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Abstract

Fungal infections are a global problem imposing considerable disease burden. One of the

unmet needs in addressing these infections is rapid, sensitive diagnostics. A promising

molecular diagnostic approach is high-resolution melt analysis (HRM). However, there has

been little effort in leveraging HRM data for automated, objective identification of fungal spe-

cies. The purpose of these studies was to assess the utility of distance methods developed

for comparison of time series data to classify HRM curves as a means of fungal species

identification. Dynamic time warping (DTW), first introduced in the context of speech recog-

nition to identify temporal distortion of similar sounds, is an elastic distance measure that

has been successfully applied to a wide range of time series data. Comparison of HRM

curves of the rDNA internal transcribed spacer (ITS) region from 51 strains of 18 fungal spe-

cies using DTW distances allowed accurate classification and clustering of all 51 strains.

The utility of DTW distances for species identification was demonstrated by matching HRM

curves from 243 previously identified clinical isolates against a database of curves from

standard reference strains. The results revealed a number of prior misclassifications, dis-

criminated species that are not resolved by routine phenotypic tests, and accurately identi-

fied all 243 test strains. In addition to DTW, several other distance functions, Edit Distance

on Real sequence (EDR) and Shape-based Distance (SBD), showed promise. It is con-

cluded that DTW-based distances provide a useful metric for the automated identification of

fungi based on HRM curves of the ITS region and that this provides the foundation for a

robust and automatable method applicable to the clinical setting.

Introduction

Fungal infections are a global problem causing considerable disease burden [1]. One of the

unmet needs in addressing these infections is rapid, sensitive diagnostics [1]. A promising

molecular diagnostic approach is high resolution melt analysis (HRM), a method pioneered by
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Wittwer and colleagues [2, 3]. The method is elegant in its simplicity and sensitivity. Following

PCR amplification of a target DNA in the presence of an intercalating fluorescent dye, con-

trolled heating of the sample results in gradual melting of the DNA. The transition of the DNA

from double to single stranded and the resulting dissociation of the intercalating fluorescent

dye is reflected in the associated decline in fluorescence [2, 3]. Because the melting process is a

function of the DNA sequence and the relative position of cooperative melting domains [4], as

little as a single nucleotide difference can alter the melting curve [2, 3].

HRM analysis of various amplicons has been applied to the identification of fungal species.

Multiple studies have employed the rDNA internal transcribed spacer (ITS) region, either in

part, or in its entirety, as the target amplicon. Dunyach et al. [5] used universal primers to

amplify the ITS1-5.8S-ITS2 region and showed that C. albicans, C. tropicalis, C. parapsilosis, C.

glabrata, and C. krusei (Pichia kudriavzevii) could be distinguished by HRM analysis. Simi-

larly, Alnuaimi et al. [6] showed that HRM curves of the ITS1-5.8S-ITS2 region could discrim-

inate between eight species of Candida. Other studies have analyzed HRM curves of the ITS2

region and successfully resolved as many as 23 different Candida species [7–9]. Cryptococcal

species were delineated based on the melt profile of the ITS1 region [10], while a variable

region of the 18S rDNA allowed differentiation of six species ofMucorales [11]. Melt profiles

of the rDNA intergenic spacer region readily distinguished cryptic species within the C. para-

psilosis spp. complex [12].

While most studies have focused on the rDNA region, other amplicons have also been

examined. The melt profile of the gene encoding mannoprotein MP65 can discriminate 5 spe-

cies of Candida [13] and Plachy et al. studied the melt curves of random amplified polymor-

phic DNA, a technique designated McRAPD [14]. The utility of HRM profiles in strain typing

was shown with the amplified products of CDC3,EF3, andHIS3 [15, 16].

In these studies HRM data was assessed using two methods, melting point (TM) determina-

tion and difference curve analysis. Tm determination provides the simplest assessment.

Although this single point parameter is sufficient to discriminate a limited number of species

[5, 11], it lacks the resolution needed to distinguish all the species of clinical interest [7–9].

Most studies have relied on visual assessment of difference curves, alone or in combination

with TM determinations [6–10, 12]. Difference curves are generated by subtraction of a stan-

dard curve from the test curves after normalization and temperature shifting of the raw melt

curve. Temperature shifting accounts for well-to-well differences by aligning all the curves that

are presumed should be the same. Visual assessment of the difference curves easily discrimi-

nates most all species that have been examined [6–10, 12]. Despite its discriminatory power,

the time and labor costs and subjectivity of visual assessment prevent its adoption in clinical

settings where an objective, scalable, and automatable approach is needed.

Two studies in the fungal literature have explored computational methods of evaluating

curve similarities. In the study by Mandviwala et al. [17] the authors constructed a distance

matrix of Manhattan distances between melt rate curves and showed by minimummatch scor-

ing that eight species of Candida could be distinguished. Trtkova el al. [18] took a similar

approach examining the Manhattan distances between normalized melt curves of RAPD

results. However, this proved inferior to comparison of difference curves [18].

The sequentially ordered data of a melt curve is comparable to the temporally ordered data

of a time series. The analysis of time series data has importance in a broad range of applica-

tions from speech recognition to stock price fluctuations to astronomical observations [19,

20]. One of the more successful distance measures in this domain is dynamic time warping

(DTW), first introduced in the context of speech recognition to identify temporal distortion of

similar sounds [21]. In this study we examine the application of DTW to the classification of

HRM curves of the ITS region of 18 species of fungi and demonstrate its ability to correctly
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cluster and classify all of the species tested including several that are difficult to differentiate by

traditional phenotypic methods. As a practical test of its utility, DTW distances were used in a

minimum score classification scheme to correctly identify 243 clinical isolates. The potential

utility of several other time series functions was also examined. These results lay the founda-

tion for a rapid, objective, and automatable method for the identification of clinically relevant

fungal species.

Materials andmethods

Fungal strains

Standard strains and their sources are listed in Table 1. Clinical isolates were taken from a pre-

viously described collection of oral and vaginal yeast cultured from HIV positive and HIV neg-

ative women [22].

DNA preparation

Yeast strains were cultured in 2 ml YPD medium (1% yeast extract, 2% Bacto Peptone, 2% glu-

cose) for approximately 24 h at 28˚C, molds were cultured for 48–72 h. Yeast cells were col-

lected by centrifugation, mycelia were collected on Spin-X centrifuge tube filters (Corning

Costar). After washing with 1 ml H2O, cells were suspended in 1 ml of lysis buffer (500 mM

NaCl, 50 mM Tris-HCl, pH 8.0, 50 mM EDTA, and 4% SDS) and processed according to the

“repeated bead beating plus column” method of Yu and Morrison [23] except that an Isolate II

Genomic DNA Kit (Bioline) was used to purify the DNA. The concentration of purified DNA

was determined using a NanoDrop spectrophotometer. The purified DNA samples were used

to characterize species specificity of HRM curves and for testing and optimizing distance

functions.

To facilitate throughput, melt curves of clinical isolates and standard yeast strains were

obtained using a crude DNA preparation [8]. Isolates were inoculated into 150 μl of YPD in

96-well plates and incubated 24 h at 28˚C. Cells were collected by centrifugation, washed twice

with 100 μl of 10 mM Tris-HCl, pH 8.5, and suspended in 100 μl of Tris buffer. Samples were

heated to 95˚C for 15 min, frozen at -80˚C for 15 min, and thawed at room temperature [8].

The thawed samples were centrifuged and the DNA containing supernatant was recovered.

DNA samples were stored at -20˚C.

PCR amplification

ITS amplicons were PCR amplified as described by Toju et al. [24]. ITS1 was amplified using

primers ITS1-F_KYO2 (TAGAGGAAGTAAAAGTCGTAA)and ITS2_KYO2 (TTYRCTRCGTT
CTTCATC). ITS2 was amplified using primers ITS3_KYO2 (GATGAAGAACGYAGYRAA)and
ITS4 (TCCTCCGCTTATTGATATGC). The complete ITS1-5.8S-ITS2 region was amplified with

primers ITS1-F_KYO2 and ITS4. PAGE purified primers were purchased from Integrated

DNA Technologies. The PCR reaction consisted of 1X SensiFAST HRMmix (Bioline), 0.5 μM

of each primer and 1 ng of purified DNA template or 2 μl of freeze-thaw DNA preparation in a

total volume of 20 μl. Amplification was performed in a LightCycler 480 (Roche) using the fol-

lowing thermal cycles: 1 cycle of 95˚C for 5 min, followed by 40 cycles of 95˚C for 10 s, 47˚C

for 10 s and 72˚C for 12 s.

A high-resolution melt profile was acquired following amplification. The samples were

heated to 95˚C for 1 min and cooled to 40˚C for 1 min to allow strand hybridization. Samples

were then heated from 60–95˚C at a rate of 0.02˚C/s with acquisition of 25 fluorescent readings

per 1˚C. All samples were tested in duplicate in two independent trials. A negative control

Fungal identification using DTW distances between ITS melt curves
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Table 1. Strains used in the present study.

Species Strain Source/Reference GenBank Accession No.f

Aspergillus flavus No.1 CAMS a

gl-5 CAMS

Aspergillus fumigatus SUMS_0672 SYMH b KT067746

8–21 CAMS KT067747

10–119 CAMS KT067748

Aspergillus terreus SUMS_0191 SYMH

SUMS_0769 SYMH KT067754

Candida albicans SC5314 Squib Culture Collection

CI_129v [22] KT067740

CI_143o [22] KT067743

CI_193o [22] KT067744

CI_238o [22] KT067742

Candida dubliniensis Y-17512 ARS(NRRL)c KY514056

Y-27787 ARS(NRRL) KY514057

Candida glabrata Y-65 ARS(NRRL)

CI_36o [22] KT067758

CI_100v [22] KT067759

Candida orthopsilosis Y-48468 ARS(NRRL)

Y-27060 ARS(NRRL)

Candida parapsilosis Y-12969 ARS(NRRL)

Y-182 ARS(NRRL)

Candida tropicalis Y-607 ARS(NRRL)

Y-48158 ARS(NRRL)

CI_155v [22] KT067761

CI_243o [22] KT067762

Candida zeylanoides Y-1403 ARS(NRRL)

Y-1774 ARS(NRRL)

Clavispora lusitaniae Y-11827 ARS(NRRL)

Y-48268 ARS(NRRL)

Cryptococcus gattii ATCCMYA4560 MWHC d

R1396 June Kwon-Chung

W14-276 June Kwon-Chung

Cryptococcus neoformans JEC-21 YGSCe

H99 YGSC

SUMS_0043 SYMH AB436637.1

SUMS_0044 SYMH AB436638.1

SUMS_0046 SYMH AB436640.1

Debaryomyces hansenii Y-1448 ARS(NRRL)

Y-1449 ARS(NRRL)

Myerozyma guilliermondii Y-2076 ARS(NRRL)

Y-27821 ARS(NRRL)

ATCC-6260 MWHC

Pichia kudriavzevii ATCC-6258 MWHC

Y-27803 ARS(NRRL)

Y-27825 ARS(NRRL)

Rhodotorula mucilaginosa Y-1591 ARS(NRRL)

Y-2510 ARS(NRRL)

(Continued )
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lacking DNA was included. Samples were subsequently analyzed by agarose gel electrophoresis

to verify the presence of a single product of the predicted size.

High-resolution melt curve analysis

HRM produces normalized melt curves, which are all similar in that the relative fluorescence

of the sample ranges from 100% to 0%. The curves differ in the rate at which fluorescence

declines with increasing temperature. The commonly used difference curve captures the rela-

tive difference in fluorescence between two melt curves, an indirect measure of differences in

melt rate. Sample classification requires that all samples be assessed against a consistent refer-

ence curve for comparison. For these studies, rather than an indirect, relative measure, melting

rates were directly determined using the first derivative of the normalized melt curves.

Melt curve data was normalized within the LightCycler 480 Gene Scanning Software

(Roche). The region between 72 and 74˚C was set at 100%, 93.5 to 94˚C was set to 0%. No

curve shifting was applied. All subsequent data processing was performed in R [25]. Melting

rates were calculated from the negative first derivative of the melt curve. Rate curves were fitted

with a cubic smoothing spline using the default leave-one-out cross-validation of the splines

package and the splines were used to calculate rates at 0.1˚C increments. The resulting curves

were z-normalized using the scale function and the region between 76 and 94˚C was used for

distance calculations.

Dynamic time warping (DTW) distances were calculated using the DTW package of Gior-

gino [19] within a call to “proxy” [26]. Implementations of the distance functions Edit Dis-

tance on Real sequence (EDR) [27], Edit distance with Real Penalty (ERP) [28], and Longest

Common Subsequences (LCSS) [29] were provided in the “TSdist” R package [30]. Shape

Based Distances [31] were calculated using SBD as implemented in the “dtwclust” package

[32]. Nearest neighbor clustering was performed with hclust and nearest neighbor classifica-

tion was performed using the package “class” [33]. Silhouette values [34] were calculated using

the “cluster” package [35].

Graphics were produced using ggplot2 [36] and ggdendro [37].

DNA sequencing

Species identity was determined by nucleotide sequence comparison when high-resolution

melt predictions and biochemical determinations were discordant. The ITS region was PCR

amplified with primers NSI1 (GATTGAATGGCTTAGTGAGG) and NLB4 (GGATTCTCACCC

Table 1. (Continued)

Species Strain Source/Reference GenBank Accession No.f

Talaromyces marneffei SUMS_0429 SYMH KT067767

SUMS_0556 SYMH JN679223.1

SUMS_0624 SYMH JQ912272.1

SUMS_0751 SYMH KT121405

a. Chinese Academy of Medical Science

b. Sun Yat-Sen Memorial Hospital

c. Agricultural Research Service (Northern Regional Research Laboratory)

d. Medstar Washington Hospital Center

e. Yeast Genetics Stock Center

f. Species identity was verified by partial sequencing of the ITS or 25S region of rDNA

doi:10.1371/journal.pone.0173320.t001
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TCTATGAC) [38], except for C. lusitaniae, which lacks the NLB4 target site. ITS4 was used in

place of NLB4. The size of the PCR product and specificity of the reaction was determined by

agarose gel electrophoresis and both strands of the amplified DNA were sequenced (Genewiz)

using each of the amplification primers. Sequences were analyzed using DNA Strider [39] and

sequence comparisons against the Genbank non-redundant database were performed using

BLAST [40]. Sequence alignments were performed with Clustal Omega [41].

Results

Choice of amplicon

The objective of these studies was to assess the utility of distance methods developed for com-

parison of time series data to classify high-resolution melt (HRM) curves as a means of fungal

species identification. Rather than rely on a single parameter such as melting point, this

approach takes into consideration the entire melt curve and thus incorporates significantly

more information, which should generate a more robust and discriminating measure [42]. It

also facilitates objective evaluation in an automated manner.

The ITS region was chosen as the target amplicon for several reasons. The Fungal Barcode

Consortium recently proposed the ITS region as the universal barcode for fungal species based

on the level of sequence variability and utility in discriminating species, as well as its multi-

copy nature and high rate of successful amplification [43]. In addition, a number of studies

have focused on the design of pan-fungal primers. In this study the primers proposed by Toju

et al. [24], which overcome some of the bias documented in other pan-fungal primers [44],

were used. Furthermore, HRM studies targeting this region have demonstrated species vari-

ability in melt profiles [5–10].

While prior studies have examined HRM profiles of various amplicons derived from the

ITS region, no study has compared the melt profiles of the ITS1, ITS2, and composite ITS

region to assess which might prove most discriminating. DNAmelting is a function of base

composition and sequence, which establishes the number, size, and relative position of cooper-

ative melt domains [4]. Therefore, the melt profile of the composite ITS region is not the sim-

ple sum of ITS1 and ITS2 curves. Two examples of this distinction are shown in Fig 1. As

pointed out by Rasmussen et al. [45], a more complex, multimodal pattern facilitates species

discrimination. Therefore, the melt profiles of ITS1, ITS2, and full-length ITS region were

examined to assess which generated the most diverse HRM curves.

Fifty-one strains encompassing 18 species (Table 1) were examined. These included yeast

and molds, Ascomycetes and Basidiomycetes; most are important human pathogens. The

most diverse set of melt profiles was observed for the full-length ITS region (Fig 2, S1 and S2

Figs). The curves varied in number of peaks, peak heights, and peak position, resulting in a

unique profile for each species. All but one profile, that ofM. guilliermondii, had at least two

distinct peaks. The profiles from even closely related species, such as Candida parapsilosis and

Candida orthopsilosis, Candida albicans and Candida dubliniensis, Cryptococcus neoformans

and Cryptococcus gattii, were easily distinguished by visual examination. In contrast, the melt

profiles of the ITS1 and ITS2 regions were more often a single peak curve and the distinction

between some species was not readily apparent (S1 and S2 Figs).

At least two strains of each species were examined as an initial gauge of the constancy of

curves within a species. As shown in the representative examples of C. albicans and C. tropicalis

(Fig 3), each was characterized by a highly similar and reproducible curve, as were all the other

species. As evident later, this is not always true as the constancy of the melt curves depends on

the number and location of ITS sequence variations within a species.

Fungal identification using DTW distances between ITS melt curves
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Dynamic time warping as a distance measure

One of the inherent problems in HRM is the run-to-run differences due to sample and

machine variables [46] (Fig 4A). This variability confounds inelastic measures such as Euclid-

ean or Manhattan distances. As an example, Fig 4B shows a cluster dendrogram constructed

using Euclidean distances between the average curve of each of the 18 test species. When cut at

a tree height that produces 18 groups, a number of the species are correctly clustered, but sev-

eral are not. In particular, C. neoformans and C. gattii are not separated, nor areM. guillier-

mondii and R.mucilaginosa. Parenthetically, it should be noted that although these cluster

dendrograms mimic the appearance of phylogenetic dendrograms, they do not reflect nor

imply phylogenetic relationships.

In contrast, DTW was introduced to compensate for temporal distortions [21] analogous to

the temperature distortions seen in HRM data. The DTW function is governed by a local step

pattern and a global window constraint [21]. Giorgino’s R implementation of the DTW algo-

rithm [19] includes all 43 step patterns defined by Rabiner and Juang [21]. These consist of

seven types [1–7] with four possible slopes (a,b,c, and d), as well as smoothed variants of 15 of

the basic 28 patterns. There is no theoretical basis for selection of a particular step pattern and

their utility must be empirically assessed in the context of the data type being evaluated [21].

The 43 available step patterns were tested against a data set consisting of 204 melt curves gen-

erated from the 51 strains in Table 1, two independent duplicate curves from each. Inclusion

of the four curves from each strain helped ensure that the method was robust against technical

variations. A distance matrix was calculated using each of the possible step patterns, either

without window constraints or with a window size of 1 to 20, corresponding to a temperature

range of 0.1˚C to 2˚C.

The effectiveness of each step pattern was assessed using one-nearest-neighbor classifica-

tion with stratified eight-fold cross-validation [20]. With the exception of the Type Ia step pat-

tern, which had an accuracy rate of<0.3, the other step patterns performed equally well,

having accuracy rates of>0.99. The distance measures were further evaluated by nearest-

Fig 1. Variation in HRM profile of ITS regions. The negative first derivative (-dF/dt) of the normalized melt
curve of rDNA ITS1, ITS2 and full-length ITS region ofC. albicans and P. kudriavzevii are shown.

doi:10.1371/journal.pone.0173320.g001

Fungal identification using DTW distances between ITS melt curves
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neighbor clustering [47, 48] under the assumption that distances most reflective of the unique

curve shapes would allow clustering into eighteen distinct species-related groups. As shown in

Fig 5A, distances computed by 13 of the step patterns resulted in accurate clustering of all the

curves in the absence of any window constraint. Three general themes emerged. The Type 6

step pattern was effective regardless of the slope, the most effective slope was “b”, which was

effective with five of the seven step pattern types, and step pattern Types 1 and 7 were ineffec-

tual. When globally constrained, effective clustering was obtained with distances computed

with all possible step patterns except Type 1a and 5a (Fig 5A). However, the size of the window

constraint required for successful clustering varied (Fig 5A). The smoothed patterns showed

little or no difference.

Based on these results a Type 6 step pattern with a slope of “b” was chosen for subsequent

analyses. The optimum window size for the Type 6b pattern was evaluated by examining the

minimum silhouette width as a function of window size. The minimum silhouette width pro-

vides a relative measure of the distance between members of a cluster and the next closest clus-

ter [34]. As seen in Fig 5B, the minimum silhouette width increases dramatically as the

window size decreases below 12 and reaches an optimum at a value of 5. The dendrogram in

Fig 6 illustrates clustering of distances between the average curve of each strain computed with

a Type 6b step pattern and a window size of 5. The dendrogram is easily cut into 18 well-sepa-

rated groups each corresponding to a different species.

Fig 2. Themelt profile of the ITS region is unique to each species. The negative first derivative (-dF/dt) of the normalized melt curve of the ITS region
is shown for a representative strain of each of the species listed in Table 1.

doi:10.1371/journal.pone.0173320.g002

Fungal identification using DTW distances between ITS melt curves
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Classification of clinical isolates using DTW distances

The foregoing demonstrated that DTW distances are a useful metric for discriminating HRM

profiles and concomitantly the corresponding fungal species. The utility of DTW distances for

classification of unknown samples was evaluated in a blinded test of a collection of previously

identified oral and vaginal yeast isolates from HIV-infected and non-infected women [22]. A

reference database of standard curves was prepared for each of the yeast strains in Table 1.

Two independent duplicate melt curves were obtained for each strain and averaged to produce

the reference standard. Duplicate HRM profiles were acquired for each clinical isolate. For

both the reference strains and clinical strains, a rapid freeze/thaw method [8] was used to pre-

pare a crude DNA sample. The same method of DNA preparation was used for both sets of

strains to control for the potential influence of other cellular components on the melt profiles.

A total of 251 strains including eight positive controls and 243 clinical isolates were evaluated.

The DTW distance between the duplicate curves of each clinical isolate and each of the data-

base standards was determined with a Type 6b step pattern and a window size of 5.

Classification of the test isolates was based on minimum distance matching against the

database standards. That is, the standard curve least distant from the test curve was considered

the match. Results were scored as a valid identification when both duplicate test curves

matched the same species in the database and both distances were at or below the cutoff value.

The cutoff score was established by determining the mean within-strain distance of the refer-

ence curves and their standard deviation. The within-strain distance is the distance between

each of the four curves obtained for each strain and provides the range of distance values to be

expected for ostensibly identical curves. The cutoff value was set at the mean +2 standard devi-

ations of the within-strain distance. A probable identification resulted when both curves

matched the same species, but only one score lay below the cutoff value. When both distance

scores exceeded the cutoff, the sample was classified as “unidentified.” Samples scored as

Fig 3. Themelt profile is conserved across different strains of the same species. The negative first
derivative (-dF/dt) of the normalized melt curve of the ITS region is shown for four strains of theC. albicans
andC. tropicalis. Each successive curve is offset by +1˚C to facilitate comparison of the curve shapes.

doi:10.1371/journal.pone.0173320.g003

Fungal identification using DTW distances between ITS melt curves
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probable or unidentified were tested again. The distance-based classifications were then com-

pared to those previously established by phenotypic and biochemical methods [22].

A valid identification was obtained for all eight positive controls, and all were classified as

the correct species. These included four strains of C. albicans, two of C. glabrata, and two of C.

tropicalis. Of the 243 test strains a valid ID was obtained for 195 (Table 2). For all but three of

these 195 strains, the DTW distance-based classification agreed with the previously deter-

mined identification. One isolate, previously identified as C. lusitaniae, was classified as C. tro-

picalis based on the melt profile and this was confirmed by nucleotide sequence analysis of the

ITS amplicon. The sequence was 100% identical to C. tropicalis isolate 287 (Genbank Acc.#

KU950724) [49]. An isolate previously identified asD. hansenii, was determined to be C. lusita-

niae based on the melt profile and ITS sequence, which was 100% identical to C. lusitaniae

ATCC34449 (Genbank accession # KU729100). The third discordant identification was a

strain of C. parapsilosis that proved to be C. orthopsilosis (ITS sequence identical to C. orthopsi-

losis ATCC96141, Acc.# EU564208). The last is not surprising as C. parapsilosis and C. orthop-

silosis are not easily distinguished by phenotypic means [50] and this illustrates the ability of

DTW distance measures to discriminate species that are difficult to identify by routine bio-

chemical tests.

Fig 4. Euclidean distance is a poor metric for comparingmelt curves. (A) Melt profiles of eight samples ofC. albicans strain SC5314 illustrating the
variation inherent in melt curve acquisition. (B) Dendrogram of nearest neighbor clustering results using Euclidean distances. The four melt curves
obtained for each strain in Table 1 were averaged and the Euclidean distances between the averaged curves was clustered.

doi:10.1371/journal.pone.0173320.g004
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Forty-eight test strains were scored as “unidentified”. Two of these corresponded to isolates

previously identified as Candida boidinii and a Kloeckera spp. Since the database did not con-

tain standard curves for either of these species, the isolates were correctly classified as unidenti-

fied. They were true negatives.

The other 46 unidentified strains were interesting in that they had ostensibly identical melt

profiles, which differed from those in the database. All were oral isolates previously identified

as C. albicans, 35 isolated from 15 HIV positive women and 11 isolated from 4 HIV negative

patients [22]. The ITS region of 19 of these strains was sequenced to determine their identity.

All 19 sequences were identical to each other and 100% identical to Candida dubliniensis strain

CD36 (Acc. # FM992695.1), for which the entire genome sequence is available [51]. This was

surprising since our reference database contained curves for two C. dubliniensis strains.

Although the melt profile of the C. dubliniensis database strains overlapped that of the oral iso-

lates, the profiles clearly differed in shape (Fig 7). Comparison of ITS nucleotide sequences

showed that the database strains were indeed C. dubliniensis, but their sequence differed from

that of the oral isolates (S3 Fig). The oral isolates belong to Genotype 1, as defined by Gee et al.

[52], whereas the strains used as standards belong to Genotype 2. This sequence difference

Fig 5. The effect of DTW step patterns and window sizes onmelt curve clustering. (A) DTW distances between all 204 melt curves
obtained for the 51 strains in Table 1 were calculated using each of the possible Rabiner and Juang step patterns and slope combinations
(21). Distances were calculated with no window constraint or with the window size varied from 1 to 20. Dots indicate successful nearest-
neighbor clustering of all 204 melt curves into 18 species-specific groups. Green dots indicate step pattern and slope combinations successful
even in the absence of window constraints. Red dots represent those distances for which clustering was successful only with the indicated
window size. (B) The minimum silhouette width (34) as a function of window size for step pattern Type 6b.

doi:10.1371/journal.pone.0173320.g005
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presumably accounts for the distinct melt profiles. When the database was updated by inclu-

sion of a Genotype 1 curve, reanalysis of the clinical isolates resulted in classification of each of

the 46 oral isolates as C. dubliniensis.

C. albicans and C. dubliniensis are closely related and are distinguished by specialized tests

not routinely performed in clinical labs [53]. The prior study utilized only routing tests [22]

and thus it is not surprising that these 46 strains were misidentified as C. albicans. Importantly,

the DTW distance classification demonstrates again the capacity of this method to distinguish

species that are difficult to identify by phenotypic and biochemical means and, furthermore,

illustrates the potential to discriminate even within a species.

The database encompassed all but two species found amongst the clinical isolates. These

two isolates were correctly classified as unidentified, as were the Genotype I C. dubliniensis iso-

lates prior to incorporation of an appropriate standard. This suggested that the method is

robust against false positive identifications. As a further test of this, the clinical isolates were

reanalyzed against a database lacking one set of species standards. The absence of each species

was tested. In each trial the unidentified clinical isolates corresponded to the missing database

species and no false positive classifications occurred.

Fig 6. Nearest-neighbor clusters formed from DTWdistances.DTW distances between the average melt
profile from each of the 51 strains in Table 1 were calculated with step pattern Type 6b and a window size of
five. The dendrogram resulting from nearest neighbor clustering of the distances is shown. The tree can be
cleanly cut into 18 groups, each corresponding to a different species.

doi:10.1371/journal.pone.0173320.g006
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Table 2. Identification results for 243 clinical yeast isolates.

Species Identification Method Comments

Phenotypic DTW EDR SBD

C. albicans 191 145 145 144 (1)*

C. boidinii 1 UnID UnID UnID

C. dubliniensis - 46 (2) 46 45 (2) all originally classified as C. albicans

C. glabrata 26 26 26 26

C. lusitaniae 2 2 2 2 one isolate identified as C. tropicalis

C. orthopsilosis - 1 1 1

C. parapsilosis 8 7 7 7 one isolate identified as C. orthopsilosis

C. tropicalis 8 9 9 9

C. zeylanoides 1 1 1 1

D. hansenii 1 0 0 0 identified as C. lusitaniae

Kloeckera spp. 1 UnID UnID UnID

P. kudriavzevii 1 1 1 1

R.mucilaginosa 3 3 2 2 one isolate unidentified by EDR and SBD

* numbers in parenthesis indicate “probable” identifications.

UnID—unidentified.

doi:10.1371/journal.pone.0173320.t002

Fig 7. Melt profiles differ betweenC. dubliniensis subtypes. The melt profile of aC. dubliniensis
Genotype 1 strain, clinical isolate CI_39o, and the two database standards, both of Genotype 2, is shown.

doi:10.1371/journal.pone.0173320.g007
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Alternative distance measures

While DTW is a widely used distance measure, a number of other distance functions have

been described that approach DTW in classification accuracy and at reduced computational

cost [20]. These include Edit Distance on Real sequence (EDR) [27], Edit distance with Real

Penalty (ERP) [28], and Longest Common Subsequences (LCSS) [29]. As done with DTW,

each of these functions was used to evaluate distances between the melt profiles of the all the

strains in Table 1, and the utility of the distance measures was assessed by 1NN classification

and nearest neighbor clustering.

EDR distances proved equally useful. EDR requires tuning of the parameter ε, the threshold
difference at which two data points are considered the same or different [27]. As with DTW,

EDR also allows for a window constraint [27]. As suggested by Ding et al. [20], epsilon values

ranging from 0.02 standard deviations of the data set to 1 standard deviation were tested in 0.02

increments. Additionally, the function was tested with no window constraint or window sizes

of 1 to 10. 1NN classification indicated that ε values between 0.04 and 0.68 standard deviations

were acceptable, however, cluster results suggested a narrower range of ε values to be optimal,

0.1 to 0.4 standard deviations (Fig 8A). This was not significantly affected by window size, but

comparison of minimum silhouette widths indicated that window sizes less than six resulted in

poorer clustering and that minimum silhouette widths were optimal with an ε value of 0.28

standard deviations (Fig 8B). An example of the clustering of EDR distances is shown in Fig 9A.

As with DTW distances, the dendrogram could be cut into 18 distinct species-related groups.

The accuracy of EDR classification of unknowns was tested in the same manner as for

DTW distances. The same set of database standards and clinical isolate curves were compared

using EDR distances computed with an epsilon value of 0.28 standard deviations and a win-

dow size of 10. As shown in Table 2, EDR distances functioned nearly as well as DTW dis-

tances. Like DTW, EDR correctly identified the positive control strains and 194 test isolates,

including the miss-identified strains of C. lusitaniae, C. orthopsilosis, and C. tropicalis. How-

ever, EDR failed to identify one isolate of R.mucilaginosa. The same 48 test strains classified as

Fig 8. Optimization of EDR distance parameters. (A) EDR distances were calculated with the indicated epsilon values and
window constraints. Green dots represent distance values resulting in successful nearest-neighbor clustering of all 204 melt curves
in 18 species-specific groups. Red dots represent those parameter values for which clustering failed. (B) Theminimum silhouette
width (34) as a function of window size was determined for each epsilon value associated with successful clustering.

doi:10.1371/journal.pone.0173320.g008
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unidentified by DTWwere also classified as unidentified by EDR and inclusion of the addi-

tional C. dubliniensis standard in the database allowed identification of all 46 C. dubliniensis

isolates.

A recently introduced distance measure, “Shape-based Distance” (SBD), a normalized

cross-correlation measure [31] also functioned well. SBD has no optimizable parameters and

was tested directly. Nearest neighbor classification was 100% accurate using the SBD distances

and nearest neighbor clustering resulted in 18 distinct species-related clusters (Fig 9B). When

used to classify the clinical isolates, its performance was also comparable to DTW, but, in addi-

tion to its failure to identify one isolate of R.mucilaginosa, one C. dubliniensis isolate was also

classified as “unidentified.”

Lastly, LCSS and ERP were also tested, but distances generated by both functions failed to

yield accurate clusters.

Discussion

High-resolution melt analysis is an attractive method of assessing nucleotide sequence differ-

ences because of its low cost, rapidity, and simplicity. However, sample and machine variables

Fig 9. Nearest-neighbor clusters formed from EDR and SBD distances. (A) EDR distances between the averagemelt profile from each of the 51
strains in Table 1 were calculated with an epsilon value of 0.28 standard deviations and window size of 10. The dendrogram resulting from nearest
neighbor clustering of the distances is shown. (B) The dendrogram resulting from nearest neighbor clustering of SBD distances is shown. Both trees
can be cut into 18 groups, each corresponding to a different species.

doi:10.1371/journal.pone.0173320.g009
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limit reproducibility and complicate comparison of melt curves [46]. This variability is com-

monly dealt with in a limited way by temperature shifting, the alignment of similar curves

based on input from the investigator [3] or statistical grouping of similar curves [54]. An alter-

native approach has been the incorporation of internal standards with melting points that

flank the curves of interest and against which the test curves can be adjusted [3]. Aside from

the time and labor required by such semi-automated methods, their application to identifica-

tion of unknown samples is problematic. Temperature shifting requires either prior knowledge

that the curves are similar or an a priori assumption of similarity. When analyzing unknown

samples, prior knowledge is not available and similarity cannot be assumed. Internal standards

also require prior knowledge and it is unlikely a standard could be defined that flanks the high

Tm of the curves seen with the ITS region of Aspergillus spp. (Fig 2).

DTW was introduced to identify similar curves despite temporal distortion [21]. It has

broad applicability to curves generated by time series data or other types of serial data [19, 20,

48] and, as shown here, proved equally useful in the analysis of temperature series data. Dis-

tance determinations in DTW are controlled globally by window size constraints and locally

by step patterns and slopes [19]. Screening of these parameters showed the algorithm to be

rather flexible. Discriminating distances, as judged by nearest neighbor clustering, were pro-

duced with varied combinations of local and global constraints, although some step patterns,

types 3, 4 and 6, were generally more successful. This apparent flexibility may be related to the

limited data set examined and defining an optimum set of parameters will require examination

of larger data sets. Regardless of whether there exists a single optimum set of parameters for

melt curve analysis, it is clear that the algorithm deals effectively with the run-to-run variability

seen with HRM [46].

Applying distance measures to HRM curves for fungal classification requires that the HRM

curves have sufficient diversity and complexity to distinguish all the species of interest. The

ITS region was an attractive target in light of its adoption as the universal DNA barcode for

fungal classification [43]. While prior HRM studies had focused on this region, there had been

no systematic examination of curve shapes associated with various amplicons from the ITS

region. Examination of the ITS1, ITS2 and composite ITS1-5.8S-ITS2 HRM profiles of 18 fun-

gal species showed that the composite ITS amplicon exhibited a greater complexity and range

of shapes than either ITS1 or ITS2 and that a unique melt curve was associated with each spe-

cies. DTW distances effectively distinguished each species-specific curve as demonstrated by

nearest-neighbor classification and clustering.

The value of DTW-based classification was demonstrated by its ability to correctly identify

over 200 clinical isolates. Using a minimum distance scoring method, 241 of the 243 tested iso-

lates were correctly identified. Two of the isolates were classified as “unidentified,” and, since

corresponding reference curves were absent from the database of standard curves, these were

true negative results. Furthermore, the outcome exposed 49 misidentified isolates. Two were

clear misidentifications, or perhaps mislabeled samples. The distance method correctly identi-

fied strains of C. tropicalis and C. lusitaniae previously identified as C. lusitaniae and D. hanse-

nii, respectively. Of more interest, distance matching identified as C. orthopsilosis a strain

previously typed as C. parapsilosis. These are closely related strains that are difficult to distin-

guish by traditional phenotypic schemes [50]. Similarly, 46 isolates, initially scored as unidenti-

fied, proved to be C. dubliniensis, but different in genotype from the C. dubliniensis strains

used as database standards. These isolates were previously identified as C. albicans. Distin-

guishing C. dubliniensis from C. albicans requires phenotypic tests that are not routinely per-

formed in the clinical lab [53] and misclassification of C. dubliniensis is a common problem.

The unique melt curves associated with the two C. dubliniensis genotypes has both positive

and negative implications. While it illustrates the capacity of HRM curve classification to
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discriminate species subtypes, it also indicates that a useful database of standard curves will

need to incorporate multiple curves to define some species. The number of representative

curves will depend on the genetic diversity within a given species and the effect of specific

nucleotide differences on the melt curve. Interestingly, nucleotide diversity within the ITS

regions is much greater for C. albicans, C. glabrata, and C. tropicalis than for C. dubliniensis

[55]. Yet, curve matching correctly identified 145 clinical isolates of C. albicans, 26 of C. glab-

rata, and 9 of C. tropicalis. Also, the two strains of C. dubliniensis initially used as database

standards were not identical in nucleotide sequence, but had indistinguishable melt profiles.

This suggests that subtype curve variance may be a limited problem and highlights the point

that melt curves are more critically influenced by the type and position of nucleotide differ-

ences rather than the mere number of differences [4]. It also suggests that database construc-

tion must be a largely empirical process, unless predictive algorithms can identify nucleotide

differences with the potential to influence the shape of the melt curves. Several algorithms have

been described for prediction of melt curves, including POLAND [56], MELTSIM [4] and

uMELT [57] but, neither POLAND or uMelt successfully predict the distinction in C. dubli-

niensismelt curves. However, it is not possible to enter accurate parameters into these algo-

rithms because of the proprietary nature of HRMmixes and the algorithms do not account for

the thermodynamics of dye binding.

Examination of eighteen fungal species, including many of the most clinically relevant spe-

cies, showed that each had a distinctly different melt curve and that DTW distances were a use-

ful metric for their identification. However, this is a limited sample of fungal species and the

question remains as to how extensive a variation in melt curves will be seen as more species

are examined and how robust DTW will be in distinguishing subtle differences in curve shape.

It is possible that the melt profile of the ITS region will be inadequate and additional informa-

tion may be needed. In this regard it should be noted that the melt profiles of the ITS1 and

ITS2 regions, which differ substantially from that of the composite ITS region, might be added

to the analysis, similar to the 2-D Tm analysis of Bergman et al. [58].

In addition to DTW, a number of other distance functions have been developed for time

series analysis [20]. Both EDR and SBD distances effectively distinguished all the melt curves

and were very close in performance to DTW for classifying unknown samples (Table 2). Anal-

ysis of a larger dataset will be needed to determine which function provides optimal resolution.

It will also be of interest to compare these with other classification methods that have been

applied to melt curve analysis such as support vector machines [59].

The approach outlined in these studies could significantly improve the time, effort, and

accuracy of identifying cultured samples. Although the method was tested against clinical iso-

lates of yeast only, it should readily extend to filamentous species as well since these were easily

classified among the standard curves. Ideally, identification of fungal pathogens directly from

clinical specimens would substantially reduce time to diagnosis. This goal introduces a number

of ancillary issues such as methods of sample processing and DNA extraction, PCR amplifica-

tion efficiency and primer specificity. Pan-fungal primers as used in this study, of necessity,

target conserved regions of the rDNA potentially leading to interference from host DNA in

clinical samples. However, there are adequate differences between fungal and human rDNA to

allow fungal-specific primer design. The occurrence of mixed infections is also potentially

problematic, but might be addressed by computational curve resolution methods [60].

Supporting information

S1 Fig. Melt profiles of the ITS1 region of various species. The negative first derivative (-dF/

dt) of the normalized melt curve of the ITS1 region is show for a representative strain of each
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of the species listed in Table 1.

(TIF)

S2 Fig. Melt profiles of the ITS2 region of various species. The negative first derivative (-dF/

dt) of the normalized melt curve of the ITS2 region is show for a representative strain of each

of the species listed in Table 1.

(TIF)

S3 Fig. Comparison of C. dubliniensis ITS nucleotide sequences. The ITS nucleotide

sequence of the Genotype 1 strain, clinical isolate CI_39o, and Genotype 2 strains, Y17512 and

Y27787, were aligned with Clustal Omega (41). Differences between Genotype 1 and 2 are

highlighted in red. The single nucleotide difference between the Genotype 2 strains is

highlighted in green.

(TIF)
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