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ABSTRACT 

This paper investigates the characterizations of threshold 
/ramp schemes which give rise to the time-dependent threshold 
schemes. These schemes are called the "dynamic threshold schemes" 
as compared to the conventional time-independent threshold 
scheme. In a (d, m, n, T) dynamic threshold scheme, there are n 

secret shadows and a public shadow, P', at time t=tj, 1Ltj'T. 

After knowing any m shadows, mtn, and the public shadow, pJ, we 

can easily recover d master keys, K1, Ki, . . . . and Kd. 

Furthermore, if the d master keys have to be changed to 
'+l 

KJ 1, 

Kj+l 2, ---I and Kj’; for some security reasons, only the public 

shadow, pj, has to be changed to pj+? All the n secret shadows 
issued initially remain unchanged. Compared to the conventional 
threshold/ramp schemes, at least one of the previous issued n 
shadows need to be changed whenever the master keys need to be 
updated for security reasons. A (1, m, n, T) dynamic threshold 
scheme based on the definition of cross- product in an N- 
dimensional linear space is proposed to illustrate the 

characterizations of the dynamic threshold schemes. 
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I INTRODUCTION 

A threshold scheme is used to ensure that the information 
needed careful protection does not get lost, destroyed, or into 
wrong hands. As described by Denning [l, pp.179-1851, an (m, n) 
threshold scheme is designed to break the single master key K 
into n different "shadows" such that: 

(1) With knowledge of any m shadows, mtn, the master key K can 

( 2 )  With knowledge of any m-1 or fewer "shadows", it is 
be easily derived; and 

impossible to derive the master key K. 

The idea of threshold schemes (or sometimes referred as key 
safeguarding schemes or secret sharing schemes) was introduced 
independent by Blakley [2] and Shamir [ 3 ] .  Since then, threshold 
schemes have been well-studied over the past decade 14-71. In 
1984, the relationships between these schemes and a generalized 
linear scheme are established by Kothari [8]. However, as shown 
by Blakley and Meadows [9], although (m, n) linear threshold 
schemes provide Shannon perfect security up to threshold value, 
unfortunately they require a very large data expansion. That is, 
m shadows are needed to reclaim one secret which is very 
inefficient as a conveyor of information. In order to overcome 
this drawback, Blakley and Meadows presented the idea of (d, m, 
n) ramp schemes. In a (d, m, n) linear ramp scheme, it is 
designed to allow d secrets and m-d other predetermined types of 
secrets to be combined to produce n "shadows", in such a fashion 
that these d secrets can be reconstructed from any m shadows. 
However, there is a predetermined level of uncertainty (also 
called Shannon relative security) regarding the secrets if only 
j, j < m ,  shadows are known. It has been observed by Blakley and 
Meadows that lzdirnin. It is obvious that many conventional (m, n) 
threshold schemes are just the special case of the (1, m, n) ramp 
scheme. 

We observe that the (d, m, n) ramp scheme is just the space 
expansion (with d times) of the conventional threshold schemes. 
In this paper, we will consider the time expansion of the 
threshold/ramp schemes. We will call them the "dynamic threshold 
schemes" (or, briefly, a (d, m, n, T) dynamic scheme, where T 
indicates time). 

Any threshold/ramp scheme can be referred to as an "m out of 
secret sharing system." The one or d secrets can be divided into 
n shadows and securely distributed to n trustees in such a way 
that any m of them can reconstruct the secrets, but any m-1 of 
fewer of them cannot learn anything about it. However, it seems 
that two time-dependent phenomena are not discussed in the 
previous papers: 

(1) When any m Out of n trustees recover the secrets, whether the 
secrets are known by these trustees or not. 

If these secrets can be known by m trustees when they are 
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reconstructed at time tj , then the threshold/ramp schemes can be 

used only before time tj. However, in practice applications, we 
may assume that these m trustees do not known these secrets. For 
example, in the access control system, any m trustees may simply 
insert their magnetic strip cards which contain the shadow 
information into the card reader and the system calculates these 
secrets to decide whether the door can be opened or not. In that 
case, these secrets are not known by m trustees when they get 
together to reconstruct these secrets, and therefore, the scheme 
can be used continually. But, conventional threshold/ramp schemes 
still exist the following disadvantage. 

( 2 )  Whenever these secrets under protection by threshold/ramp 
schemes need to be updated for some security reasons, at 
least one of the previously issued n shadows need to be 
changed. 

This paper will focus on investigating the characterizations 
of threshold/ramp schemes which give rise to the time-dependent 
threshold/ramp schemes. We call the time-dependent threshold/ramp 
schemes the "dynamic threshold/ramp schemes" (or, more precisely, 
the (d, m, n, T) threshold /ramp schemes, where d, m, and n are 
the number of secrets, threshold value of shadows, and number of 
all shadows, respectively, and T indicates time). A (1, m, n, T) 
dynamic threshold scheme based on the definition of cross-product 
in an n-dimensional linear space is used to explain the 
characteristics of the dynamic threshold scheme. 

I1 THE CHARACTERIZATIONS OF DYNAMIC THRESHOLD/RAMP SCHEMES 

The security of a (d, m, n, T) dynamic threshold/ramp scheme 
is based on the following assumption: 

Whenever any m of Q trustees are combined to recover 2 
secrets, the secrecy of those shadows held by these m trustees 
still maintained. 

Under practical implementation, this is a reasonable 
assumption, since the trustees may simply insert their magnetic 
strip cards which contain the shadow information into a card 
reader consecutively and the system calculates these secrets 
automatically . Therefore, the shadows are still kept secret for 
each individual trustee. Under this assumption, a dynamic 
threshold/ramp scheme may achieve the following characteristics: 

Whenever these secrets under protection by a threshold/ramp 
scheme need to be updated for security reasons, all the 
previously issued n shadows do not need to be changed. 

Since these secrets under protection are time-dependent and 
all previously issued shadows are time-independent,, a time- 
dependent variable which we call the public shadow, PJ, have to 
be inserted into the system. The model of the dynamic threshold 
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scheme is shown in Fig.(l). A (1, m, n, T) dynamic threshold 
scheme can be expressed by a function F such that 

F(W1, W2, ..., W,, Pj)=Kj 

where Kj is the secret under protection at time tj, 

W1, W2, . . ., Wm E {the set of all n shadows}, 

PJ is the public shadow at time tj. 

AS shown in Eq. (1) , knowing any m shadows, and the public 

shadow, Pj, at time tj, it is sufficient to recover the secret 

(or master key) Kj. Whenever the master key, Kj, needs to be 

changed to Kjfl for some security reasons, only the public 

shadow, Pj, need to be changed to Pj+l. All the n secret shadows 
may remain unchanged. 

In the ideal situation, the dynamic threshold/ramp schemes 
must satisfy the following characteristics: 

(1) At the beginning of the time, tj=l, dynamic threshold/ramp 

schemes, like conventional threshold/ramp schemes, provide 
perfect security [9] up to the threshold value. F o r  the 

master key Kj, j=1, conveyed by the scheme, we have 

probability (Kj/given that m-1 (or  fewer) shadows and the public 

shadow, pj, are known) = Probability (Kj) 

(2) If the previous master keys, Kj, j=1, 2, .. ., v-1, are kept 
secret, the scheme also provides Shannon perfect security €Or 

the following master keys, Kj, j'v. More clearly, knowing any 

u (even uLm) public shadows, Pi, i=l, 2, ..., u, cannot 

provide any information to derive any new master keys, Kj, 
jiv. That is 

Probability (any new master keys Kj, jLV,/given that any u public 

shadows, pi, i=l, 2, . . ., u, are known) = Probability (any new 

master keys Kj , j,v) 

(3) Knowing any v-1 previous master keys Kj, j=1, 2, . . ., v-1, 
the scheme a l s o  provides Shannon perfect security f o r  the 

following new master keys Kj, jLv. That is, knowing all V-1 
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( > m )  previous master keys Kj, j=1, 2, . . ., v-1, Cannot 
provide any information to derive the following new master 

keys KJ, jLv, i-e., 

Probability (any new master keys Kj, j,v/given that all Kj, 

and pl, i=1, 2 ,  ..., u) = Probability (any new master keys KJ, 

j i v )  

In general, it is very difficult to design an ideal dynamic 
threshold/ramp scheme to satisfy the characteristics ( 1 ) - ( 3 ) -  
Alternatively, we define the "relative dynamic threshold/ramp 
scheme" which satisfies the above characteristics (1)-(2). That 

is, knowing v-1 previous master keys KJ, j=1, 2 ,  . . . , v-1, and u 
( > v )  public shadows p , i=1, 2, ..., u, the scheme provides 

Shannon relative security for the following master keys KJ, jzv, 
(the threshold number of shadows is decreased to m-v from m - )  
Note that the relative dynamic/ramp scheme is sufficient to the 
practice applications (e.g. the access control system discussed 
in the above section. ) A dynamic threshold scheme based on the 
definition of cross-product in an N-dimensional space is proposed 
to illustrate the characteristics of relative dynamic threshold 
schemes. We encourage readers to propose any scheme which 
satisfies the characteristics of ideal threshold/ramp scheme. 

j<V, 

i 

111. THE DYNAMIC THRESHOLD SCHEME BASED ON 

THE DEFINITION OF CROSS-PRODUCT IN N-DIMENSIONAL SPACE 

Our proposed ( 1, m, n, T) dynamic threshold scheme is based 
on the following definition. 

Definition : The cross-product of s-1 linearly independent s- 
dimensional row vectors Zl, Z2, ..., 2,-1 is defined as : 

... . 

... . 

... . 

..., 

... 

... 

... 

..., 
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The determinants of (s-l)*(s-1) matrices in Eq. (2) can be 
computed by using the probabilistic algorithm proposed by 
Wiedemann [lo]. Given a r*r matrix, Wiedemann showed that the 
probabilistic algorithm for finding the determinant required an 
expected O(r(w+r)) number of field operations, where w is 
approximately the number of field operations needed to apply the 
matrix to a test vector. Since Eq. (2) contains s determinants, 
the complexity of Eq. (2) is about O(s(s-l)(w+s-1)) operations. 

Now, assume that n is the total number of "shadows" need to 
be constructed and m is the threshold value which works with the 

public shadow, Pj, to recover the single master key, Kj. The 
scheme is described as follows : 

Shadows generation: 

For j=1 to T repeat step 1-3. 

Step 1 : The key generation center randomly selects m+l linearly 

independent (m+2)-dimensional row vectors V1, V2, ..., V, and 

Vi!l+l- 

Step 3 : The center then evaluates a new vector U j = (  ui, ui, . . . , 
uA+~) = V1XV2X.. .XVtXVi+l,' and system master key, K j ,  at the time 

tj, lzjtT, is obtained from U j  as follows : 

i=2 

where abs(x) means the absolute value of x .  The master key, Kj, 

is kept secret, but the first element, uj, of the vector Uj is 

made public (system security is not affected by revealing this 

element). u] will be used for normalizing purposes, as described 

later as part of the master key computation and it cannot to 
be zero. 

Step 3 : The n "shadows" Si, i=1, 2, ..., n, and the public 

shadow, P j  , are constructed by randomly selecting an (n+l)*( m+l) 

matrix AJ and then executing the following operation : 
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... . 

... . 

... . 
(3) 

where in matrix A j ,  any m row vectors (excluding the (m+l)-th 

column) need to be a full rank square matrix and bi+l + 0. 
The key center then secretly distributes these n secret 

shadows Si, ItiLn, one to each trustee publishes the public 

shadow, Pj . 
Master key recomputation: 

Knowledge of any m "shadows" Wi, i=1, 2 ,  ..., m, from S1, 
---,  S,, and the public shadow, P j  uniquely determines the s2, 

master key Kj as follows : 
First, evaluate 

w1 x w2 x . . *  x wm x PJ = cwl, WJ, - . - ,  wm+2), j 

where Wk E {Si, i=l, 2, ..., n}, k=l, 2 ,  ..., m. 

Then the system master key can be calculated as 

m+2 

i=2 
Kj = [abs(w?/hj)], with hj = w~/u]. 

( 4 )  

(5) 

From Eq. ( 3 ) ,  it can be seen that the n secret shadows, Si, 

ltiin, can be used f o r  computing different master keys, Kj, j=1, 
2, ..., T. 

Example : Let t=2, n=5. 

The key generation center randomly selects V1=(l, 2 ,  3, 41 ,  

V2=(5, 6, 7 ,  8) and Vi=(2, 2, 1, 1) and evaluates U1=V,XV2XV3=(- 

4, -4, 4, 4). The system master key at t=l is calculated as 

K1=4*4*4=64. The first element of the row +vector U , which is -4 ,  
is made public. Next, the key generation center randomly selects 

1 

1 
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a 6*3 matrix A', as for example 

3, 0 
.3, f .  1, -2 0 "I 

Then the n shadows and the public shadow P1 are generated as 

S 1  = (11, 14, 17, 20), 

S3 = (29, 38, 47, 56), 
S4 = (17, 22, 27, 32), 
Kg = (-13, -14, -15, -16), 

s2 = (4, 4, 4, 4), 

and P1 = (5, 10, 17, 22). 

Knowing any two "shadows" and the public shadow, PI, one can 

reconstruct the master key K1. For example, S1 X S5 X P1 = (24, 

24, -24, -24), and h1=24/(-4)=-6. Thus K1 = (24/6) * (24/6) * 
(24/6) = 64. 

If the master key needs to be updated at t=2, then the key 

center randomly selects V$=(l, 2, 1, -11, bf, b$, and b$ = (-2, 

1,l) (as shown in Eq.(3)). It evaluates U2=V1XV2XV$=(4, 16, 20, 

8) and P2=(4, 4, 2, -1). The new master key is calculated as 

K2=16*20*8=2560. Next, the system publishes the first element of 

2 the new Tow vector U2, which is 4, and the new public Shadow P . 
Then knowing any two shadows and P2 can reconstruct K . For 
example, S4XS5XP2 = (-48, 192, -240, -96), and h2=48/4=12. Thus 

K2= (192/12)*(240/12)*(96/12) = 2560. 

2 

IV SECURITY ANALYSIS AND DISCUSSIONS 

The dynamic threshold scheme proposed in the section I11 is 
satisfied the requirements of relative dynamic threshold 
schemes. We w i l l  discuss this scheme as follows: 

(1) At the beginning time, tj=l, the scheme provides Shannon 

It is obvicus that the master key K , is concealed in the 

perfect security. 

1 
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vector U', which is perpendicular to the original vectors VI, 

V2, . . . , Vm and the time dependent vector Vk+l. Hence U1 can be 
evaluated by at least m+l independent vectors which are linearly 

combined by the vectors V1, V2, ..., Vm+i. If only r shadows, 

rtm, and the public shadow, Pl, are known (as shown in Eq.(3)) 
then the combination of those r shadows and the public shadow, 

PI, cannot evaluate U1 since they cannot construct m+l 
independent vectors which are linearly combined by the vectors 
V1, V2, ..., V, and On the other hand, if only r shadows, 

rtm, are known, then the cross-product of these r shadows with 
the public shadow, Pl, is meaningless (i.e., these cannot form 
m+2 square submatrices as required in the definition). Therefore, 
the scheme provide Shannon perfect security at the beginning 
time, tj=l. 

( 2 )  If the previous v-1 master keys, Kj, j=l, 2, ..., v-1, are 
kept secret, then this scheme also provide Shannon perfect 
security. 

Without loss of generality, we assume that m-1 trustees want 
to use their shadows, Wj, 1Ljm-1 ,  to derive the new master key, 

KV, with some of the public shadows, p1 and pk. Then these m-1 

trustees can compute WlXW2X.. . XWm-,XPiXPk which is a cross- 

product of vectors within the vectors space spanned by V1, V2, 

concealed by the vector Uj==V1XV2X.. . XVmXV~+,, which is a cross- 

product of vectors within the vector space spanned by V1,V2, ..., 
V,, and Vz+1 only. Therefore, even v=i or k, the cardinality of 

WlXWzX. . . XWm-lXPiXPk is larger than the cardinally of the new 
master key, KV by at least one. It implies that the scheme 
provide Shannon perfect security, if all the previous master keys 
are kept secret. 

(3) Knowing any v previous secrets Kj, j=1, 2, .. ., V, the 
scheme provide Shannon relative security. It implies that 
knowing any v previous master keys, the threshold value is 
decreased, from m to m-v. 

At first, we assume that the previous master key, K1, is 

known. If we know m-1 shadows, Wj, j=1, 2 ,  . . ., m-1, we can 
construct the following cross-product form 
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1 1 1  1 
Wm+2 W1, W2t wm+ 1 

1 1  
w1, w3, - - - ,  

1 1  1 
w2, w3, ..*I wm+ 2 

2 2  2 2 2 2  2 2 2  
w1, w3, --., w2, w3, * - - I  wm+2 

vgl w g  - - * ,  Wm+2 w1, w3, - - - ,  Wm+2 W I T  W2t wm+ 1 
m-1 

1 1  1 1 1 1  1 
Pm+2, P1t P2t *..I Pm+l 

1 1  
P2, P3, - - - ,  .Pm+2 

2, Y3, - - - r  Ym+2 Y1. Y3. - * - r  Ym+2 YIP Y2* * - * r  Ym+l 

Wm+2 W1r W2r .-.t 

..*.............. .. ................ ................ *-I rnd m+ nr-1 m-4 w::) 

PI, P3. - - a t  1 
... 
... 
... 

(7) 
1 

bm+2,1Y1 + bm+2, 2 ~ 2  + - - - + bm+l,m+2~m+1 + 0 

Since Ui is public and K1= J7 abs(ui) is known, it is possible to 

evaluate uj, fo r  j=2, 3, . . ., m+2. Thus one secret shadow Y can 
be derived f r o m  Eq.(7). Once the secret shadow Y was derived, 
then knowing other m-1 shadows and the following public shadow, 

Pi, i22, can evaluate any following master key, Ki, 122. The same 
ideas can be extended to more general cases. In general, knowing 
any v previous master keys, the threshold value of this dynamic 
threshold scheme is decreased, from m to m-v. If v previous 
master keys are known, then the level of uncertainly is decreased 
to zero. It is why the assumption 

~ m + 2  

rn+ 2 

j =2 1 

15T<mLn 

is implicit in the linear dynamic threshold scheme. 

V CONCLUSION 

In this paper, the model of a time-dependent threshold/ramp 
scheme is proposed. We call the time-dependent threshold/ramp 
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scheme a "dynamic threshold/ramp scheme", as compared to the 
conventional threshold/ramp scheme. If the previous master keys 
are not known by all trustees, the dynamic threshold/ramp scheme 
is similar to the conventional threshold/ramp scheme at any time 
t=tj. However, the dynamic threshold/ramp scheme has the major 

advantage, that is, whenever the master key, Kj, needs to change 

to kj+' for some security reasons, the system needs to change 

only the public shadow, pj, to pj+'. All the n trustees do not 
need to be notified since all the n secret shadows issued 
initially do not need to be changed. 

We have defined the characterizations of the ideal and 
relative threshold/ramp scheme. The unique difference between 
ideal and relative threshold/ramp schemes is that the ideal 
scheme can provide ShaMon perfect security at any time regardless 
how many previous master keys and public shadows are known. 
However, the relative scheme just can provide Shannon relative 
security when some of the previous master keys are known. A s  

shown in the section IV, knowing any v previous master keys, the 
threshold value of the dynamic threshold/ramp scheme is decreased 
from m to m-v. Notice that, the conventional threshold/ramp 
scheme is useless in this assumption, i.e., if the master key can 
be known by any m trustees when they get together at time t, then 
anyone of these m trustees do not need to cooperate with other m- 
1 trustees after the time t. 

Since almost all proposed threshold schemes are linear, it 
seems very difficult to propose an ideal dynamic threshold 
scheme. Instead, we propose a (1, m, n, T )  dynamic threshold 
scheme based on the definition of cross-product in an N- 
dimensional dimensional space which satisfies the 
characterizations of the relative dynamic threshold scheme. The 
ideal dynamic threshold schemes may or may not exit, we encourage 
readers to further study and investigate the applications about 
this field. 
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