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Scattering of particle-like patterns in dissipative systems is studied, especially we focus on the issue

how the input–output relation is controlled at a head-on collision where traveling pulses or spots

interact strongly. It remains an open problem due to the large deformation of patterns at a colliding

point. We found that a special type of unstable steady or time-periodic solutions called scattors and

their stable and unstable manifolds direct the traffic flow of orbits. Such scattors are in general

highly unstable even in the one-dimensional case which causes a variety of input–output relations

through the scattering process. We illustrate the ubiquity of scattors by using the complex

Ginzburg–Landau equation, the Gray–Scott model, and a three-component reaction diffusion model

arising in gas-discharge phenomena. © 2003 American Institute of Physics.

@DOI: 10.1063/1.1592131#

Collision process of particle-like patterns in dissipative

systems is studied. A variety of input–output relations

such as annihilation, repulsion, fusion, and even chaotic

dynamics is observed after collision, which makes a sharp

contrast with that of integrable systems. Unstable station-

ary or time-periodic patterns called scattors direct a traf-

fic flow of orbits during the collision process in the

infinite-dimensional space along their stable and unstable

manifolds. Local dynamics near the scattor and connec-

tions among scattors form an underlying mechanism to

predict the output. We illustrate this for several represen-

tative systems including the complex Ginzburg–Landau

model, the Gray–Scott model, and a three-component

reaction-diffusion model arising in gas-discharge phe-

nomenon.

I. INTRODUCTION

Spatially localized objects such as pulses and spots form

a representative class of dynamic patterns in dissipative sys-

tems. One of the recent remarkable discoveries is a variety of

interacting manners among those patterns, which makes a

sharp contrast with well-known annihilation of excitable

waves like the pulses of the FitzHugh–Nagumo equations.

Bouncing like elastic objects upon collision or merging into

a single spot is the tip of the iceberg. Such a phenomenon

has been observed experimentally and numerically, for in-

stance, in gas-discharged system,1,2 CO-oxidization

process,3–5 chemical reactions,6–13 and reaction-diffusion

systems with a global feedback system.14,15 Suppose there

are spatially localized moving patterns such as pulses or

spots in a free space. A qualitative change for the pattern

may occur either in interaction with other patterns through

collision or intrinsic instability such as splitting or destruc-

tion by itself. It is known that if a localized pattern has an

intrinsic instability like self-replication, then combined with

a self-destruction or annihilation process, it produces, in gen-

eral, a complicated dynamics like spatiotemporal chaos16 or

Sierpinski gaskets.17 In order to understand the whole dy-

namics of such complex patterns, a computer-aided geomet-

ric approach is quite useful as was shown by Refs. 16, 18,

and 19. On the other hand, if a traveling pattern is asymp-

totically stable, it persists within a weak interaction

regime,10,11 therefore any qualitative change should occur to

such a pattern only through strong interaction with other

moving patterns, however the underlying mechanism to con-

trol such a process is very little known partly because it is a

large deformation in infinite dimensional space. The aim of

this paper is to present a new viewpoint to clarify the process

of strong interaction. In particular, we focus on head-on col-

lisions among traveling patterns. Our approach to scattering

phenomena is to find an origin of the sorting mechanism

rather than to try to describe the details of large deformation

of the solution. It turns out that such an origin is identified as

the stable and unstable directions of a special type of un-

stable solutions called scattors, which link input to output at

collision. A closely related work pointing out the importance

of such saddles is Ref. 20, which analyzed the transition

from annihilation to preservation of colliding waves arising

in a simple model of continuum of pendula subjected to a

constant torque and a viscous damping.

Let us look at a typical strong collision process like Fig.

1 ~see Sec. IV for details! where the input is two incoming

pulses and the output is just one outgoing pulse. Natural

questions are how such a large deformation is controlled and

how we can predict the output from the input. In Fig. 1 two

scattors ~see twin-horn and fused patterns in Sec. IV! play a

pivotal role in understanding the scattering process. In fact

the orbital behaviors are guided by the stable and unstable

manifolds of the scattors, and the output can be classified by

looking at the outcome from the scattor. In other words, scat-a!Electronic mail: nishiura@aurora.es.hokudai.ac.jp
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tors are the pivots converting one dynamic regime to another

one.

It is not always true that the collision of two traveling

waves produce ordered states such as pulses or spots. Figure

2 shows a transition to a complicated spatiotemporal pattern

from a symmetric collision of two traveling pulses. There

exists an unstable steady state ~scattor! which links the trav-

eling pulse to a spatiotemporal chaos, in fact exactly the

same complicated pattern can be obtained by perturbing the

scattor in an appropriate way as in Fig. 14~C!, which will be

discussed in Sec. III.

Various kinds of dynamic transition occur through strong

collisions and the pivot called the scattor plays a traffic con-

troller linking the input to output. Our viewpoint from scat-

tors not only gives a clue to clarify the transient process of

scattering but also sheds light on the anatomy of complex

dynamics like spatiotemporal chaos or chaotic itinerancy in

which several different dynamic regimes coexist and the or-

bit is switched from one regime to another via singular

events like strong collisions.

II. SCATTOR OF CODIM 1 FOR THE COMPLEX
GINZBURG–LANDAU EQUATION

First we present a scattor of codim 1 for the complex

Ginzburg–Landau equation ~CGLE! with a parametric forc-

ing term,

W t5~11ic0!W1~11ic1!Wxx2~11ic2!uWu2W

1c3W̄ , ~1!

where c0 , c1 , c2 , and c3 are real parameters. The last com-

plex conjugate term represents an external forcing with al-

most double the natural frequency and c2 – c0 stands for the

frequency misfit. Coullet et al.21 and Sasa et al.22 have

shown that Eq. ~1! undergoes a supercritical drift bifurcation

of domain wall and Mizuguchi and Sasa23 have found vari-

ous types of instabilities by computer simulations ~see also

Refs. 24–26!. Actually Eq. ~1! is a model equation of oscil-

lating grid pattern submitted to an oscillating external volt-

age in the electrohydrodynamic convection in liquid

crystals.22,27 Equation ~1! becomes bistable in an appropriate

parameter region where there exists a pair of stable homoge-

neous states W0 and 2W0 ~see, for instance, Ref. 23!. We

employ a particular set of parameters c0520.15, c1

520.10, c250.10 and vary c3 as a bifurcation parameter in

the above-mentioned bistable regime. We adopt Dx'0.195,

Dt51023, the system size550, and the boundary condition

of Neumann type ~zero flux!.

When c3 is large, the stationary front ~Ising front! con-

necting W0 to 2W0 ~i.e., the phase of W changes by p! is

stable. Note that the magnitude of 12uWu2 ~or the modulus

uWu) is localized in space, so we call it a pulse rather than a

front ~or domain wall! in the sequel. As c3 is decreased, a

drift ~Ising–Bloch! bifurcation occurs supercritically at c3

'0.40, which is confirmed by AUTO,28 and a stable traveling

pulse emerges. The velocity of it is small near the bifurcation

point and the two pulses repel each other, therefore the

input–output relation is preservation, namely two incoming

pulses emit two outgoing propagating pulses. As c3 is still

decreased to 0.39, then two colliding pulses annihilate at

head-on collision. Such a change of input–output relation is

already reported by Ref. 12, however it remains an open-

question what mechanism actually exerts such a change. For

that purpose, we carefully traced the orbital behavior near the

transition point c3
s '0.393 396 8 from preservation to annihi-

lation @see Fig. 3~A!#. It turns out that the orbit stays very

close to a quasi-steady state for certain time, then it annihi-

lates or emits two propagating pulses depending on the pa-

rameter. In fact it is numerically confirmed by using the

Newton method ~see, for instance, Ref. 29! that there exists a

steady state S(x) of codim 1, i.e., the linearized eigenvalue

problem around S(x); Lf5lf has only one unstable ~real

positive! eigenvalue l1 besides the translational zero eigen-

value @see Fig. 4~B!#. The profile of the eigenfunction asso-

FIG. 1. Strong collision of two pulses produces just one pulse. Only the u

component of Eq. ~3! is shown here. See Sec. IV for details of this numerics.

FIG. 2. Transition to chaotic regime via scattering. A symmetric collision of

two pulses of Eq. ~2! creates a complicated dynamics. An unstable steady

state called the scattor intervenes in this transition at the colliding point. See

Sec. III for details.
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ciated with the unstable eigenvalue has a reflectional sym-

metry in the middle. Note that S(x) depends also on c3 .

Since S(x) has only one unstable direction, the local dynam-

ics around it is schematically depicted like Fig. 4~A!, i.e., the

stable manifold of S(x) separates the phase space into two

parts and the orbits are sorted out according to which side of

the stable manifold it belongs. Strictly speaking we should

take into account the center direction coming from the Gold-

stone mode, however it can be neglected, since we only con-

sider the symmetric collisions at the center. The destinations

of the unstable manifold are homogeneous state ~annihila-

tion! and counterpropagating pulses ~preservation!, which

can be confirmed by numerics as in Fig. 3~B!. In other words

the transition point c3
s is characterized as the one where the

orbit lies on the stable manifold, the initial condition of

which is given by the two symmetric incoming true pulses

colliding at the origin. Practically we employ a well-settled

pulse as initial data for numerics. Here the ‘‘well-settled

pulse’’ means that it is obtained after a long-run simulation

on a large interval with periodic boundary condition. This

makes sense because the concerning pulse is asymptotically

stable. Quantitatively the time evolution of the inner product

^W(t)2S ,f1
*& may give useful information to predict the

fate of the orbit, where W(t) is a solution to Eq. ~1! and f1
*

is the adjoint eigenfunction of l1 . In fact we see clearly as in

Fig. 5 that the inner product changes its sign after collision

from positive to negative as c3 is decreased via c3
s . This is a

natural consequence in view of the separating behavior in

Fig. 4~A!. It is convenient to introduce t*5t*(c3) defined

by the time when the distance uW(t;c3)2S(x;c3)u attains

the minimum during the collision process. Here the distance

is measured by the square integral of the function, i.e., L2

norm. The associated solid ~respectively, dotted! gray line in

Fig. 5~a! shows how the above-mentioned distance evolves

and the location of the minimum point t*'268.8. The tran-

sition point c3
s is characterized as t*(c3

s )51` , since the

orbit W(t) lies on the stable manifold of S(x) at c35c3
s .

Moreover if one could find two points with opposite signs of

^W(t*(c3);c3)2S(x;c3),f1
*& as a function of c3 , any value

in between gives a good approximation of c3
s , and the sign

of it offers a simple criterion for the output, namely, if it is

positive ~respectively, negative!, it implies two-pulse emis-

FIG. 3. Transition from reflection to annihilation. ~A! The transition occurs

at c3
s '0.393 396 8 from reflection ~preservation! to annihilation as c3 is

decreased. @~a! Annihilation and ~b! reflection, respectively.# ~B! Response

of the scattor S(x) by adding a small perturbation in the direction of f1 @see

Fig. 4~B!#. ~a! @respectively, ~b!# Negative ~respectively, positive! perturba-

tion.

FIG. 4. Scattor for the CGLE. ~A! A schematic picture of the dynamics near

the scattor. ~B! ~a! The thick line indicates the profile of modulus of the

scattor uS(x)u and the gray ~respectively, dotted! line shows the real ~respec-

tively, imaginary! part of it. S(x) has only one ~real! unstable eigenvalue

('0.4850) and the associated eigenfunction f1 is depicted as ~b!. The

Goldstone mode is shown in ~c!.

FIG. 5. Time evolution of the inner product and the adjoint eigenfunction

f1
* . ~a! The dark solid ~respectively, dotted! line shows the evolution of the

inner product ^W(t)2S ,f1
*& for c350.393 396 7 ~respectively, c3

50.3 933 969). When c3 is decreased and crosses c3
s '0.393 396 8, the

graph switches from positive to negative after t5t1'263.3. The gray solid

~respectively, dotted! line indicates the associated evolutions of the distance

between the orbit and the scattor, both of which take the minimum around

t*'268.8. ~b! The profile of the adjoint eigenfunction f1
* .
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sion ~respectively, annihilation!. We call S(x) a scattor for

Eq. ~1!, which controls the traffic of flows and is responsible

for the transition of input–output relation. We can classify

the possible outputs after collisions and detect the location of

the transition points through S(x). In the following sections

we shall show that such a scattor is ubiquitous in a variety of

scattering process in dissipative systems. In Ref. 30 we used

the terminology ‘‘separator’’ instead of scattor, however scat-

tor may be appropriate especially for higher codimension

case.

III. SCATTOR OF HIGHER CODIMENSION FOR THE
GRAY–SCOTT MODEL

A transition from repulsion to annihilation is observed

for the CGLE in Sec. II. Although its modulus uWu is local-

ized in space, it is an interaction between the two fronts.

Such a transition also occurs for real localized traveling

pulses and we employ the following Gray–Scott ~GS! model

~2! as a representative one ~see Ref. 31!:

u t5DuDu2uv
2
1F~12u !,

~2!
v t5D

v
Dv1uv

2
2~F1k !v ,

where F.0 and k.0 are parameters related to inflow and

removal rate of chemical species. It is known that Eq. ~2! has

a stable traveling pulse in an appropriate parameter region

~Fig. 6!. In what follows, we consider the case in which F is

fixed to be either 0.0198 or 0.0194 and k varies as a bifur-

cation parameter. For all simulations for the GS model to

follow, we used the explicit scheme with Dt51022, Dx

50.005, Du55.031025, and D
v
52.531025. Also we only

consider the symmetric collision, namely the initial two

pulses are perfectly symmetric except their propagating di-

rections. In other words, it is equivalent to hitting a wall

under Neumann boundary condition. As initial data we em-

ploy a well-settled symmetric pair of pulses introduced in

Sec. II. For the scattering of asymmetric initial condition, we

refer to Ref. 30. When k is increased and exceeds kc

'0.049 785 9, the input–output relation changes from anni-

hilation ~A! to repulsion ~B! as in Fig. 7. A remarkable thing

is that there appears a quasi-steady state of twin-horn shape

right after collision and the orbit approaches it, stays there

for certain time, then annihilates or emits two pulses. In fact

there exists a real steady state of twin-horn shape, which is

numerically confirmed by the Newton method. A linearized

eigenvalue problem, Lf5lf , where L is the linearized op-

erator of the right-hand side of the system ~2! around the

twin-horn steady state has three unstable eigenvalues l1

50.063 89.l250.063 78.l350.002 33 besides the zero

eigenvalue l4 coming from the translation invariance @see

Fig. 7~C!#. Note that the first two eigenvalues are much

larger than the third one, hence the dynamics is basically

controlled by l1 and l2 . The associated eigenfunctions are

denoted by f i(i51,.. . ,4). The twin-horn scattor plays a role

as a traffic controller at collision. In fact, for symmetric

head-on collision, the second eigenfunction f2 plays an im-

portant role to determine the fate of the orbit, namely, adding

its small constant-multiple perturbation to the twin-horn pat-

tern, then the resulting behavior is either annihilation or

emission of two pulses depending on its sign of constant

@Figs. 8~c! and 8~d!#. In other words the output can be clas-

sified by looking at the response of the scattor along the

unstable manifold. It should be noted that the scattor can be

obtained by continuation of a stable standing pulse as in Fig.

9, which not only shows that the scattor S(k) depends

smoothly on k in a wider interval of k , but also it is con-

nected to the observable patterns.

Recalling that only symmetric collisions are considered

and l2@l3 , the inner product ^U(t ,x)2S(k),f2
*& similar

to the one in the CGLE case serves to detect the transition

point kc and predicts the orbital behavior near S(k) despite

codim S(k).1, where U(t ,x) denotes the solution to Eq.

~2!, and f2
* the adjoint eigenfunction associated with l2 .

The time evolutions of the inner products for k50.0497 and

0.0499 are depicted in Fig. 10~a!, which gives us a criterion

that kc is approximated well by the point where the sign of

^U(t*,k)2S(k),f2
*& changes from negative ~annihilation!

to positive ~repulsion! as k is increased. Here t* is defined

similarly as in Sec. II. Note that, unlike the CGLE case, t*

for the GS case generically remains finite around kc owing to

the fact that codim S(k).1. This criterion has a limitation

due to its linearity and codim S(k).1. Nevertheless it gives

a practical criterion for detecting the transition point kc .

A complete different type of transition exists for smaller

k values. In fact the annihilation region in Fig. 11 is bounded

by two curves G1 and G2 . The line G1 in Fig. 11 shows a

transition of input–output relation from repulsion to annihi-

lation as we discussed earlier. The transition from annihila-

tion to spatiotemporal chaos occurs when the parameters

cross the line G2 and enter into the region C8. For a fixed

F50.0194, the scattering processes on both sides of G2 are

depicted in Fig. 12. A single pulse is still asymptotically

stable in the region C8, however when it collides with an-

other pulse, two counterpropagating pulses are emitted, but

those have splitting instabilities @Fig. 12~a!# and produce a

FIG. 6. Existence region of stable traveling pulse for the Gray–Scott model.

Stable one-dimensional traveling ~standing! wave is observed in STP ~SSP!.

When F is fixed to be 0.0198, the transition occurs from annihilation to

repulsion ~preservation! at k50.0498. See the text for details.

965Chaos, Vol. 13, No. 3, 2003 Dynamic transitions through scattors

Downloaded 30 Apr 2008 to 133.87.26.199. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



complicated spatiotemporal pattern after a long run as in Fig.

13~b! ~recall that hitting the boundary with Neumann condi-

tion is equivalent to a symmetric collision!. On the other

hand, if the parameters are slightly shifted to the right-hand

side of G2 , then we have an annihilation like Fig. 12~b!. In

fact, two different dynamic regimes coexist in the region C8:

one is stable traveling pulses and the other is self-splitting

pulses which eventually create a complicated pattern. Al-

though we do not discuss details of this complicated pattern

here, a remarkable thing is that there is a scattor which con-

verts an ordered state ~traveling pulse! to a spatiotemporal

FIG. 7. Symmetric collisions for F

50.0198. ~A! Annihilation occurs at

(k ,F)5(0.049 785 9,0.0198). ~B!

As k is slightly increased to

0.049 786 0, transition from annihila-

tion to repulsion occurs. Note that just

before the occurrence of annihilation

or creation of counterpropagating

pulses, both orbits in ~A! and ~B! stay

very close to the scattor depicted in

~C! ~a!. Only the v component is

shown in ~A! and ~B!. ~C! ~a! The pro-

file of the unstable steady state of

codim 3 ~scattor!. Three unstable

eigenfunctions f1 ,f2 ,f3 are depicted

as ~b!–~d!, and ~e! corresponds to

the Goldstone mode. The associated

eigenvalues are l150.063 89.l2

50.063 78.l350.002 33. The first

two eigenvalues are much larger than

the third one. The solid ~gray! line in-

dicates the v(u) component.

FIG. 8. Outputs from the scattor for F50.0198. ~a! @respectively, ~b!#: A

small positive ~respectively, negative! perturbation of f1 is added to the

twin-horn scattor. ~c! @respectively, ~d!#: A small negative ~respectively,

positive! perturbation of f2 is added to the scattor. The output of annihila-

tion ~respectively, two-pulse emission! is consistent with that of Fig. 7.

FIG. 9. Global bifurcation diagram for the twin-horn scattor of the GS

model. The bifurcation parameter ~horizontal axis! is k with F being fixed as

0.0198. The ordinate L2 stands for the integral norm of square of u and v .

The solid ~respectively, gray! line indicates the stable ~respectively, un-

stable! part. The twin-horn scattor of Fig. 7 is designated by S . Note that it

is connected to a stable standing pulse. The branch looks intersecting with

itself, however this is an apparent intersection due to projection. Here we

used AUTO ~Ref. 28! to compute the branch globally.
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chaos. The scattor sitting on the line G2 again looks like a

twin-horn shape as in Fig. 14~D!~a! of codim 3 and when we

perturb it in the most unstable direction of symmetric shape

@Fig. 14~D!~c!#, it produces either annihilation or spatiotem-

poral chaos as in Figs. 14~A!–14~C!. Note that scattors form

a one-parameter family of solutions like Fig. 10. What hap-

pens around G1 and G2 is that the orbit starting from a pair of

symmetric pulses crosses the augmented stable manifold of

the scattor by f3 , and hence its destination is changed lead-

ing to the transition of input–output relation. The orbit there-

fore comes closer to the scattor near those transition points.

In terms of inner product this is equivalent to the change of

sign of ^U(t*,k)2S(k),f2
*& as a function of k . In this sense

the scattor is a kind of hinge connecting two different dy-

namic regimes through scattering. Finally if parameters be-

long to the region C in Fig. 11, there are no stable traveling

pulses and the initial pulse immediately bears daughter ones

and eventually produces a complicated pattern as in Fig.

13~a!.

IV. BIFURCATION OF SCATTORS AND MULTIPLE
SCATTOR

Such a scattor may exist in a wider class of dissipative

systems in which traveling waves are observed. We illustrate

this by using a three-component reaction diffusion system

~3!, which was proposed as a qualitative model of gas dis-

charge system32 and displays a variety of dynamic patterns

including particle-like objects called dissipative solitons:2,33

u t5DuDu1 f ~u !2k3v2k4w1k1 ,

tv t5D
v
Dv1u2v , ~3!

uw t5DwDw1u2w ,

FIG. 10. Time evolution of the inner product for the GS model and the

adjoint eigenfunction f2
* . ~a! The dark solid ~respectively, dotted! line

shows the evolution of the inner product ^U(t ,x)2S(k),f2
*& for k

50.0497 ~respectively, k50.0499). When k is increased and crosses kc

'0.049 78, the graph switches from negative to positive. The gray solid

~respectively, dotted! line indicates the associated evolutions of the distance

between the orbit and the scattor for k50.0497 ~respectively, k50.0499).

~b! The profile of the adjoint eigenfunction f2
* .

FIG. 11. Classification of the output after symmetric collision. Existence

region of self-replicating pattern ~SRP! and stable traveling pattern ~STP!
~upper panel!. Phase diagram of the outcome after symmetric collision

~lower panel!. C: spatiotemporal chaos, C8: spatiotemporal chaos after col-

lision, REPUL: repulsion, and ANNI: annihilation. There exists a triple-

junction point where regions C, C8, and ANNI meet.

FIG. 12. Transition from chaotic regime to annihilation. Input–output rela-

tion changes when the parameters cross G2 . ~a! F50.0194, k

50.047 643 0 (C8 region!. ~b! F50.0194, k50.047 643 1 ~ANNI region!.

Only the v component is shown here.
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where we set f (u)52u2u3. We consider Eq. ~3! with

(Du ,D
v

,Dw)5(5.031026,5.031025,1.031022) and t be-

ing a bifurcation parameter. The other parameters are set to

be k1527.0, k351.0, k458.5, and u51.0. In order to

integrate Eq. ~3!, we used a semi-implicit scheme with Dx

52210 and Dt51022 and the system size is either 0.5 or 1.0

subject to Neumann boundary conditions. This type of three-

component reaction diffusion system is an appropriate set-

ting for the study of scattering of particle-like solutions in

higher dimensional space.33 Here we focus on the symmetric

collisions in one-dimensional space. The input–output dia-

gram is depicted as in Fig. 15~a! as well as the bifurcation

diagram for the standing pulse as t varies. The initial data are

taken to be well-settled pulses as in the GS case. Traveling

pulses bifurcate supercritically at t'9.7([td) and they are

repulsive near the bifurcation point, in fact they scatter like

Fig. 15~b! ~left!. The input–output relation is however

switched from two-pulse-emission ~repulsion! to one-pulse-

emission at ts'16.132 807 9. Scattors are again the key to

understanding this transition, in fact there are two scattors

involved during the scattering process; one is the twin-horn

pattern of codim 3 @Fig. 16~d!#, similar to the GS case, and

the other is the fusion solution ~standing pulse! of codim 1

@Fig. 16~b!#. For t being slightly smaller than ts, the orbit

approaches the twin-horn pattern but eventually leaves and

repels each other. On the other hand when t is slightly larger

than ts, the orbit first approaches the twin-horn pattern, then

its middle part rises and becomes very close to the fusion

pattern @see the magnified picture of Fig. 16~a!#. Recalling

that the fusion solution has a drift instability for t.td, it

starts to move either to the left or right after some waiting

time @Fig. 16~a!#. Note that it is not predictable in which

direction the pulse eventually moves, since it comes from

tiny round-off errors. It is quite remarkable that the orbit

passes by two different scattors successively; twin-horn type

and fusion type. Although the twin-horn scattor has three

unstable eigenvalues, the first one is much larger than others

(l150.9069.l250.1297.l350.0138) and hence the dy-

namics is basically controlled by it. In view of the eigenform

F1 associated with l1 @Fig. 16~e!#, it is symmetric and has a

high peak in the middle, which drives a motion from twin-

horn to fusion. The transition point ts can be characterized in

a similar way as in the GS case, namely ts is given by the

zero point of the inner product ^U(t*(t),x)2S(t),F1
*&

where U(t*,x) denotes the solution profile to Eq. ~3! at t

5t*, S(t) the scattor of the twin-horn shape, F1
* the adjoint

eigenfunction associated with F1 , and t* is defined simi-

larly as before. Moreover this gives a criterion that if the

inner product is negative ~respectively, positive!, it emits two

pulses ~respectively, one pulse! with the same caveat as in

the GS case. The above ts is theoretically defined when the

initial data for U(t*,x) is taken as a symmetric pair of true

pulses on the whole line. Numerically, as in the GS case, ts

is well approximated by using well-settled pulses as initial

data. Still t is increased, the input–output relation remains

the same, however the dynamics during the scattering pro-

cess becomes oscillatory as in the right figure of Fig. 15~b!.

FIG. 13. Plots of the contour lines v50.2 of typical orbits in C and C8.

F50.0194 for both computations. ~a! In region C (k50.04735) the pulse

immediately starts to split and shows a complicated behavior. ~b! In region

C8 (k50.0475) the stable pulse exists, but it is switched to a regime of

spatiotemporal chaos after the symmetric collision.

FIG. 14. Response of the scattor (F50.0194). There exists a scattor of

twin-horn shape like ~D! ~a! and adding a small perturbation proportional to

the second eigenfunction ~D! ~c!, then, depending on its sign, the output is

either a spatiotemporal chaos ~negative! ~A! or annihilation ~positive! ~B!.
~C! is a longer time simulation of ~A! on a larger system size. ~D! A profile

of the scattor ~a! and the associated eigenfunctions ~b!–~e! similar to Fig.

7~C!.
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This is because the fusion pattern undergoes a Hopf bifurca-

tion at t'31.8 and the steady fusion scattor is replaced by

the time-periodic one @see the Hopf branch of the gray color

in Fig. 15~a!#. The new time-periodic scattor has only a drift

instability, therefore suppose a collision occurs in a perfectly

symmetric way, or equivalently, the pulse collides with a

boundary with Neumann boundary condition, which sup-

presses the drift instability, then it stays there as a stable

time-periodic solution like Fig. 15~c!. On the other hand, on

an extended domain, a tiny fluctuation causes a drift bifurca-

tion and emits a single pulse as in the right figure of Fig.

15~b!.

V. SCATTORS IN TWO-DIMENSIONAL SPACE

For the two-dimensional ~2D! case it is not at all trivial

to have a stable traveling spot, in fact two-component reac-

tion diffusion systems in general do not support such moving

patterns.33 The third species somehow plays an important

role to keep the shape of the spot firmly. The three-

component system ~3! turns out to serve as a representative

model for our purpose. We have a variety of scattering pro-

cesses including oblique collisions. Head-on collision may

not be generic in higher dimensional space, however quali-

tative properties such as the number of particles or topology

of localized patterns may be changed only at strong collision.

It should be remarked that the anisotropy coming from the

crystalline structure of material ~see Ref. 5! in the CO oxi-

FIG. 15. ~a! Schematic phase diagram for the gas-discharge system: D ~re-

spectively, H! denotes the drift ~respectively, Hopf! bifurcation of the stand-

ing pulse as t is increased. Stable traveling pulses emanate from D and

time-periodic solutions of codim 1 bifurcate from H as is shown in ~c!. The

periodic branch has a saddle-node point around t'36.2. S('16.1) indi-

cates the transition point of input–output relation from two-pulse-emission

to one-pulse-emission as t is increased. The lower column shows a sche-

matic diagram of input–output relations in which black disk indicates an

oscillation during the scattering process. ~b! Bird’s-eye views of input–

output for several t values ~left: t515.0, center: t520.0, right: t535.0).

The initial functions are taken to be a snapshot of well-settled traveling

pulse. The original simulations were done for the system size being equal to

1, however the central parts of them are displayed here. ~c! Oscillatory

scattor for t535.0 which bifurcates from H and has a drift instability, how-

ever it is observable on a half-space with zero-flux boundary conditions by

suppressing the drift instability. The system size is 0.5.

FIG. 16. Scattors of the fusion and twin-horn type: ~a! Transition from

repulsion to one-pulse emission occurs when t'ts. When t is slightly

larger than ts, the orbit traverses two different types of scattors successively.

Only the u component is shown here. ~b! The profile of the fusion pattern of

codim 1 and the unstable eigenfunction are depicted in ~c!. ~d! The profile of

twin-horn scattor of codim 3. Three unstable eigenvalues l150.9069.l2

50.1297.l350.0138 and the associated eigenfunctions F1 , F2 , and F3

are shown as ~e!–~g!. We omit the Goldstone mode here. The solid, gray,

and broken lines indicate u , v , and w components, respectively. The other

parameters are the same as in Fig. 15 and the system size is 1.0.
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dation reaction Pt~110! offers a field where traveling spots

have a preference of propagating direction so that they have

much more chance to have head-on collisions. We employ

the following parameter values for the 2D case of Eq. ~3!:

(Du ,D
v

,Dw)5(0.931024,1.031023,1.031022) and k1

527, k351, k458.5, and u51. See captions for other nu-

merical data. We set Dx5227 and Dt51022 and the five-

point difference approximation of the Laplacian is used. The

system size is 2.031.0. Here we employ t as a control pa-

rameter, although there may be other equivalent options to

have similar transitions. When t is small, there exist stable

standing spots and they interact in a repulsive way. As t is

increased, a standing spot undergoes a drift bifurcation at

td'28.9 and a traveling spot emerges supercritically ~Fig.

17!. The resulting traveling spots still interact in a repulsive

way near the bifurcation point and when they make a

head-on collision, the input–output looks like a bouncing

ball @Fig. 18~A!#. As t is increased, the first qualitative

change of the input–output relation occurs around tc

'69.548 53, i.e., repulsion is switched to emitting one-spot

@Figs. 18~A! and 18~B!#. Taking a closer look at the behav-

iors of the moving spots in the neighborhood of tc , there are

two kinds of scattors sitting there and the orbital behaviors

are sort out by them. Note that scattors in general exist in a

wider region of the parameter space, however they are highly

unstable and become visible only when orbits come close to

them at transition points. When t is slightly smaller than tc ,

the two spots come close and form a shape like a gourd for a

while @Fig. 18~A! t5200], then repel each other. On the

other hand when t is slightly larger than it, the two spots first

take a gourd-like shape after collision @Fig. 18~B! t5200],

then the central part of the gourd rises and becomes a fused

spot @Fig. 18~B! t5300] and it keeps its shape for certain

time, and finally the fused spot starts to move in one direc-

tion @Fig. 18~B! t5600]. It is numerically confirmed by the

Newton method that both gourd shape pattern and fused spot

exist as steady states of Eq. ~3!. They are unstable of codim

5 and codim 2 ~Figs. 19 and 20! besides two Goldstone

modes and play the role of scattors.

In fact, this is a 2D version of the two-step scattering

process we saw for the one-dimensional case in Sec. IV. The

transient process around tc can be described and classified

just by looking at the outputs from those scattors. For in-

stance, the first real positive eigenvalue of the gourd pattern

is much larger than the remaining unstable ones and the as-

sociated eigenform is axisymmetric ~Fig. 19!. Therefore

when we add a small perturbation of this eigenform to the

gourd scattor, the output, depending on its sign of the pertur-

bation, is either like Fig. 21~A!, i.e., the middle part of the

gourd rises and changes into a circular shape, or like Fig.

21~B!, i.e., the depth of the valley of the gourd becomes

deeper and splits into two propagating spots. This clarifies

the distinction between Figs. 18~A! and 18~B!. Suppose two

spots fused into a single spot as in Fig. 18~B! t5300, then

the orbital behavior is guided by the outputs from the fused

scattor in Fig. 22, namely it starts to move in one direction

because fused scattor has only drift instabilities. Note that

the direction of the drift is difficult to predict, since it de-

FIG. 17. Schematic phase diagram for the two-dimensional case: D denotes

the drift bifurcation of the standing spot as t is increased. When t is larger

than 94.0, the spot starts to split and there are no stable traveling spots.

FIG. 18. ~A!, ~B! Transition from reflection to fusion-drift spot process

occurs at t'69.548 53 as t is increased. ~C! When t is slightly larger than

ts'84.527 35, the splitting of the fused spot occurs. The gourd and fusion

scattors intervene in these scattering processes. Note that the direction of

two incoming pulses is parallel to that of two peaks of twin-horn scattor in

~A!, but orthogonal in ~C!. Only the u component is shown here. The system

size displayed here is 0.530.5.
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pends on a tiny fluctuation of the initial data and so on.

The input–output relation undergoes the second qualita-

tive change around ts'84.527 35 from one-spot-emission to

two-spot-emission @see Figs. 18~B! and 18~C!#. Two spots

merge into a single spot @Fig. 18~C! t5200], however the

orbit almost immediately changes into the twin-horn shape

@Fig. 18~C! t5280] and stays there for certain time, and

finally splits into two propagating spots. The gourd scattor

plays a similar role as in the previous case, however it should

be noted that the direction of the line connecting two humps

of the gourd is orthogonal to that of incoming spots, which

makes a contrast with the repulsion case @Fig. 18~A!#. This

observation may give an insight about the ‘‘asymmetry’’ of

the angles of incidence and reflection in dissipative

systems.34 In view of Fig. 18~C!, we see that the direction of

two outgoing spots is orthogonal to that of incoming ones,

namely the angle of incidence ~respectively, reflection! is p/2

~respectively, 0!. Noting that the straight line connecting the

tops of twin-horn scattor is parallel to the direction of out-

going spots, it is natural to see that the direction of the scat-

tor, which breaks the D` symmetry ~i.e., symmetry of the

circle consisting of rotations and reflections!, may cause the

asymmetry of the above two angles. Intuitively the distribu-

tions of the inhibitors have longer tails due to the difference

of diffusivities, hence outgoing spots prefer the orthogonal

direction. It should be remarked that the asymmetry of two

angles still persists for scattering slightly off the head-on

collision by continuous dependence of orbital behaviors on

initial conditions.FIG. 19. ~A! Gourd scattor when t'69.548 53. ~a! Only the u component

is shown here and the profiles along the x axis are depicted in ~b!. The solid,

gray, and broken lines indicate u , v , and w components, respectively. ~B!

The five unstable eigenvalues are l150.6275.l250.0959.l350.0601

.l450.0277.l550.0195. The associated eigenfunctions F i (i

51, . . . ,5) and the corresponding profiles are shown in ~a!–~h!.

FIG. 20. ~A! Fusion scattor when t'69.548 53. ~a! Only the u component

is shown here and the profiles along the x axis are depicted in ~b!. The solid,

gray, and broken lines indicate u , v , and w components, respectively. ~B!

The two unstable eigenvalues are l15l250.0921. The associated eigen-

functions F1 and F2 and the corresponding profiles are shown in ~a!–~d!.

FIG. 21. Response of the gourd scattor by adding a small perturbation in the

direction of F1 when t'69.548 53. ~A! @respectively, ~B!# Positive ~respec-

tively, negative! perturbation. These are consistent with the outputs in Figs.

18~A! and 18~B!.
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VI. CONCLUDING REMARKS

Scattering phenomena among traveling pulses is studied.

The input–output relation is changed depending on param-

eters and initial perturbations for dissipative systems. The

origin of such a diversity may be reduced to the local dy-

namics around scattors; unstable steady or time-periodic so-

lutions which control the flows nearby. The orbit approaches

a scattor right after collision and is sorted out along one of

the unstable directions of the scattor. It is not always true that

the output is an ordered pattern like pulses or spots, in fact a

spatiotemporal chaos is produced through scattering process

for the GS model ~2! in an appropriate parameter region. The

outputs can be classified by looking at the outcome from the

scattor along its unstable manifolds. Moreover the output can

be predictable by using the information on the solution pro-

file right after collision, scattors, and their unstable eigen-

forms. We illustrate by using several models in 1D and 2D

that scattors in dissipative systems may be ubiquitous and

play a pivotal role to understand the transient process of

scattering in dissipative systems.
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