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Abstract. This work presents an evaluation of using time-causal scale-
space filters as primitives for video analysis. For this purpose, we present
a new family of video descriptors based on regional statistics of spatio-
temporal scale-space filter responses and evaluate this approach on the
problem of dynamic texture recognition. Our approach generalises a pre-
viously used method, based on joint histograms of receptive field re-
sponses, from the spatial to the spatio-temporal domain. We evaluate
one member in this family, constituting a joint binary histogram, on
two widely used dynamic texture databases. The experimental evalua-
tion shows competitive performance compared to previous methods for
dynamic texture recognition, especially on the more complex DynTex
database. These results support the descriptive power of time-causal
spatio-temporal scale-space filters as primitives for video analysis.

1 Introduction

The ability to derive properties of the surrounding world from time-dependent
visual input is a key functionality of a computer vision system, and necessary
for any artificial or biological agent that is to use visual input for interpreting
a dynamic environment. For this purpose, there has been intensive research
into areas such as action recognition, dynamic texture and scene understanding,
automatic surveillance, video-indexing and retrieval, etc.

For biological vision, local image measurements in terms of receptive fields
constitute the first processing layers [1]. In computer vision, spatial receptive
fields based on the Gaussian scale-space concept have been demonstrated to be
a powerful front-end for solving a large range of visual tasks. The theoretical
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properties of scale-space filters enable the design of methods invariant or robust
to natural image transformations [2–4]. Also, such axiomatically derived first
processing layers, which can be shared among different tasks, free resources both
for learning higher level features from data and during on-line processing. This
could prove especially useful for high-dimensional video data.

For a real-time visual system or to model biological vision, such a visual front-
end cannot utilise information from the future. For time-critical applications
(such as self-driving cars) where also a small difference in response time matters,
the ad-hoc solution of using a time-delayed truncated Gaussian temporal kernel
would imply unnecessarily long temporal delays. Recently, a new framework
for time-causal spatio-temporal scale-space filters, or equivalently spatio-temporal

receptive fields, was introduced by Lindeberg [2]. These idealised receptive fields
show a strong connection to biology in the sense that they very well model
receptive field shapes of neurons in the LGN and V1 [2, 4]. The purpose of this
study is a first evaluation of using these time-causal spatio-temporal receptive
fields as visual primitives for video analysis.

As a first application, we have chosen the problem of dynamic texture recog-
nition. A dynamic texture or spatio-temporal texture can be naively defined as
“texture + motion” or more formally as a spatio-temporal pattern that exhibits
certain stationarity properties and self-similarity over both space and time [5].
Examples of dynamic textures are windblown vegetation, fire, waves, a flock of
flying birds or a flag flapping in the wind. Recognising different types of dynamic
textures is important for visual tasks such as automatic surveillance (e.g. detect-
ing forest fires), video indexing and retrieval (e.g. return all images set on the
sea) and to enable artificial agents to understand and interact with the world.

In this paper, we start by presenting a new family of video descriptors in the
form of joint histograms of spatio-temporal receptive field responses, thereby
generalising a previous method by Linde and Lindeberg [6] from the spatial to
the spatio-temporal domain. We then evaluate one member of this family consti-
tuting a joint binary histogram on two widely used dynamic texture databases.
It will be shown that our preliminary descriptor shows highly competitive per-
formance compared to previous methods for dynamic texture recognition, thus
supporting the applicability of these time-causal spatio-temporal receptive fields
as primitives for video analysis.

2 Related work

Some of the first methods for dynamic texture recognition were based on optic

flow, see e.g. Nelson and Polana [7]. Another early approach for both synthe-
sis and recognition was to model dynamic textures as linear dynamical systems

(LDS), see e.g. work by Soatto et al. [8]. To enable recognition less dependent
on global spatial appearance, the LDS approach has been extended to bags of
dynamical systems (BoS) as by Ravichandran et al. [9] and Wang et al. [10],
where the latter approach also combines local LDS descriptors with soft coding
and an extreme learning machine (ELM) classifier. Previous approaches utilising
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spatio-temporal filtering are e.g. the oriented energy representations by Wildes
and Bergen [11] and Derpanis and Wildes [12], where the latter represents pure
dynamics of spatio-temporal textures by capturing space-time orientation by
means of 3D Gaussian derivative filters. Gonçalves et al. [13] instead jointly
model appearance and dynamics using spatio-temporal Gabor filters with differ-
ent preferred spatial orientations and speeds. Neither of these approaches utilise
joint statistics of filter responses.

Methods that model local space-time structure of dynamic textures are e.g.
local binary patterns (LBP) (Zhao et al. [14]) that capture the joint binarised
distribution of local neighbourhoods of pixels, either for 3D space-time volumes
(VLBP) or on three orthogonal planes (LBP-TOP), where the latter reduces the
computational load by considering the XY, YT, and XT planes separately. Ex-
tensions to LBP-TOP are e.g. utilising averaging and principal histogram anal-
ysis to get more reliable statistics (Ren et al. [15]) or multi-clustering of salient
features to identify and remove outlier frames (AFS-TOP) (Hong et al. [16]).
A related approach is multi-scale binarised statistical image features (MBSIF-
TOP) introduced by Arashloo and Kittler [17], which capture local image statis-
tics by means of filters learned from data by independent component analysis.
Tensor dictionary learning (OTD) (Qu et al. [18]) is instead a sparse coding
based approach for learning a dictionary for local space-time structure. Previous
approaches using non-binary joint histograms for image analysis include Schiele
and Crowley [19] and Linde and Lindeberg [6], but many later methods have
often used either marginal histograms or relative feature strength to capture
image statistics. Xu et al. [20] utilise the self-similarity of dynamic textures by
creating a descriptor from the fractal dimension of motion features (DFS) and Ji
et al. [21] present a method based on wavelet domain fractal analysis (WMFS).

There are also approaches combining several different descriptors such as
DL-PEGASOS by Ghanem and Ahuja [22] that uses LBP, PHOG and LDS
descriptors together with maximum margin distance learning or Yang et al. [23]
using ensemble SVMs to combine LBP, shape-invariant co-occurrence patterns
(SCOPs) and chromatic information with dynamic information represented by
LDS. Qi et al. [24] present a dynamic texture descriptor leveraging deep learning
to transfer prior knowledge from the image domain by extracting global features
using a pretrained convolutional neural network. Compared to the time-causal
scale-time kernel proposed by Koenderink [25] it should be noted that the time-
causal limit kernel used in this paper is time-recursive, whereas no time-recursive
formulation is known for the scale-time kernel.

3 Spatio-temporal receptive field model

The spatio-temporal scale-space framework and receptive field model used in
this work is that of Lindeberg [2]. The axiomatically derived scale-space kernel
for spatial scale s and temporal scale τ is of the form

T (x, y, t; s, τ, u, v,Σ) = g(x− ut, y − vt; s,Σ)h(t; τ) (1)
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where (x, y) denotes the image coordinates; t denotes time; h(t; τ) denotes a
temporal smoothing kernel and g(x − ut, y − vt; s,Σ) denotes a spatial affine
Gaussian kernel with spatial covariance matrix Σ that moves with image velocity
(u, v). Here, we restrict ourselves to rotationally symmetric Gaussian kernels over
the spatial domain and to smoothing kernels with zero image velocity leading
to space-time separable receptive fields. The temporal smoothing kernel h(t; τ)
used here is the time-causal kernel composed from coupling truncated exponen-
tial functions in cascade, with a composed scale-invariant limit kernel having a
Fourier transform of the form [2, Eq. 38]

Ψ̂(ω; τ, c) =

∞∏

k=1

1

1 + i c−k
√
c2 − 1

√
τ ω

(2)

where c > 1 is the distribution parameter for the logarithmic distribution of
intermediate scale levels. For practical purposes, the limit kernel is approximated
by a finite number, K, of recursive filters coupled in cascade according to [2,
Section 6]. We here use c = 2 and K ≥ 7. The time-recursive formulation means
there is no need for saving a temporal buffer of previous frames — computing
the scale-space representation for a new frame only requires information from
the present moment and the scale-space representation for the preceding frame.
The spatio-temporal receptive fields are in turn defined as partial derivatives of
the spatio-temporal scale-space representation of a video f(x, y, t)

Lxm1ym2 tn(·, ·, ·; s, τ, u, v,Σ) = ∂xm1ym2 tn(T (·, ·, ·; s, τ, u, v,Σ) ∗ f(·, ·, ·)) (3)

leading to a spatio-temporal N-jet representation of local space-time structure

{Lx, Ly, Lt, Lxx, Lxy, Lyy, Lxt, Lyt, Ltt, ...}. (4)

We also perform scale normalisation of partial derivatives as described in [2]. A
subset of receptive fields/scale-space derivative kernels can be seen in Figure 1.
For details concerning the spatio-temporal scale-space representation and the
discrete implementation, we refer to [2].

4 Video descriptors

We here describe our proposed family of video descriptors. The descriptor is
computed in three main steps: (i) computation of local spatio-temporal receptive
field responses, (ii) dimensionality reduction with PCA and (iii) aggregating joint
statistics of receptive field responses into a multidimensional histogram.

4.1 Receptive field responses

The first processing step is to compute spatio-temporal receptive field responses
F = [F1, F2, ...FN ] over all individual pixels (x, y, t) in a space-time region for
N scale-space derivative filters. These could include a range of different spatial
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Tx Tt Txx Txt Ttt

Fig. 1. Time-causal spatio-temporal scale-space derivative kernels Txmtn(x, t; s, τ),
with a Gaussian kernel over space and the time-causal limit kernel [2] over time, shown
over a 1+1-D space-time for the space-time separable case when v = 0. (s = 1, τ = 1,
K = 8, c = 2) (Horizontal axis: space, x ∈ [−3, 3]. Vertical axis: time, t ∈ [0, 3])

and temporal scales to enable capturing image structures of different spatial
extent and temporal duration. Computations are separable in all dimensions
and performed frame by frame, utilising recursive smoothing along the temporal
dimension. In contrast to previous methods utilising spatio-temporal filtering,
such as [12, 13], our method includes a diverse group of partial derivatives from
the spatio-temporal N -jet as opposed to a single filter type.

4.2 Dimensionality reduction with PCA

When combining a large number of local image measurements, not all dimensions
will carry meaningful information. For this reason, we perform dimensionality
reduction with PCA of the local receptive field responses, as was empirically
shown to give good results for spatial images in [6], resulting in a local feature
vector F̃ (x, y, t) = [F̃1, F̃2, ...F̃M ] ∈ R

M M ≤ N . The number of components M
can be adapted to requirements for descriptor size and need for detail in mod-
elling the local image structure. Dimensionality reduction can also be skipped if
working with a smaller number of receptive fields.

4.3 Joint receptive field histograms

When creating the joint histogram of receptive field responses, each feature di-
mension is partitioned into r number of equidistant bins in the range [mean(F̃i)−
d std(F̃i), mean(F̃i)+d std(F̃i)]. This gives ncells = rN distinct histogram bins.
Such a joint histogram of spatio-temporal filter responses explicitly models the
co-variation of different types of image measurements, in contrast to descriptors
based on marginal distributions or relative feature strength. Each histogram cell
will correspond to a certain “template” local space-time structure, similar to e.g.
VLBP [14] but notably represented and computed using different primitives. The
histogram descriptor thus captures the frequency of such local space-time struc-
tures in a video and the number of different “templates” will be decided by the
number of receptive fields/principal components and the number of bins.
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If represented naively, a joint histogram could imply a prohibitively large de-
scriptor. However, in practise the number of non-zero bins can be considerably
lower than the maximum number of bins, which enables utilising a computa-
tionally efficient sparse representation as outlined in [6]. Also note that although
we in this work aggregate statistics over entire videos, it is straight-forward to
instead compute descriptors regionally over both time and space; and thus to
classify new videos after having seen only a limited number of frames.

4.4 Binary histograms

When choosing r = 2 bins equivalent to a joint binary histogram, the local image
structure is described by only the sign of the different image measurements [6].
This will make the descriptor invariant to uniform rescalings of the intensity val-
ues. Another attractive feature of the binary histogram is that a larger number
of image measurements can be combined while still keeping down the descrip-
tor dimensionality. Binary histograms have been proven an effective approach
for other dynamic texture methods such as LBP and MBSIF-TOP. This is the
descriptor version that we have chosen to investigate in this paper.

4.5 Choice of receptive fields and parameters

Varying the choice of receptive fields and method parameters, gives a family of
different video descriptors. In this paper, we evaluate a single member of this
family: A multi-scale representation based on the set of receptive fields

{Lt, Ltt, Lx, Ly, Lxx, Lyy, Lxy, Lxt, Lyt, Lxxt, Lyyt, Lxyt} (5)

with M = 15 principal components and r = 2 number of bins with d = 5.
For the UCLA database, the Cartesian product of spatial scales (i.e. standard
deviation for the scale-space kernel) σs ∈ {1, 2} pixels and temporal scales στ ∈
{0.05, 0.1} seconds were used, while for DynTex that has considerably higher
spatial resolution, we instead used σs ∈ {2, 4} pixels and στ ∈ {0.2, 0.4} seconds.

5 Datasets

We evaluate our proposed method on several dynamic texture recognition/
classification benchmarks from two widely used dynamic texture databases:
UCLA and DynTex. Sample frames from these databases are shown in Figure 2.

5.1 UCLA

The UCLA database was introduced by Soatto et al. [8] and is composed of 200
videos (160× 110 pixels, 15 fps) featuring 50 different dynamic textures with 4
samples from each texture. The UCLA50 benchmark [8] divides the 200 videos
into 50 classes with one class per individual texture/scene. It should be noted
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Fig. 2. Top row: Sample frames from the UCLA database. From left to right: “fire”,
“sea”, “smoke” “waterfall”, “fountain”. Bottom row: Sample frames from the DynTex
database. From left to right: ”flags”, ”sea”, ”traffic”, ”escalator”, ”fountain”.

that this partitioning is not conceptual in the sense of classes constituting differ-
ent types of textures such as “fountains”, “sea” or “flowers” but instead targets
instance specific (i.e. different fountains should be separated from each other)
and viewpoint specific recognition.

Since for many applications it is more relevant to recognise different dy-
namic texture categories, a partitioning of the UCLA dataset into conceptual
classes, UCLA9, was introduced by Ravichandran et al. [9] with the follow-
ing classes: boiling water (8), fire (8), flowers (12), fountains (20), plants (108),
sea (12), smoke (4), water (12) and waterfall (16). Because of the large overrepre-
sentation of plant videos, in the UCLA8 benchmark those are excluded to give
a less misbalanced dataset, resulting in 92 videos from 8 conceptual classes.

5.2 DynTex

A larger and more diverse dynamic texture database, DynTex, was introduced
by Péteri et al. [26], featuring a larger variation of dynamic texture types recorded
under more diverse conditions (720 × 576 pixels, 25 fps). From this database,
three gradually larger and more challenging benchmarks have been compiled by
Dubois et al. [27]. The Alpha benchmark includes 60 dynamic texture videos
from three different classes: sea, grass and trees. There are 20 examples of each
class and some variations in scale and viewpoint. The Beta benchmark includes
162 dynamic texture videos from ten classes: sea, vegetation, trees, flags, calm
water, fountain, smoke, escalator, traffic and rotation. There are 7 to 20 ex-
amples of each class. The Gamma benchmark includes 264 dynamic texture
videos from ten classes: flowers, sea, trees without foliage, dense foliage, escala-
tor, calm water, flags, grass, traffic and fountains. There are 7 to 38 examples
of each class and this dataset has the largest intraclass variability in terms of
scale, orientation, etc.
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UCLA8 UCLA9 UCLA50

SVM NN SVM NN SVM NN

Ensemble SVMs [23] - - - - 100.0 -
MBSIF-TOP [17] - 97.8 - 98.8 - 99.5
OTD [18] 99.5 97.0 98.2 97.5 99.8 98.5
Enhanced LBP [15] - - - 98.2 - 100.0

Our approach 97.8 97.5 98.6 98.3 98.5 97.0
DFS [20] 99.2 - 97.5 89.5 100.0

WMFS [21] 97.0 97.2 97.1 97.0 99.8 99.1
DL-PEGASOS [22] - - - 95.6 - 99.0
Oriented energy rep. [12] - - - - - 81.0

Table 1. Comparison to state-of-the-art for the UCLA benchmarks.

6 Experiments

We present results both using a support vector machine (SVM) classifier and
a nearest neighbour (NN) classifier, the latter to evaluate the performance also
without hidden tunable parameters. For NN we use the χ2-distance d(x, y) =∑

i(xi−yi)
2/(xi+yi) and for SVM a χ2-kernel e−γd(x,y). The same set of recep-

tive fields and the same parameters (see Section 4) are used for all experiments
and no extensive parameter tuning has been performed. For the UCLA bench-
marks, we also use the non-cropped videos of size 160× 110, instead of the most
common setup which is to use manually extracted patches; thus our setup could
be considered a slightly harder problem.

6.1 Experimental setup and results UCLA50

The standard test setup for the UCLA50 benchmark, which we adopt also here,
is 4 fold crossvalidation where for each partitioning one of the four videos of
each dynamic texture are held out for testing and the other three are used for
training [8]. Test results are seen in Table 1. It can be seen that we achieve
competitive results on this benchmark with three misclassified samples out of
200, giving a classification accuracy of 98.5 % using an SVM classifier. Here, the
best results achieved by DFS, LBP and Ensemble SVMs reach 100 %. Inspecting
the misclassified samples, we note that two of those are different plants from the
same viewpoint being mixed up and the third one is an instance of a specific
plant being misclassified as the same plant but from a different distance.

6.2 Experimental setup and results UCLA8 and UCLA9

The standard test setup for UCLA8 and UCLA9 is to report the average accuracy
over 20 random partitions, with 50 % data used for training and 50 % for testing
(randomly bisecting each class) [22]. We use the same setup here, except that
we report results as an average over 1000 trials to get more reliable statistics.
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Alpha Beta Gamma

SVM NN SVM NN SVM NN

Transfer DL [24] 100.0 100.0 100.0 99.4 98.1 98.1 colour

Ensemble SVMs [23] - - - - 99.5 - colour

Our approach 98.3 96.7 93.2 92.6 94.3 89.4 greyscale

MBSIF-TOP [17] - 90.0 - 90.7 - 91.3 greyscale

AFS-TOP [16] 98.3 91.7 90.1 86.4 94.3 89.4 greyscale

LBP-TOP, from [24] 98.3 96.7 88.9 85.8 94.2 84.9 greyscale

ELM [10] - - 93.8* - 88.3* - greyscale

2D+T curvelet [27] - 88.0† - 70.0† - 68.0† greyscale

OTD [18] 87.8* 86.6† 76.7* 69.0† 74.8* 64.2† greyscale

DFS [20] 85.2* - 76.9* - 74.8* - greyscale

Table 2. Comparison to state-of-the-art for the DynTex benchmarks. Superscripts: *
indicates a different train-test partitioning and † the use of a nearest centroid classifier.

It can be seen from Table 1 that our proposed approach ranks higher for these
two conceptual reorganisations of the database. For UCLA9, we achieve the best
result of 98.6 % using an SVM classifier and the second best using a NN classifier,
only surpassed by MBSIF-TOP that achieves 98.8 % vs. our 98.3 %. For UCLA8
we achieve 97.8 % compared to the best result by OTD 99.5 % using an SVM
classifier, and the second best result of 97.5 % vs 97.8 % using a NN classifier. It
can in general be noted that no single approach achieves superior performance
on all three UCLA benchmarks.

A confusion matrix for UCLA9 is shown in Figure 3, and we noted that the
main cause of error for both UCLA8 and UCLA9 is confusing fire and smoke.
There is indeed a similarity in dynamics between these textures in the presence
of temporal intensity changes not mediated by spatial movements. Confusions
between flowers and plants, as well as between fountain and waterfall, are most
likely caused by similarities in the spatial appearance and the motion patterns
of these dynamic texture classes.

6.3 Experimental setup and results DynTex

For the DynTex benchmarks, the experimental setup used is leave-one-out cross-
validation as in [16, 17, 23, 24]. For this larger and more diverse database, we
achieve highly satisfactory results (Table 2). Compared to other methods utilis-
ing only grey level information and the same leave-one-out experimental setup,
such as AFS-TOP, LBD-TOP and MBSIF-TOP, we achieve the same or better
performance on all three benchmarks except for one: when using a NN classi-
fier on the Gamma subset MBSIF-TOP has an accuracy of 91.3 % compared
to our 89.4 %. However, we achieve better results for the Beta subset (92.6 %
vs. 90.7 %) and substantially better for the Alpha subset (96.7 % vs. 90.0 %).
Compared to AFS-TOP we achieve the same results for the Alpha and Gamma
subsets using an SVM classifier. There is however a notable improvement for the
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Fig. 3. Left: Confusion matrix UCLA9 averaged over trials (SVM classifier). Right:
Confusion matrix DynTex Gamma leave-one-out setting (SVM classifier).

Alpha subset using a NN classifier (96.7 % vs. 91.7 %) and for the Beta subset
using both classifiers (SVM: 93.2 % vs. 90.1 %, NN: 92.6 % vs. 86.4 %).

Compared to the original LBP-TOP descriptor, which could be considered
a more fair benchmark since we are benchmarking an early version of our ap-
proach, we achieve the same performance for the Alpha subset and notably better
performance on the Beta (92.6 % error vs. 85.8 %) and Gamma (89.4 % error
vs. 84.9 %) subsets using a NN classifier as well as smaller improvements when
using an SVM classifier. Interestingly, this is for methods similar to ours in the
sense that they collect statistics of local space-time structures and utilise joint
binary histogram descriptors. This can be considered a strong validation that
the scale-space filters used here capture useful information.

We also show notably better results (in the order of 10-20 p.p.) than those
reported from using DFS, OTD and the 2D+T curvelet transform, but since
those use a nearest centroid classifier and a different SVM train-test partition,
this makes a direct comparison unsure. The best results reported for the three
DynTex benchmarks are from transferring deep image features [24] and the en-
semble SVM method of Yang et al. [23]. Note that both these approaches utilise
colour information which can be highly discriminative for dynamic textures (our
approach is straight-forward to extend to colour, which we plan for future work).
The latter also combines several descriptors (LBP, SCOP, colour and LDS) which
cannot be directly compared to evaluating the performance of a single descriptor.

When inspecting the confusions between different classes for the DynTex
benchmarks (Figure 3), the pattern is not very clear, perhaps since this database
contains larger intraclass variabilities. We note the largest ratio of misclassified
samples for the escalator and traffic classes, which are also the classes with the
fewest samples.
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7 Summary and discussion

We have presented a new family of video descriptors based on joint histograms
of spatio-temporal receptive field responses and evaluated one member of this
family on the problem of dynamic texture recognition. This is the first evaluation
of using the family of time-causal scale-space filters derived in [2] as primitives
for video analysis as well as, to our knowledge, the first video descriptor that
utilises joint statistics of a set of “ideal” (in the sense of derived on the basis of
pure mathematical reasoning) spatio-temporal scale-space filters.

Our experimental evaluation on several benchmarks from two widely used dy-
namic texture databases shows competitive results on the UCLA database and
highly competitive results on the larger and more complex DynTex database.
For the DynTex benchmarks, we interestingly show improved performance com-
pared to methods similarly modelling statistics of local space-time structure such
as local binary pattern based methods [14, 15] and MBSIF-TOP [17], where the
latter in contrast to our method utilises filters learned from data. This although
temporal causality implies additional constraints on the feature extraction com-
pared to allowing simultaneous access to all video frames. We consider this a
strong validation that these spatio-temporal receptive fields are highly descrip-
tive for modelling the local space-time structure, and as evidence in favour of
their general applicability as primitives for video analysis.

It should be noted that the method presented here could also be implemented
using a non-causal Gaussian spatio-temporal scale-space kernel, which could
possibly give somewhat improved results, since at each point in time additional
information from the future could also be used. However, a time delayed Gaussian
kernel would imply longer temporal delays, which makes it less suited for time
critical applications, as well as more computations and larger temporal buffers.

In future work [28], we will generalise the descriptor to colour by consid-
ering spatio-chromo-temporal receptive fields and complement the evaluation
performed here with an investigation into which receptive field groups works
best for dynamic texture recognition as well as how the number of principal
components and the number of histogram bins affect the performance. We also
plan to broaden the investigation to other video analysis tasks. The theoretical
properties of these scale-space filters imply that they could be used to create
methods provably invariant or robust to different types of natural image trans-
formations. We see the possibility of integrating time-causal spatio-temporal
receptive fields into current video analysis methods as well as using them as
primitives for learning higher level features from data.
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