Lecture

Information Retrieval for Music and Motion

Meinard Müller

Summer Term 2008

Dynamic Time Warping

Alignment

,

Alignment

DNA = Sequence of Nucleotids

3

Alignment

Protein = Sequence of Amino Acids

4

Alignment

Music = Sequence of Audio Samples

Alignment

Music = Sequence of Audio Samples

Alignment

Motion = Sequence of Poses

11

Alignment

Motion = Sequence of Poses

3

Cost Matrix

Cost Matrix

Cost-minimizing warping path

10

Warping Path

Warping Path

Violation of Boundary Condition

Warping Path

Violation of Monotonicity Condition

Warping Path

Violation of Step Size Condition

Variation of Step Size Condition

13

15

Variation of Step Size Condition

16

Variation of Step Size Condition

Strategy: Global Constraints

Sakoe-Chiba band

Itakura parallelogram

17

Strategy: Global Constraints

Sakoe-Chiba band

Itakura parallelogram

Problem: Optimal warping path not in constraint region

19

21

Strategy: Multiscale Approach

Compute optimal warping path on coarse level

20

Strategy: Multiscale Approach

Project on fine level

Strategy: Multiscale Approach

Specify constraint region

22

Strategy: Multiscale Approach

Compute constrained optimal warping path

Subsequence DTW

23