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ABSTRACT In this study, an obstacle avoidance controller based on nonlinear model predictive control is

designed in autonomous vehicle navigation. The reference trajectory is predefined using a sigmoid function

in accordance with road conditions.When obstacles suddenly appear on a predefined trajectory, the reference

trajectory should be adjusted dynamically. For dynamic obstacles, a moving trend function is constructed to

predict the obstacle position variances in the predictive horizon. Furthermore, a risk index is constructed and

introduced into the cost function to realize collision avoidance by combining the relative position relationship

between vehicle and obstacles in the predictive horizon. Meanwhile, lateral acceleration constraint is also

considered to ensure vehicle stability. Finally, trajectory dynamic planning and tracking are integrated into

a single-level model predictive controller. Simulation tests reveal that the designed controller can ensure

real-time trajectory tracking and collision avoidance.

INDEX TERMS Autonomous vehicle, dynamic obstacles, moving trend function, dynamic planning and

tracking, single-level controller.

I. INTRODUCTION

With the rapid development of technology in the 21st century,

autonomous vehicles have become an attainable reality [1].

They have attracted widespread attention because of the con-

tinuous improvement of automatic driving levels [2], [3].

However, with the improvement of automation level, road

traffic accidents occur frequently in recent years [4]. Safety

has become the eternal theme of autonomous vehicles [5], [6].

Active collision avoidance system can effectively improve

traffic safety, and has become a research hotspot in the field

of automotive active safety. In literature [7], distributed con-

trollers were designed to avoid collisions between a group

of underactuated ships. Literatures [8] and [9] presented

a formation maneuver control method to avoid collisions

between each vehicle and its front vehicles. For autonomous

vehicles, obstacle avoidance refers to perceiving environmen-

tal information and generating control commands to navi-

gate a vehicle around obstacles safely [10]–[12]. It can be

roughly divided into the following four steps: environmental

identification and integration, behavioral decision, trajectory
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planning, and trajectory tracking. Among these steps, tra-

jectory planning and tracking are important control seg-

ments [13]. Real-time planning and tracking feasible trajec-

tories are necessary for autonomous vehicle driving [14].

Many research methods have been used for the trajectory

planning and tracking of autonomous vehicles. The reinforce-

ment learning approach is widely applied to autonomous

vehicles and robots for trajectory planning or obstacle avoid-

ance. Such application can usually ensure safety bymastering

a complete state and environment knowledge after experi-

encing failures during training time [15], [16]. However, this

method still requires a lot of training and test data, and the

implementation is complex and costly. An artificial potential

field method is used to generate repulsive potential fields to

obstacles and attractive potential fields to the goal. Using this

method, vehicles can avoid collisions with obstacle bound-

aries while proceeding toward their goals [17]. However,

existing local minimum problems in this method may prevent

vehicles from arriving at their targets.

Model predictive control (MPC) is an attractive method

due to its flexibility and ability to compute optimal solutions

with hard and soft constraints [18], [19]. It has the abilities
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of predicting the future dynamics of a system and receding

horizon optimization [20], [21]. Thus, MPC is a natural

candidate for the trajectory planning and tracking of an

autonomous vehicle in obstacle avoidance [22]. Most of

existing obstacle avoidance controllers are designed on the

basis of hierarchical architecture. In hierarchical controllers,

the higher level is a path planner, whereas the lower level is

a path tracker. Gao proposed a hierarchical obstacle avoid-

ance control architecture in literatures [14], [23]–[25]. In his

literatures, the path reference values obtained by the upper

level re-planning controller were sent to the lower level for

path tracking. However, the high-level path planner may

generate dynamic infeasible trajectories in this case [26].

In addition, collisions with obstacles may occur if the vehi-

cle deviates from the reference track. Compared with the

hierarchical controller, the single-level controller integrates

trajectory planning and tracking in one level. This structure

can usually avoid the generation of inactive dynamic trajec-

tories at the upper level. In literatures [10]–[12], [26]. Liu

presented an obstacle avoidance algorithm that combines

path planning and tracking into a single-level architecture.

In Literature [27], a simultaneous trajectory planning and

tracking controller is presented to address obstacle avoidance.

Meanwhile, the selection of discrete time is crucial for single-

level controllers. A long discrete time is always expected

to predict further in favor of collision avoidance. However,

the discrete time should still be as small as possible to ensure

smooth control action in tracking control. To solve this con-

tradiction effectively, Literatures [13], [28], [29] presented

the strategy of varying discrete steps and realized the good

effects of tracking and collision avoidance.

In a practical environment, dynamic obstacles may appear

on the desired path. If the actual vehicle trajectory is not

dynamically adjusted, then the vehicle may collide with

obstacles in the course of trajectory tracking. This con-

dition depends on whether the future motion trend of a

dynamic obstacle can be predicted effectively [30]–[32]. Risk

can be predicted by combining the future status of vehicle

and obstacles to adjust the trajectory dynamically. Relative

studies on avoiding moving obstacles based on MPC have

also progressed. In literature [33], a collision-free navigation

function was designed for real-time collision avoidance of

autonomous vehicles in static and dynamic environments.

The proposed approach is applicable to point obstacles and

also has good compatibility with lidar point clouds. In lit-

eratures [34] and [35], a hierarchical predictive trajectory

guidance and control framework was proposed in consid-

eration of moving obstacles in predictive horizon with an

elliptical constraint. In literature [36], an integrated controller

was designed to realize adaptive cruise control coupled with

obstacle avoidance. In this literature, the distance between

an eGO vehicle and a moving object was considered in the

predictive horizon in accordance with their motion states at

the beginning of the horizon.

In this study, an integrated controller considering simul-

taneous dynamic planning and tracking is designed. The

reference trajectory is predefined using a sigmoid function.

For appearing dynamic obstacles that threaten the vehicle

trajectory, a moving trend function is structured to predict the

position of the obstacles in the predictive horizon. Then, the

reference trajectory is adjusted dynamically by combining

the predicted vehicle and dynamic obstacles in the predictive

horizon with a nonlinear model predictive control (NMPC).

The proposed controller controls the vehicle to realize obsta-

cle avoidance and path tracking by optimizing the front

steering angle. Different from literature [36], a method of

varying discrete steps is adopted in this paper to compatible

with path tracking and obstacle avoidance better. At the same

time, lateral acceleration constraint is also considered in the

optimization.

The remainder of this paper is organized as follows:

In Section II, the whole control flow of the proposed con-

troller is described. In Section III, the generation of ref-

erence trajectory based on the sigmoid function is stated.

In Section IV, the 2-DOF bicycle model and the Pacejka

tire model for controller design are introduced. The collision

avoidance with dynamic obstacle is discussed in Section V.

In Section VI, the problem of optimization solution is

obtained. In Section VII, simulations conducted under differ-

ent operating conditions are reported. Finally, in Section VIII,

the conclusions are presented.

II. CONTROL FRAME

The whole control process is shown in Figure 1. The ref-

erence trajectory is predefined using a sigmoid function in

accordance with road environment information. The desired

yaw angle and lateral displacement obtained by the sigmoid

function are sent to the NMPC controller for collision avoid-

ance. When new obstacles appear on the predefined reference

trajectory, a lidar unit mounted on the vehicle can detect their

position information. To realize collision avoidance effec-

tively, a moving trend function is established to reflect the

position changes of point obstacles in the predictive horizon.

In accordance with the position changes of the vehicle and

the obstacles at each step in the predictive horizon, a risk

index is built and imposed to the controller. In keeping with

the given information, the front steering angle is optimized

by the controller to navigate the vehicle safely. Vehicle state

information is fed back to the prediction model to achieve

continuous dynamic planning and tracking control. At the

same time, the lateral acceleration constraint is considered in

the optimization to ensure vehicle stability. Finally, an inte-

grated control process for simultaneous dynamic planning

and tracking is formed.

III. GENERATION OF REFERENCE TRAJECTORY

When a static obstacle or a forbidden area is in front of

the vehicle, a safe avoidance trajectory should be gener-

ated to complete a safe lane-changing operation. A good

avoidance trajectory not only needs to ensure safe and

collision-free driving but must also consider driving com-

fort and real-time updating characteristics of the trajectory.
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FIGURE 1. Control flow of the integrated controller.

Therefore, the following conditions should be followed in

setting the reference trajectory:

• Free from collision with obstacles;

• Satisfied vehicle dynamic constraints;

• Smooth trajectory curvature without sudden change;

• Simple trajectory equation that can be quickly updated.

The common planning methods used for reference tra-

jectory include half arc and line matching, sine or cosine

function, trapezoid function based on lateral acceleration, etc.

However, they don’t consider vehicle dynamics constraints

and the smooth transition of curve simultaneously. Com-

pared with these traditional methods, the sigmoid function

has the following advantages: Firstly, the expression form

is relatively simple, and only three parameters need to be

adjusted. Secondly, the curve is continuous, which can avoid

the problem of curvature mutation. Finally, vehicle dynamics

constraints are considered.

In view of the above considerations, the reference tra-

jectory is predefined using the sigmoid function. As shown

in Figure 2, Ytol is an additional parameter which represents

the starting point of the lateral displacement of the vehicle.

The expression of the sigmoid function is as follows:

Y (X ) =
B

1 + e−A(X−C) (1)

where X and Y are the abscissa and ordinate of the vehicle

centroid in the geodetic coordinate, respectively, which can

be determined by using GPS and electronic map; A is the

slope of the curve midpoint, which can represent the urgency

of avoidance; B is the maximum lateral avoidance distance;

FIGURE 2. Reference trajectory based on the sigmoid function.

2C is the total longitudinal distance between the vehicle and

the target point.

In sigmoid function, the maximum lateral acceleration and

jerk constraints can be taken into account simultaneously

in determining parameter A. The corresponding inequality

expressions are as follows:
∣

∣ay(X )
∣

∣ ≤ aymax (2a)

|j(X )| ≤ jmax (2b)

where aymax is the maximum lateral acceleration, which can

represent the lateral stability of vehicle; jmax indicates the

maximum lateral jerk, which can reflect driver’s comfort.

When a vehicle is traveling at a speed of U0, parameter A

can be obtained preliminarily considering the maximum lat-

eral acceleration. And the specific expression is as follows:

Aay = −
(ρ1 + 1)2

√

−ρ1Bρ2aymax

ρ1Bρ2
s.t.

ρ1 =
√
2
s2√
s1
(6U2

0 + 2aymaxB+
4a2ymaxB

2

3U2
0

)

+
2aymaxB

3U2
0

+1

ρ2 = aymaxρ1B− U2
0ρ2

1 + U2
0

s1 = 9U4
0 + 3aymaxBU

2
0 + 2a2ymaxB

2

s2 = cos(
1

3
tan−1(

3U2
0

√

81U8
0 + 27U4

0 s
2
3 + 3s43

27U6
0 + 9U2

0 s
2
3 + 4s33 + 27U4

0 s3
))

s3 = aymaxB (3)

Meanwhile, the maximum lateral jerk constraint should

also be considered. The specific expression is as follows:

Aj =
1

6U3
0

( 3
√
s4 +

B2j2max

3
√
s4

+ Bjmax)

s.t.

s4=
jmax

B
(86U6

0 +B4j2max+24U3
0

√

1296U6
0 +3B4j2max)

(4)
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Finally, the smaller value obtained by the two methods is

taken as the final value of parameter A:

A = min(Aay,Aj) (5)

When parameters A and B are determined, parameterC can

be calculated as follows:

C=
1

A
ln
B− Ytol

Ytol
(6)

More detailed calculations of parameters A, B and C can

be found in literature [37].

When a vehicle needs to complete lane-changing opera-

tion, the maximum lateral avoidance distance B should be

determined on the basis of the safety position to be reached.

In order to consider both vehicle stability and driver’s com-

fort during lane-changing maneuver, the maximum lateral

acceleration and jerk are adopted to determine the slope A

of the curve midpoint. Meanwhile, the total longitudinal dis-

tance 2C should also be confirmed to ensure when the lane-

changing maneuver is completed.

In trajectory tracking, the deviations between actual yaw

angle, lateral displacement and reference are commonly used

to evaluate tracking performance. In this study, the reference

trajectory can be dissociated into several desired lateral dis-

placement and yaw angle values. The specific approach is

shown in Figure 3.

FIGURE 3. Desired yaw angle and displacement obtained from the
reference trajectory.

In Figure 3, L is the preview distance, which is determined

in accordance with the curvature of the road and longitudinal

velocity. The specific determination method can be found in

literature [38]. Yref is the reference lateral displacement, and

ϕref stands for the reference yaw angle. The expression can

be written as follows:

Yref (X + L) =
B

1 + e−A(X+L−C) (7a)

ϕref (X + L) =
d[Yref (X + L)]

dX
(7b)

IV. ESTABLISHMENT OF MODELS

In this part, the vehicle dynamic and tire models are intro-

duced for controller design. In Section A, the 2-DOF kine-

matic and dynamic bicycle model is introduced. Meanwhile,

in Section B, the Pacejka tire model is used to describe tire

lateral force.

A. VEHICLE MODEL

For model predictive control, the precision of the selected

model can directly affect the control effect. An accurate

model can improve control accuracy but increase the com-

putational burden of a system.

In consideration of the real-time operation and accuracy of

the control system, the 2-DOF bicycle model is suitable for

collision avoidance, which can be referred in literatures [39]

and [40]. As shown in Figure 4, the following assumptions

are mentioned:

• The longitudinal velocity of vehicle is constant;

• The left and right wheels on the same axle are simplified

as one wheel;

• Only the lateral and yaw motion of the vehicle are

considered.

FIGURE 4. Vehicle model for control design.

The dynamic equation can be expressed as:

ÿ =
(

Fyf + Fyr
)

/m− U0ω (8a)

ω̇ =
(

lf Fyf − lrFyr
)

/Iz (8b)

ϕ̇ = ω (8c)

Ẏ = U0 sinϕ + ẏ cosϕ (8d)

Ẋ = U0 cosϕ − ẏ sinϕ (8e)

where ẏ and ÿ are the lateral velocity and acceleration of

vehicle, respectively; Fyf and Fyr represent the lateral forces

of the front and rear axles, respectively; m and U0 indicate

the constant mass and longitudinal velocity of the vehicle,

respectively; ϕ is the yaw angle of the vehicle; ϕ̇ and ω̇ stand

the yaw rate and yaw acceleration of the vehicle, respectively;

lf and lr are the distances from the vehicle’s center of mass to

the front and rear axles, respectively; Iz denotes the rotational

inertia of the vehicle; Ẋ and Ẏ are the longitudinal and lateral

velocity of the vehicle centroid in the geodetic coordinate

system, respectively.

The dynamic model can be written as a nonlinear

function:

ξ̇ (t) = f N2DOF (ξ (t), u(t)) (9a)
yc(t) = ηξ (t) (9b)
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where

ξ (t) =













ẏ

ω

ϕ

Y

X













u(t) = [δf ]

η = [ 0 0 1 1 0 ] yc(t) =
[

ϕ

Y

]

where ξ (t) and u(t) are the vehicle states and control input

of the system, respectively; yc(t) is the predicted output of

the system; η is the coefficient matrix, which can determine

the number of predicted outputs. The system has five state

variables, one control input, and two predicted outputs. The

five state variables include vehicle lateral velocity, yaw rate,

yaw angle, and lateral and longitudinal displacements in the

geodetic coordinate system. The system input is the front

steering angle δf . The predicted outputs are the yaw angle ϕ

and lateral displacement Y of vehicle.

B. TIRE MODEL

When tire slip angle is small, tire lateral force has a linear

relationship with slip angle. However, when tire slip angle

exceeds a certain value, the relationship between slip angle

and lateral force becomes nonlinear. In this study, the Pacejka

tire model is used to reflect the nonlinear characteristics of

tire force and is expressed as follows:

Fy = µDy sin(Cy arctan(Br − Ey(Br − arctanBr ))) (10)

where

Br = By − α

Cy = a0

Dy = a1F
2
z + a2Fz

By =
a3 sin(2 arctan(Fz/a4))

CyDy
Ey = a5Fz + a6

where Fy is the tire lateral force, and α is the tire slip angle.

By, Cy, Dy, and Ey depend on the normal force of the tire,

where a0 = 1.75, a1 = 0, a2 = 1000, a3 = 1289, a4 = 7.11,

a5 = 0.0053, and a6 = 0.1952.

Tire lateral force and slip angle under different

adhesion coefficients and vertical loads are shown in

Figures 5(a) and 5(b), respectively.

The tire slip angles are defined as:

αf = arctan(
ẏ+ ϕ̇lf

U0
− δf ) (11a)

αr = arctan(ẏ− ϕ̇lr ) (11b)

Fz is the total vertical load of the vehicle, which is dis-

tributed between the front and rear axles on the basis of the

geometry of the vehicle model (described by parameters lf
and lr ):

Fzf =
mglr

lf + lr
(12a)

Fzr =
mglf

lf + lr
(12b)

FIGURE 5. Tire force characteristics.

V. DETECTION AND AVOIDANCE FOR DYNAMIC

OBSTACLES

In Section III, a sigmoid function is predefined as the ref-

erence trajectory. However, when dynamic obstacles appear

on the predefined trajectory, the reference trajectory may

be threatened. In this case, the vehicle may collide with

dynamic obstacles. Therefore, the reference trajectory should

be dynamically adjusted. Moreover, the vehicle should be

controlled to track the adjusted safety trajectory.

A. POSITION DETECTION OF DYNAMIC OBSTACLES

Obstacle position information is usually detected by lidar.

Performing lidar on an autonomous vehicle can obtain the

absolute distance to the border of obstacle. Obstacle posi-

tion information can be described by lidar point clouds.

Thus, obstacles are discretized into several points (pXj, pYj),

as shown in Figure 6.

Normally, the lidar mounted on vehicle can measure the

distance rm to obstacle and the angle θ between obstacle and

X -axis of vehicle coordinate system. If the distance rm and

angle θ have been obtained, the obstacle position (pXj, pYj)

in the geodetic coordinate system can be calculated by

132078 VOLUME 7, 2019



S. Li et al.: Dynamic Trajectory Planning and Tracking for Autonomous Vehicle With Obstacle Avoidance Based on MPC

FIGURE 6. Position detection of the point obstacles.

coordinate transformation:
{

pXj = rm cos(θ + ϕ) + X

pYj = rm sin(θ + ϕ) + Y
(13)

where X and Y are the longitudinal and lateral position of

vehicle in the geodetic coordinate system.

B. MOVING TREND ESTABLISHMENT FOR OBSTACLES

In model predictive control, vehicle states in the predictive

horizon can be predicted in accordance with current feedback

information from the vehicle. However, the obstacle infor-

mation can be only acquired by a lidar point at each sample

time rather than in the predictive horizon. Collision avoidance

is an urgent process, the future states of the vehicle and the

obstacles should be all predicted to realize safe driving.

A moving trend function is constructed to predict point

obstacle position in the predictive horizon. During an MPC

predictive horizon, all objects are assumed to move with the

speeds and accelerations at the beginning of the horizon.

Literatures [27], [33] and [34] also adopted similar methods

to predict the position of obstacles in the predictive horizon.

Better obstacle avoidance effects were achieved in these lit-

eratures.

If the position of a point obstacle detected by lidar is

(pXj,t , pYj,t ) at time t , then its position coordinate in the

predictive horizon is as follows:






















pXj,t+kTs = pXj,t+(k−1)Ts + ρx

k = 1, 2, · · · · ·,P
pYj,t+kTs = pYj,t+(k−1)Ts + ρy

k = 1, 2, · · · · ·,P

(14)

where

ρx =











pẊj,tTs Uniform Speed

pẊj,t+(k−1)TsTs +
1

2
pẌj,tT

2
s Variable Speed

k = 1, 2, · · · · ·,P

ρy =











pẎj,tTs Uniform Speed

pẎj,t+(k−1)TsTs +
1

2
pŸj,tT

2
s Variable Speed

k = 1, 2, · · · · ·,P

where P represents the predictive horizon; Ts represents the

predictive step size in the predictive horizon; pẊj,t and pẎj,t
are the longitudinal and lateral speed of a moving obstacle

at time t , respectively; pẌj,t and pŸj,t are the longitudi-

nal and lateral acceleration of a moving obstacle at time t ,

respectively.

C. RISK INDEX DESIGN FOR COLLISION AVOIDANCE

A risk index between the vehicle and the point obstacles is

designed to avoid dynamic obstacles effectively in trajectory

tracking. The risk index is imposed into a cost function to

optimize the front steering angle, thereby realizing collision

avoidance.

In Figure 7, lf , lr , and c are the external dimensions of the

vehicle. c denotes half the width of the vehicle. Then, j points

are acquired at the edge of obstacle at each predictive step,

which are marked as
(

pXt+kTs,j, pYt+kTs,j
)

. If these points are

predicted in the geodetic coordinate, they can be transformed

into the vehicle body frame as follows:

Dx,j,t+kTs =
(

pYt+kTs,j − Yt+kTs
)

sinϕt+kTs
+

(

pXt+kTs,j − Xt+kTs
)

cosϕt+kTs (15a)

Dy,j,t+kTs =
(

pYt+kTs,j − Yt+kTs
)

cosϕt+kTs
−

(

pXt+kTs,j − Xt+kTs
)

sinϕt+kTs (15b)

The minimum distance to all obstacle points is defined as

dmin,t+kTs in the predictive horizon, which can be determined

by the following segmentation function:

Case 1

if Dy,j,t+kTs ∈ [−c, c] and Dx,j,t+kTs > lf ;
dmin,t+kTs = min(Dx,j,t+kTs − lf )

Case 2

if Dy,j,t+kTs ∈ [−c, c] and Dx,j,t+kTs ∈ [−lr , lf ];
dmin,t+kTs = 0

Case 3

if other conditions

dmin,t+kTs = inf (16)

where inf is a sufficiently large number.

In order to further elaborate the significance of equa-

tion (16), the scenarios of the three segmented functions are

illustrated graphically in Figure 8.

In Case 1, the host vehicle has a certain distance from

the obstacles. In this case, the minimum deviation Dx,j,t+kTs
between the abscissas of point obstacle in a vehicle body

frame and the body size is taken as the minimum distance.

In Case 2, the host vehicle overlaps with the obstacles and

the abscissas of point obstacles in a vehicle body frame is

in the range of [−lr , lf ]. In this case, the host vehicle will

collide with the obstacle. The value of the minimum distance

dmin,t+kTs is set to be zero.
In other conditions, the value of dmin,t+kTs is set to be a

sufficiently large value to disregard obstacles that do not lie

within the vehicle’s line of sight.
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FIGURE 7. Schematic of obstacle dangerous distance.

FIGURE 8. The diagram of segmented functions.

Thus, the risk index is defined as follows in the predictive

horizon:

Jt+kTs =
Kobsvt+kTs

dmin,t+kTs + e
(17)

where Kobs is an adjustable weight coefficient. When the

value of Kobs increases, the value of risk index Jt+kTs will
become larger. It means that the risk index accounts for a

larger proportion in the cost function. In this case, the effect

of obstacle avoidance will be more obvious in the process

of optimizing. vt+kTs is the vehicle speed at each step in

the predictive horizon, which can be expressed as v2t+kTs =
ẋ2t+kTs + ẏ2t+kTs ; e is a small number, which is used to prevent

the denominator from being zero. The smaller the closest

distance dmin,t+kTs is, the greater the risk index Jt+kTs is.

Therefore, collisions are likely to happen.

VI. OPTIMIZATION SOLUTION

In this section, the cost function is constructed. Meanwhile,

the corresponding stability constraint is also considered to

achieve effective collision avoidance. Accordingly, the flow

diagram of the whole algorithm used for obstacle avoidance

is presented in Figure 9.

Firstly, parameters A, B, and C are initialized to deter-

mine the sigmoid function as the reference trajectory. The

vehicle is then controlled to track this trajectory. Afterwards,

the reference trajectory is checked if new obstacles appear as

FIGURE 9. Flow diagram of the obstacle avoidance algorithm.

a threat. If no obstacle is found, the vehicle will continue to

follow the reference trajectory. Otherwise, a risk index will

be structured into the cost function for obstacle avoidance.

Finally, the optimal solution can be obtained.

A. COST FUNCTION DESIGN

Equation (9a) is discretized with a fixed sampling time Ts.

The discrete model of equation (9a) can be expressed as

follows:

ξ (k) = f N2DOF (ξ (k), u(k)) (18a)

g(1u(k)) = u(k) − u(k − 1) (18b)

yc(k) = Cξ (k) (18c)

132080 VOLUME 7, 2019



S. Li et al.: Dynamic Trajectory Planning and Tracking for Autonomous Vehicle With Obstacle Avoidance Based on MPC

At each predictive step, the state variable can be expressed

as follows:

x(k + 1 |k ) = f (x(k), g(1u(k)))

x(k + 2 |k ) = f (x(k + 1), g(1u(k + 1)))

= f (f (x(k), g(1u(k))), g(1u(k + 1)))

...

x(k + P |k ) = f (x(k + P− 1), g(1u(k + P− 1)))

= f (· · ·f (x(k), g(1u(k)), g(1u(k +M − 1)))

(19)

where ξ (k) is the state variable at step k; u(k) and 1u(k)

are the control input and the increment of control input of

step k , respectively; yc(k) is the predicted output at step k;

M represents the control horizon in model predictive control.

The specific expressions are as follows:

u (k) = [δf (k)]

1u (k) = [1δf (k)]

ξ (k) = [ẏ(k), ω(k), ϕ(k),Y (k),X (k)]

yc(k) = [ϕ(k),Y (k)]

The optimized problems to be solved in NMPC can be

obtained:

min
U(k)

JN2DOF (ξ̄t , ut ) =
t+P−1
∑

k=t
Ŵyi[yc (k + 1 |k )

− Re(k + 1)]2 + Ŵui1u(k)
2 + Jt+kTs

s.t. ξk+1,t = f N2DOF
(

ξk,t , uk,t
)

k = t, . . . , t + P− 1

yc(k + 1 |k ) = [ 0 0 1 1 0 ] · ξk+1,t

k = t, . . . , t + P− 1

uk,t = ut+M ,t

k = t +M + 1, . . . , t + P− 1

1uk,t ∈ [−1umax, 1umax]

k = t, . . . , t +M − 1

uk,t ∈ [−umax, umax]

k = t, . . . , t + P− 1

ξt,t = ξ (t) (20)

where JN2DOF is the optimized objective function based on

the nonlinear 2-DOF model; ξ̄t = [ξ̄t,t , ξ̄t+1,t , . . . , ξ̄t+P−1,t ]

is the sequence including five state variables; Re (k) is the

reference value obtained from the sigmoid function at step k ,

which can be expressed as Re (k) = [ϕref (k),Yref (k)]; u (k)

is the control input at step k; Ŵyi and Ŵui are the weighting

matrices corresponding to the controlled output and input,

respectively.

The cost function is composed of three parts, whose mean-

ings are as follows:

• JN2DOF1 =
t+P−1
∑

k=t
Ŵyi[yc (k + 1 |k ) − Re (k + 1)]2

indicates that the deviation between the predicted output

and reference should be as small as possible. It can be

expanded as Ŵy1[Yk,t − Yrefk,t ]
2 + Ŵy2[ϕk,t − ϕrefk,t ]

2.

Ŵy1 and Ŵy2 are the weighting factors corresponding to

lateral displacement and yaw angle output, respectively;

• JN2DOF2 =
t+P−1
∑

k=t
Ŵui1u(k)

2 ensures that the control

input increment is as small as possible to make the con-

trol action smooth. Ŵui represents the weighting factor

corresponding to control input increment;

• JN2DOF3 =
t+P−1
∑

k=t
Jt+kTs represents the risk index

between the vehicle and the dynamic obstacle. When the

vehicle approaches the obstacle, the weight of this term

in the cost function will increase. In this case, collision

avoidance will become the primary task for safe driving.

The Fmincon nonlinear programming algorithm of the

MATLAB tool is used to solve the above optimization func-

tion. After solving the optimal control sequences, the first

element is taken as the obtained control input value. Then,

rolling horizon repeat optimization is performed. The built-in

sequence quadratic program can effectively solve the above

optimization problem.

B. VARYING DISCRETE STEPS

In model predictive control, the selection of discrete time

will determine the effectiveness and efficiency of the sys-

tem. In vehicle control, the discrete time should be as small

as possible to make the control actions accurate. However,

in collision avoidance control, a long prediction distance is

expected to predict the future further. If a small discrete time

is chosen, more discrete steps will be required. The compu-

tational burden of the control system will be increased in this

case. On the basis of the above considerations, the method

of varying discrete steps is used in accordance with litera-

tures [13], [28], [29].

The prediction horizon consists of two components.

A small discrete time Ts,short = 0.01s is chosen for the

accurate vehicle control comprising of P1 time steps. Then,

a large discrete time Ts,long = 0.1s of P-P1 steps is in the

predictive horizon for long distance prediction.

C. STABILITY CONSTRAINT

Lateral acceleration should be constrained to prevent from

reaching the limit of tire adhesion.

∣

∣ay (k + i)
∣

∣ ≤ aymax i = 1, 2 . . . . . .P− 1

s.t. aymax = µg (21)

where µ is the road adhesion coefficient. The value of ay at

each step k in MPC can be calculated in accordance with

equation (8a).

VII. SIMULATION AND RESULTS

The effectiveness of the proposed controller is veri-

fied in different situations using MATLAB/Simulink and

CarSim. Generally, the longer the predictive horizon P is,

the more vehicle dynamic information will be obtained.
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However, long predictive horizon will intensify unknown

interference and increase the computational burden of

NMPC. Likewise, the optimized control action will be

smooth when a large control horizonM is selected. However,

the optimization efficiency of NMPC will be affected in

this case. In this paper, the simulation parameters are shown

in Table 1.

TABLE 1. Simulation parameters.

To show the reference trajectory tracking effect, two sets

of vehicle state curves are given in Figures 10 and 11, respec-

tively. The black and blue solid curves represent the reference

and actual tracking values, respectively. Figure 10 shows

the comparison of the actual lateral displacement curve with

the reference when no obstacles appear on the predefined

trajectory. The actual value achieves a maximum of 3m at

X = 140m. As shown in Figure 11, the maximum value of

the actual yaw angle is 8.3◦ at X = 90m. It can be seen that

both the actual maximum lateral displacement and yaw angle

can track the reference values well. If new obstacles threaten

vehicle safety in actual scenes, then the trajectory should

be adjusted dynamically to avoid obstacles. In the following

sections, two scenes are listed to verify the effectiveness of

the proposed controller.

FIGURE 10. Lateral displacement of tracking.

A. SINGLE DYNAMIC OBSTACLE SCENE

In this section, a single dynamic obstacle scene is shown.

The simulation time is set to 10s. When the vehicle travels

along the reference trajectory to X = 100m, a dynamic

obstacle appears at (140, −1) in the geodetic coordinate

FIGURE 11. Yaw angle of tracking.

system. It moves along the Y -axis at a speed of 2m/s. In this

case, the vehicle will collide with a dynamic obstacle at X =
140m if the reference trajectory is not dynamically adjusted.

Dynamic trajectory planning that considers the motion states

of obstacles or not in the predictive horizon are obtained,

as depicted in Figure 12.

FIGURE 12. Partial enlargement of the dynamic planned trajectory.

In Figure 12, the blue and green solid curves represent

the trajectory and shape of the vehicle, respectively. The

red dotted line describes the dynamic obstacle. The vehi-

cle collides with a dynamic obstacle at X = 140m in

Figure 12(a). In comparison with Figure 12(a), the motion

states of the obstacle are considered in the predictive horizon
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in Figure 12(b). The vehicle achieves a maximum lateral dis-

placement of 4m, thereby avoiding collision with obstacles.

Figure 13 shows the front steering angle considering the

dynamic obstacles in the predictive horizon. The vehicle

starts turning and tracking the reference trajectory at t = 3s to

achieve a lane change operation. At t = 5.9s, a new steering

operation is implemented to avoid the dynamic obstacle. The

front steering angle achieves the maximum and minimum

values of 3◦ and −4◦ at t = 6.5s and 7s, respectively. Slight

jitters can be observed in the curve at t = 6 − 7s. Because

in this case, obstacle avoidance plays a crucial role, and the

discrete step size is 0.1s for long distance prediction, thereby

affecting controller optimization.

FIGURE 13. Front steering angle of the proposed controller.

Under the effect of the front steering angle shown in

Figure 13, the vehicle’s state response curves are obtained.

As shown in Figure 14(a), the maximum and minimum

values of the yaw angle are 7.5◦ and −3.8◦, respectively.
The maximum absolute value of lateral acceleration curve is

5m/s2 at t = 7s in Figure 14(b). As shown in Figure 14(c),

the maximum absolute value of vehicle slip angle achieves

0.32◦ at t = 7.6s. Themaximum absolute values of the lateral

acceleration and the slip angle are within the stable area.

Therefore, the vehicle can maintain stability when avoiding

collision.

In Figure 15, the computation burden of the proposed

controller at each time step is exhibited. The maximum time

of all iteration steps is 0.217s. The computation efficiency can

also ensure the vehicle of avoiding dynamic obstacles.

B. TWO DYNAMIC OBSTACLES SCENE

The scenario in this section considers two dynamic obstacles.

The simulation time is set to be 15s. When the vehicle arrives

at X = 105m, a dynamic obstacle A is detected at (145, 0) in

the geodetic coordinate system. At this moment, it is moving

along the Y -axis with an acceleration of 1.5m/s2 from a

stationary state. In this case, the vehicle should adjust the

predefined trajectory to avoid collision with this obstacle.

Afterwards, another dynamic obstacle B, with a velocity of

2m/s along the X -axis and 1m/s along the Y -axis, is detected

at (224, 0) when the vehicle drives at X = 170m. At this

moment, the vehicle should also perform steering operation

to avoid it in tracking the predefined trajectory.

FIGURE 14. Status response curves of the vehicle.

FIGURE 15. Computational burden of the proposed controller.

In Figure 16, two control strategies are adopted to avoid

collision. The blue and green solid curves describe the vehi-

cle trajectory and shape, respectively. And the pink and red

dotted lines stand for dynamic obstacle A and B, respectively.

LXVH and LXobs represent the position of vehicle and obstacle

under vehicle’s longitudinal displacement X , respectively.
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FIGURE 16. Partial enlargement of the dynamic planned trajectory.

Simulation curve without considering obstacles motion in the

predictive horizon is shown in Figure 16(a). It can be seen that

the vehicle will collision with obstacle A at X = 145m. And

there is a lateral deviation between vehicle and obstacle B

at X = 230m. In this case, collision avoidance optimization

has been identified as a failure. Collision phenomenon can

be avoided by considering obstacles motion state in the pre-

dictive horizon. In Figure 16(b), when the vehicle drives from

X = 130m to X = 160m, no collision occurs with obstacle A.

For obstacle B, the vehicle achieves a lateral displacement

of 4m to avoid collision at X = 230m. Simulation results

show that the proposed method can achieve better collision

avoidance effect in this scene.

The optimized front steering angle of the proposed con-

troller is exhibited in Figure 17. Before t = 6s, the vehicle

performs a lane change operation by tracking the reference

path. At t = 6s, the vehicle starts to turn right to avoid

obstacle A. From t = 10s to t = 12s, collision avoidance

with obstacle B is operated by turning left. The front steering

angle reaches its maximum value of 3.2◦ at t = 10.4s and its

minimum value of −4◦ at t = 11.5s. Some slight jitters are

also found in the curve between t = 6−7s and t = 10−11s.

Figures 18(a)-(c) display the state response curves of

vehicle. The maximum and minimum values of vehicle yaw

angle are 7.5◦ at t = 4.7s and−4.1◦ and at t = 12s, as shown

in Figure 18(a). The maximum absolute value of the lateral

acceleration curve is 4.9m/s2 at t = 11.6s, as shown in

FIGURE 17. Front steering angle of the proposed controller.

FIGURE 18. Status response curves of the vehicle.

Figure 18(b). As shown in Figure 18(c), the maximum abso-

lute value of vehicle slip angle achieves 0.3◦ at t = 10.4s.

The maximum absolute values of the lateral acceleration and

slip angle are also within the stability area. The results show

132084 VOLUME 7, 2019



S. Li et al.: Dynamic Trajectory Planning and Tracking for Autonomous Vehicle With Obstacle Avoidance Based on MPC

FIGURE 19. Computational burden of the proposed controller.

that the vehicle can ensure driving stability in the process of

obstacles avoidance.

The computational burden at each step of the proposed

controller is shown in Figure 19. It can be seen that the

maximum time of all iteration steps is 0.219s. In this study,

the optimal problem is solved using the solution tool from

the MATLAB toolbox. In the future work, we will exploit the

ACADO toolkit and the accompanying code generation tool

to reduce actual computational time further.

VIII. CONCLUSION

In this study, an integrated controller is developed for col-

lision avoidance. Simultaneous trajectory dynamic planning

and tracking are integrated as a single-level NPMC controller.

The reference trajectory is predefined using a sigmoid func-

tion. When dynamic obstacles suddenly appear, the trajec-

tory should be dynamically adjusted. Collision avoidance is

realized effectively by constructing a moving trend function

to predict the obstacle position variances in the predictive

horizon. A risk index is constructed to reflect the relative

position relationship between vehicle and obstacles in the

predictive horizon. Then the designed risk index is introduced

into the cost function to realize collision avoidance better.

The proposed controller also considers lateral acceleration as

vehicle stability constraint. Simulations are conducted under

two typical conditions to reveal the effectiveness of the pro-

posed controller. However, sometimes the motion of obstacle

is random in actual scenes. In the future, we will consider

the random movement of moving obstacles in the predictive

horizon. Collision avoidance optimization control based on

spatial MPC is also a research direction in the future.
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