
Dynamic Time Delay Models for Load

Balancing Part I: Deterministic Models

J. Douglas Birdwell1, John Chiasson1, Zhong Tang1, Chaouki Abdallah2,
Majeed M. Hayat2, and Tsewei Wang3

1 ECE Dept, University of Tennessee, Knoxville TN 37996, USA
{birdwell,chiasson,ztang}@utk.edu

2 ECE Dept, University of New Mexico, Albuquerque NM 87131-1356, USA
{chaouki,hayat}@eece.unm.edu

3 ChE Dept, University of Tennessee, Knoxville TN 37996, USA
twang@utk.edu

Summary. Parallel computer architectures utilize a set of computational elements
(CE) to achieve performance that is not attainable on a single processor, or CE,
computer. A common architecture is the cluster of otherwise independent comput-
ers communicating through a shared network. To make use of parallel computing
resources, problems must be broken down into smaller units that can be solved indi-
vidually by each CE while exchanging information with CEs solving other problems.

Effective utilization of a parallel computer architecture requires the computa-
tional load to be distributed more or less evenly over the available CEs. The qualifier
“more or less” is used because the communications required to distribute the load
consume both computational resources and network bandwidth. A point of dimin-
ishing returns exists.

In this work, a nonlinear deterministic dynamic time-delay systems is developed
to model load balancing in a cluster of computer nodes used for parallel compu-
tations. This model is then compared with an experimental implementation of the
load balancing algorithm on a parallel computer network.

1 Introduction

Parallel computer architectures utilize a set of computational elements (CE)
to achieve performance that is not attainable on a single processor, or CE,
computer. A common architecture is the cluster of otherwise independent
computers communicating through a shared network. To make use of parallel
computing resources, problems must be broken down into smaller units that
can be solved individually by each CE while exchanging information with CEs
solving other problems.

The Federal Bureau of Investigation (FBI) National DNA Index System
(NDIS) and Combined DNA Index System (CODIS) software are candidates



2

for parallelization. New methods developed by Wang et al. [3][4][5][11] lead
naturally to a parallel decomposition of the DNA database search problem
while providing orders of magnitude improvements in performance over the
current release of the CODIS software. The projected growth of the NDIS
database and in the demand for searches of the database necessitates migra-
tion to a parallel computing platform.

Effective utilization of a parallel computer architecture requires the com-
putational load to be distributed more or less evenly over the available CEs.
The qualifier “more or less” is used because the communications required
to distribute the load consume both computational resources and network
bandwidth. A point of diminishing returns exists. The distribution of com-
putational load across available resources is referred to as the load balancing
problem in the literature. Various taxonomies of load balancing algorithms
exist. Direct methods examine the global distribution of computational load
and assign portions of the workload to resources before processing begins. It-
erative methods examine the progress of the computation and the expected
utilization of resources, and adjust the workload assignments periodically as
computation progresses. Assignment may be either deterministic, as with the
dimension exchange/diffusion [6] and gradient methods, stochastic, or opti-
mization based. A comparison of several deterministic methods is provided by
Willeback-LeMain and Reeves [12].

To adequately model load balancing problems, several features of the par-
allel computation environment should be captured (1) The workload await-
ing processing at each CE; (2) the relative performances of the CEs; (3) the
computational requirements of each workload component; (4) the delays and
bandwidth constraints of CEs and network components involved in the ex-
change of workloads, and (5) the delays imposed by CEs and the network on
the exchange of measurements. A queuing theory [9] approach is well-suited to
the modelling requirements and has been used in the literature by Spies [10]
and others. However, whereas Spies assumes a homogeneous network of CEs
and models the queues in detail, the present work generalizes queue length to
an expected waiting time, normalizing to account for differences among CEs,
and aggregates the behavior of each queue using a continuous state model.
The present work focuses upon the effects of delays in the exchange of infor-
mation among CEs, and the constraints these effects impose on the design
of a load balancing strategy. Preliminary results by the authors appear in [1]
with a stability analysis for a proposed linear model given in [2]. Here, a non-
linear model is developed to obtain better fidelity and experimental results
are presented and compared to that given by the model.

Section 2 presents our approach to modelling the computer network and
load balancing algorithms to incorporate the presence of delay in communi-
cating between nodes and transferring tasks. Section 3 presents simulations
of the nonlinear model. Section 4 presents experimental data from an actual
implementation of a load balancing algorithm which is compared with the



3

simulations. Finally, Section 5 is a summary and conclusion of the present
work and a discussion of future work.

2 Models of Load Balancing Algorithms

In this section, a continuous time model in the form of a nonlinear delay-
differential system of equations is developed to model load balancing among
a network of computers. A modification to the model is presented so that the
number of tasks a node distributes to the other nodes is based on their relative
load levels.

To introduce the basic approach to load balancing, consider a computing
network consisting of n computers (nodes) all of which can communicate with
each other. At start up, the computers are assigned an equal number of tasks.
However, when a node executes a particular task it can in turn generate more
tasks so that very quickly the loads on various nodes become unequal. To
balance the loads, each computer in the network sends its queue size qj(t) to
all other computers in the network. A node i receives this information from
node j delayed by a finite amount of time τij , that is, it receives qj(t−τij). Each
node i then uses this information to compute its local estimate4 of the average
number of tasks in the queues of the n computers in the network. In this work,

the simple estimator
(

∑n

j=1
qj(t − τij)

)

/n (τii = 0) is used which is based

on the most recent observations is used. Node i then compares its queue size

qi(t) with its estimate of the network average as qi(t)−
(

∑n

j=1
qj(t − τij)

)

/n

and, if this is greater than zero, the node sends some of its tasks to the other
nodes while if it is less than zero, no tasks are sent (see Figure 1). Further, the
tasks sent by node i are received by node j with a delay hij . The controller
(load balancing algorithm) decides how often and fast to do load balancing
(transfer tasks among the nodes) and how many tasks are to be sent to each
node. As just explained, each node controller (load balancing algorithm) has
only delayed values of the queue lengths of the other nodes, and each transfer
of data from one node to another is received only after a finite time delay.
An important issue considered here is to study the effect of these delays on
system performance. Specifically, the continuous time model developed here
represents our effort to capture the effect of the delays in load balancing
techniques and were developed so that system theoretic methods could be
used to analyze them.

2.1 Basic Model

The basic mathematical model of a given computing node for load balancing
is given by

4 It is an estimate because at any time, each node only has the delayed value of
the number of tasks in the other nodes.



4

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000

Queue lengths as measured by node 1 











Node Number

Q
u

e
u

e
 L

e
n

g
th

s

Average Queue Length 

Fig. 1. Graphical description of load balancing. This bar graph shows the load for
each computer vs. node of the network. The thin horizontal line is the average load
as estimated by node 1. Node 1 will transfer (part of) its load only if it is above its
estimate of the average. Also, it only transfers to nodes that it estimates are below
the node average.

dxi(t)

dt
= λi − µi + ui(t) −

n
∑

j=1

pij

tpi

tpj

uj(t − hij)

yi(t) = xi(t) −

∑n

j=1
xj(t − τij)

n
(1)

ui(t) = −Kisat (yi(t))

pij > 0, pjj = 0,

n
∑

i=1

pij = 1

where

sat (y) = y if y > 0

= 0 if y < 0.

In this model we have

• n is the number of nodes.
• xi(t) is the expected waiting time experienced by a task inserted into the

queue of the ith node. With qi(t) the number of tasks in the ith node
and tpi

the average time needed to process a task on the ith node, the



5

expected (average) waiting time is then given by xi(t) = qi(t)tpi
. Note that

xj/tpj
= qj is the number of tasks in the node 1 queue. If these tasks were

transferred to node i, then the waiting time transferred is qjtpi
= xjtpi

/tpj
,

so that the fraction tpi
/tpj

converts waiting time on node j to waiting time
on node i.

• λi is the rate of generation of waiting time on the ith node caused by the
addition of tasks (rate of increase in xi)

• µi is the rate of reduction in waiting time caused by the service of tasks
at the ith node and is given by µi ≡ (1 × tpi

) /tpi
= 1 for all i.

• ui(t) is the rate of removal (transfer) of the tasks from node i at time t by
the load balancing algorithm at node i. Note that ui(t) ≤ 0.

• pijuj(t) is the rate that node j sends waiting time (tasks) to node i at time
t where pij > 0,

∑n

i=1
pij = 1 and pjj = 0. That is, the transfer from node

j of expected waiting time (tasks)
∫ t2

t1
uj(t)dt in the interval of time [t1, t2]

to the other nodes is carried out with the ith node being sent the fraction
pij

tpi

tpj

∫ t2

t1
uj(t)dt where the fraction tpi

/tpj
converts the task from waiting

time on node j to waiting time on node i. As
∑n

i=1

(

pij

∫ t2

t1
uj(t)dt

)

=
∫ t2

t1
uj(t)dt, this results in a removing all the waiting time

∫ t2

t1
uj(t)dt from

node j.
• The quantity −pijuj(t−hij) is the rate of increase (rate of transfer) of the

expected waiting time (tasks) at time t from node j by (to) node i where
hij (hii = 0) is the time delay for the task transfer from node j to node i.

• The quantities τij (τii = 0) denote the time delay for communicating the
expected waiting time xj from node j to node i.

• The quantity xavg
i =

(

∑n

j=1
xj(t − τij)

)

/n is the estimate5 by the ith

node of the average waiting time of the network and is referred to as the
local average (local estimate of the average).

In this model, all rates are in units of the rate of change of expected waiting
time, or time/time which is dimensionless. As ui(t) ≤ 0, node i can only send
tasks to other nodes and cannot initiate transfers from another node to itself.
A delay is experienced by transmitted tasks before they are received at the
other node. The control law ui(t) = −Kisat(yi(t)) states that if the ith node

output xi(t) is above the local average
(

∑n

j=1
xj(t − τij)

)

/n, then it sends

data to the other nodes, while if it is less than the local average nothing is
sent. The jth node receives the fraction

∫ t2

t1
pjiui(t)dt of transferred waiting

time
∫ t2

t1
ui(t)dt delayed by the time hij .

2.2 Constant pij

The model (1) is the basic model but one important detail remains unspecified,
namely the exact form pji for each sending node i. One approach is to choose

5 This is an only an estimate due to the delays.



6

them as constant and equal

pji =
1

n − 1
δji (2)

where δji is the standard Kronecker delta function. It is clear that pji > 0,
∑n

j=1
pji = 1.

Remark If the pij are specified by (2) and the saturation functions in (1)
are removed, the following linear time invariant model results

dxi(t)

dt
= λi − µi + ui(t) −

∑

j 6=i

puj(t − hij)

yi(t) = xi(t) −

∑n

j=1
xj(t − τij)

n
(3)

ui(t) = −Kiyi(t), p =
1

n − 1
.

When ui(t) = −Kiyi(t) < 0, this operates as in (1) in that the tasks are
immediately removed and sent to the other nodes where each of those nodes
experiences a delay (hij) in getting these tasks. However, a fundamental
problem with this linear model is that when yi(t) < 0 the controller (load
balancing algorithm) ui(t) = −Kiyi(t) > 0 so that the node is instantaneously
taking on waiting time (tasks) from the other nodes before those tasks are
removed from the other nodes’ queues. That is, it is accepting the waiting
times (tasks) puj(t) from each of the other nodes. There is a finite time delay
associated with this transfer of tasks, and this model ignores this fact. In
spite of this fact, it is still of value to consider the system (3) because it
can be completely analyzed with regards to stability, and it does capture the
oscillatory behavior of the yi(t). A stability analysis of this linear model is
presented in [2].

2.3 Non Constant pij

It could be useful to use the local information of the waiting times xi(t), i =
1, .., n to set the values of the pij . Recall that pij is the fraction of uj(t)
that node j allocates (transfers) to node i at time t, and conservation of
the tasks requires pij > 0,

∑n

i=1
pij = 1 and pjj = 0. The quantity xi(t −

τji) − xavg
j represents what node j estimates6 the waiting time in the queue

of node i is with respect to the local average of node j. If queue of node i
is above the local average, then node j does not send tasks to it. Therefore
sat

(

xavg
j − xi(t − τji)

)

is an appropriate measure by node j as to how much
node i is below the local average. Node j then repeats this computation for

6 Again, the term “estimates” is used because node j does not know the current
value of xi(t), but only its earlier value xi(t − τij).



7

all the other nodes and then portions out its tasks among the other nodes
according to the amounts they are below the local average, that is,

pij =
sat

(

xavg
j − xi(t − τji)

)

∑

i � i6=j

sat
(

xavg
j − xi(t − τji)

)

. (4)

A pij is defined to be zero if the denominator
∑

i � i6=j

sat
(

xavg
j − xi(t − τji)

)

=

0.

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Probabilities p11, p12, ..., p18 computed by node 1

Node Number

p13

p15

p16

p18

p11 p12 p14 p17

Fig. 2. Illustration of a hypothetical distribution pi1 of the load at some time t

from node 1’s point of view. Node 1 will send data out to node i in proportion pi1

it estimates node i is below the average where
∑n

i=1
pi1 = 1 and p11 = 0

Remark If the denominator
∑

i � i6=j

sat
(

xavg
j − xi(t − τji)

)

is zero, then

xavg
j − xi(t − τji) < 0 for all i 6= j. However, by definition of the average,
∑

i � i6=j

(

xavg
j − xi(t − τji)

)

+ xavg
j − xj(t) =

∑

i

(

xavg
j − xi(t − τji)

)

= 0

which implies xavg
j − xj(t) = −

∑

i � i6=j

(

xavg
j − xi(t − τji)

)

> 0. That is,

if the denominator is zero, the node j is below the local average so that
uj(t) = −Kjsat(yj(t)) = 0 and is therefore not sending out any tasks.



8

With the definition of the pij given by (4), a load balancing algorithm
which portions out the tasks in proportion to the amounts they are below the
local average, is given by the following nonlinear differential-delay system

dxi(t)

dt
= λi − µi + ui(t) −

∑

j 6=i

pijuj(t − hij)

xavg
i =

∑n

j=1
xj(t − τij)

n
yi(t) = xi(t) − xavg

i

ui(t) = −Kisat (yi(t)) (5)

pij =
sat

(

xavg
j − xi(t − τji)

)

∑

i � i6=j

sat
(

xavg
j − xi(t − τji)

)

δij

3 Simulations

The simulations here were performed using the model (1) in order to com-
pare with the actual experimental data in the next section. Experimental
procedures to determine the delay values are given in [7] and summarized in
[8]. These give representative values for a Fast Ethernet network with three
nodes of τij = τ = 200 µ sec for i 6= j, τii = 0, and hij = 2τ = 400 µ sec
for i 6= j, hii = 0. The initial conditions for the waiting times were cho-
sen as x1(0) = 0.6, x2(0) = 0.4 and x3(0) = 0.2. The inputs were set as
λ1 = 3µ1, λ2 = 0, λ3 = 0, µ1 = µ2 = µ3 = 1. The tpi

’s were taken to be equal
and pij = (1/2)δij for all i, j.

Figures 3 and 4 show the responses with the gains set as K = 1000 and
K = 5000, respectively. These figures indicate that the value of the gain K
has a significant effect on the response of the system. Many simulations were
performed that are not presented here, and it was found that the system
did not go unstable. However, for low values of the gains, the response was
sluggish as in Figure 3 while for high values of the gains, the response was
quite oscillatory.

To compare with the experimental results given in Figure 8 of the next
section, Figure 5 shows the output responses with the gains set as K1 =
6667,K2 = 4167,K3 = 5000, respectively.

It is important to note that these plots are of the quantities yi in equation
(1) which are the amount of waiting time relative to the local average and
therefore can and do go negative. The actual waiting times xi do not go
negative.



9

0 0.002 0.004 0.006 0.008 0.01
0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

Time in secs

y1 

y2 

y3 

K = 1000 

Fig. 3. Output responses with K = 1000.

0 0.002 0.004 0.006 0.008 0.01
0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

Time in secs

y1 

y2 

y3 

K = 5000 

Fig. 4. Output responses with K = 5000.

4 Experimental Results

A parallel machine has been built to implement an experimental facility for
evaluation of load balancing strategies. To date, this work has been performed



10

0 0.002 0.004 0.006 0.008 0.01
0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

Time in secs

K1 = 6666.7, K2 = 4166.7, K3 = 5000

y2 

y1 

y3 

Fig. 5. Output responses with K1 = 6666.7; K2 = 4166.7; K3 = 5000

for the FBI Laboratory to evaluate candidate designs of the parallel CODIS
database. The design layout of the parallel database is shown in Figure 6. A
root node communicates with k groups of computer networks. Each of these
groups is composed of n nodes (hosts) holding identical copies of a portion
of the database. (Any pair of groups correspond to different databases, which
are not necessarily disjoint. A specific record, or DNA profile, is in general
stored in two groups for redundancy to protect against failure of a node.)
Within each node, there are either one or two processors. In the experimental
facility, the dual processor machines use 1.6 GHz Athlon MP processors, and
the single processor machines use 1.33 GHz Athlon processors. All run the
Linux operating system. Our interest here is in the load balancing in any one
group of n nodes/hosts.

The database is implemented as a set of queues with associated search
engine threads, typically assigned one per node of the parallel machine. Due
to the structure of the search process, search requests can be formulated for
any target DNA profile and associated with any node of the index tree.

These search requests are created not only by the database clients; the
search process also creates search requests as the index tree is descended by
any search thread. This creates the opportunity for parallelism; search requests
that await processing may be placed in any queue associated with a search
engine, and the contents of these queues may be moved arbitrarily among the
processing nodes of a group to achieve a balance of the load. This structure
is shown in Figure 7.



11

root

group

host

processor

Fig. 6. Hardware structure of the parallel database. Each of the host computers in
any given group have the same database. Load balancing is carried out only within
a given group as they all perform the same task of searching a particular database.

clients

server

databases in
each group

search queues

search engines

load balancing

Fig. 7. A depiction of multiple search threads in the database index tree. Here the
server corresponds to the “root” in Figure 6. To even out the search queues in each
database group, load balancing is done between the nodes (hosts) of a group. If a
node has a dual processor, then it can be considered to have two search engines for
its queue.

An important point is that the actual delays experienced by the network
traffic in the parallel machine are random. Work has been performed to char-
acterize the bandwidth and delay on unloaded and loaded network switches,
in order to identify the delay parameters of the analytic models and is re-
ported in [7][8]. The value τ = 200 µ sec used for simulations represents an



12

average value for the delay and was found using the procedure described in
[8]. The interest here is to compare the experimental data with that from the
simulations given presented in the previous section.

To explain the connection between the control gain K and the actual
implementation, recall that the waiting time is related to the number of tasks
as xi(t) = qi(t)tpi

where tpi
is the average time to carry out a task. The

continuous time control law is

u(t) = −Ksat (yi(t))

where u(t) is the rate of decrease of waiting time xi(t) per unit time. Conse-
quently, the gain K represents the rate of reduction of waiting time per second

in the continuous time model. Also, yi(t) =
(

qi(t) −
(

∑n

j=1
qj(t − τij)

)

/n
)

tpi
=

ri(t)tpi
where ri(t) is simply the number of tasks above the estimated (local)

average number of tasks. As the interest here is the case yi(t) > 0, consider
u(t) = −Kyi(t). With ∆t the time interval between successive executions of
the load balancing algorithm, the control law says that a fraction of the queue
Kzri(t) (0 < Kz < 1) is removed in the time ∆t so the rate of reduction of
waiting time is −Kzri(t)tpi

/∆t = −Kzyi(t)/∆t so that

u(t) = −
Kzyi(t)

∆t
or K =

Kz

∆t
. (6)

This shows that the gain K is related to the actual implementation by how
fast the load balancing can be carried out and how much (fraction) of the load
is transferred. In the experimental work reported here, ∆t actually varies each
time the load is balanced. As a consequence, the value of ∆t used in (6) is
an average value for that run. The average time tpi

to process a task is the
same on all nodes (identical processors) and is equal 10µ sec while the time
it takes to ready a load for transfer is about 5µ sec . The initial conditions
were taken as q1(0) = 60000, q2(0) = 40000, q3(0) = 20000 (corresponding to
x1(0) = q1(0)tpi = 0.06, x2(0) = 0.04, x3(0) = 0.02). All of the experimental
responses were carried out with constant pij = 1/2 for i 6= j.

Figure 8 is a plot of the responses ri(t) = qi(t) −
(

∑n

j=1
qj(t − τij)

)

/n

for i = 1, 2, 3 (recall that yi(t) = ri(t)tpi
). The (average) value of the gains

were (Kz = 0.5) K1 = 0.5/75µ sec = 6667,K2 = 0.5/120µ sec = 4167,K3 =
0.5/100µ sec = 5000. This figure compares favorably with Figure 5 except
for the time scale being off, that is, the experimental responses are slower.
The explanation for this it that the gains here vary during the run because
∆t (the time interval between successive executions of the load balancing
algorithm) varies during the run. Further, this time ∆t is not modelled in the
continuous time simulations, only its average effect in the gains Ki. That is,
unlike the actual computer network, the continuous time model does not stop
processing jobs (at the average rate tpi

) while it is transferring tasks to do
the load balancing.



13

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40
q
u
e
u
e
 l
e
n
g
th

time (ms)

Comparison of local averages on Node01 - Node03

node01
node02
node03

node01

node02

node03

Fig. 8. Experimental response of the load balancing algorithm. The average value
of the gains are (Kz = 0.5) K1 = 6667, K2 = 4167, K3 = 5000 with constant pij .

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40

q
u

e
u

e
 l
e

n
g

th

time (ms)

Comparison of local averages on Node01 - Node03

node01
node02
node03

node01

node02

node03

Fig. 9. Experimental response of the load balancing algorithm. The average value
of the gains are (Kz = 0.2) K1 = 1600, K2 = 2500, K3 = 2857.

Figure 9 shows the plots of the response for the (average) value of the
gains given by (Kz = 0.2) K1 = 0.2/125µ sec = 1600,K2 = 0.2/80µ sec =
2500,K3 = 0.2/70µ sec = 2857. The initial conditions were q1(0) = 60000, q2(0) =
40000, q3(0) = 20000 (x1(0) = q1(0)tpi = 0.06, x2(0) = 0.04, x3(0) = 0.02).

Figure 10 shows the plots of the response for the (average) value of the
gains given by (Kz = 0.3) K1 = 0.3/125µ sec = 2400,K2 = 0.3/110µ sec =
7273,K3 = 0.3/120µ sec = 2500.



14

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40
q

u
e

u
e

 l
e

n
g

th

time (ms)

Comparison of local averages on Node01 - Node03

node01
node02
node03

node01

node02

node03

Fig. 10. Experimental response of the load balancing algorithm. The average value
of the gains are (Kz = 0.3) K1 = 2400, K2 = 7273, K3 = 2500.

5 Summary and Conclusions

In this work, a load balancing algorithm was modelled by a system of non-
linear delay-differential equations. Simulations were preformed and compared
with actual experimental data. The comparison indicates that the model does
indeed capture dynamic behavior of the load balancing network.

A consideration for future work is the fact that the load balancing opera-
tion involves processor time which is not being used to process tasks. Conse-
quently, there is a trade-off between using processor time/network bandwidth
and the advantage of distributing the load evenly between the nodes to reduce
overall processing time. Another issue is that the delays in actuality are not
constant and depend on such factors as network availability, the execution of
the software, etc. An approach to modelling using a discrete-event / hybrid
state formulation that accounts for block transfers that occur after random
intervals may also be advantageous in analyzing the network.

6 Acknowledgements

The work of J.D. Birdwell, Z. Tang, and T.W. Wang was supported by U.S.
Department of Justice, Federal Bureau of Investigation under contract J-FBI-
98-083. Drs. Birdwell and Chiasson were also partially supported by a Chal-
lenge Grant Award from the Center for Information Technology Research
at the University of Tennessee. The work of C.T. Abdallah was supported
in part by the National Science Foundation through the grant INT-9818312.
The views and conclusions contained in this document are those of the authors



15

and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the U.S. Government.

References

1. C. Abdallah, J. Birdwell, J. Chiasson, V. Churpryna, Z. Tang, and

T. Wang. Load balancing instabilities due to time delays in parallel compu-
tation. In “Proceedings of the 3rd IFAC Conference on Time Delay Systems”
(December 2001). Sante Fe NM.

2. C. T. Abdallah, N. Alluri, J. D. Birdwell, J. Chiasson, V. Chupryna,

Z. Tang, and T. Wang. A linear time delay model for studying load balanc-
ing instabilities in parallel computations. The International Journal of System

Science (2003). To appear.
3. J. Birdwell, R. Horn, D. Icove, T. Wang, P. Yadav, and S. Niezgoda.

A hierarchical database design and search method for codis. In “Tenth Interna-
tional Symposium on Human Identification” (September 1999). Orlando, FL.

4. J. Birdwell, T. Wang, R. Horn, P. Yadav, and D. Icove. Method
of indexed storage and retrieval of multidimensional information. In “Tenth
SIAM Conference on Parallel Processing for Scientific Computation” (Septem-
ber 2000). U. S. Patent Application 09/671,304.

5. J. Birdwell, T.-W. Wang, and M. Rader. The university of tennessee’s
new search engine for codis. In “6th CODIS Users Conference” (February 2001).
Arlington, VA.

6. A. Corradi, L. Leonardi, and F. Zambonelli. Diffusive load-balancing
polices for dynamic applications. IEEE Concurrency 22(31), 979–993 (Jan-Feb
1999).

7. P. Dasgupta. “Performance Evaluation of Fast Ethernet, ATM and Myrinet
under PVM, MS Thesis”. University of Tennesse (2001).

8. P. Dasgupta, J. D. Birdwell, and T. W. Wang. Timing and congestion
studies under PVM. In “Tenth SIAM Conference on Parallel Processing for
Scientific Computation” (March 2001). Portsmouth, VA.

9. L. Kleinrock. “Queuing Systems Vol I : Theory”. John Wiley & Sons (1975).
New York.

10. F. Spies. Modeling of optimal load balancing strategy using queuing theory.
Microprocessors and Microprogramming 41, 555–570 (1996).

11. T. Wang, J. Birdwell, P. Yadav, D. Icove, S. Niezgoda, and S. Jones.
Natural clustering of DNA/STR profiles. In “Tenth International Symposium
on Human Identification” (September 1999). Orlando, FL.

12. M. Willebeek-LeMair and A. Reeves. Strategies for dynamic load balancing
on highly parallel computers. IEEE Transactions on Parallel and Distributed

Systems 4(9), 979–993 (1993).


