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Dynamic Theory of Picosecond Optical Pulse 
Shaping by Gain-Switched Semiconductor Laser 

Amplifiers 
ECKEHARD SCHOLL 

Absfrucf-A dynamic theory of semiconductor laser amplifiers is de- 
veloped which takes into account the coherent time-dependent ampli- 
fication of an incident optical pulse as well as the nonlinear dynamics 
of the semiconductor laser when driven by an unbiased injection cur- 
rent pulse. For suitable time delays between the optical and the elec- 
trical pulse, a strongly nonlinear self-induced shortening of the emitted 
laser pulse is predicted. 

INTRODUCTION 

HERE is currently much interest in the generation and T amplification of short optical pulses for the purposes 
of optical signal processing and optical communication 
systems. Unbiased gain switching by driving a semicon- 
ductor laser with an electrical injection current pulse of a 
few hundred picoseconds width and a current maximum 
of several times its CW threshold is a simple and reliable 
method of producjng stable pulses of less than 15 ps full 
width at half maximum (FWHM) in the 0.8-1.3 pm 
wavelength range [ 11. 

In this paper, it is shown theoretically that by operating 
an unbiased gain-switched semiconductor laser as a dy- 
namic optical amplifier, one can obtain even shorter op- 
tical pulses. Experimentally, it has been demonstrated in 
a cross-correlation arrangement that a conventional gain- 
switched semiconductor laser acts as a high-speed optical 
gate which can be used to detect an optical test pulse from 
a second laser with a time resolution better than 10 ps 
when the integral optical output is measured by a slow, 
integrating photodiode as a function of the delay time be- 
tween the optical and the electrical pulse [2]. A theoreti- 
cal understanding of these phenomena requires modeling 
of the internal nonlinear dynamics of the semiconductor 
laser as well as the coherent amplification of the incident 
signal. Previous theories were mainly restricted to either 
of these two aspects. The incoherent laser dynamics is 
commonly described by rate equations for the photon and 
carrier densities inside the laser medium [3]. This ap- 
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proach can explain the strongly nonlinear relaxation os- 
cillations emitted by unbiased gain-switched semiconduc- 
tor lasers [4], [ 5 ] ,  in very good agreement with 
experiments. Incoherent optical amplification is described 
within this framework by adding the optical pumping rate, 
i .e.,  the number of injected photons per unit time and unit 
volume, to the photon rate equation [6], 171. Hereby, in- 
terference effects are ignored. The other approach is ba- 
sically via a static active Fabry-Perot theory, assuming 
time independence of injection currents and incident op- 
tical signals [8]-[lo]. 

In this paper, a new simple analytical model is devel- 
oped which combines the nonlinear transient dynamics of 
the semiconductor laser driven by an injection current 
pulse with the time-dependent coherent amplification of 
an incident optical pulse. 

THE DYNAMIC MODEL 

The signal wave must be treated coherently since its 
transmission through the laser amplifier depends strongly 
upon its phase due to reflection at the end facets and in- 
terference between forward and backward propagating 
waves. It will be described by electric field amplitudes 
E+ ( z ,  t )  and E -  ( 2 ,  t )  traveling in the positive and neg- 
ative z direction of the laser resonator, respectively. (E’ 
and E -  are normalized to the dimensions of (length)-’/2, 
such that I E’ 1 ’  denote photon densities ) . All the remain- 
ing laser modes excluding the signal mode may be treated 
incoherently and described by a spatially averaged photon 
density N (  t ) ;  these determine the free-laser oscillation as 
a result of amplified spontaneous emission. It has been 
shown [9] that working with photon densities, i .e.,  inten- 
sities rather than field amplitudes, is equivalent to aver- 
aging the results over the photon energy between two cav- 
ity resonances. The use of axially averaged photon 
densities rather than 2-dependent forward and backward 
propagating photon densities is a reasonable approxima- 
tion for facet reflectivities larger than 20 percent (31. 

The dynamics of the carriers can be described by a sim- 
ple rate equation for the electron concentration n if the 
phase diffusion time of the electrons (given by the intra- 
band collision time) is much shorter than the recombina- 
tion time, i.e., if the electronic polarization [ 111, [ 121 re- 
laxes faster than the electronic inversion and if lateral 
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diffusion of carriers is ignored 

- d n ) ( N  + IE+(z ,  t)12 + I E - ( z ,  t )12) .  ( 1 )  
Here J ( t ) is the given time-dependent injection current 
density, 7 is the electron injection efficiency factor, d is 
the thickness of the laser-active region, R,,(n) is the 
spontaneous emission rate governed by monomolecular, 
bimolecular, or Auger-type recombination, and g ( n )  is 
the modal gain function (assumed to be the same in all 
modes, including the signal mode, for technical simplic- 
ity, but not for principal reasons). 

Apart from the standard rotating wave and slowly vary- 
ing amplitude approximations [13], our main assumption 
is now that the electron concentration n ( t )  varies little 
during the single-pass time T of the signal, which is typ- 
ically on the order of 4 ps, e .g . ,  for a cavity length of L 
= 300 pm and an optical group index of n, = 4. This 
approximation seems appropriate since the electron life- 
time is several orders of magnitude longer than the photon 
lifetime, and hence the electrons generally respond more 
slowly than the photons. Note that we still allow for 
changes in n ( t )  on a slower time scale from one single- 
pass to the next one. We can then approximate the z-de- 
pendent signal intensity in (1) by the axially averaged 
traveling signal photon density 

with similar arguments as given by Adams et al. [9] in 
the case of time-independent amplification of CW signals. 
We obtain the following coupled equations, which form 
the basis of our model: 

( 3 )  

right-hand side of ( 5 )  accounts for the net amplitude gain 
[8], [9]. Equation ( 5 )  has to be supplemented by boundary 
conditions for the crystal facets at z = 0 and z = L: 

E + ( O ,  t )  = tlEln(t) + rlE-(O, t )  

E - ( L ,  t )  = r 2 E i ( L ,  t )  

(6a)  

(6b)  

E,,,,(r) = t 2 E + ( L ,  t ) .  (6c)  

Here t l ,  t2,  and r l ,  r, are the amplitude transmission and 
reflection coefficients of the two facets, respectively; they 
are related to the reflectivities R I ,  R2 by 

R, = r ,  = 1 - t f  (7)  2 ( i  = 1, 2 ) .  

E,, ( t )  and E,,, ( t )  are the incident and the outgoing signal 
field amplitudes at the facets normalized to the dimen- 
sions of (length)-312. 

Under our basic approximation of averaged n ( t ) ,  (5) 
can be integrated from z = 0 to z = L for the forward or 
backward propagating signal wave, yielding the single- 
pass intensity gain 

where T = L / v ,  is the single-pass time. The total out- 
going signal amplitude Eou , ( t )  at a given time t is ob- 
tained by summing over all forward and backward prop- 
agating waves with appropriate time delays and phase 
factors, using (6): 

The corresponding output intensity (normalized to the di- 
mension of a photon density) is 

IE<>",(t) I Z  = t:GG,(f)  C ( r )  ( 10) 

C ( t )  = c c E Z ( t  - ( 2 m  + 1)T) 
m=O m ' = m + l  

aE' aE' 1 
~ z+ ~ = - (r&) - +* - i k ~ p .  ( 5 )  

at az  2 

Here I' is the optical confinement factor, P is the sponta- 
neous emission factor, U ,  = c / n ,  is the group velocity 
where c is the vacuum velocity of light and nR is the group 
index, CY is the optical loss constant for absorption and 
scattering in the active and cladding regions, K is the total 
inverse photon lifetime including absorption, scattering, 
and mirror losses, and k is the wave vector of the signal 
carrier wave in the semiconductor. The left-hand side of 
( 5 )  is the total time derivative as seen by an observer mov- 
ing with thP travplino W R V P  I R 1  and the fortnr 1 17 _- th- 

G , ( t  - /T) n G,(t  - 1 '7)  
/ ' = I  

. 2 cos [ 2 ( m '  - m ) k ~ ]  

2m 

* II G,(t - 17) 
I =  I 

rnntoinc a l l  rI1pla~r onA intorforonre t o m c  



SCHOLL: PICOSECOND OPTICAL PULSE SHAPING 431 

The signal field distribution E' ( z ,  t )  inside the cavity 
can be obtained most easily by integration of ( 5 )  from z 
to L using the boundary conditions (6b), (6c), and (9): 

- i k ( ~  - z ) )  Enut(t) (12)  
with 

R = ( M n )  - a) / (2qg) .  
- The spatially averaged signal intensity (photon density) 
S ( t )  follows from (2), (12), and (10): 

S ( t )  = ( G , ( t )  - 1 ) ( 1  + r :G, ( t ) )  
- 

through n ( t )  in (8) must be determined self-consistently 
from ( 3 ) - ( S ) .  To this purpose, the rate equations ( 3 )  and 
(4) with (1 3) must be solved numerically. They constitute 
a system of delay differential equations due to the occur- 
rence of n ( t  - T), n ( t  - 271, n ( t  - 371, - . * in S ( t )  
by (1 1). Starting from an initial thermal equilibrium value 
n ( 0 )  and N (  0)  before the injection current pulse sets in,  
one can in principle integrate ( 3 )  and (4) for arbitrary in- 
jection current pulses J ( t )  and incident signals Ei, ( t ) .  

The numerical effort can be greatly reduced by a further 
approximation which lets s( t )  vary in discrete time steps 
T only. The rate equations ( 3 )  and (4) governing the in- 
ternal laser dynamics are integrated with constant s( t )  
from the time t to r + T ,  yielding a new carrier density 
n (  t + T )  and, by (8) and (13), a new signal photon den- 
sity S ( t  + T ) ,  which is used in ( 3 )  and (4) during the 
next time step T.  This procedure represents a reasonable 
approximation if, in addition to slowly varying n ( t ) ,  the 
incident signal Ei, ( t )  changes slowly during a time T.  

. r:E(t)/ln G , ( t ) .  (13 )  
Equations (9)-( 13) are our main analytical results. In NUMERICAL RESULTS 

particular, (9) takes account of time-dependent multiple- 
beam interference. In the special case of a time-indepen- 
dent input signal E,, and a time-independent single-pass 
gain G,, (9) reduces to the familiar result of an active Fa- 
bry-Perot cavity: 

Without incident signal (3 = 0),  ( 3 )  and (4) are the 
familiar semiconductor laser rate equations, which give 
rise to damped relaxation oscillations as a result of am- 
plified spontaneous emission when driven with a suitable 
injection current pulse J ( t )  [SI. In the following numer- 

r,t2Gt12 
1 - r,r2G, exp ( -2ikL) ' 

ical calculations, J ( t )  is modeled by an asymmetric 
Gaussian in order to allow for different rise and fall times 
t ,  and tf, respectively: 

(14) Enut 1 Em 

which leads to the total amplifier intensity gain [7], [9]: 

IEI - ( 1  - m G , ) '  + 4 m G ,  sin2 ( k  - k , ) L  

7 J o  exp { - [ ( t  - t 0 ) / t r I2}  

J o  exp { - [ ( t  - t0)/!f12} 

for t < to 
(17)  

for r L lo. 

Eout - ( 1  - R , ) ( 1  - R?)G\ 

J ( t )  = 

(15) 

where k, = r r / L  ( r  E IN)  corresponds to the cavity res- 
onances. G, is given by (8) where n is determined from 
(3) in the steady state. 

Another limiting case, which occurs if the signal input 
pulse is short compared to the cavity round-trip time and 
G, is time independent, is also contained in (9) and agrees 
with the results of Lenth [ 141. The output signal then con- 
sists of a sequence of multiply reflected pulses which do 
not interfere with each other. The integral output intensity 
for S 1 E, , ( t )  1 '  dt = E~ is 

n m  m 

Our result (9) generalizes ( 14) and ( 1  6) to a wide range 
of experimental conditions with both a time-dependent in- 
put signal and a time-dependent modal gain of the ampli- 
fier. In the general case, the infinite series (9) cannot be 

This closely approximates experimentally used current 
pulse shapes [ l ] .  There exists a minimum value J t ' "  of 
the peak current density Jo,  considerably larger than the 
CW laser thresholdJ, = R , , ( n , ) e d / q ,  g ( n , )  = K/r, be- 
low which no laser emission occurs. This effective dy- 
namic threshold is pulse-shape dependent and is typically 
several times J ,  for injection pulsewidths of a few hundred 
picoseconds. It is higher for shorter r,. + t f .  For suffi- 
ciently large J0 > JOm'", more than one relaxation oscil- 
lation may be emitted. With increasing ratiojO = J o / J , ,  
the FWHM of the first relaxation oscillation decreases, 
the time difference between subsequent relaxation oscil- 
lations decreases, the peak optical power increases, and 
the delay time before the onset of the first oscillation de- 
creases [ 5 ] .  In the following, J o  is optimized in the sense 
that one and only one relaxation oscillation is emitted. 

So far, the spontaneous recombination rate and the 
modal gain have not been specified. While our general 
model allows for more realistic and sophisticated forms 
of R,,(n) [lS] and g ( n )  [16], [17], including the effects &,. . . 1 ,I 1,  . . . . .  . .. 
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Fig. 1. Numerical solution of the laser rate equations without incident op- 
tical signal (Eln = 0 ) .  (a) The injection current density J / J ,  plotted ver- 
sus time in picoseconds. (b) The photon density N / n ,  plotted versus time 
in picoseconds. (c) The electron density n / n ,  plotted versus time in pi- 
coseconds. (d) The single-pass gain G, plotted versus time in picosec- 
onds. J ,  and n, are the respective CW threshold values of J and n. The 
material parameters are B = 1.6 x IO- ' '  cm3/s,  go = 4 X cm3/s,  
no = 0.5n,, K = 1 ps-I, r = 0.2, P = which gives n,  = 2.5 x 
I O i 8  ~ 1 1 1 ~ ~ .  The initial values are N ( 0 )  = 0, n ( 0 )  = N D  = 2 X I O i 7  
~ 3 1 1 ~ ~ .  

simple functions 

R,,(n) = Bn2 (18) 

(19) g ( 4  = go * (. - no) 
where no denotes the transparency concentration and B ,  
go are constants. For typical material parameters and an 
injection current pulse withj, = 7, t ,  = 250 ps, tf = 280 
ps, to = 500 ps, the numerical results are shown in Fig. 
1. A single relaxation oscillation is emitted [Fig. l(b)]. 
Note that the single-pass gain G,( t ) ,  which is related to 
the exponential of n ( t )  by (8), (19), represents an optical 

gate which very slowly regresses to its equilibrium value 
close to zero due to the slow decay of the carrier density 
to equilibrium after the optical pulse is emitted. There is 
amplification, i.e.,  G s ( t )  > 1, even well below the CW 
threshold electron density n, = no + ~ / ( r g , , ) ,  as long as 

n > no + . I / ( r k o ) .  ( 2 0 )  

Fig. 2 shows the numerical solution of (3),  (4), (8), and 
(13) with the same material and excitation parameters for 
a rectangular incident optical signal of 100 ps width, an 
intensity three orders of magnitude smaller than that of 
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Fig. 2 .  Numerical solution of the amplifier dynamics. (a) The given inci- 
dent signal photon density 1 E, ,  I *  in units of n, is plotted versus time in 
picoseconds. (b) The resulting emitted signal photon density 1 E,,, l * / n ,  
plotted versus time in picoseconds. (c) The electron density n / n ,  plotted 
versus time in picoseconds. (d) The single-pass gain G, plotted versus 
time in picoseconds. The injection current pulse and the material param- 
eters are the same as in Fig. I ;  additionally, a = 0.15 p s - ' ,  RI = Rz = 

0.33, L = 300 pm, nx = 4, k = 27rnx/X,  with Xo = 0 . 8 p m  has been 
used. The corresponding single-pass time is 7 = 4 ps. S ( r )  has been 
varied in discrete time steps T = 2 ps. 

the spontaneously emitted pulse of Fig. l(b), and injected 
at about the time when the electron density is maximum. 
The emitted signal [Fig. 2(b)] is amplified by a factor of 
about 20 000 and drastically reduced in width well below 
10 ps. This can be understood by noting the sharp reduc- 
tion in n [Fig. 2(c)] after a few round trips of the incident 
signal. This is the result of strongly enhanced stimulated 
emission due to the amplified signal S ( t ) ,  which in turn 
decreases the electron density by ( 3 ) .  Thus, the leading 
edge of the signal encounters a large amplification factor 

G,, but immediately induces a sharp decrease of n and 
thus depletes the gain G,, which leads to a shortening of 
the optical gate and the subsequent suppression of the sig- 
nal field. This nonlinear negative feedback represents a 
simple and efficient mechanism of self-induced pulse 
shortening within the active laser cavity. It is reminiscent 
of active mode-locking [ 181, but differs essentially in that 
it generates single output pulses rather than a continuous 
pulse train. It requires only relatively broad optical and 
electrical pulses as input signal and driving injection cur- 
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Fig. 3.  Same as in Fig. 2 ,  but with a different time delay between the 

injection current pulse J ( t )  [Fig. l(a)] and the incident optical signal 
I & ( r )  1' (a). 

rent, respectively. Also, the resulting output pulse is rel- 
atively insensitive to the precise time delay T~ between 
the optical and the electrical pulse as long as the optical 
signal coincides roughly with the broad maximum of n ( t ). 
This has been checked numerically by varying T ~ .  If the 
onset of the incident signal is shifted past the maximum 
of n ( t ) ,  the single-pass gain is smaller, but still greater 
than unity as long as (20) holds since n ( t )  decays slowly. 
It takes longer for the signal wave to build up, and hence 
the self-induced gain depletion is not as pronounced, and 
the output signal is slightly broader (Fig. 3). If the input 
signal arrives well before the electron density has reached 
its maximum (Fig. 4), the single-pass gain G, is too small 
to amplify the signal sufficiently fast in order to reduce G, 
below unity. Rather, the remaining amplification is suf- 
ficient to initiate another buildup of the signal wave, and 

a second signal spike, and possibly subsequent ones, are 
emitted. Thus, a sequence of broad, damped relaxation 
oscillations is emitted [Fig. 4(b)]. 

Variation of the length and shape of the incident signal 
Ei, ( t )  yields little change in the emitted signal since only 
the leading edge of the incident pulse essentially contrib- 
utes to the amplifier output E O u t ( t ) .  The material param- 
eters that influence the FWHM of the output signal most 
heavily are the gain coefficient go and the loss coefficient 
a. In particular, go determines the time scale on which the 
signal field inside the amplifier builds up and on which 
the enhanced stimulated emission reduces n ( t ). 

CONCLUSIONS 
Our proposed dynamic optical amplifier model predicts 

self-induced pulse shortening due to rapid gain depletion 
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Fig. 4. Same as in Fig. 2 ,  but with a different time delay between J ( r )  
and / E , , ( t ) I 2 .  

by the incident signal. This suggests a practical applica- 
tion as a very simple and inexpensive method of produc- 
ing short single optical pulses. A possible experimental 
realization is sketched schematically in Fig. 5. It consists 
of an electrical pulse generator, which drives two semi- 
conductor laser diodes lI and l2  via a power divider and 
an electrical delay in such a way that they both emit single 
optical pulses under free-running conditions. The pulse 
emitted by lI is focused, possibly via an adjustable optical 
delay, onto 12, which operates as a dynamic amplifier. 

The effect of pulse shortening by gain depletion heavily 
relies upon the rransient dynamics of the laser amplifier 
driven by a pulsed injection current since under steady- 
state conditions the electron concentration, and hence the 
gain, saturates at the CW laser threshold. An incoherent 
dynamic theory which treats the amplified signal on the 
basis of rate equations for the photon density with an ex- 

electr ical  
pulse generator elec!ricol 

delay 

Fig. 5. Schematic expertmental setup for generation of ultrashort optical 
pulses by self-induced pulse shaping. The pulse emitted by the laser I ,  
is focused onto the laser I , ,  which operates as an  amplifier. 

ternal optical pumping rate [7] would also not appropri- 
ately take into account the gain depletion due to enhanced 
stimulated emission. Moreover, it would not explain the 
fine structure of the emitted optical pulse due to multiple 
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reflections at the facets [cf. Figs. 2(b), 3(b), 4(b)J. Our 
theory can explain the observation [2], [ 151 that the dy- 
namic gain decays much faster than given by the sponta- 
neous recombination rate. Although our approximation of 
time-averaged n during a single pass tends to overestimate 
the self-induced pulse shortening, stable optical pulses 
well below 10 ps seem to be feasible. 

A different application has been realized in cross-cor- 
relation experiments where the amplifier acts as an optical 
sampling gate, and the time integral of the optical output 
intensity 1 I E,,, ( t )  l 2  dt is recorded as a function of the 
delay time between the injection current pulses of the two 
lasers [2]. In order to obtain a narrow optical gate, it is 
desirable that the incident optical signal have very little 
influence upon the internal dynamics of the amplifier; i .e.,  
the single-pass gain is modified only slightly by the sig- 
nal. This can be achieved by appropriate attenuation of 
the signal. 

Possible future applications of the theory could include 
a feedback of the emitted optical pulse Eou, ( t )  onto the 
semiconductor laser amplifier itself through an optical fi- 
ber in an experimental setup similar to that of the soliton 
laser [19], [20]. In such a feedback loop, only one laser 
is needed. 
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