
Dynamic Thread Block Launch: A Lightweight Execution Mechanism to

Support Irregular Applications on GPUs

Jin Wang* Norm Rubin† Albert Sidelnik† Sudhakar Yalamanchili*

*Georgia Institute of Technology †NVIDIA Research
∗{jin.wang,sudha}@gatech.edu, †{nrubin,asidelnik}@nvidia.com

Abstract
GPUs have been proven effective for structured applica-

tions that map well to the rigid 1D-3D grid of threads in mod-

ern bulk synchronous parallel (BSP) programming languages.

However, less success has been encountered in mapping data

intensive irregular applications such as graph analytics, rela-

tional databases, and machine learning. Recently introduced

nested device-side kernel launching functionality in the GPU

is a step in the right direction, but still falls short of being able

to effectively harness the GPUs performance potential.

We propose a new mechanism called Dynamic Thread Block

Launch (DTBL) to extend the current bulk synchronous par-

allel model underlying the current GPU execution model by

supporting dynamic spawning of lightweight thread blocks.

This mechanism supports the nested launching of thread blocks

rather than kernels to execute dynamically occurring paral-

lel work elements. This paper describes the execution model

of DTBL, device-runtime support, and microarchitecture ex-

tensions to track and execute dynamically spawned thread

blocks. Experiments with a set of irregular data intensive

CUDA applications executing on a cycle-level simulator show

that DTBL achieves average 1.21x speedup over the original

flat implementation and average 1.40x over the implementa-

tion with device-side kernel launches using CUDA Dynamic

Parallelism.

1. Introduction

There has been considerable success in harnessing the superior

compute and memory bandwidth of GPUs to accelerate tradi-

tional scientific and engineering computations [3][24][31][30].

These computations are dominated by structured control and

data flows across large data sets that can be effectively mapped

to the 1D-3D massively parallel thread block structures un-

derlying modern bulk synchronous programming languages

for GPUs such as CUDA [27] and OpenCL[17]. However,

emerging data intensive applications in analytics, planning,

retail forecasting and similar applications are dominated by

sophisticated algorithms from machine learning, graph analy-

sis, and deductive reasoning characterized by irregular control,

data, and memory access flows. Thus, it is challenging to

effectively harness data parallel accelerators such as GPUs

for these applications. This paper presents, evaluates, and

demonstrates an effective solution to this challenge.

We first observe that within many irregular applications,

segments of the computation locally exhibit structured control

and memory access behaviors. These pockets of parallelism

occur in a data dependent, nested, time-varying manner. The

CUDA Dynamic Parallelism (CDP) [28] model extends the

base CUDA programming model with device-side nested ker-

nel launch capabilities to enable programmers to exploit this

dynamic evolution of parallelism in applications. OpenCL pro-

vides similar capabilities with the OpenCL device-side kernel

enqueue. However, recent studies have shown that while these

extensions do address the productivity and algorithmic issues,

the ability to harness modern high performance hardware ac-

celerators such as GPUs is still difficult in most cases [36][39].

This is primarily due to the cost of a device-side kernel launch

that is in turn a function of the semantics of kernels.

We also observe that much of the dynamic parallelism that

occurs in these applications can be effectively harnessed with

a lighter weight mechanism to spawn parallel work. Accord-

ingly we introduce the Dynamic Thread Block Launch (DTBL)

mechanism to launch light weight thread blocks dynamically

and on demand from GPU threads. These thread blocks se-

mantically correspond to a cooperative thread array (CTA) in

CUDA or a work group in OpenCL. The overhead of launching

a thread block is considerably smaller than launching a kernel.

The finer granularity of a thread block provides effective con-

trol of exploiting smaller-scale, dynamically occurring pockets

of parallelism during the computation. We extend the GPU mi-

croarchitecture to integrate the execution of these dynamically

spawned parallel work units into the base GPU microarchitec-

ture. The results show improved execution performance for

irregular applications with relatively modest hardware invest-

ments and minimal extensions to the base execution model in

CUDA or OpenCL. In fact, DTBL can be integrated within

existing languages retaining device-side nested kernel launch

capability and reusing much of the existing device API stack

without any impact on applications that do not use DTBL func-

tionality. Consequently extensions to the device side runtime

are minimal.

Accordingly this paper makes the following contributions.

1. We introduce DTBL as an effective lightweight execu-

tion mechanism for spawning dynamically created parallel

work. DTBL can be used to effectively harness the com-

pute and memory bandwidth of GPUs for data intensive

irregular applications.

2. We implement a device side runtime API for supporting

DTBL with a single call by leveraging the API for CUDA

1

Host

CPU

In
te

rc
o

n
n

e
ct

io
n

 B
u

s

GPU

SMX SMX SMX SMX

Kernel Distributor

SMX Scheduler Core Core Core Core

Registers

L1 Cache / Shard Memory

Warp Schedulers

Warp Context
K

e
rn

e
l M

a
n

a
g

e
m

e
n

t
U

n
it

H
W

 W
o

rk
 Q

u
e

u
e

s
P

e
n

d
in

g

K
e

rn
e

ls

Memory

Controller

PC Dim Param ExeBL

Kernel Distributor Entry

Control Registers

DRAML2 Cache

Figure 1: Baseline GPU Architecture

Dynamic Parallelism.

3. The base GPU microarchitecture is extended at a mod-

est cost to support the dynamic generation, tracking, and

efficient management of the spawned thread blocks.

4. An evaluation from multiple performance perspectives

of several CUDA applications is presented executing on

a cycle-level simulator. DTBL achieves average 1.21x

speedup over the original implementation with flat GPU

programming methodology and average 1.40x over the im-

plementation with device-side kernel launches using CDP.

The remainder of the paper introduces DTBL, microarchi-

tecture extensions to support DTBL, a detailed description of

its execution behavior, and the evaluation across a range of

representative benchmarks.

2. Baseline GPU Architecture and Computation

Execution

This section provides a brief background on modern general

purpose GPUs and the details of their execution model.

2.1. Baseline GPU Architecture and Execution Model

We model the baseline GPU architecture according to the

NVIDIA GK110 Kepler architecture so we adopt the NVIDIA

and CUDA terminology. However, the basic ideas and re-

sulting analysis are applicable to other GPU architectures. In

Figure 1, a GPU is connected to the host CPU by the intercon-

nection bus and accepts operation commands such as memory

copy and kernel launching from the CPU. In the CUDA pro-

gramming model, programmers express a GPU program as a

kernel function that specifies a 1D-3D array of thread blocks

called cooperative thread arrays (CTAs), all threads executing

the same code. Thread blocks are scheduled and executed on

the GPU computation units called Streaming Multiprocessors

(SMXs), each of which features multiple cores, registers and

a scratch memory space used as L1 cache or shared memory.

The GPU connects to the L2 cache and then to the DRAM

through the memory controller and uses it as global memory.

2.2. Host-side Kernel Launching and Scheduling

The CPU launches GPU kernels by dispatching kernel launch-

ing commands. Kernel parameters are passed from CPU to

GPU at the kernel launching time and stored in the GPU global

memory with necessary alignment requirements. The parame-

ter addresses are part of the launching command along with

other kernel information such as dimension configuration and

entry PC address. All the launching commands are passed to

the GPU through software stream queues (e.g. CUDA stream).

Kernels from different streams are independent from each

other and may be executed concurrently while kernels from

the same stream should be executed in the order that they

are launched. The streams are mapped to Hardware Work

Queues (HWQ) in the GPU that create hardware-managed

connections between the CPU and the GPU. The current gen-

eration of NVIDIA GPUs introduce Hyper-Q[26] - a technique

which constructs multiple HWQs and maps individual streams

to each HWQ to realize concurrency. However, if the number

of software streams exceeds the number of HWQ, some of

them will be combined and serialized. In our baseline GPU

architectures, the Kernel Management Unit (KMU) manages

multiple HWQs by inspecting and dispatching kernels at the

head of the queue to the Kernel Distributor. Once the head

kernel is dispatched, the corresponding HWQ stops being in-

spected by the KMU until the head kernel completes. The

KMU also manages all the kernels dynamically launched or

suspended by an SMX (e.g. through use of the CUDA Dy-

namic Parallelism feature) as discussed in section 2.4.

The Kernel Distributor holds all the active kernels ready for

execution. The number of entries in the Kernel Distributor is

the same as that of HWQs (32 in the GK110 architecture) as

this is the maximum number of independent kernels that can be

dispatched by the KMU. Each entry manages a set of registers

that record the kernel status including kernel entry PC, grid and

thread block dimension information, parameter addresses and

the number of thread blocks to complete. The SMX scheduler

takes one entry from the Kernel Distributor in first-come-first-

serve (FCFS) order and sets up the SMX control registers

according to the kernel status. It then distributes the thread

blocks of the kernel to each SMX limited by the maximum

number of resident thread block, threads, number of registers,

and shared memory space per SMX.

During execution, a thread block is partitioned into groups

of 32 threads called a warp as the basic thread group executed

on a 32-lane SIMD unit. SMXs maintain the warp contexts for

the lifetime of the thread block. The warp scheduler selects

a warp from all the resident warps on the SMX that have no

unresolved dependency according to a scheduling policy (e.g.

round-robin) and then issues its next instruction to the cores.

By interleaving warps, an SMX is able to achieve hardware

multithreading and hide memory latency. All the threads in a

warp execute the same instruction in a lock-step fashion. When

there is a branch and threads in a warp take different paths,

2

the execution of threads on different paths will be serialized.

This is referred to as control flow divergence and results in low

SIMD lane utilization. Our baseline architecture uses a PDOM

reconvergence stack [13] to track and reconverge the threads

that take different branches. Memory accesses generated by 32

threads in a warp for consecutive word addresses are coalesced

into one memory transaction. Otherwise memory instructions

are replayed multiple times which may increase the memory

access latency for the entire warp. This pattern of irregular

memory accesses is referred as memory divergence [22]. The

SMX scheduler keeps updating the control register and the

register in each Kernel Distributor entry to reflect the number

of thread blocks that remain to be scheduled as well as those

still being executed. When all the thread blocks of a kernel

finish, the Kernel Distributor will release the corresponding

kernel entry to accept the next kernel from the KMU.

2.3. Concurrent Kernel Execution

Concurrent kernel execution is realized by distributing thread

blocks from different kernels across one or more SMXs. If one

kernel does not occupy all SMXs, the SMX scheduler takes the

next kernel and distributes its thread blocks to the remaining

SMXs. When a thread block finishes, the corresponding SMX

notifies the SMX scheduler to distribute a new blocks either

from the same kernel or from the next kernel entry in the

Kernel Distributor if the current kernel does not have any

remaining thread blocks to distribute and the SMX has enough

resources available to execute a thread block of the next kernel.

Therefore, multiple thread blocks from different kernels can

execute on the same SMX [11]. Large kernels which either

have many thread blocks or use a large amount of resources are

not likely to be executed concurrently. On the other hand, if the

kernels in the Kernel Distributor only use a very small amount

of SMX resources, the SMX may not be fully occupied even

after all the kernels in the Kernel Distributor are distributed,

which results in under-utilization of the SMX.

2.4. Device-Side Kernel Launch

Recent advances in the GPU programming model and archi-

tecture support device-side kernel launches - CUDA Dynamic

Parallelism [28] - which provides the capability of launching

kernels dynamically from the GPU. In this model, parent ker-

nels are able to launch nested child kernels by invoking several

device-side API calls to specify the child kernel configuration,

setup parameters, and dispatch kernels through device-side

software streams to express dependencies. Child kernels can

start any time after they are launched by their parents. How-

ever, parent kernels may request explicit synchronization with

the children, which results in an immediate yielding from

parent to child. Device-side kernel launching preserves the

original memory model used in the GPU: global memory is

visible to both parent and children while shared memory and

local memory are private and cannot be passed to each other.

In our baseline GPU architecture, there is a path from each

SMX to the KMU so that all the SMXs are able to issue new

kernel launching commands to the KMU. Similar to host-side

launched kernels, parameters are stored in the global memory

and the address is passed to the KMU with all other config-

urations. When a parent decides to yield to a child kernel,

the SMX suspends the parent kernel and notifies the KMU to

hold the suspended kernel information. The KMU dispatches

device-launched or suspended kernels to the Kernel Distribu-

tor along with other host-launched kernels in the same manner.

Therefore device-launched kernels also take advantage of con-

current kernel execution capability.

Current architecture support of device-side kernel launching

comes with non-trivial overhead. Wang et al. [36] analyze the

CDP overhead on the Tesla K20c GPU and show that the total

kernel launching time scales with the number of child kernels,

decreasing the performance by an average of 36.1%. The

launching time is composed of the time spent in allocating

the parameters, issuing a new launching command from SMX

to the KMU, and dispatching a kernel from the KMU to the

Kernel Distributor.

Device-side kernel launches also require a substantial global

memory footprint. A parent may generate many child kernels

which can be pending for a long time before being executed,

thus requiring the GPU to reserve a fair amount of memory

for storing the associated information of the pending kernels.

On the other hand, the device runtime has to save the states of

the parent kernel when they are suspended to yield to the child

kernels at the explicit synchronization points.

3. Dynamic Parallelism

We propose to extend the BSP execution model to effectively

and efficiently support dynamic parallelism. This section

introduces major characteristics of dynamic parallelism and

introduces our extension to the BSP model.

3.1. Parallelism in Irregular Applications

Emerging data intensive applications are increasingly irreg-

ular by operating on unstructured data such as trees, graphs,

relational data and adaptive meshes. These applications have

inherent time-varying, workload-dependent and unpredictable

memory and control flow behavior that may cause severe work-

load imbalance, poor memory system performance and even-

tually low GPU utilization. Despite the above observations,

they still exhibit Dynamically Formed pockets of structured

data Parallelism (DFP) that can locally effectively exploit the

GPU compute and memory bandwidth. For example, typical

GPU implementations for vertex expansion operations that

are commonly used in graph problems assign one thread to

expand each vertex in the vertex frontier with a loop that iter-

ates over all the neighbors. Since the number of neighbors for

each vertex can vary, the implementation may suffer from poor

workload balance across threads. However, DFP exists within

each thread as the neighbor exploration can be implemented

3

as a structured parallel loop where each neighbor is examined

independently.

The introduction of device-side kernel launching in GPUs

enables a implementation scheme that new child kernels are

dynamically invoked for any detected DFP in irregular applica-

tions. In the vertex expansion example, the original neighbor

exploration loop can be replaced by a dynamically launched

kernel that employs uniform control flow. The approach can

potentially increase the performance by reducing control flow

divergence and memory irregularity. For some common data

structures used in this problem such as Compressed Sparse

Row (CSR) where neighbor IDs of each vertex are stored in

consecutive addresses, parallel neighbor exploration may also

generate coalesced memory accesses. Prior studies have iden-

tified several characteristics of of such implementations [36]:

High Kernel Density: Depending on the problem size,

DFP in irregular applications can show substantially high

density where a large number of device kernels are launched.

For example, a typical breadth first search (BFS) iteration

can have about 3K device kernel launches. The high DFP

density results in high kernel launching overhead and memory

footprint.

Low Compute Intensity: Device kernels launched for

DFP are usually fine-grained and have relatively low degrees

of parallelism. Measurements across several irregular applica-

tions show that the average number of threads in each device-

launched kernel is around 40 which is close to the warp size.

Workload Similarity: As DFP may exist within each

thread in a kernel, and all threads are identical, the operations

performed by each dynamically launched kernel are usually

similar. However their instantiation may be with different

degrees of parallelism. As per the nature of DFP, most device-

launched kernels invoke the same kernel function but can have

different configurations and parameter data.

Low Concurrency and Scheduling Efficiency: DFP gen-

erated by different threads are independent of each other and

are implemented by launching device kernels through differ-

ent software streams to enable concurrency. Because of the

low compute intensity in these device kernels and thereby the

low resources usage when executed on SMX, multiple device

kernels are able to execute concurrently. However, current

kernel scheduling strategy on the GPU imposes a limit on

kernel-level concurrency as the number of independent HWQs

determines the maximum number of kernels that can be ex-

ecuted concurrently which is 32 in the GK110 architecture.

As fine-grained device kernels can only be scheduled and exe-

cuted concurrently up to this limit, there may not be enough

warps to fully occupy the SMX. Consider an example where

the device kernels have only 64 threads (2 warps) and 32 de-

vice kernels are concurrently scheduled to the GPU which

result in 64 warps running on the SMXs simultaneously. This

is only 1/13 of the maximum number of resident warps on a

Tesla K20c GPU (13 SMXs, each has maximum 64 resident

warps). The limited warp concurrency could potentially cause

either low utilization (if some of the SMXs are not assigned

with any warps) or poor memory latency hiding ability (if

SMXs are assigned with small number of warps).

3.2. Light Weight Thread Blocks

While current support of device-side kernel launch on the GPU

provides substantial productivity for handling DFP, the major

issues of kernel launching overhead, large memory footprint,

and less efficient kernel scheduling prevent the performance

effective utilization of this functionality.

We propose to extend the current GPU execution model

with DTBL where thread blocks rather than entire kernels

can be dynamically launched from a GPU thread. Thread

blocks (TBs) can be viewed as light weight versions of a

kernel. A kernel can make nested TB calls on demand to

locally exploit small pockets of parallel work as they occur in

a data dependent manner. When a GPU kernel thread launches

a TB, it is queued up for execution along with other TBs that

are initially created by the kernel launch. Using DTBL, the

set of TBs that comprise a kernel are no longer fixed at launch

time but can vary dynamically over the lifetime of a kernel.

As we will demonstrate, the dynamic creation of thread

blocks can effectively increase the SMX occupancy, leading to

higher GPU utilization. The dynamic TB launch overhead as

well as memory footprint are significantly lower than that of

kernel launch. Thus, DTBL enables more efficient support of

irregular applications by introducing a light weight mechanism

to dynamically spawn and control parallelism.

4. Dynamic Thread Block Launch

In this section, we define the execution model of DTBL, pro-

pose the architecture extensions, and analyze the potential

benefits.

4.1. DTBL Execution Model

The execution model of DTBL allows new TBs to be dynami-

cally launched from GPU threads and coalesced with existing

kernels for scheduling efficiency. We extend the current GPU

BSP execution mode with several new concepts and terms to

support these new features.

Figure 2 shows the execution model and thread hierarchy of

DTBL. Any thread in a GPU kernel can launch multiple TBs

with a single device API call (see later in this section). These

TBs are composed as a single aggregated group utilizing a

three dimensional organization similar to those of a native

kernel. An aggregated group is then coalesced with a kernel -

this simply means the TBs in the aggregated groups are added

to the existing pool of TBs remaining to be scheduled and

executed for that kernel. In fact, an aggregated group may

be coalesced with the kernel of the parent thread (Figure 2a)

or with another kernel (Figure 2b). In either case, the newly

generated aggregated group execute the same function code as

the kernel with which it is coalesced, and may have different

4

K1

K3

Native TB

Aggregated Group

Aggregated TB

Aggregated Kernel

Native Kernel

Launch

(a) (b)

K2

Figure 2: DTBL execution model and thread hierarchy where

(a) shows the aggregated groups launched by kernel K1 are

coalesced to itself and (b) shows the aggregated groups

launched by kernel K2 are coalesced to another kernel K3.

input parameter values. Multiple aggregated groups can be

coalesced to a single kernel.

In DTBL, coalescing is essential to increasing the TB

scheduling performance due to i) TBs with the same con-

figuration can be scheduled together to achieve the designed

occupancy for the original kernel, possibly leading to higher

GPU utilization and ii) coalesced aggregated groups only re-

quire one common context setup including kernel function

loading, register and shared memory partitioning which can

reduce the scheduling overhead. More details are described in

the microarchitecture later in Section 4.2.

The kernel that is initially launched either by the host or by

the device using the kernel launching API is called a native

kernel. The TBs that compose the native kernel are native TBs.

TBs in an aggregated group are called aggregated TBs. When

a native kernel is coalesced with new aggregated groups, it

becomes an aggregated kernel.

The idea of DTBL can be illustrated with two examples.

The first example is Adaptive Mesh Refinement (AMR) cor-

responding to the execution model in Figure 2a. The DTBL

implementation uses a native kernel K1 for the initial grid

where each thread may launch nested aggregated groups for

recursively refining the cells that are processed by the thread.

All the new aggregated groups are then coalesced with K1

which become one aggregated kernel. The second example

is BFS corresponding to the execution model in Figure 2b

where a parent kernel K2 assigns threads to all the vertices

in the vertex frontier and each parent thread may launch new

TBs to expand the vertex neighbors. The kernel K3 is a native

kernel previously launched by the host or the device for vertex

expansion. The new TBs generated by K2 are coalesced to K3

rather than the parent.

Thread Hierarchy Within an Aggregated TB: As in GPUs

today, DTBL uses a three-dimensional thread index to iden-

tify the threads in an aggregated TB. When coalesced to a

native kernel, the number of threads in each dimension of

an aggregated TB should be the same as that of a native TB.

Therefore, aggregated TBs use the same configuration and

the same amount of resources as native TBs, minimizing the

overhead when scheduled on an SMX.

Aggregated TB Hierarchy Within an Aggregated Group:

An aggregated group in DTBL is analogous to a device-

Device Runtime API Calls Description

cudaGetParameterBuffer Reused from the original CUDA device run-

time library to allocate parameter buffer for

a new aggregated group.

cudaLaunchAggGroup A new API call introduced by DTBL pro-

gramming interface which launches a new

aggregated group.

Table 1: List of Device Runtime API calls for DTBL

launched kernel. Within an aggregated group, aggregated

TBs are organized into one/two/three dimensions, identified

by their three-dimensional TB indices. The value of each TB

index dimension starts at zero. Similar to launching a device

kernel, the programmers supply data addresses through param-

eters and use TB indices within an aggregated group as well

as thread indices within an aggregated TB to index the data

values used by each thread.

Synchronization: DTBL uses the same synchronization se-

mantics as the current GPU execution model, i.e., threads

within an aggregated TB can be synchronized explicitly by

calling a barrier function. However, like the base program-

ming model no explicit barrier is valid across native or aggre-

gated TBs. Unlike the parent-child synchronization seman-

tics in the device-kernel launching model in CDP, aggregated

groups cannot be explicitly synchronized by its invoking ker-

nel. Therefore, it is the programmers’ responsibility to ensure

the correctness of the program without any assumption on the

execution order of aggregated groups. When we implement

various irregular applications using device kernel launching,

we avoid any explicit synchronization between the child and

parents due to its high overhead in saving the parent state to

the global memory, so these applications can be easily adapted

to the new DTBL model. A more thorough analysis of the

usage of explicit synchronization is left as future work.

Memory Model: DTBL also preserves the current GPU mem-

ory model, i.e., global memory, constant memory and texture

memory storage are visible to all native and aggregated TBs.

Shared memory is private to each thread block and local mem-

ory is private to each thread. No memory ordering, consis-

tency, or coherence is guaranteed across different native or

aggregated TBs.

Programming Interface: DTBL defines two device run-

time API calls on top of the original CUDA Device Run-

time Library for CDP listed in Table 1. The API call

cudaGetParameterBuffer is the same as in the orig-

inal device runtime library that is used to allocate param-

eter space for an aggregated group. The second API call

cudaLaunchAggGroup is newly defined for dynamically

launching an aggregated group. Programmers can pass the

kernel function pointer when calling this API to specify the

kernel to be executed by and possibly coalesce with the

new TBs. Similar to the device kernel launching API call

cudaLaunchDevice in CDP, cudaLaunchAggGroup

configures the new aggregated group with thread and TB num-

bers in each dimension, shared memory size, and parameters.

Note that unlike a device kernel launching which should be

5

__global__ parent() {
 cudaStream_t s;
 cudaStreamCreateWithFlags(&s,);
 void *buf=cudaGetParameterBuffer();
 //fill the buf with data
 cudaLaunchDevice(child, buf,
 grDim, tbDim, sharedMem, s);
}

__global__ child() {
}

__global__ parent() {

 void *buf=cudaGetParameterBuffer();
 //fill the buf with data
 cudaLaunchAggGroup(child, buf,
 aggDim, tbDim, sharedMem);
}

__global__ child() {
}

(a) (b)

Figure 3: Example code segments for (a) CDP and (b) DTBL

configured with an implicit or explicit software stream to

express dependency on other kernels, the aggregated thread

groups are automatically guaranteed to be independent of each

other. We show example code segments for both CDP and

DTBL implementations in Figure 3 where a parent kernel

launches child kernels in CDP and corresponding aggregated

groups in DTBL. The similarity between the two code seg-

ments demonstrate that DTBL introduces minimal extensions

to the programming interface.

4.2. Architecture Extensions and SMX Scheduling

To support the new DTBL execution model, the GPU microar-

chitecture is extended to process the new aggregated groups

that are launched from the GPU threads. The baseline mi-

croarchitecture maintains several data structures for keeping

track of deployed kernels and the TBs that comprise them.

These data structures are extended to keep track of dynam-

ically formed aggregated groups and associating them with

active kernels. This is achieved in a manner that is transpar-

ent to the warp schedulers, control divergence mechanism,

and memory coalescing logic. Figure 4 illustrates the major

microarchitecture extensions to support DTBL. With the ex-

tended data structure and SMX scheduler, new aggregated

groups are launched from the SMXs, coalescing to existing

kernels in the Kernel Distributor and scheduled to execute on

SMX with all other TBs in the coalesced kernel. The detailed

procedure and functionality of each data structure extension

are described as follows.

Launching Aggregated Groups

This is the first step that happens when the aggregated group

launching API is invoked by one or more GPU threads. The

SMX scheduler will react correspondingly to accept the new

aggregated groups and prepare necessary information for TB

coalescing in the next step.

Similar to the device kernel launching command, DTBL in-

troduces a new aggregation operation command in the microar-

chitecture. This command will be issued when the aggregated

group launching API calls are invoked simultaneously by one

or more threads within the same warp. These aggregated group

launches are then combined together to be processed by the

aggregation operation command.

For each newly formed aggregated group, the SMX allo-

cates global memory blocks through the memory controller 1©

to store the parameters and configuration information 2©. The

SMX SMX SMX SMX

Kernel Distributor

SMX Scheduler

Memory

Controller

PC Dim Param ExeBL

Kernel Distributor

Entries

Control Registers

NAGEI LAGEI

FCFS Controller

Kernel

Management

Unit

DRAM

DTBL

Scheduling

PC Dim Param Next

Aggregated Group Information

Aggregated Group Table

AggDim Param Next

KDEI AGEI NextBL

SMX

Thread Block

Control Registers

ExeBL

KDEI AGEI BLKID

Microarchtecture

Extension

Figure 4: Microarchitecture Flow for DTBL

request procedure is the same as that of a device-side ker-

nel launch. After parameters are loaded to the parameter

buffer, the SMX passes the aggregation operation command to

the SMX scheduler with the information for each aggregated

group 3©.

Thread Blocks Coalescing

In this step, the SMX scheduler receives the aggregation

operation command and attempts to match the newly launched

aggregated groups with the existing kernels in the Kernel Dis-

tributor Entries (KDE) for TB coalescing based on aggregated

group configurations. If the coalescing is successful, the SMX

scheduler will push the new TBs in a scheduling TB pool for

the corresponding kernel. The scheduling pool is implemented

with several registers in microarchitecture to form a linked-

list data structure for efficient TB scheduling. The process is

implemented as a new part of the DTBL scheduling policy 4©

which is illustrated in Figure 5 and described in the following.

For each aggregation group, the SMX scheduler first

searches the KDE to locate any existing eligible kernels that

can accept the new TBs 5©. Eligible kernels should have the

same entry PC addresses and TB configuration as the ag-

gregated group. If none are found, the aggregated group is

launched as a new device kernel. Our experiments show that

an aggregated group is able to match eligible kernels on aver-

age 98% of the time. Mismatches typically occur early, before

newly generated device kernels fill the KDE.

If an eligible kernel is found, the SMX scheduler allo-

cates an entry in the Aggregated Group Table (AGT) with

the three-dimensional aggregated group size and the parame-

ter address 6©. The AGT is composed of multiple Aggregated

Group Entries (AGE) and serves to track all the aggregated

groups. Aggregated groups that are coalesced to the same eligi-

ble kernel are linked together with the Next field of the AGE 7©.

The AGT is stored on chip for fast accesses with a limit on

the number of entries. When the SMX scheduler searches

for a free entry in the AGT, it uses a simple hash function

to generate the search index instead of a brute-force search.

The hash function is defined as ind = hw_tid & (AGT_size -

6

Eligible Kernel

Launch as

device kernel
Free AGT entry?

Get Agg Group

Info in global mem
Get new AGT

entry

Kernel marked

by FCFS?

Update NAGEI

Update LAGEI

Mark Kernel by

FCFS

First Agg Group?

NY

Y

N

N

Y

Y

N

Figure 5: DTBL scheduling procedure in SMX scheduler

1) where hw_tid is the hardware thread index in each SMX

and AGT_size is the size of AGT. The intuition behind the

hash function is that all threads on an SMX have the same

probability in launching a new aggregated group. The SMX

scheduler is able to allocate an entry if the entry indexed by

ind in AGT is free and the ind is recorded as aggregated group

entry index (AGEI). Otherwise it will record the pointer to

global memory where the aggregated group information is

stored 2©.

Now that an eligible kernel and the corresponding KDE

is found, the TBs in the new aggregated group are added to

the set of TBs in the eligible kernel waiting be executed. The

AGEI or the global memory pointer of the new aggregated

group information is used to update the two KDE registers

Next AGEI (NAGEI) and Last AGEI (LAGEI) if necessary 8©.

NAGEI indicates the next aggregated group to be scheduled in

the kernel. It is initialized when a kernel is newly dispatched to

the Kernel Distributor to indicate no aggregated groups exists

for the kernel. LAGEI indicates the last aggregated group to

be coalesced to this kernel.

All the kernels in the Kernel Distributor are marked by

the FCFS 9© with a single bit when they are queued to be

scheduled and unmarked when all its TBs are scheduled. We

extend FCFS controller with an extra bit to indicate if it is

the first time the kernel is marked by the FCFS. This is useful

when the SMX scheduler attempts to update NAGEI under

two different scenarios.

At the first scenario, when a new aggregated group is gener-

ated, the corresponding eligible kernel may have all its TBs

scheduled to SMXs, be unmarked by the FCFS controller and

only be waiting for its TBs to finish execution. In this case,

the NAGEI is updated with the new aggregated group and the

kernel is marked again by the FCFS controller so that the new

aggregated group can be scheduled the next time the kernel is

selected by the SMX scheduler.

At the other scenario, the eligible kernel is still marked by

FCFS as it is either waiting in the FCFS queue or is being

scheduled by the SMX scheduler. In this case, there are still

TBs in the eligible kernel to be scheduled and NAGEI is only

updated when the new aggregated group is the first aggregated

group to be coalesced to this kernel.

Unlike NAGEI, LAGEI is always updated every time a new

aggregated group is generated for the kernel to reflect the last

aggregate group to be scheduled. With NAGEI, LAGEI and

the Next field of AGE, all the aggregated groups coalesced to

the same kernel are linked together to form a scheduling pool.

Aggregated Thread Blocks Scheduling on SMX

The last step in DTBL scheduling manages to schedule all

the aggregated TBs on the SMXs. The SMX scheduler first

determines whether the native kernel or a specific aggregated

group should be scheduled according to the registers value

generated by the previous step for the scheduling pool. Then it

distributes the TBs in the kernel or the aggregated group to the

SMXs with a set of registers to track their status. As described

in the follows, this is implemented by updating the algorithm

used by the baseline GPU microarchitecture to distribute and

execute the native TBs.

When the SMX scheduler receives a kernel from the Kernel

Distributor, it checks if it is the first time the kernel is marked

by the FCFS controller. If so, the SMX scheduler starts dis-

tributing the native TBs followed by aggregated TBs pointed

to by the NAGEI (if any). Otherwise it directly starts distribut-

ing the aggregated thread blocks pointed by NAGEI since the

native TBs have already been scheduled when the kernel was

previously dispatched by the FCFS controller. Another pos-

sibility is that the new aggregated groups are coalesced to a

kernel that is currently being scheduled, the SMX scheduler

will then continue to distribute the new aggregated groups after

finishing distributing the TBs from the native kernel or current

aggregated group. The SMX scheduler updates the NAGEI

every time after finishing scheduling the current aggregated

group and starts the next aggregated group indicated by the

Next field of AGE pointed by NAGEI.

Once the SMX scheduler determines the native kernel or ag-

gregated group to schedule, it records the corresponding index

of KDE (KDEI) and AGEI in its control registers (SSCR) 10©.

SSCR also has a NextBL field to store the index of the next

TB to be distributed to the SMX. Note that since the TBs in

the native kernel and the aggregated groups have the same

configuration and resource usage as constrained by the DTBL

execution model, the SMX scheduler can use a static resource

partitioning strategy for both the native and aggregated TBs,

saving the scheduling cost.

The SMX scheduler then distributes TBs to each SMX.

The Thread Block Control Register (TBCR) 11© on each SMX

is updated correspondingly using the same value of KDEI

and AGEI in SSCR to record the kernel index in the Kernel

Distributor and the aggregated group index in the AGT so

the SMX can locate the function entry and parameter address

correctly for the scheduled TB. The BLKID field records the

corresponding TB index within a kernel or an aggregated

group. Once the TB finishes execution, the SMX notifies the

SMX scheduler to update the ExeBL field in the KDE 12© and

7

AGE 13© which track the number of TBs in execution.

When all the TBs of the last aggregated group marked by

LAGEI have been distributed to an SMX, the SMX scheduler

notifies the FCFS controller to unmark the current kernel to

finish its scheduling. The corresponding entries in the Kernel

Distributor or AGT will be released once all the TBs complete

execution.

4.3. Overhead Analysis

The hardware overhead is caused by extra data structures

introduced by the architectural extensions (shaded boxes in

Figure 4). New fields in the KDE (NAGEI and LAGEI), FCFS

Controller (the flag to indicate if the kernel has been previ-

ously dispatched), SSCR (AGEI) and SMX TBCR (AGEI)

together take 1096 Bytes of on-chip SRAM. The size of AGT

determines how many pending aggregated groups can be held

on-chip for fast accesses. A 1024-entry AGT takes 20KB

of on-chip SRAM (20Bytes per entry) which composes the

major hardware overhead (about 0.5% of the area taken by the

shared memory and registers on all SMXs). In Section 5.2D

we analyze the sensitivity of performance to the size of the

AGT.

The major timing overhead of launching aggregated groups

includes time spent on allocating parameters, searching the

KDE and requesting free AGT entries. As discussed before,

launching from the threads within a warp are grouped together

as a single command. Therefore, the overhead is evaluated on a

per-warp basis. The procedure of allocating a parameter buffer

for an aggregated group is the same as that for a device-launch

kernel, so we use the measurement directly from a K20c GPU.

The search for eligible KDE entry can be pipelined for all the

simultaneous aggregated groups launches in a warp, which

takes a maximum of 32 cycles (1 cycle per entry). Searching

for a free entry in AGT only takes one cycle with the hash

function for each aggregated group. If a free entry is found,

there will be zero cost for the SMX scheduler to load the

aggregated group information when it is scheduled. Otherwise

the SMX scheduler will have to load the information from the

global memory and the overhead is dependent on the global

memory traffic. It should be noted that allocating the parameter

buffer and searching the KDE/AGE can happen in parallel,

the slower of which determines the overall time overhead of

aggregated group launching.

An alternative approach to the proposed microarchitecture

extension is to increase the number of KDE entries so that

each aggregated group can be independently scheduled from

KDE. The argument is that the hardware overhead introduced

by AGT could be potentially saved. However, there are also

some major side effects for this approach.

First, since aggregated groups are scheduled independently,

they are not coalesced so that TBs with different configura-

tions are more likely to be executed on the same SMX. In

consequence, the designed occupancy for the original kernels

is less likely to be achieved and the execution efficiency could

SMX Clock Freq. 706MHz

Memory Clock Freq. 2600MHz

of SMX 13

Max # of Resident Thread Blocks per SMX 16

Max # of Resident Threads per SMX 2048

of 32-bit Registers per SMX 65536

L1 Cache / Shared Mem Size per SMX 16KB / 48KB

Max # of Concurrent Kernels 32

Table 2: GPGPU-Sim Configuration Parameters

be decreased. For the same reason, the context setup overhead

such as kernel function loading and resource allocation across

SMXs could be increased. The context setup overhead is ex-

pected to scale with the number of aggregated group scheduled

from KDE.

Second, hardware complexity and scheduling latency in the

KMU and FCFS controller scales with number of KDE. For

example, the number of HWQ could be increased to keep up

the kernel concurrency, and the overhead for FCFS controller

to track and manage the status of each aggregated group also

increases linearly.

4.4. Benefits of DTBL

DTBL is beneficial primarily for the following three reasons.

First, compared to device-side kernel launching, dynamic TB

launches have less overhead. Instead of processing the device-

side launching kernel command through a long path from the

SMX to KMU and then to the Kernel Distributor, TBs are di-

rectly grouped with active kernels in the Kernel Distributor by

the SMX scheduler. For irregular applications that may gener-

ate a large amount of dynamic workload, reducing the launch

overhead can effectively improve the overall performance.

Second, due to the similarity of the dynamic workload in

irregular applications, dynamically generated TBs are very

likely to be coalesced to the same kernel which enables more

TBs to be executed concurrently. Recall that the concurrent

execution of fine-grained device kernels are limited by the size

of Kernel Distributor. The DTBL scheduling breaks this limit

as aggregated TBs are coalesced into a single native kernel

that can take full advantage of the TB level concurrency on the

SMX. This more efficient scheduling strategy may increase

the SMX occupancy which is beneficial in increasing GPU

utilization, hiding memory latency and increasing the memory

bandwidth.

Third, both the reduced launch latency and increased

scheduling efficiency helps to consume the dynamically

launched workload faster. As the size of reserved global mem-

ory depends on the number of pending aggregated groups,

DTBL can therefore reduce the global memory footprint.

5. Experiments and Evaluation

5.1. Methodology

We perform the experiments on the cycle-level GPGPU-Sim

simulator [5]. We first configure GPGPU-Sim to model the

Tesla K20c GPU as our baseline architecture. The configu-

8

cudaStreamCreateWithFlag (CDP only) 7165

cudaGetParameterBuffer (CDP and DTBL) b: 8023, A: 129

cudaLaunchDevice (CDP only) b: 12187, A: 1592

Kernel dispatching 283

Table 3: Latency Modeling for CDP and DTBL (Unit: cycles)

ration parameters are shown in Table 2. We also modify the

SMX scheduler to support concurrent kernel execution on

the same SMX. The warp scheduler is configured to use the

greedy-then-oldest scheduling policy [32]. As discussed be-

fore, our proposed microarchitecture extension is transparent

to the warp scheduler so DTBL can take advantage of any

warp scheduling optimization that is useful to the baseline

GPU architecture.

To support the device-side kernel launch capability (CDP

on K20c), we extend the device runtime of GPGPU-Sim

with the implementation of corresponding API calls. We

model the latency of these API calls which is part of

the kernel launching overhead by performing the measure-

ment on the K20c GPU with the clock() function and

use the average cycle values from 1,000 measurements

across all the evaluated benchmarks. According to our

measurements, the API cudaGetParameterBuffer and

cudaLaunchDevice have a linear latency model per warp

basis denoted as Ax+ b where b is the initialization latency

for each warp, A is the latency for each API called by one

thread in the warp and x is the number of the threads calling

the API in a warp. Note that the execution of the device API

calls will be interleaved for all the warps so that some portion

of the latency introduced can also be hidden by the interleav-

ing, similar as the memory latency hiding. Besides the API

latency, there is also a kernel dispatching latency (from KMU

to Kernel Distributor). We measure this using the average time

difference between the end of the first kernel and the start of

the second kernel that is dependent of the first kernel.

We verify the accuracy of the simulation, especially the

kernel launching overhead, by running all the benchmarks

both on the K20c GPU and the simulator and use the same

correlation computation method by GPGPU-Sim. We also

implement the proposed architecture extension for DTBL

with overhead assignment described in Section 4.3 where

the latency for parameter buffer allocation is the same as the

cudaGetParameterBuffer API call and all other ag-

gregated group launching latency is directly modeled by the

microarchitecture extension. The latency numbers used in the

simulator are shown in Table 3.

We select 8 irregular applications with different input data

sets as shown in Table 4. The source code of these applica-

tions are from the latest benchmark suites or implemented as

described in recently published papers. We refer to the origi-

nal CUDA implementations as flat implementations since the

nested algorithmic structure is flattened and effectively serial-

ized within each thread. An exception is the bfs implementa-

tion [23] where dynamic parallelism for DFP is implemented

Application Input Data Set

Adaptive Mesh Refinement (AMR) Combustion Simulation[18]

Barnes Hut Tree (BHT) [8] Random Data Points

Breadth-First Search (BFS) [23] Citation Network[4]

USA Road Network[4]

Cage15 Sparse Matrix [4]

Graph Coloring (CLR) [10] Citation Network[4]

Graph 500 Logn20[4]

Cage15 Sparser Matrix [4]

Regular Expression Match (REGX) [37] DARPA Network Packets [21]

Random String Collection

Product Recommendation (PRE) [25] Movie Lens [16]

Relational Join (JOIN) [12] Uniform Distributed Data

Gaussian Distributed Data

Single Source Shortest Path (SSSP) [19] Citation Network[4]

Fight Network [1]

Cage15 Sparser Matrix[4]

Table 4: Benchmarks used in the experimental evaluation.

by employing TB and warp level vertex expansion techniques.

For this application, our implementation uses CDP device ker-

nels or DTBL aggregated group to replace the TB or warp

level vertex expansion. We implemented the benchmarks with

CDP in the way that a device kernel is launched for any DFP

with sufficient parallelism available. The same methodology

applies to DTBL except that a device kernel is replaced with

an aggregated group for a fair comparison. Note that the data

structures and algorithms of the original implementations are

not changed in the CDP/DTBL implementations for a fair

comparison. The proposed DTBL model for dynamic par-

allelism can also be orthogonal to many optimizations, e.g.

worklist for work pulling and pushing to achieve high-level

workload balance, as they can be applied in either flat or nested

implementations.

DTBL only uses device runtime API for thread block

launching and does not introduce any new instructions or syn-

tax. Therefore, we use the CUDA compiler NVCC6.5 directly

to compile the benchmarks. Extending the syntax to support

higher-level programming interface similar as the CUDA ker-

nel launching annotation “<<<>>>” is left as future work.

We use the same dataset for the GPU and the simulator and

run the entire application from the beginning to the end ex-

cept for regx. We break regx into several sections, manually

populate the memory in GPGPU-Sim, and run only computa-

tion kernels. We then trace all the computation kernels of the

benchmarks to generate the performance data.

5.2. Result and Analysis

In this section we report the evaluation and analysis of the

benchmark in various performance aspects.

A. Control Flow and Memory Behavior

We evaluate the control flow behavior using the warp ac-

tivity percentage which is defined as average percentage of

active threads in a warp as shown in Figure 6, and mem-

ory behavior using DRAM efficiency which is computed as

dram_efficiency=(n_rd+n_write)/n_activity where n_rd and

n_write are the number of memory read and write commands

issued by the memory controller and n_activity is the active

9

0

20

40

60

80

100

W
a
rp

 A
c
ti
v
it
y
 P
e
rc
e
n
ta
g
e

Flat CDP DTBL

Figure 6: Average Percentage of Active Threads in a Warp

cycles when there is a pending memory request. DRAM effi-

ciency reveals the memory bandwidth utilization and increases

when there are more coalesced memory accesses in a given

period of time, as shown in Figure 7. On average, warp activity

percentage of both CDP and DTBL increases 10.7% from the

flat implementations and DRAM efficiency increases 0.029 or

1.14x for CDP and 0.053 or 1.27x for DTBL, demonstrating

that one important benefit of both CDP and DTBL is to dy-

namically generate parallel workload for DFP that have more

regular control flow and coalesced memory accesses.

Since both DTBL and CDP launch dynamic parallel work-

loads, they fundamentally behave the same in reducing control

flow divergence and obtain the same amount of increase in

warp activity percentage. Some benchmarks, such as amr and

join_gaussian, have highly irregular computation workload

and severe imbalance problem across the threads in their flat

implementations and achieve most substantial increases in

warp activity percentage (45.3% and 21.3%). We can also ob-

serve warp activity percentage increase for the two bfs bench-

marks. Although the baseline bfs implementation has already

utilized TB-level and warp-level vertex expansion to handle dy-

namic parallelism, CDP and DTBL are able to use variable TB

sizes to achieve even better workload balance. The benchmark

clr_graph500 does not show obvious changes and clr_cage15

even shows a slight drop (-5.9%) because the graphs graph500

and cage15 already have relatively small variance in vertex

degree that generate balanced workload even in the flat imple-

mentation. Launching dynamic parallel workloads for some

vertices but not for others may break the original balance and

cause more control flow divergence. This is consistent with

the understanding that CDP and DTBL are intended to work

well over unbalanced workloads.

The clr_cage15 and sssp_cage15 are two benchmarks that

achieve highest DRAM efficiency increase. In their flat im-

plementations, as the graph cage15 has a distributed neighbor

list, the threads access vertex data far away from each other in

memory and result in more non-coalesced memory accesses

and memory transactions. In comparison, CDP and DTBL

implement the DFP such that threads are more likely to access

consecutive memory addresses. Memory irregularity could be

significantly reduced in this case which is demonstrated by

increasing DRAM efficiency.

0

0.1

0.2

0.3

0.4

0.5

0.6

D
ra
m

 E
ff
ic
ie
n
cy

Flat CDP DTBL

Figure 7: DRAM Efficiency

50

60

70

80

90

100

S
M
X

 O
c
c
u
p
a
n
c
y

CDPI DTBLI CDP DTBL

Figure 8: SMX Occupancy

B. Scheduling Performance

By coalescing dynamically generated TBs to existing ker-

nels on the fly, DTBL is able to increase the TB-level concur-

rency for fine-grained parallel workloads. Lower launching

latency for DTBL also contributes to the increase in the num-

ber of available TBs that can be scheduled concurrently by

the SMX scheduler. Therefore, DTBL is able to outperform

CDP by increasing SMX occupancy. We evaluate the SMX

occupancy by measuring the average number of active warps

in each cycle on all of the SMXs divided by maximum num-

ber of resident warps per SMX. We isolate the influences of

scheduling strategy and launching latency by comparing the

measurement with and without launching latency. The results

are shown in Figure 8 where the SMX occupancy achieved

by CDP and DTBL without modeling launching latency are

denoted as CDP-Ideal (CDPI) and DTBL-Ideal (DTBLI) re-

spectively. DTBLI has average of 17.9 or 1.24x increase over

CDPI. The benchmark bht achieves the highest occupancy

increases (24.6 or 1.38x) since it generates many fine-grained

parallel workloads (average number of threads in a device ker-

nel or an aggregated group is 33.4 which is close to warp size).

Therefore, in its CDP implementation, the limited kernel-level

concurrency on the GPU causes only a few threads to be active

on GPUs which results in low SMX occupancy and utiliza-

tion. DTBL, on the other hand, is able to aggregate all these

fined-grained TBs together to fully utilize SMX with a higher

occupancy. Other benchmarks that generate dynamic work-

loads with higher parallelism (coarse-grain workload) have

less of a significant increase in SMX occupancy, represented

by pre (0.46 or 1.01x) with an average 1527.9 threads in a

10

0

500

1000

1500

2000

2500

3000

3500

4000

T
h
o
u
sa
n
d

 C
y
c
le
s

CDPI DTBLI

CDP DTBL

Figure 9: Average Waiting Time for a Kernel or an Aggregated

Group

0

10

20

30

40

50

60

70

M
e
m
o
ry

 Fo
o
tp
ri
n
t R

e
d
u
ct
io
n

 (%
)

0

200

400

600

800

1000

M
e
m
o
ry

 Fo
o
tp
ri
n
t R

e
d
u
ct
io
n

 (M
B
)

Figure 10: Memory Footprint Reduction of DTBL from CDP

device kernel or an aggregated group.

If the launching latency is included for both CDP and DTBL,

SMX occupancy decreases from both CDPI and DTBLI (av-

erage -10.7 or -13.5% for CDP and -5.2 or -7.6% for DTBL).

The launching latency for a device kernel is higher than an ag-

gregated group and causes a larger drop in SMX occupancy for

CDP. In regx_string, DFP has high occurrence and generates

a large number of dynamic parallel workloads. While DTBLI

outperforms CDPI in SMX occupancy (11.2 or 1.14x) because

of the increased thread block concurrency, the launching la-

tency even enlarges the gap (25.4 or 1.48x). The increased

SMX occupancy of DTBL also improves the DRAM efficiency

as shown in Figure 7 (average 0.022 or 1.08x higher than CDP)

because of the memory latency hiding capability.

We further evaluate DTBL scheduling efficiency by com-

paring the average waiting time (time between launching and

starting execution) and memory footprint for dynamically gen-

erated kernels or aggregated groups as shown in Figure 9 and

Figure 10 respectively. Again, we compare the waiting time

with and without launching latency. On average, DTBLI re-

duces the waiting time by 18.8% from CDPI while DTBL

reduce the waiting time by 24.1% and the memory footprint

by 25.6% from CDP. Similar to the SMX occupancy behav-

ior, DTBLI of pre and join_uniform show little change in

average waiting time compared because they generate coarse-

grained dynamic workloads. The benchmark regx_string has

the highest DFP occurrence so it benefits most from DTBL by

showing the largest waiting time decrease (-41.8%) and signif-

icant memory footprint reduction (-51.2%). The benchmark

clr_graph500 does not show much change in the average wait-

ing time when including the launching latency while its SMX

occupancy is significantly affected by the launching latency

because all the dynamically launched kernels or aggregated

groups are forced to wait for other kernels to complete and

release resources before they can be executed, which takes

much longer than the launching latency. For the same reason,

this benchmark also does not have any memory footprint re-

duction as the information of all the aggregated groups have to

be saved while they are pending. One solution to this problem

is to enable the spatial sharing for the native kernels and the

aggregated thread groups using the software techniques intro-

duced in [2] or hardware preemption introduced in [35]. This

way the aggregated groups are able to execute on the SMX

soon after they are generated and the memory reserved for

holding their information could be released for new aggregated

groups.

C. Overall Performance

We show the overall speed up of CDPI, DTBLI, CDP and

DTBL over the flat implementation in Figure 11. Note that

data transferring time between CPU and the GPU is excluded.

As CDPI and DTBLI decrease control flow divergence and

increases memory efficiency, they achieve average 1.43x and

1.63x ideal speedup respectively. However the non-trivial over-

head of kernel launching negates the CDP performance gain,

which results in an average of 1.16x slow down from the flat

implementations. DTBL, on the other hand, shows an aver-

age of 1.21x speedup over the flat implementation and 1.40x

over the CDP, which demonstrates that DTBL preserves the

capability of CDP in increasing control flow and memory reg-

ularity for irregular applications while using a more efficient

scheduling strategy with lower launching overhead to increase

the overall performance. The benchmark bfs_usa_road and

sssp_flight show very little change in the DTBL speedup. The

reason is that most of vertices in the input graphs have very

low vertex degree. The DFP rarely occurs in these two bench-

marks so that very few device kernels or aggregated groups

are launched. Therefore, both CDP and DTBL have very

limited effect on the overall performance. In fact, these two

benchmarks also show limited changes in other characteristics

evaluated and discussed previously. Two benchmarks have

slow down instead of speedup: clr_graph500 (0.97x) and

regx_string (0.95x). The benchmark clr_graph500 operates

on the graph500 input data set which has a very balanced

vertex degree. Therefore, the flat implementation has good

control flow and memory behavior. Using CDP or DTBL does

not help reduce the control flow or memory irregularity but

introduces extra launching overhead. For regx_string, while

the large number of dynamically generated aggregated groups

in brings significant speedup ideally (2.73x for CDPI and

3.10x for DTBLI), they also introduce substantial launching

overhead even for DTBL and negates the performance gains.

D. Sensitivity to AGT Size

As the major architecture extension, the size of AGT deter-

11

0

0.5

1

1.5

2

2.5

3

3.5

S
p
e
e
d
u
p

CDPI DTBLI

CDP DTBL

Figure 11: Overall Performance in terms of Speedup over Flat

Implementation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o
rm

a
li
ze
d

 S
p
e
e
d
u
p

512 1024 2048

Figure 12: Performance Sensitivity to AGT Size Normalized to

1024 Entries

mines the hardware overhead as well as the application perfor-

mance. A larger AGT can increase the number of aggregate

groups stored on-chip and thereby the scheduling efficiency at

the cost of more on-chip SRAM. We try to identify the trade

off by investigating the performance change over different

AGT sizes as shown in Figure 12. In average, decreasing AGT

size from 1024 to 512 causes 1.31x slow down and increasing

to 2048 causes 1.20x speedup. Benchmarks that use relatively

high number of dynamic aggregated groups such as bht and

regx are more sensitive to AGT size.

6. Related Work

Characterization of various benchmarks show that implemen-

tations of irregular GPU applications mainly suffer from work-

load imbalance and scattered memory accesses that cause

control flow and memory irregularity [7][9]. Researchers have

been investigating and seeking more efficient solutions for

these irregular applications by redesigning data structures and

re-organizing memory accesses through algorithm, compiler

and runtime optimizations [33][40][23][38] to harness the

GPU capability.

Increasing performance of irregular applications by han-

dling nested parallelism is an important and challenging ques-

tion in the GPGPU programming community. Lars et al. [6]

implement the NESL language on GPU and Lee et al. [20]

propose an auto-tuning framework that efficiently maps nested

patterns in GPU applications. Yang et al. [39] propose a com-

piler technique that can activate or disable threads in runtime

to handle nested parallelism in GPU applications. Compared

with their work, our methodology is to generate workloads

dynamically for any nested parallel patterns.

Gupta et al. [15] introduce the persistent threads program-

ming style on GPUs where enough thread blocks to occupy all

the SMX are initially launched and stay on GPU for the life

time of the kernel. These thread blocks dynamically generate

tasks that are appended to a globally visible software queue

while persistently consuming tasks. Steffen et al. [34] pro-

pose the idea of dynamic micro-kernel architecture for global

rendering algorithm which supports dynamically spawning

threads as a new warp to execute a subsection of the parent

threads code. Orr et al. [29] design a task aggregation frame-

work on GPU based on the channel abstraction proposed by

Gaster et al [14]. Each channel is defined as a finite queue in

virtual memory (global memory space that is visible to both

CPU and GPU) whose elements are dynamically generated

tasks that execute the same kernel function. Our approach is

embedded in the basic GPU execution model and can accom-

modate the preceding optimizations providing uniformity in

optimizing all of the aspects addressed in these schemes. Thus,

we argues it has a wider range of applicability.

7. Conclusions

In this paper, we propose a new extension to the current GPU

execution model that enables dynamic thread block launching

and coalescing to existing kernels on the fly. The proposed

model is specifically designed to provide a more efficient solu-

tion for executing dynamically formed pockets of parallelism

in irregular applications. We define the execution model, pro-

pose minimal modification to the programming interface and

discuss the microarchitecture extension. Through experimen-

tal evaluation on various irregular CUDA applications, we

demonstrate that by increasing GPU scheduling efficiency and

decreasing launching overhead, the proposed model achieves

average 1.21x speedup over the original flat implementation

and average 1.40x over the implementations using device-

kernel launch functionality.

Acknowledgement

This research was supported by the National Science Founda-

tion under grant CCF 1337177 and by an NVIDIA Graduate

Fellowship. We would also like to acknowledge the detailed

and constructive comments of the reviewers.

References

[1] “Global flight network.” [Online]. Available: http://www.visualizing.
org/datasets/global-flights-network

[2] J. Adriaens, K. Compton, N. S. Kim, and M. Schulte, “The case for
gpgpu spatial multitasking,” in High Performance Computer Architec-
ture (HPCA), 2012 IEEE 18th International Symposium on, 2012.

[3] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose
molecular dynamics simulations fully implemented on graphics pro-
cessing units,” Journal of Computational Physics, vol. 227, no. 10, pp.
5342–5359, 2008.

12

[4] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, “10th dimacs
implementation challenge: Graph partitioning and graph clustering,
2011.”

[5] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyz-
ing cuda workloads using a detailed gpu simulator,” in 2009 IEEE
International Symposium on Performance Analysis of Systems and
Software(ISPASS 2009), April 2009, pp. 163–174.

[6] L. Bergstrom and J. Reppy, “Nested data-parallelism on the gpu,” in
ACM SIGPLAN Notices, vol. 47, no. 9. ACM, 2012, pp. 247–258.

[7] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregu-
lar programs on gpus,” in Workload Characterization (IISWC), 2012
IEEE International Symposium on. IEEE, 2012, pp. 141–151.

[8] M. Burtscher and K. Pingali, “An efficient cu da implementation of
the tree-based barnes hut n-body algorithm,” GPU computing Gems
Emerald edition, p. 75, 2011.

[9] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding irregular gpgpu graph applications,” in Workload Char-
acterization (IISWC), 2013 IEEE International Symposium on. IEEE,
2013, pp. 185–195.

[10] J. Cohen and P. Castonguay, “Efficient graph matching and coloring
on the gpu,” in GPU Technology Conference, 2012.

[11] B. W. Coon, J. R. Nickolls, J. E. Lindholm, R. J. Stoll, N. Wang, and
J. H. Choquette, “Thread group scheduler for computing on a parallel
thread processor,” US Patent 8,732,713, 2014.

[12] G. Diamos, H. Wu, J. Wang, A. Lele, and S. Yalamanchili, “Relational
algorithms for multi-bulk-synchronous processors,” in 18th ACM SIG-
PLAN Symposium on Principles andPractice of Parallel Programming
(PPOPP’13), February 2013.

[13] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic warp for-
mation and scheduling for efficient gpu control flow,” in Proceedings
of the 40th Annual IEEE/ACM International Symposium on Microar-
chitecture. IEEE Computer Society, 2007, pp. 407–420.

[14] B. R. Gaster and L. Howes, “Can gpgpu programming be liberated
from the data-parallel bottleneck?” Computer, vol. 45, no. 8, pp. 42–52,
2012.

[15] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads
style gpu programming for gpgpu workloads,” in Innovative Parallel
Computing (InPar), 2012. IEEE, 2012, pp. 1–14.

[16] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorith-
mic framework for performing collaborative filtering,” in Proceedings
of the 22nd annual international ACM SIGIR conference on Research
and development in information retrieval, 1999.

[17] Khronos, “The opencl specification version 2.0,” 2014.

[18] A. Kuhl, “Thermodynamic states in explosion fields,” in 14th Inter-
national Symposium on Detonation, Coeur d’Alene Resort, ID, USA,
2010.

[19] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali, “Lonestar: A
suite of parallel irregular programs,” in ISPASS ’09: IEEE International
Symposium on Performance Analysis of Systems and Software, 2009.

[20] H. Lee, K. Brown, A. Sujeeth, T. Rompf, and K. Olukotun, “Locality-
aware mapping of nested parallel patterns on gpus,” in the 47th Inter-
national Symposium on Microarchitecture (MICRO ’14), 2014.

[21] J. McHugh, “Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed
by lincoln laboratory,” ACM transactions on Information and system
Security, vol. 3, no. 4, pp. 262–294, 2000.

[22] J. Meng, D. Tarjan, and K. Skadron, “Dynamic warp subdivision
for integrated branch and memory divergence tolerance,” in ACM
SIGARCH Computer Architecture News, vol. 38, no. 3, 2010, pp. 235–
246.

[23] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph traver-
sal,” in In 17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP’12, 2012.

[24] J. Mosegaard and T. S. Sørensen, “Real-time deformation of detailed
geometry based on mappings to a less detailed physical simulation
on the gpu,” in Proceedings of the 11th Eurographics conference on
Virtual Environments. Eurographics Association, 2005, pp. 105–111.

[25] C. H. Nadungodage, Y. Xia, J. J. Lee, M. Lee, and C. S. Park, “Gpu
accelerated item-based collaborative filtering for big-data applications,”
in Big Data, 2013 IEEE International Conference on. IEEE, 2013,
pp. 175–180.

[26] NVIDIA, “Hyperq sample,” 2012.

[27] ——, “Cuda c programming guide version 6.5,” 2014.

[28] ——, “Cuda dynamic parallelism programming guide,” 2014.

[29] M. S. Orr, B. M. Beckmann, S. K. Reinhardt, and D. A. Wood, “Fine-
grain task aggregation and coordination on gpus,” in Proceeding of the
41st Annual International Symposium on Computer Architecuture, ser.
ISCA ’14, 2014.

[30] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Lue-
bke, D. McAllister, M. McGuire, K. Morley, A. Robison et al., “Optix:
a general purpose ray tracing engine,” in ACM Transactions on Graph-
ics (TOG), vol. 29, no. 4. ACM, 2010, p. 66.

[31] V. Podlozhnyuk, “Black-scholes option pricing,” Nvidia, 2007.

[32] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious
wavefront scheduling,” in Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, 2012.

[33] S. Solomon and P. Thulasiraman, “Performance study of mapping
irregular computations on gpus,” in Parallel & Distributed Process-
ing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International
Symposium on. IEEE, 2010, pp. 1–8.

[34] M. Steffen and J. Zambreno, “Improving simt efficiency of global
rendering algorithms with architectural support for dynamic micro-
kernels,” in Proceedings of the 2010 43rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ser. MICRO ’43, 2010.

[35] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and
M. Valero, “Enabling preemptive multiprogramming on gpus,” in Pro-
ceeding of the 41st Annual International Symposium on Computer
Architecuture, 2014.

[36] J. Wang and S. Yalamanchili, “Characterization and analysis of dy-
namic parallelism in unstructured gpu applications,” in 2014 IEEE In-
ternational Symposium on Workload Characterization, October 2014.

[37] L. Wang, S. Chen, Y. Tang, and J. Su, “Gregex: Gpu based high speed
regular expression matching engine,” in Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2011 Fifth International
Conference on. IEEE, 2011, pp. 366–370.

[38] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili, “Kernel weaver:
Automatically fusing database primitives for efficient gpu computation,”
in Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, 2012.

[39] Y. Yang and H. Zhou, “Cuda-np: Realizing nested thread-level paral-
lelism in gpgpu applications,” in Proceedings of the 19th ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
2014.

[40] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen, “On-the-fly
elimination of dynamic irregularities for gpu computing,” in ACM
SIGARCH Computer Architecture News, vol. 39, no. 1, 2011, pp. 369–
380.

13

