
Dynamic Transfer for Multi-Source Domain Adaptation

Yunsheng Li1, Lu Yuan2, Yinpeng Chen2, Pei Wang1, Nuno Vasconcelos1

1 UC San Diego, 2 Microsoft

{yul554,pew062,nvasconcelos}@ucsd.edu, {luyuan,yiche}@microsoft.com

Abstract

Recent works of multi-source domain adaptation focus

on learning a domain-agnostic model, of which the param-

eters are static. However, such a static model is difficult to

handle conflicts across multiple domains, and suffers from

a performance degradation in both source domains and tar-

get domain. In this paper, we present dynamic transfer to

address domain conflicts, where the model parameters are

adapted to samples. The key insight is that adapting model

across domains is achieved via adapting model across sam-

ples. Thus, it breaks down source domain barriers and turns

multi-source domains into a single-source domain. This

also simplifies the alignment between source and target do-

mains, as it only requires the target domain to be aligned

with any part of the union of source domains. Further-

more, we find dynamic transfer can be simply modeled by

aggregating residual matrices and a static convolution ma-

trix. Experimental results show that, without using domain

labels, our dynamic transfer outperforms the state-of-the-

art method by more than 3% on the large multi-source do-

main adaptation datasets – DomainNet. Source code is at

https://github.com/liyunsheng13/DRT.

1. Introduction

Multi-source domain adaptation addresses the adaptation

from multiple source domains to a target domain. It is chal-

lenging because a clear domain discrepancy exists not only

between source and target domains, but also among multi-

ple source domains (see exemplar images in Figure 2). This

suggests that successful adaptation requires significant elas-

ticity of the model to adapt. A nature way to achieve this

elasticity is to make model dynamic i.e. the mapping im-

plemented by the model should vary with the input sample.

This hypothesis has not been explored by existing work,

e.g. [22, 28], which instead aims to learn a domain agnostic

model fθc
, of static parameters θc, that works well for all

source {S1,S2, ...,SN} and target T domains. We refer to

this approach as static transfer. As illustrated in Figure 1

(a), the model implements a fixed mapping across all do-

Model Samples from different domains

(a) Static Transfer (b) Dynamic Transfer

𝑓𝜽!

𝒮"
𝒮#

𝒮$

𝒮"
𝒮#

𝒮$

𝑓𝜽(&)

𝑓𝜽(&)

𝑓𝜽(&)

𝑓𝜽(&)

𝒯 𝒯

𝒙

𝒆𝒟𝜃

𝒆𝒟𝑓((𝒙)
𝑦 = 𝑓((𝒙)(𝒙)𝒙

Model parameter flow Data flow

𝑓(!
𝑦 = 𝑓(!(𝒙)

Figure 1: Static Transfer vs. Dynamic Transfer. (a)

‘Static Transfer’ implements domain adaptation with a

static model fθc
, which has fixed parameters θc to average

domain conflict. (b) ‘Dynamic Transfer’ (fθ(x)) adapts the

model parameters θ(x) according to samples, which gen-

erates a different model per sample and turns multi-source

domain adaptation into single-source domain adaptation.

mains. However, learning a domain agnostic model is diffi-

cult, since different domains can give rise to very different

image distributions. When forcing a model to be domain

agnostic, it essentially averages the domain conflict. Thus

the performance drops on each source domain. This is vali-

dated by our preliminary study. As shown in Figure 2, com-

pared to the optimal model per domain, the static transfer

model consistently degrades in each source domain.

In this paper, we propose dynamic transfer to address

this issue. As shown in Figure 1(b), it contains a param-

eter predictor that changes the model parameters on a per-

sample basis, i.e. implements mapping fθ(x). It has the

advantage of not requiring the definition of domains or the

collection of domain labels. In fact, it unifies the prob-

lems of single-source and multi-source domain adaptation.

By breaking down source domain barriers, it turns multiple

10998

-2.2

-1.8
-1.9

-2.5

-2.1

-1.3

-1.9

0.3

1.6

-0.2

-0.6

-0.4

0.1

0.3

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
static transfer dynamic transfer

clipart infograph painting quickdraw real sketch average

g
a
in

Figure 2: Static Transfer vs. Dynamic Transfer on the

performance degradation of source domains compared

to the oracle results. Both transfer models are tested across

source domains. A clear performance degradation (1.9%
in average) exists when using static transfer, indicating the

conflicts across domains. The degradation is significantly

reduced when using dynamic transfer, as it handles the do-

main variations well. (Best view in color)

source domain adaptation into a single-source domain prob-

lem. The only difference is the complexity of this domain.

The key insight is that adapting model according to do-

mains is achieved statistically by adapting model per sam-

ple, since each domain is viewed as a distribution of im-

age samples. The dynamic transfer learns how to adapt the

model’s parameters and fit to the union of source domains.

Thus the alignment between source domains and target do-

main is significantly simplified, as it is no longer necessary

to pull all source domains together with the target domain.

In this case, as long as the target domain is aligned to any

part of the source domains, the model can be easily adapted

to the target samples.

When compared to the domain adaption literature, dy-

namic transfer introduces a significant paradigm shift. In

the literature, most works assume the static network of Fig-

ure 1(a) and focus on loss functions. The goal is to de-

fine losses that somehow “pull all the domains” together

into a shared latent representation. The problem is that

the domains are usually very different at the network in-

put. Hence, the force introduced by the loss at the output, to

bring them together, is counter-balanced by an input force to

keep them apart. This usually leads to a difficult optimiza-

tion and compromises adaptation performance. The intro-

duction of a dynamic network, as in Figure 1(b), enables a

more elastic mapping. In this case, it is not necessary to pull

all domains together. The model adaptation given by the

dynamic transfer can be generalized to target domain easily

when the target domain is shifted to the space formed by

entire source domain. In this way, dynamic transfer shifts

the focus of the domain adaptation problem from the de-

sign of good loss functions to the design of good network

architectures for dynamic transfer.

An immediate difficulty is that the architecture of Fig-

ure 1(b) can be very hard to train, since the parameter pre-

dictor cannot generate all parameters for a large model. The

question is whether it is possible to perform the model adap-

tation by only modifying a small subset of parameters on a

sample basis. In this work, we show that this is indeed pos-

sible by the addition of dynamic residuals to the convolu-

tion kernels of a static network. Since the residual blocks

can be much smaller than the static ones, this has both

very low additional computational cost (less than 0.1%)

to aggregate dynamic residuals with static kernel and lit-

tle tendency to overfit. However, it is shown to significantly

enhance the domain adaptation performance. Experimen-

tal results show that the proposed dynamic residual trans-

fer (DRT) can model domain variation in source domains

(see Figure 2) and outperform its static counterpart (MCD

[25] method) by a large margin (11.2% on DomainNet).

Compared to state-of-the-art multi-source domain adapta-

tion methods [28], it achieves a sizeable gain (3.9%) with a

much simpler loss function and training algorithm.

2. Related Work

Single-Source Domain Adaptation approaches adapt a

model from a source to a target domain. A common method

is to minimize the distance between the two domains. While

some methods [3, 26] minimize distance functions defined

in terms of first and second order data statistics, others learn

a latent space shared across domains by adversarial learn-

ing [27, 25, 10, 16]. Although these methods are effective

for single-source domain distributions and relatively sim-

ple datasets (such as VisDA [23] or Office-31 [24]), they

are not competitive for the multi-source domain adaptation

problem, due to a more complex data distribution.

Multi-Source Domain Adaptation considers the domain

adaptation problem when the source contains domains with

a variety of styles. [33] pioneered this problem by adap-

tively picking the best among a set of hypothesis learned

for different source domains. [1] derived an upper bound

on the classification error achievable in the target domain,

based on the H∆H divergence. Several methods have been

proposed after the introduction of deep learning. Some of

these align domains pair-wise. [31] uses a discriminator to

align each source domain with the target domain, while [22]

matches moments across all pairs of source and target do-

mains. These methods learn one classifier per domain and

use their weighted combination to predict the class of target

samples. [17] uses mutual learning techniques to align fea-

ture distributions among pairs of source and target domains.

Other methods focus on the joint alignment of the feature

distributions of all domains. [28] models interactions be-

10999

tween domains with a knowledge graph. Target sample pre-

dictions are based on both their features and relationship

to different domains. [14] proposes a meta-learning tech-

nique to search the best initial conditions for multi-source

domain adaptation. [34] uses an auxiliary network to pre-

dict the transferability of each source sample and use it as

a weight to learn a domain discriminator. All these works

use a static transfer model. In this paper, we propose that

the model should instead be dynamic, i.e. a function that

changes with samples, and show that this can significantly

enhance multi-source domain adaptation.

Dynamic Networks have architectures based on blocks

[18, 30, 32, 4] or channels [11, 2, 29, 5] that change depend-

ing on the input sample. [18, 30] proposed an input depen-

dent block path that decides whether a network block should

be kept or dropped. [32, 4] widen the network by adding

new parallel blocks and train an attention module to choose

the best combination of features dynamically. [11, 2, 29, 5]

rely on feature based attention modules that reweigh fea-

tures depending on the input example. [15] unified the two

approaches by combining a paralleled dynamic block and

a channel attention module. In this paper, we propose a

dynamic convolution residual branch, which adds an input-

dependent residual matrix to a static kernel, to implement

dynamic multi-source domain adaptation.

3. Method

In this section, we introduce dynamic transfer for multi-

source domain adaptation, in which the model is adaptive to

the domain implicitly, but adaptive to the input explicitly. It

not only has better performance, but also turns multi-source

domains into a single-source domain.

3.1. Multi­Source Domain Adaptation

Multi-source domain adaptation (MSDA) aims to trans-

fer a model learned on a source data distribution drawn

from several domains S = {S1, ...,SN} to a target do-

main T . While the following ideas can be applied to var-

ious tasks, we consider a classification model fθ , of pa-

rameters θ, which maps images x ∈ X to class pre-

dictions y ∈ Y = {1, . . . , C}, where C is the number

of classes and X is some image space. The goal is to

adapt the parameters θ of a model learned from a dataset

DS = {(xS
i ,yi)}

NS

i=1 of examples from the source distribu-

tion S (yi is the one-hot encoding of the label of example

x
S
i) to a dataset DT = {xT

i }
NT

i=1 of unlabeled examples

from the target distribution. Note that, in the most gen-

eral formulation of the problem, the domain of origin of

each source example, (xS
i ,yi) is unknown. This is ignored

by many approaches e.g. [22, 17], that assume a source

dataset DS = {(xS
i ,yi, zi)}

NS

i=1 contains domain labels

zi ∈ {1, . . . , N} and aligning pairs of domains. We refer to

this a domain supervised multi-source domain adaptation.

3.2. Static vs. Dynamic Transfer

The model fθ is denoted static or dynamic depending on

whether the model parameters θ vary with samples x. Static

models have constant parameters θ = θc, while dynamic

models have parameters θ = θ(x) that depend on x. In

the case of deep networks, this implies that layer transfer

functions depend on the input x. Figure 1 illustrates the

static transfer and dynamic transfer model built for multi-

source domain adaptation.

Static Transfer. Static transfer, shown on Figure 1(a), con-

sists of learning of a single model fθc
that is applied to

all examples from source and target domains. The model

might, for instance, map images into a latent space where all

the distributions are aligned. Since the big variation among

the input samples, this is a difficult problem and the model

fθc
usually has sub-optimal performance on all domains.

Dynamic Transfer. In this case the model parameters are

a function of the input example x directly, i.e. the model

has the form fθ(x) where x ∈ S1

⋃

· · ·
⋃

SN

⋃

T . This

is illustrated in Figure 1(b), where there exists a model per

sample. Compared to the static transfer, dynamic transfer

varies the model according to sample explicitly and chooses

domains implicitly, relying on the distribution of samples

x. Dynamic transfer learns to adapt the parameters to fit

the model to the distribution formed by the union of source

domains. The target domain is not required to be aligned

with any specific domains Si and there are no rigid domain

boundaries. The model parameters θ(x) can be similar for

examples from different domains and different for examples

from the same domain.

The key insight is that adapting model per domain is

achieved statistically by adapting model per sample, as

each domain can be considered as a distribution of image

samples. The dynamic transfer learns to adapt model pa-

rameters over samples in the union of all source domains.

This simplifies the alignment between source and target do-

mains, as it is not necessary to pull all source domains and

target domain together. As long as the target domain is

aligned with any part of the union of source domains, the

model can be easily adapted to the target samples.

Dynamic transfer has two advantages over static trans-

fer. First, it turns multi-source domains into a single-source

domain, voiding the need for domain labels. Second, it sim-

plifies learning, since domain labels can be arbitrary. In

practice, any “domain” can contain a mixture of unlabeled

sub-domains and some of these can be shared by multiple

“domains”. Due to this, explicit assignment of data to do-

mains can be difficult, and models learned over single do-

main can loose access to shared sub-domain data.

3.3. Dynamic Residual Transfer

The main difficulty of dynamic transfer is the model

fθ(x) can be difficult to learn. Given the large number of

11000

parameters of modern networks, it is impossible to simply

predict all parameter values at inference time. The key is to

restrict the model’s dependence on input x to a small num-

ber of parameters. To guarantee this, we propose a model

composed by a static network and dynamic residual blocks

fθ(x) = f0 +∆fθ(x), (1)

where f0 represents the static component and ∆fθ(x) the

dynamic residual that depends on the input sample x. As

usual, the residual is implemented by adding residual blocks

to the various network layers. Since the static component f0
is shared by all samples, static transfer is a special case of

the proposed approach, where ∆fθ(x) = 0. This approach

is denoted as dynamic residual transfer (DRT).

To implement DRT in convolution neural networks

(CNNs), we represent a k × k convolution kernel as a

Cout × Cink
2 weight matrix, where Cin and Cout are the

number of input and output channels. We ignore bias terms

in this discussion for the sake of brevity. DRT is imple-

mented by applying Equation 1 to each convolution kernel

in a CNN, i.e. defining the network convolutions as

W (x) = W0 +∆W (x), (2)

where W0 is a static convolution kernel matrix, and

∆W (x) a dynamic residual matrix. We next discuss sev-

eral possibilities for the latter.

Channel Attention: in this case, the residual only rescales

the output channels of W0. This is implemented as

∆W (x) = Λ(x)W0, (3)

where Λ(x) is a diagonal Cout×Cout matrix, whose entries

are functions of x. This can be seen as a dynamic feature-

based attention mechanism.

Subspace Routing: as shown in Figure 3, the dynamic

residual is a linear combination of K static matrices Φi

∆W (x) =
K
∑

i=1

πi(x)Φi, (4)

whose weights depend on x. The matrices Φi can be seen

as a basis for CNN weight space, although they are not nec-

essarily linearly independent. And the dynamic coefficients

πi(x) can be seen as the projections of the residual ma-

trix in the corresponding weight subspaces. By choosing

these projections in an input dependent manner, the network

chooses different feature subspaces to route different x.

To reduce the number of parameters and computation,

the matrices can be further simplified into 1×1 convolution

kernels and applied to the narrowest layer of the bottleneck

architecture in ResNet [9]. In this case, only Cin rows of

Φi are non-zero.

𝒙 𝒚

𝑾𝟎

𝜋"

* …
…

avg pool

FC+ReLU

FC+Softmax

Φ"

𝜋#

*

Φ#

𝜋$

*

Φ$

+ +

1×1 3×3 1×1

1×1 1×1 1×1

𝚫𝑾𝟎

⊕

Subspace RoutingAttention Branch

Figure 3: Subspace routing of DRT: dynamic coefficients

are generated by a dynamic branch given the input x. Each

dynamic coefficient πi(x) is then multiplied by a matrix Φi,

and the K matrices are aggregated as the residual kernel-

∆W0(x). For channel attention, softmax is replaced by

sigmoid and the resulting coefficients in Λ(x) are multi-

plied to corresponding channels of W0.

Combination: the two mechanisms are combined into

∆W (x) = Λ(x)W0 +

K
∑

i=1

πi(x)Φi. (5)

Similar to squeeze-and-excitation block [12], the dynamic

coefficients Λ(x) and {πi(x)} are implemented by a light-

weight attention branch that includes average pooling and

two fully connected layers (See Figure 3). A sigmoid

is used to normalize Λ(x) and a softmax to normalize

{πi(x)}. As explained by [4, 32], the extra FLOPs caused

by dynamic coefficient generation and residual aggregation

of dynamic transfer is negligible (less than 0.1% in our im-

plementation) compared to the static model.

3.4. Learning

As usual for domain adaptation problems, the DRT net-

work is learned with a combination of two losses,

L = Lce + λLd, (6)

where λ is a hyperparameter that controls the trade-off be-

tween the loss components. The first loss

Lce =
1

NS

NS
∑

i=1

yT
i log fθ(xS

i
)(x

S
i), (7)

is the cross entropy loss over the source data DS . The sec-

ond is a domain alignment loss that encourages the mini-

mization of the distance between source and target domains

Ld = H
(

fθ(DS)(D
S), fθ(DT)(D

T)
)

, (8)

where DT is the target data and H a measure of discrepancy

between feature distributions of the source and target do-

mains. H can be any distance function previously proposed

for domain adaptation, e.g. the MMD [19] or adversarial

learning [27]. Note that the two losses above operate on the

11001

Models
inf,pnt,qdr

rel,skt → clp

clp,pnt,qdr

rel,skt → inf

clp,inf,qdr

rel,skt → pnt

clp,inf,pnt

rel,skt → qdr

clp,inf,pnt

qdr,skt → rel

clp,inf,pnt

qdr,rel → skt
Avg

static 54.3±0.64 22.1±0.70 45.7±0.63 7.6±0.49 58.4±0.65 43.5±0.57 38.5±0.61

Channel Attention 67.8±0.46 30.9±0.85 57.1±0.36 6.9±1.12 66.7±0.42 57.4±0.33 47.8±0.59

Subspace Routing 69.7±0.24 31.0±0.56 59.5±0.43 9.9±1.03 68.4±0.28 59.4±0.21 49.7±0.46

Combination 69.1±0.35 31.6±0.61 58.2±0.25 11.9±0.96 67.8±0.36 58.8±0.44 49.6±0.50

Table 1: Comparison of different implementations for dynamic residual transfer: Channel Attention (Equation 3), Sub-

space Routing (Equation 4) and Combination (Equation 5).

entire source dataset DS , i.e. there is no need for domain

labels and not even a difference between the single domain

and multiple domains adaptation problems. For the domain

alignment losses commonly used in multi-source domain

adaptation, Equation 8 also does require the evaluation of

pairwise distances between all source domains and target

domain, which is not necessary in dynamic transfer.

4. Experiments

In this section, adaptation performance of DRT is evalu-

ated.

4.1. Datasets and Experimental Settings:

Following [22], we consider two datasets, Digit-five and

DomainNet [22], which contain images from several do-

mains but shared classes. Each domain is alternatively used

as the target domain and the remaining ones as the source

domain. All experiments are repeated with 5 times and

mean and variance are reported.

Digit-five: Digit-five contains digit images from 5 domains:

MNIST [13] (mt), Synthetic [7] (sy), MNIST-M [7] (mm),

SVHN [21] (sv) and USPS [7] (up). These domains con-

tribute 25, 000 images for training and 9000 for validation,

with the exception of USPS which uses 29752 and 1860, re-

spectively. Since these datasets are relatively small, LeNet

[13] is used as the backbone model. A dynamic residual

is added on each convolutional layer. The model is trained

from scratch with initial learning rate 0.002 and SGD opti-

mizer. The learning rate is decayed by 0.1 every 100 epochs

and decreased to 2e− 5 in 300 epochs.

DomainNet: DomainNet [22] is a dataset with 0.6 million

images of 345 classes from 6 domains of different image

styles: clipart (clp), infograph (inf), painting (pnt), quick-

draw (qdr), real (rel) and sketch (skt). Results are obtained

with ImageNet [6] pretrained ResNet-101 [9]. The dynamic

residual is only added on the 3×3 kernel of each bottleneck

block. The networks are trained with SGD for 15 epochs

with initial learning rate of 0.001 and batch size as 64. The

learning rate is decayed by 0.1 every 5 epochs.

4.2. Ablation Study

An ablation study was performed on DomainNet to eval-

uate the three key components of DRT: (a) the three im-

plementations of the dynamic transfer, (b) the number of

basis used for subspace routing (Equation 4), and (c) differ-

ent alignment losses Ld. The default model uses subspace

routing with K = 4 and is trained with the MCD [25] loss.

DRT Implementations: Table 1 shows that all implemen-

tations of DRT have significantly better adaptation perfor-

mance than the static model. The average gains are of 9.3%
for channel attention, 10.8% for combined and 11.2% for

subspace routing. The weaker performance of channel at-

tention suggests that it is not enough to re-scale the features

of the static model. Routing the input x through different

subspaces appears to be more effective, although the dif-

ferences are not staggering. While combining the two ap-

proaches has no additional overall benefit, the combination

was beneficial for specific transfer problems. When ‘info-

graph’ and ‘quickdraw’ were used as target domains, the

combination model outperformed subspace routing. Since

these are the hardest transfer problems, this suggests that the

enhanced dynamics of the combined implementation can be

beneficial as the domain gap increases. It is because the en-

hanced dynamics make the model more elastic. Therefore,

it is more likely to adapt models to target domain with larger

gap. On the other hand, for the problems of smaller domain

gap, stronger dynamics can cause the model to overfit to the

source domain, as is the case for the remaining target do-

mains. More experiments on datasets with more domains

will likely be needed to resolve this question. In any case,

subspace routing and the combination model have similar

performance.

Number of Residual Basis. The impact of the number of

basis K used in Equation 4 for subspace routing is ablated.

For different values of K ∈ {2, 4, 6, 8}, DRT achieves

{48.8, 49.7, 49.5, 49.3}, all of which improve the adapta-

tion performance of static transfer (38.5%) by a large mar-

gin (more than 10%). Best performance is achieved with

K = 4, although the results are not highly sensitive to this

parameter.

Alignment Loss Function. Three different domain align-

ment losses with different forms of H (see Equation 8)

were compared: ADDA [27], MCD [25] and M3SDA [22].

They are representative of previously proposed losses for re-

ducing single-source domain shift at the domain level and

class level, and multi-source domain shift, respectively.

11002

Ld
inf,pnt,qdr

rel,skt → clp

clp,pnt,qdr

rel,skt → inf

clp,inf,qdr

rel,skt → pnt

clp,inf,pnt

rel,skt → qdr

clp,inf,pnt

qdr,skt → rel

clp,inf,pnt

qdr,rel → skt
Avg

Source Only 52.1±0.51 23.4±0.28 47.7±0.96 13.0±0.72 60.7±0.23 46.5±0.56 40.6±0.56

Source Only + DRT 63.1±0.62 25.9±0.84 48.4±1.02 6.4±0.98 66.4±0.54 46.8±0.44 42.8±0.74

ADDA [27] 47.5±0.76 11.4±0.67 36.7±0.53 14.7±0.50 49.1±0.82 33.5±0.49 32.2±0.63

ADDA+DRT 63.6±0.52 27.6±0.43 52.3±0.68 8.2±1.44 67.9±0.42 49.6±0.33 44.9±0.64

MCD [25] 54.3±0.64 22.1±0.70 45.7±0.63 7.6±0.49 58.4±0.65 43.5±0.57 38.5±0.61

MCD+DRT 69.7±0.24 31.0±0.56 59.5±0.43 9.9±1.03 68.4±0.28 59.4±0.21 49.7±0.46

M3SDA-β [22] 58.6±0.53 26.0±0.89 52.3±0.55 6.3±0.58 62.7±0.51 49.5±0.76 42.6±0.64

M3SDA-β+DRT 67.4±0.52 31.3±0.83 56.5±0.67 13.6±0.34 66.9±0.42 56.8±0.49 48.8±0.55

Table 2: Static transfer vs. Dynamic transfer evaluated on DomainNet with different domain alignment loss functions.

Table 2 shows that dynamic residual transfer (DRT) out-

performs static transfer for all loss functions, by a large

margin (12.7%, 11.2%, 6.2% respectively). Its improved

performance is in part, due to the fact that DRT takes a

much larger advantage of the domain alignment losses. It

confirms our claim that DRT simplifies the domain align-

ment by unifying all source domains into a single domain.

Thus the target samples are more likely to be aligned with

the union of source domains and the same alignment loss

will give more benefits to the dynamic model than the static

one. However, the gains over the ‘source only’ case, where

no alignment loss Ld is used in Equation 6, is only 2%. It

means alignment loss is very critical for dynamic transfer.

Without alignment loss, even though the model can adapt

to the entire source domain very well, it can hardly adapt to

target samples due to a large domain gap.

These conclusions also apply to the individual transfer

problems, except when ‘quickdraw’ is the target domain.

In this case, DRT is only effective with the M3SDA-β [22]

loss. It is because when ‘quickdraw’ is the target domain,

the domain discrepancy is much larger and makes it harder

for DRT to adapt model to this domain. Thus, M3SDA-β

[22] which proposed a more powerful alignment loss, can

shift ‘quickdraw’ closer to source domains and works bet-

ter with DRT. However, the strong alignment loss will cause

‘over-alignment’ for the domains e.g. ‘clipart’ that have

much smaller gap. The ‘over-alignment’ reduces the adapt-

ability of the dynamic model, which causes performance

degradation compared to that given by simpler alignment

losses e.g. MCD.

4.3. Comparisons to the state­of­the­art

DRT was compared to the results in the literature for

Digit Five and DomainNet dataset. In these experiments,

DRT is implemented with subspace routing (4 basis), using

the MCD loss [25], and λ = 50 in Equation 6.

Evaluation on Digit Five Dataset: Table 3 shows a com-

parison to 6 baselines on Digit Five. DRT outperforms all

other methods, beating the state of the art (CMSS) by more

than 1%, despite a much simpler implementation. Com-

paring performance in individual adaptation problems, DRT

has the best performance on four of the five problems con-

sidered. The only exception occurs when SVHN is the tar-

get domain, where DRT achieves the second best perfor-

mance of all methods. Beyond this, the smallest gains oc-

cur when MNIST is the target domain. This was expected,

since MNIST is easier to transfer to and somewhat satu-

rated. In general, the gains of DRT increase with domain

discrepancy, reaching 5.7% for the hardest transfer problem

(MNIST-M as target domain).

Evaluation on DomainNet Dataset. For DomainNet [22],

a ResNet-101 [9] was used as backbone and DRT was com-

pared to 11 baselines. Among these, ADDA [27], DANN

[8] and MCD [25] were developed for traditional unsuper-

vised domain adaptation (UDA), where a single-source do-

main is assumed. The remaining are multi-source domain

adaptation methods that require domain labels.

Table 4 shows that DRT improves on the state-of-the-

art method- CMSS by more than 3% (49.7% vs 46.5%).

When DRT is combined with a naive self-training method

(DRT+ST), it achieves gains of 3.9% over LtC-MSDA [28],

a methods that generates pseudo-labels for the target sam-

ples (during self-training, pseudo-labels for target samples

with confidence greater than 0.8 are used to train DRT again

with source samples). Compared to the adaptation meth-

ods that use no domain labels (single-source), DRT im-

proves the best average adaptation results (DANN) by 6.7%
(49.7% vs. 43%).

Regarding individual adaptation problems, DRT

achieves the best performance for all target domains other

than ‘quickdraw’. This can be explained by the large

domain gap between ‘quickdraw’ and the other domains,

and the fact that the MCD loss does not fare well in this

problem. Better results would likely be possible by using

the M3SDA loss, as was the case in Table 2.

4.4. Single­Source to Single­Target Adaptation

The performance of DRT on the traditional domain adap-

tation problem (single-source domain) was also evaluated

on DomainNet [22]. In this case, for each target domain,

adaptation was performed from each of the other five do-

mains (sources). The average and best performance among

11003

Models
mm,up,sv

sy → mt

mt,up,sv

sy → mm

mt,mm,sv

sy → up

mt,mm,up

sy → sv

mt,mm,up

sv → sy
Avg

Source Only 63.37±0.74 90.50±0.83 88.71±0.89 63.54±0.93 82.44±0.65 77.71±0.81

DANN [8] 71.30±0.56 97.60±0.75 92.33±0.85 63.48±0.79 85.34±0.84 82.01±0.76

ADDA [27] 71.57±0.52 97.89±0.84 92.83±0.74 75.48±0.48 86.45±0.62 84.84±0.64

MCD [25] 72.50±0.67 96.21±0.81 95.33±0.74 78.89±0.78 87.47±0.65 86.10±0.73

DCTN [31] 70.53±1.24 96.23±0.82 92.81±0.27 77.61±0.41 86.77±0.78 84.79±0.72

M3SDA-β [22] 72.82±1.13 98.43±0.68 96.14±0.81 81.32±0.86 89.58±0.56 87.65±0.75

CMSS [34] 75.3±0.57 99.0±0.08 97.7±0.13 88.4±0.54 93.7±0.21 90.8±0.31

DRT 81.03±0.34 99.31±0.05 98.40±0.12 86.67±0.38 93.89±0.34 91.86±0.25

Table 3: Comparison between dynamic residual transfer (DRT) with the state-of-the-art models on Digit-five dataset. The

source domains and target domain are shown at the top of each column.

Models
inf,pnt,qdr

rel,skt → clp

clp,pnt,qdr

rel,skt → inf

clp,inf,qdr

rel,skt → pnt

clp,inf,pnt

rel,skt → qdr

clp,inf,pnt

qdr,skt → rel

clp,inf,pnt

qdr,rel → skt
Avg

Source Only 52.1±0.51 23.4±0.28 47.7±0.96 13.0±0.72 60.7±0.23 46.5±0.56 40.6±0.56

ADDA [27] 47.5±0.76 11.4±0.67 36.7±0.53 14.7±0.50 49.1±0.82 33.5±0.49 32.2±0.63

MCD [25] 54.3±0.64 22.1±0.70 45.7±0.63 7.6±0.49 58.4±0.65 43.5±0.57 38.5±0.61

DANN [8] 60.6±0.42 25.8±0.43 50.4±0.51 7.7±0.68 62.0±0.66 51.7±0.19 43.0±0.46

DCTN [31] 48.6±0.73 23.5±0.59 48.8±0.63 7.2±0.46 53.5±0.56 47.3±0.47 38.2±0.57

M3SDA-β [22] 58.6±0.53 26.0±0.89 52.3±0.55 6.3±0.58 62.7±0.51 49.5±0.76 42.6±0.64

ML-MSDA [17] 61.4±0.79 26.2±0.41 51.9±0.20 19.1±0.31 57.0±1.04 50.3±0.67 44.3±0.24

Meta-MCD [14] 62.8±0.22 21.4±0.07 50.5±0.08 15.5±0.22 64.6±0.16 50.4±0.12 44.2±0.07

LtC-MSDA [28] 63.1±0.5 28.7±0.7 56.1±0.5 16.3±0.5 66.1±0.6 53.8±0.6 47.4±0.6

CMSS [34] 64.2±0.18 28.0±0.20 53.6±0.39 16.0±0.12 63.4±0.21 53.8±0.35 46.5±0.24

DRT 69.7±0.24 31.0±0.56 59.5±0.43 9.9±1.03 68.4±0.28 59.4±0.21 49.7±0.46

DRT+ST 71.0±0.21 31.6±0.44 61.0±0.32 12.3±0.38 71.4±0.23 60.7±0.31 51.3±0.32

Table 4: Comparison between dynamic residual transfer (DRT) with the state-of-the-art models on DomainNet.

(‘DRT+ST’ represents the combination between dynamic residual transfer and self-training for domain adaptation)

these adaptations is shown in Table 5, for each target do-

main. DRT again significantly outperforms the previous do-

main adaptation methods. For example, when ‘clipart’ is the

target domain, its average adaptation performance is 10.5%
better than that of the MCD method. On average, over all

pairs of source and target domains, it outperforms MCD by

more than 8%. These results show that, for problems with

hundreds of classes, dynamic residual transfer can lead to

very large adaptation gains even in the traditional domain

adaptation setting. This confirms the claim that even these

problems tend to have many sub-domains. When this is the

case, the ability of dynamic residual transfer to adapt the

model on a per-example basis can be a significant asset.

Finally, comparing the results of Tables 4 and 5 shows

that DRT trained on multi-source domains performs 8.2%
better (49.7% vs. 41.5%) than the average of the best single-

source domain transfers. This improvement is about 2%
better than that given by MCD (8.2% vs. 6.3%). This

shows that considering a variety of source domains im-

proves domain adaptation performance, especially when

dynamic residual transfer is used. A main advantage of

DRT is that it can be applied to all settings, since it does

not require domain labels. Its universal nature makes it ir-

relevant if the problem is single-source or multi-source. It

suffices to collect training data and DRT will automatically

figure out how to adapt the network to all settings. There is

no need to even define “source domains.”

4.5. Visualization

To obtain further insight about dynamic residual transfer

(DRT), we visualized the dynamic coefficients of Equation

4 with t-SNE [20]. For each sample, we created a vector

Π = {πl
i(x)}, i ∈ {1, 2, ...K}, l ∈ {1, 2, ...L} by concate-

nating the dynamic coefficients from the L network layers.

The vectors Π from different target domains are visualized

in Figure 4. A more detailed visualization is given in Fig-

ure 5, by splitting Π into Πlow and Πhigh, which include

the coefficients from lower and higher network layers. For

brevity, Figure 5, only visualizes the model trained with

‘clipart’ and ‘real’ as target domain and the other domains

show similar trend.

Figure 4 first shows that domain information is embed-

ded into the dynamic coefficients {πl
i(x)}. This can be

observed by samples from same domains tend to group in

identifiable clusters, which confirms our claim that adapt-

ing model across domains can be achieved through adapting

model to samples. Secondly, the distance among clusters

reflects domain shifts that explain how adaptation perfor-

11004

Models
inf,pnt,qdr

rel,skt → clp

clp,pnt,qdr

rel,skt → inf

clp,inf,qdr

rel,skt → pnt

clp,inf,pnt

rel,skt → qdr

clp,inf,pnt

qdr,skt → rel

clp,inf,pnt

qdr,rel → skt
Avg

ADDA [27] 28.2/39.5 9.3/14.5 20.1/29.1 8.4/14.9 31.1/41.9 21.7/30.7 19.8/28.4

MCD [25] 31.4/42.6 13.1/19.6 24.9/42.6 2.2/3.8 35.7/50.5 23.9/33.8 21.9/32.2

DRT 41.9/56.2 19.6/26.6 35.3/53.4 8.0/12.2 44.5/55.5 35.0/44.8 30.7/41.5

Table 5: Single source domain adaptation performance on DomainNet. Each column, shows the average/best classifica-

tion accuracy for transfer from all source to the specified target domain.

real

sketch

painting

clipart

quickdraw

infograph

(a) target: clipart

real

sketch

painting

clipart

quickdraw

infograph

(b) target: infograph

real

sketch

painting

clipart

quickdraw

infograph

(c) target: painting

real

sketch

painting

clipart

quickdraw

infograph

(d) target: quickdraw

real

sketch

painting

clipart

quickdraw

infograph

(e) target: real

real

sketch

painting

clipart

quickdraw

infograph

(f) target: sketch

Figure 4: The t-SNE visualization of dynamic coefficients

Π = {πl
i(x)} when DRT is trained with target domain-

‘clipart’, ‘infograph’, ‘painting’, ‘quickdraw’, ‘real’ and

‘sketch’. (Best view in color)

mance varies with target domain. For example, the fact that

the dynamic coefficients of ‘quickdraw’ are always quite

different from others, explains why adaptation performance

is weaker when this is the target domain. Thus for ‘quick-

draw’, either a more powerful alignment loss is needed to

shift the samples close enough to the source domains to en-

able the dynamic model adapted to this domain or a more

complex dynamic model e.g. combination of ‘channel at-

tention’ and ‘subspace routing’ is required. Figure 5 further

shows that the dynamic coefficients from lower layers (Fig-

ure 5(a)) form much more clear domain clusters than the

coefficients of the higher layers (Figure 5(b)). This shows

that the network features become more domain agnostic in

real

sketch

painting

clipart

quickdraw

infograph

(a) target: clipart (Πlow)

real

sketch

painting

clipart

quickdraw

infograph

(b) target: clipart (Πhigh)

real

sketch

painting

clipart

quickdraw

infograph

(c) target: real (Πlow)

real

sketch

painting

clipart

quickdraw

infograph

(d) target: real (Πhigh)

Figure 5: The t-SNE visualization of first half (Πlow) and

second half (Πhigh) dynamic coefficients when DRT is

trained with target domain- ‘clpart’ and ‘real’. (Best view

in color)

the higher layers, confirming the effectiveness of DRT to

reduce domain discrepancies.

5. Conclusion

In this paper, we introduce dynamic transfer for multi-

source domain adaptation, in which the model parameters

are not static but adaptive to input samples. Dynamic trans-

fer mitigates conflicts across multiple domains and uni-

fies multiple source domains into a single source domain,

which simplifies the alignment between source and target

domains. Experimental results show that dynamic trans-

fer achieves a better adaptation performance compared to

the state-of-the-art method for multi-source domain adap-

tation. We hope this paper can give a new understanding

about multi-source domain adaptation.

6. Acknowledgement

This work was partially funded by NSF awards IIS-

1924937, IIS-2041009, Amazon and Qualcomm gift, and

NVIDIA GPU donations.

11005

References

[1] John Blitzer, Koby Crammer, Alex Kulesza, Fernando

Pereira, and Jennifer Wortman. Learning bounds for domain

adaptation. In Advances in neural information processing

systems, pages 129–136, 2008.

[2] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han

Hu. Gcnet: Non-local networks meet squeeze-excitation

networks and beyond. In Proceedings of the IEEE Inter-

national Conference on Computer Vision Workshops, pages

0–0, 2019.

[3] Fabio Maria Cariucci, Lorenzo Porzi, Barbara Caputo, Elisa

Ricci, and Samuel Rota Bulo. Autodial: Automatic domain

alignment layers. In 2017 IEEE International Conference on

Computer Vision (ICCV), pages 5077–5085. IEEE, 2017.

[4] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong

Chen, Lu Yuan, and Zicheng Liu. Dynamic convolu-

tion: Attention over convolution kernels. arXiv preprint

arXiv:1912.03458, 2019.

[5] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong

Chen, Lu Yuan, and Zicheng Liu. Dynamic relu. arXiv

preprint arXiv:2003.10027, abs/2003.10027, 2020.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009.

[7] Yaroslav Ganin and Victor Lempitsky. Unsupervised

domain adaptation by backpropagation. arXiv preprint

arXiv:1409.7495, 2014.

[8] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain

adaptation by backpropagation. In International conference

on machine learning, pages 1180–1189. PMLR, 2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[10] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,

Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.

Cycada: Cycle-consistent adversarial domain adaptation. In

International conference on machine learning, pages 1989–

1998. PMLR, 2018.

[11] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7132–7141, 2018.

[12] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf,

Song Han, William J. Dally, and Kurt Keutzer. Squeezenet:

Alexnet-level accuracy with 50x fewer parameters and

<1mb model size. CoRR, abs/1602.07360, 2016.

[13] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[14] Da Li and Timothy Hospedales. Online meta-learning for

multi-source and semi-supervised domain adaptation. arXiv

preprint arXiv:2004.04398, 2020.

[15] Yunsheng Li, Yinpeng Chen, Xiyang Dai, Mengchen Liu,

Dongdong Chen, Ye Yu, Lu Yuan, Zicheng Liu, Mei Chen,

and Nuno Vasconcelos. Revisiting dynamic convolution via

matrix decomposition. arXiv preprint arXiv:2103.08756,

2021.

[16] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirectional

learning for domain adaptation of semantic segmentation. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 6936–6945, 2019.

[17] Zhenpeng Li, Zhen Zhao, Yuhong Guo, Haifeng Shen, and

Jieping Ye. Mutual learning network for multi-source do-

main adaptation. arXiv preprint arXiv:2003.12944, 2020.

[18] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime

neural pruning. In Advances in Neural Information Process-

ing Systems, pages 2181–2191, 2017.

[19] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-

dan. Learning transferable features with deep adaptation net-

works. In International conference on machine learning,

pages 97–105. PMLR, 2015.

[20] Laurens van der Maaten and Geoffrey Hinton. Visualiz-

ing data using t-sne. Journal of machine learning research,

9(Nov):2579–2605, 2008.

[21] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-

sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural

images with unsupervised feature learning. 2011.

[22] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate

Saenko, and Bo Wang. Moment matching for multi-source

domain adaptation. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1406–1415, 2019.

[23] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,

Dequan Wang, and Kate Saenko. Visda: The visual domain

adaptation challenge. arXiv preprint arXiv:1710.06924,

2017.

[24] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Dar-

rell. Adapting visual category models to new domains. In

European conference on computer vision, pages 213–226.

Springer, 2010.

[25] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-

suya Harada. Maximum classifier discrepancy for unsuper-

vised domain adaptation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3723–3732, 2018.

[26] Baochen Sun and Kate Saenko. Deep coral: Correlation

alignment for deep domain adaptation. In European con-

ference on computer vision, pages 443–450. Springer, 2016.

[27] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Dar-

rell. Adversarial discriminative domain adaptation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 7167–7176, 2017.

[28] Hang Wang, Minghao Xu, Bingbing Ni, and Wenjun Zhang.

Learning to combine: Knowledge aggregation for multi-

source domain adaptation. arXiv preprint arXiv:2007.08801,

2020.

[29] Xudong Wang, Zhaowei Cai, Dashan Gao, and Nuno Vas-

concelos. Towards universal object detection by domain at-

tention. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 7289–7298, 2019.

[30] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven

Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.

Blockdrop: Dynamic inference paths in residual networks.

11006

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8817–8826, 2018.

[31] Ruijia Xu, Ziliang Chen, Wangmeng Zuo, Junjie Yan, and

Liang Lin. Deep cocktail network: Multi-source unsuper-

vised domain adaptation with category shift. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3964–3973, 2018.

[32] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan

Ngiam. Condconv: Conditionally parameterized convolu-

tions for efficient inference. In Advances in Neural Informa-

tion Processing Systems, pages 1307–1318, 2019.

[33] Jun Yang, Rong Yan, and Alexander G Hauptmann. Cross-

domain video concept detection using adaptive svms. In Pro-

ceedings of the 15th ACM international conference on Mul-

timedia, pages 188–197, 2007.

[34] Luyu Yang, Yogesh Balaji, Ser-Nam Lim, and Abhinav Shri-

vastava. Curriculum manager for source selection in multi-

source domain adaptation. arXiv preprint arXiv:2007.01261,

2020.

11007

