficiently roughed and a layer of high strength epoxy (Hilti RE 500) was 

applied to both surfaces. The steel plate was located in position and 8 high strength (880MPa) 

threaded rods were tightened to 65% of their proof load to enable the damper forces to be transferred 

to the wall via friction/mechanical interlock with essentially zero slip. Two steel plates per face on the 

wall provided a total of 6 damper locations (per face) by which to install either the viscous or TCY 

steel dampers. 

 

Figure 9: Damper connection details; Left: Preparation of the steel plate – roughening and application of 

high strength epoxy, Centre: Roughening of the concrete, application of high strength epoxy and location 

of the high strength threaded rods, Right: Installation of the steel plates - threaded rods tightened to 65% 

proof load. 

Two of the completed test units are shown in Figure 10; Unit HY0MS-4V and Unit HY2MS-4V. Also 

presented in the same figure are the experimental cyclic results for both units during testing at a 

frequency of 0.5Hz. The results are presented in terms of the lateral over-turning moment versus 

rotation of the base (gap opening). Both wall units indicated very stable and efficient behaviour with 

no physical damage occurring to either wall unit. The external devices provide an attractive 

architecture feature illustrating a strong and advanced seismic resisting connection. Furthermore, 

inspection and replacement of the external damper elements is extremely simple. 

 

Figure 10: As-built wall units; Left: Unit 2 (4 viscous dampers), Centre: Unit 3 (4 viscous dampers and 2 

TCY mild steel dampers), Top Right: Experimental response of HY2MS-0V (testing at 0.5Hz frequency), 

Bottom Right: Experimental response of HY2MS-4V (testing at 0.5Hz frequency). 
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6 SELECTION OF THE EARTHQUAKE RECORDS 

The earthquake records used for this study were based on two seismic hazard levels; rare (2/3MCE) 

and very rare (MCE). Two earthquake records were chosen for each hazard level; one near-field (NF) 

and one far-field (FF). As an example, the MCE far-field event is identified as EQ-MCE_FF.  

The earthquake records were scaled to the New Zealand seismic design spectrum (NZS1170.5 2004), 

for R=1.0 for 2/3MCE and R=1.5 for MCE. Details of each earthquake record used for the study are 

summarised in Table 3. The chosen records required careful consideration as the shake-table at the 

University of Canterbury has a limiting output velocity of approximately 240mm/s – when considering 

a similitude scale factor of 1/3, spectrum-scaled earthquake records could not exceed a velocity of 

415mm/s without record modification. This proved extremely difficult in terms of locating appropriate 

near field earthquake records. It was to this end that records EQ-2/3MCE_NF, EQ-MCE_FF and EQ-

MCE_NF required some record modification as their ground velocities slightly exceeded the limitation 

of the shake-table – this record modification procedure truncates the velocity at 235mm/s to avoid 

unwanted acceleration spikes. The details of the record modification procedure are outside the scope 

of this paper, however details can be found in (Chase et al. 2005). 

The acceleration response spectrum for each of the records and the corresponding New Zealand design 

spectrum (both R=1.0 and R=1.5) are provided in Figure 11. The design spectrum corresponding to the 

2/3 MCE level represents a seismic hazard having R=1 (500 year return period for building 

importance level 2), soil category C, and Sp=0.7 located in Wellington within 2km of a major fault. 

The records were scaled over a period range of 0.45s to 1.0s following a displacement-based retrofit 

procedure. 

Table 3: Earthquake records used for shake-table tests 

 Earthquake record Recording Station 
Scaled 

PGA 

Scaled PGV 

[mm/s] 
Scale factor 

EQ-2/3MCE_FF Kobe Sakai 0.256 276 1.633 

EQ-2/3MCE_NF Loma Prieta Saratoga-W Valley 0.220 408 0.663 

EQ-MCE_FF Cape Mendocino Rio Dell Overpass 0.382 434 0.992 

EQ-MCE_NF Northridge La Dam 0.364 530 1.044 

 

 

Figure 11: Scaled acceleration response spectrum and NZS1170.5 elastic design spectrum; Left: 2/3 MCE, 

Right: MCE 

7 SHAKE-TABLE RESPONSE 

The maximum lateral displacement, (theoretical) compression strain, tendon strain and damper 

displacement is presented for each of the wall units when subjected to each of the four table records in 
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Table 4 (two EQ records for each seismcity). It should be noted that the concrete compression strains 

presented in Table 4 were not directly measured, but calculated using a global member compatibility 

condition for rocking systems with external devices (Marriott et al. 2007b). For all four wall units the 

design lateral drift of 1.0% was respected at the design level event, being the 2/3MCE, i.e. the 500 

year return event. In fact the largest displacement for all four of the wall units at the design level 

seismic hazard was 1.07% of lateral drift – while this slightly exceeds the design objective, it was 

recorded for HY0MS-0V relying on contact damping alone. 

To reduce space, the graphical response of each of the four wall units (HY0MS-0V, HY0MS-4V, HY2MS-0V 

and HY2MS-0V) is only presented for the MCE earthquake records (EQ-MCE_FF and EQ-MCE_NF). 

The graphical response in Figure 14 is presented in terms of the lateral displacement time history and 

lateral displacement versus base shear response. In Figure 14 the displacement time-history can be 

compared directly with the design drift objective at the MCE seismic hazard (i.e. maximum allowable 

drift of 1.5%). Each wall satisfied the 1.5% drift limit with the exception of HY0MS-4V – in this case the 

limit was exceeded only slightly. The far-field records show the stable force versus displacement 

nature of each of the dissipating wall solutions, while the near-field records indicate less intensity 

(directly related to the velocity limit of the shake-table). Of the four walls, HY2MS-4V damps out the 

response far more effectively when compared to the other units – from a fatigue point of view, this can 

be very beneficial. 

With respect to the performance objectives discussed above for post-tensioned walls, the material limit 

states were met. For EQ-2/3MCE_FF and EQ-2/3MCE_NF (being the 2/3MCE design seismic 

hazard), steel strains were below 0.05, the tendon strains were below 0.9εpt,yield and the concrete strains 

were well below 0.02. For EQ-MCE_FF and EQ-MCE_NF (being the MCE design seismic hazard), 

steel strains did not exceed 0.08, nor did the tendons rupture. Furthermore, the concrete strains were 

well within the allowable limits. 

With respect to the performance objectives related to the frame-wall retrofit system, deformation limit 

states for the frame, and hence the joint, were only slightly exceeded. The largest recorded lateral drift 

of 1.07% for the 2/3MCE seismic hazard level would suggest that the structural integrity of the 

exterior beam-column joints would be maintained and could be appropriately repaired if necessary. At 

the MCE seismic hazard level, the maximum lateral drift recorded was 1.67%. The structural integrity 

of the exterior beam-column joints would be significantly compromised, with very little residual 

capacity, however the gravity load carrying capacity of the frame should be maintained and local 

collapse would be prevented – repair of the exterior joints is unlikely to be feasible. 

While all four units have comparable strength, each unit differs in dissipation content. The lateral 

displacement versus base shear plots indicates comparatively low dissipation for Unit HY0MS-4V having 

four viscous dampers. In fact, the viscous devices are quite inefficient for low damper displacement 

amplitudes due to some clearance tolerances within the end connections of the viscous device. 

Furthermore, while the nonlinear viscous dampers are relatively independent of velocity, for low 

velocities the force in the damper has some significant dependency – considering the table velocity 

limitation, and the method in which the dampers were used, the dampers were operating at around 

22% of their maximum rated design velocity for the largest of the earthquake records (EQ-MCE_FF). 

As mentioned above a number of the earthquake records required modification in order to satisfy the 

velocity capacity of the table (particularly for the near-field records). Figure 12 shows the response of 

HY2MS-0V to the MCE near-field record EQ-MCE_NF and compares the response of the original 

unmodified record (using a numerical model) to the modified record (experimental testing). While not 

discussed herein, the model used for the numerical analysis accurately captures the response of HY2MS-

0V when subjected to the modified record and therefore the response under the unmodified record 

could be predicted with confidence. The maximum displacement response under the unmodified 

record (numerical model) was found to be 19.7mm (0.94% drift) which is 23% greater than the 

maximum measured displacement of 16.0mm (0.76% drift) under the modified record (experimentally 

tested). When the NZS1170.5 elastic design spectrum is scaled to the modified response spectra, the 

modified near-field record no longer represents a MCE event, instead it approximates an 85% MCE 

event (seismic risk factor, R=1.27). It is interesting to note that even considering the unmodified 
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record, the response under the selected near-field records is still lower than that of the far-field 

records. In fact, the record selection process was such that near-field records with velocity pulses 

typically greater than 1000mm/s were required to be avoided, resulting in records which lacked high 

velocity-pulse characteristics. 

 

Figure 12: Response of HY0MS-0V to the modified record (experimental test) and unmodified record 

(numerical analysis) 

Table 4: Maximum response parameters; lateral displacement, theoretical concrete compression strain, 

tendon strain and damper displacement (for viscous devices) or damper strain (for TCY dampers) 

Record Wall unit ∆max [mm] εc εpt ∆viscous [mm] εms 

HY00 22.4 (1.07%) 0.00056 0.00357 - -

HY04 18.0 (0.86%) 0.00046 0.00240 3.3 -

HY24 12.9 (0.61%) 0.00056 0.00163 2.3 0.01411

E
Q

-

2
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E
_

F
F

 

HY20 8.5 (0.40%) 0.00060 0.00240 - 0.00722

HY00 2.9 (0.14%) 0.00020 0.00261 - -

HY04 8.1 (0.38%) 0.00045 0.00191 1.4 -

HY24 9.1 (0.43%) 0.00058 0.00143 4.6 0.00878

E
Q

-

2
/3

M
C

E
_

N
F

 

HY20 4.7 (0.22%) 0.00041 0.00221 - 0.00278

HY00 27.6 (1.31%) 0.00072 0.00387 - -

HY04 35.0 (1.67%) 0.00082 0.00342 7.1 -

HY24 27.6 (1.32%) 0.00091 0.00244 5.4 0.03422

E
Q

-M
C

E
_

F
F

 

HY20 28.7 (1.37%) 0.00099 0.00351 - 0.03533

HY00 20.4 (0.97%) 0.00062 0.00345 - -

HY04 16.6 (0.79%) 0.00043 0.00230 3.1 -

HY24 12.5 (0.59%) 0.00061 0.00159 2.1 0.01256

E
Q

-M
C

E
_

N
F

 

HY20 16.0 (0.76%) 0.00069 0.00278 - 0.01689

Typical of near field records, the acceleration response spectrum of EQ-2/3MCE_NF and EQ-

MCE_NF was difficult to scale to the New Zealand spectrum – especially within the short period 

range. Depending on the period range to which the records were scaled, could result in an artificial 

reduction in the scaling of the near-field records and hence a reduced response could be expected. 

However, as discussed above, considering the shake-table velocity limitation, more intense near-field 

records were unable to be used in any case. 

Of the four wall units, HY2MS-4V could guarantee a superior level of protection for each seismic hazard 

level – especially when considering the response to both the near-field and far-field events. Given that 
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the viscous dampers could be more appropriately used (dampers with lower design velocities), an even 

higher level of performance could be expected. This confirms the higher performance of ‘Advanced 

Flag Shape’ solutions having a combination of velocity and displacement dependant devices, which 

was previously limited to analytical studies. 

Finally, it could be suggested that for relatively stiff structures, a wall system based on strength alone 

(with minimal dissipation) such as the post-tensioned only solution (HY0MS-0V) can be used to provide 

similar performance when compared to the other wall units. While in general the measured 

displacements of HY0MS-0V were slightly larger than the dissipating wall units, a further reduction of 

HY0MS-0V could be achieved with increased lateral capacity – however higher floor accelerations could 

be expected. 

7.1 Damage state of the precast wall after testing 

Very minor physical damage was observed for all of the wall specimens during and after testing. The 

rocking toe regions remained completely in tack while, if any cracking up the height of the wall had 

occurred, it was not visible due to the post-tensioning. At the base of the wall a small dust flume was 

observed on each of the steel confining plates resulting from expulsion of crushed concrete particles 

beneath the rocking toe Figure 13 (Left). It was not until the wall was removed from the foundation 

that any damage could be observed. A small amount of injected epoxy had adhered to the underside of 

the precast wall which is highlighted in Figure 13 (Right Centre). This resulted in some removal of 

cover concrete from the precast wall but was relatively superficial, again highlighted in Figure 13 

(Left Centre). The dislodged cover concrete was then crushed as the wall rocked from toe to toe and 

could ultimately contribute (in some small way) to the damped response of the wall. 

 

Figure 13: Damage state after removal of the precast wall from the foundation; Left: Dust flume on steel 

confining plate indicating expulsion of crushed concrete, Left Centre: Foundation recess with residual 

concrete, Right Centre: Rocking toe region (closest to mass), Right: Rocking toe region (furthest from 

mass) 

7.2 Contact damping response 

Though not explicitly presented herein, preliminary results have indicated that the amount of 

dissipation directly associated with the rocking contact damping is minor, in the order of 1-3% 

equivalent viscous damping. Therefore, when considering supplementary damping devices, the 

proportion of contact damping becomes even less of a concern as the damped response is dominated 

by hysteretic and/or viscous damping. The decision to include contact damping within a model will 

depend on what type of analysis is required. If the maximum response is the primary parameter i.e. 

maximum displacements, accelerations and velocities, then the amount of contact damping assigned to 

the model can have little effect on the output. However, if parameters such as cumulative energy 

dissipation, cyclic fatigue or information directly relating to the response after the last major 

excursion, then the proportion of damping and the damping model requires more attention. This 

response can in fact be quite sensitive to the choice of modelling parameters assigned to the rocking 

impact, especially for post-tensioned only systems relying on contact damping alone.  

It has been found that simple damping models can accurately capture the response of rocking systems, 

including the peak response and the damped decay response. Preliminary analysis, as part of an 

ongoing research project, suggests simple damping models proportional to the tangent stiffness are the 

most accurate in describing the damping in both the non-linear and elastic range.  
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Figure 14: Shake-table experimental response and comparison to the target drift objectives at the MCE level, Left: MCE far-field record, Right: Equivalent 

85% MCE near-field record. 
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8 CONCLUSIONS 

Current literature suggests a lack of information related to the dynamic response of post-tensioned 

precast rocking systems – in particular structural walls. This paper presents 16 shake-table tests on 

four alternative post-tensioned rocking wall systems – each wall was subjected to two near-field and 

two far-field earthquake records. A prototype post-tensioned precast wall was designed, constructed 

and dynamically tested based on a retrofit application for a prototype RC frame building. Four post-

tensioned walls, each with an alternative dissipation solution were experimentally tested: contact 

damping alone, viscous damping devices, TCY mild steel devices and a combination of both. The 

intent was to investigate the performance of post-tensioned wall solutions for use in new design and 

retrofit where protection against near-field and far-field earthquake events could be ensured through a 

combination of velocity and displacement dependant devices.  

The performance-based design philosophy of post-tensioned precast rocking wall systems is outlined 

and further reference is made to an existing performance-based retrofit for existing reinforced concrete 

buildings in order to prevent collapse arising from brittle local failure mechanisms. Performance 

objectives are discussed relating to post-tensioned wall systems for new design and to the retrofit of 

existing RC buildings where performance objectives are likely to be governed by the behaviour of 

critical structural elements within the existing frame i.e. rotations of beam-column joints and/or 

curvatures of beams and columns. 

Following testing scaled to a rare earthquake event having a return period of 500 years, the 

performance objectives specific to retrofit, were in general, achieved – displacements were slightly 

exceeded for the system relying on contact damping alone. The target inter-story drift limit of 1% 

suggested that the structural integrity of the exterior joints within the adjoining frame could be 

maintained, and while suffering minor damage, repair would be possible. 

Under a very rare event having a return period of 2500 years, the performance objectives were again 

exceeded for the post-tensioned only solution. However, the limiting inter-story drift of 1.5% should 

enable the vertical load carrying capacity of the exterior joints to be maintained preventing local 

collapse. Joint damage is likely to be extensive and repair is unlikely to be feasible. 

Advanced Flag Shape solutions consisting of both velocity and displacement dissipation were found to 

provide a very attractive solution by providing superior protection against the entire suite of 

earthquake records. 
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