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a dynamic treatment regime is a sequence of decision rules, one per stage of
clinical intervention. Each decision rule maps up-to-date patient informa-
tion to a recommended treatment. We briefly review a variety of approaches
for using data to construct the decision rules. We then review a critical in-
ferential challenge that results from nonregularity, which often arises in this
area. In particular, nonregularity arises in inference for parameters in the
optimal dynamic treatment regime; the asymptotic, limiting, distribution
of estimators are sensitive to local perturbations. We propose and evaluate
a locally consistent Adaptive Confidence Interval (ACI) for the parameters
of the optimal dynamic treatment regime. We use data from the Adap-
tive Pharmacological and Behavioral Treatments for Children with ADHD
Trial as an illustrative example. We conclude by highlighting and discussing
emerging theoretical problems in this area.

Keywords and phrases: Personalized medicine, data-driven decision mak-
ing, nonregular inference, adaptive confidence intervals.
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1. Introduction

The increasing ability to collect, manipulate, and access patient-level data com-
bined with a rapidly growing interest in personalized medicine among clinical
scientists has created an unprecedented opportunity to improve the quality of
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healthcare using data. The potential gains of a data-driven treatment are es-
pecially high in the context of chronic illness in which the treatments must be
adaptive to the uniquely evolving health status of each patient. Dynamic treat-
ment regimes (DTRs), also called treatment policies, adaptive interventions
or adaptive treatment strategies, were created to inform the development of
health-related interventions composed of sequences of individualized treatment
decisions. These regimes formalize sequential individualized treatment decisions
via a sequence of decision rules that map dynamically evolving patient informa-
tion to a recommended treatment. An optimal DTR optimizes the expectation
of a desired cumulative outcome over a population of interest. An estimated
optimal DTR has the potential to: improve patient outcomes through adaptive
personalized treatment; reduce treatment burden and resource demands by rec-
ommending treatment only if, when, and to whom it is needed; and to generate
new scientific hypotheses about heterogeneous treatment effects over time both
across and within patients.

We consider the development of DTRs using data from Sequential, Multiple,
Assignment Randomized Trials (SMART) (Lavori and Dawson, 2000; Murphy,
2005a; Nahum-Shani et al., 2012a; Lei et al., 2012). In these studies, each partic-
ipant moves through stages of treatment (usually one to three). At each stage,
each participant is randomized among treatments. See PSU Methodology Cen-
ter (2014b) for a partial list of such studies. The Adaptive Pharmacological
and Behavioral Treatments for Children with ADHD Trial (W. Pelham (PI);
Nahum-Shani et al., 2012a; Lei et al., 2012) exemplifies a common SMART;
we use this study for illustration. In the first stage of treatment, children are
uniformly randomly assigned to either a low dose of methylphenidate (a psy-
chostimulant drug) or a low intensity of behavioral modification therapy. Be-
ginning at 2 months and monthly thereafter (for the remainder of the 8 month
study), each child is assessed for nonresponse; nonresponse occurs if two different
teacher ratings concerning the child’s school behavior falls below a prespecified
criterion. If nonresponse occurs the child is re-randomized uniformly between
two tactics: intensify current treatment or augment the current treatment with
the other treatment (for example, augment methylphenidate with behavioral
modification therapy). As long as the child does not meet the criterion for non-
response the child remains on current treatment. See Figure 1 for a schematic
of this trial.

The estimation of optimal DTRs presents a number of interesting technical
challenges and exciting open problems, one of which is inference for nonregular
parameters (Bickel et al., 1993). In particular, if an estimated optimal DTR is to
inform clinical decisions or guide future research, it is essential to have reliable
measures of uncertainty for the estimated regime. However, many of the most
commonly used approaches to estimate an optimal DTR involve estimation and
inference for parameters that are nonsmooth functionals of the underlying gen-
erative distribution. Consequently, estimators of these quantities are necessarily
nonregular and asymptotically biased (Van der Vaart, 1991; Robins, 2004; Hi-
rano and Porter, 2009); standard asymptotic approximations to the sampling
distributions of these estimators cannot be used directly to form reliable confi-
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Fig 1. Schematic describing the Adaptive Pharmacological and Behavioral Treatments for
Children with ADHD SMART [W. Pelham (PI)].

dence intervals or to carry out hypothesis testing. The primary purpose of this
paper is to discuss the bias and other inferential problems related to this non-
regularity and to offer potential solutions for these problems in the context of
DTR research.

In Section 2, we briefly review different methods for constructing optimal
DTRs and provide greater detail for one such method, Q-learning. In Section 3,
we discuss the problem of asymptotic bias and use local alternatives to show
that bias-correcting shrinkage methods may perform infinitely worse than un-
corrected methods. In Section 4, we discuss interval estimation and propose a
locally consistent confidence interval for parameters indexing the optimal DTR.
In Section 5, we examine the finite sample performance of the proposed confi-
dence interval using simulated data. In section 6, we perform an analysis of data
from a clinical trial involving school-aged children with ADHD. We use this trial
to illustrate open problems in model selection and high-dimensional modeling for
DTRs that arise even in relatively simple settings. Section 7, provides a general
discussion of some open problems relating to estimation and inference of DTRs.

2. Review of methods for constructing dynamic treatment regimes

Throughout, we consider the setting in which there are two stages of binary
treatment; this simple setting is sufficient to illustrate the salient theoretical
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challenges. Furthermore many SMARTs including the ADHD study described
above involve two stages of binary treatment. On each subject, we observe a
time-ordered trajectory (X1, A1, X2, A2, X3) where: X1 denotes baseline (pre-
randomization) subject information; A1 denotes the initial treatment, coded
to take values in {0, 1}; X2 denotes subject information collected during the
course of the first treatment but prior to the second treatment;A2 denotes the
second treatment, coded to take values in {0, 1}; X3 denotes subject informa-
tion collected during the course of the second treatment. The initial treatment
A1 is randomly assigned with probability possibly depending on X1. The sec-
ond treatment A2 is randomly assigned with probability possibly depending
on (X1, A1, X2). In the ADHD study both A1 and A2 are randomized with
probability 1/2 between the binary alternatives. Let Ht, t = 1, 2 denote the
information available to the decision maker at time t. Thus, H1 = X1 and
H2 = (X⊺

1 , A1, X
⊺

2 ). In the ADHD study, H1 contains baseline ADHD severity,
an indicator of oppositional defiant disorder, and an indicator of prior exposure
to ADHD medication; H2 contains H1, the initial treatment assignment, an
indicator of adherence to initial treatment, and month of non-response to ini-
tial treatment. There may be an outcome at each stage, say Y1 and Y2 given by
Y1 = y1(X1, A1, X2) and Y2 = y2(X1, A1, X2, A1, X3) where y1 and y2 are known
functions. Here we assume that both Y1 and Y2 are continuous variables that
are coded so that higher values are better. In this case, define Y , Y1+Y2 to be
the total outcome. Alternately there may only be an end of study outcome, also
denoted by Y . This is the case in the ADHD example, in which Y is a reverse-
coded rating of the child’s impairment at the end of the last month of the study.

In this two stage setting, a DTR is a pair of decision rules π = (π1, π2),
where πt : dom(Ht) → dom(At) so that a patient presenting at time t with
Ht = ht is assigned treatment πt(ht). The value of a DTR π, denoted EπY ,
is the expected outcome under the restriction that At = πt(Ht), t = 1, 2. The

optimal DTR, πopt, satisfies Eπ
opt

Y = supπ E
πY . Alternately, the optimal DTR

can be characterized by Q-functions. In the two stage setting, the Q-functions
(Sutton and Barto, 1998; Murphy, 2005b) are

Q2(h2, a2) , E(Y |H2 = h2, A2 = a2),

Q1(h1, a1) , E

(
max
a2

Q2(H2, a2)
∣∣H1 = h1, A1 = a1

)
, (1)

so that Q2(h2, a2) measures the quality of assigning treatment a2 to a patient
presenting with h2 at the second stage, and Q1(h1, a1) measures the qual-
ity of assigning treatment a1 to a patient presenting with h1 at baseline as-
suming optimal treatment selection at the second stage. The optimal DTR is
given by the dynamic programming solution, πdp

t (ht) = argmaxat Qt(ht, at)
(Bellman, 1957).

Methods for estimating optimal DTRs from data can be broadly classified
as either indirect or direct estimation methods (Barto and Dieterich, 2004). In-
direct estimation methods use approximate dynamic programming with para-
metric, semiparametric, or nonparametric methods to first estimate models for
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the conditional mean or other aspects of the conditional distributions of the
outcomes Y1, Y2, Y , (for example, models for the Q-function) and then from
these models infer the optimal DTR. Indirect estimation includes g-estimation
in structural nested models (Robins, 1989, 1993, 1997) and its variations (Mur-
phy, 2003; Robins, 2004). These methods were originally developed for use with
observational data, thus much of the work focused on causal inference. See
Robins (1986, 1987) for a formal theory of causal inference for estimating the
causal effect of a DTR. Other indirect methods include Q-learning (Murphy,
2005b; Chakraborty and Moodie, 2013; Qian et al., 2013; Chakraborty and
Murphy, 2014; Laber et al., 2014), A-learning (Murphy, 2003; Robins, 2004),
and regret-regression (Henderson et al., 2009). We provide a detailed discussion
of Q-learning below.

Direct estimation methods, also known as policy search methods, directly
estimate the marginal mean, EπY for all DTRs in a pre-specified class and then
maximize the estimator to obtain an estimated DTR. These methods do not
require models for conditional means or other aspects of the conditional distri-
butions of the the outcomes (Y1, Y2, Y ). Recent statistical work in this area
includes marginal structural mean models (Robins et al., 2008; Orellana et al.,
2010), augmented value maximization (Zhang et al., 2012, 2013), and outcome
weighted learning (Zhao et al., 2012, 2013). Again, many direct methods were
developed for use with observational data; these methods employ inverse prob-
ability weighting methods (Robins, 1998, 1999; Murphy et al., 2001; van der
Laan, 2006; van der Laan and Petersen, 2007; Robins et al., 2008; Orellana
et al., 2010).

One potential advantage of indirect methods is that the requisite outcome
models can be built using standard statistical models (generalized regression
models, etc.), which can be checked for goodness of fit. This is particularly at-
tractive when scientific theory and/or expert opinion can be used in forming the
outcome model. A potential drawback is that the estimator of the optimal DTR
requires that the outcome models are correctly specified. In contrast, most direct
estimation methods employ a non- or semi-parametric estimator of EπY . For
example, Zhao et al. (2012) used an inverse probability of treatment weighted
estimator of EπY whereas Zhang et al. (2012, 2013) used an augmented inverse
probability of treatment weighted estimator. Both of these estimators do not
require correctly specified conditional outcome models to be consistent and as
a result are robust to model misspecification. However, direct estimation meth-
ods generally produce estimators of the parameters (in an DTR) with higher
variance than indirect estimation methods. This fact has been recognized for
some time in the computer science literature with efforts there focused on using
outcome models in combination with direct methods so as to reduce variance
(Sutton et al., 1999; Konda and Tsitsiklis, 2003). Indeed, there is a vast lit-
erature concerning both indirect and direct methods for constructing optimal
policies, (i.e., dynamic treatment regimes) in the field of reinforcement learning
with many good introductory books (Sutton and Barto, 1998; Si et al., 2004;
Busoniu et al., 2010; Szepesvári, 2010; Wiering and van Otterlo, 2012). How-
ever, the focus of this work is on algorithms for estimation. To the best of our
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knowledge, inference, e.g., confidence intervals or test statistics, that can be used
to discuss the level of confidence concerning the constructed DTR with clinical
scientists, are absent.

To illustrate and discuss inferential challenges, we consider estimators con-
structed using Q-learning. Q-learning is attractive to statistical practitioners be-
cause Q-learning can be viewed as a multi-stage extension of regression (Nahum-
Shani et al., 2012b), thus enabling much of the intuition developed in that area
to be (somewhat) easily translated to the area of DTRs. Q-learning is an in-
direct method of constructing a DTR from data; in Appendix A, we illustrate
a direct method, outcome-weighted learning, and illustrate that the use of this
method poses the same inferential challenges as Q-learning. The problems we
identify with Q-learning apply to many of the aforementioned estimators.
Q-learning provides estimators of theQ-functions. Owing to the max-operator

in (1), Q1 is a nonsmooth functional of the underlying generative distribution;
hence, the estimand is also nonsmooth. Next we use Q-learning to illustrate how
this nonsmoothness impacts the sampling distributions of DTR estimators.

2.1. Q-learning

Q-learning estimates the optimal DTR by postulating regression models for the
Q-functions and then taking the plug-in dynamic programming solution. Con-
sider linear models for the Q-functions of the form Qt(ht, at;βt) = h⊺t,0βt,0 +
ath

⊺

t,1βt,1, where ht,0 and ht,1 are known feature vectors constructed from ht
and βt = (β⊺

t,0, β
⊺

t,1)
⊺. These feature vectors might contain splines or other non-

linear basis expansions. As an aside, we note that an open problem in DTR
research is the development of a principled feature construction method. The
above linear model highlights a crucial difference between constructing features
for prediction and constructing features for decision making. To see this, note
that from the linear model for the Q-function, only the features ht,1 will be used

by decision rule πdp
t . Thus, high quality features for decision making (as opposed

to prediction) should interact with the treatment at sufficiently strongly so that

the πdp
t (ht) varies by ht,1. At this time, research focused on discovering features

for decision making has been in the one-step setting (see Gunter et al., 2011;
Foster et al., 2011; Dusseldorp and Van Mechelen, 2013; Janes et al., 2013); the
multistage setting is essentially open.

The parameters indexing the Q-functions are estimated using least squares.
Let Pn denote empirical expectation, for example Pnf(Z) = n−1

∑n
i=1 f(Zi),

where {Zi}ni=1 is a random sample. One version of the Q-learning algorithm is
as follows.

1. Stage 2 regression: β̂2 = argminβ2 Pn(Y2 −Q2(H2, A2;β2))
2.

2. Predicted second stage outcome: Ỹ = Y1 +maxa2 Q2(H2, a2; β̂2).

3. Stage 1 regression: β̂1 = argminβ1 Pn(Ỹ −Q1(H1, A1;β1))
2.

The Q-learning estimator of πdp is thus π̂t(ht) = argmaxat Qt(ht, at; β̂t). The

second stage coefficients, β̂2, are ordinary least squares estimators and are
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thus regular and asymptotically normal under mild conditions (see Section 4).
However, the first stage coefficients depend on the maximized second stage Q-
function; because the max operator is nonsmooth, estimated coefficients β̂1 are
in turn a nonsmooth function of the data.

For notational simplicity from here until Section 6, Y1 ≡ 0 so that Y = Y2,
and thus we will omit any subscripts on Y . Define the following population
analogs of the estimators used in Q-learning:

β∗
2 , argmin

β2

P (Y −Q2(H2, A2;β2))
2
,

Ỹ ∗ , max
a2

Q2(H2, a2;β
∗
2) = H⊺

2,0β
∗
2,0 +

[
H⊺

2,1β
∗
2,1

]
+
,

β∗
1 , argmin

β1

P
(
Ỹ ∗ −Q1(H1, A1;β1)

)2
,

where P denotes expectation with respect to the distribution of (X1, A1, X2,
Y1, A2, X3, Y2), and the second line follows from the fact that a2 ∈ {0, 1}. In
addition, define Bt , (H⊺

t,0, AtH
T
t,1)

⊺, Σt,∞ , PBtB
⊺

t for t = 1, 2, and Σ̂t ,

PnBtB
⊺

t . We assume Σ̂t is invertible. Then, β̂1 = Σ̂−1
1 PnB1Ỹ , β∗

1 = Σ−1
1,∞PB1Ỹ

∗

so that
√
n(β̂1 − β∗

1) = Σ̂−1
1

√
nPnB1(Ỹ − B⊺

1β
∗
1). It is useful to decompose

Σ̂−1
1

√
nPnB1(Ỹ −B⊺

1β
∗
1 ) as

Sn + Σ̂−1
1 PnB1Un, (2)

where

Sn = Σ̂−1
1

√
nPnB1

[ (
H⊺

2,0β
∗
2,0 +

[
H⊺

2,1β
∗
2,1

]
+
−B⊺

1β
∗
1

)
+H⊺

2,0

(
β̂2,0 − β∗

2,0

)]
,

Un =
√
n
([
H⊺

2,1β̂2,1
]
+
−
[
H⊺

2,1β
∗
2,1

]
+

)
.

The term Sn is smooth and asymptotically normal but Un is nonsmooth in
β̂2,1. To understand the implications of this nonsmoothness, fix H2,1 = h2,1.
If h⊺2,1β

∗
2,1 6= 0, then Un

∣∣
H2,1=h2,1

is asymptotically normal with mean zero.

However, if h⊺2,1β
∗
2,1 = 0 then Un

∣∣
H2,1=h2,1

= [h⊺2,1
√
n(β̂2,1 − β∗

2,1)]+, which

converges to the positive part of a mean zero normal random variable. Thus,
the limiting distribution of

√
n(β̂1 − β∗

1) depends in a nonuniform manner on
the value of β∗

2,1 and the distribution of H2,1.
If H2,1 is composed only of continuous variables, then some sceptism is nat-

ural because P [H⊺

2,1β
∗
2,1 = 0] = 0. However, in most clinical trials, the effect of

treatment can be expected to be small (H⊺

2,1β
∗
2,1 is the effect of stage 2 treat-

ment) relative to the noise level. Thus, even though H⊺

2,1β
∗
2,1 may not be 0, its

estimator can be expected to be near 0 with high probability. And, as we shall
see, the small sample behavior of

√
n(β̂1 − β∗

1) is poorly approximated by fixed-
parameter asymptotic results that assume P [H⊺

2,1β
∗
2,1 = 0] = 0 (see discussion of

bias in Section 3 and evaluation of confidence intervals in Section 5). Formally,

β̂1 is a non-regular estimator because under moving-parameter (order 1/
√
n in
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our setting) local asymptotics, its limiting distribution depends on the direction
along which the local parameter approaches β∗

2,1 (Tsiatis, 2006). We show for-

mally that β̂1 is non-regular in Section 4. Moving-parameter asymptotic results
better reflect small sample behavior because they allow H⊺

2,1β
∗
2,1 to remain near

to zero even in infinite samples (Leeb and Pötscher, 2003, 2005; Andrews and
Guggenberger, 2009; Laber and Murphy, 2011).

3. Asymptotic bias

In the study of nonregular estimators, much attention has been given to asymp-
totic bias; characterized here as bias that is O(1/

√
n). Because asymptotic bias

may be indicative of bias in small samples, incorrect Type I error levels in hy-
pothesis testing, and poor coverage rates of confidence intervals (e.g., Blumen-
thal and Cohen, 1968; Casella and Strawderman, 1981; Bickel, 1981; Robins,
2004; Marchand and Strawderman, 2004; Chakraborty et al., 2009; Moodie
et al., 2010), there is great interest in characterizing and reducing asymptotic
bias. This interest certainly rises in the construction of DTRs because if H⊺

2,1β
∗
2,1

is near 0 with high probability, then one anticipates problems in approximating
the distribution of

√
n(β̂1−β∗

1). Considering the ADHD example, one might be
concerned about asymptotic bias because in most clinical trials the treatment
effects, if non-zero, will be small.

Here, we (i) characterize the points in the parameter space at which asymp-
totic bias occurs in the first stage Q-learning estimator; (ii) show that, given
the correct amount of shrinkage, one can reduce the asymptotic bias by using a
shrinkage estimator; (iii) prove that shrinking too aggressively can lead to arbi-
trarily bad performance in finite samples; and (iv) illustrate, via a toy example,
that one can find points in the parameter space that are local to the nonregular
parameter values and at which the shrinkage increases the bias relative to no-
shrinkage. These results lead us to Section 4 in which we develop a method for
constructing confidence intervals (for the first stage parameters) that does not
involve shrinkage for bias reduction.

We use E to denote expectation over P (the distribution of the observed
data). Let c ∈ Rdim(β∗

1 ) be fixed. For any
√
n-consistent estimator β̃1 of β∗

1 with√
n(β̃1−β∗

1 ) converging in distribution to M, define the c-directional asymptotic
bias of β̃1 as

Bias(β̃1, c) , Ec⊺M.

Define

g2(B2, Y ;β∗
2) , B2(Y −B⊺

2β
∗
2 ),

g1(B1, H2;β
∗
1 , β

∗
2) , B1

(
H⊺

2,0β
∗
2,0 +

[
H⊺

2,1β
∗
2,1

]
+
−B⊺

1β
∗
1

)
.

Throughout we assume:

(A1) Histories H2, features B1, and outcomes Y satisfy the moment inequalities
P ||H2||2 ||B1||2 <∞ and PY 2||B2||2 <∞.

(A2) Matrices Σt,∞ and Cov (g1, g2) are strictly positive definite.
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Assumptions (A1)–(A2) are quite mild, requiring only full rank design matri-
ces and some moment conditions. Using standard methods, it can be shown
that Vn ,

√
n(β̂2 − β∗

2 ) is asymptotically normal with mean zero and variance-
covariance Ω = (PB2B

⊺

2 )
−1PB2B

⊺

2 (Y −B⊺

2β
∗
2 )

2(PB2B
⊺

2 )
−1. Let Σ21,21 denote

the submatrix of Ω corresponding to the limiting asymptotic covariance of√
n(β̂2,1 − β∗

2,1) and Σ̂21,21 the corresponding plug-in estimator. The following
result is proved in Appendix B.

Theorem 3.1. Assume (A1) and (A2) and let c ∈ Rdim(β∗
1 ) be fixed. Then:

Bias(β̂1, c) =
c⊺Σ−1

1,∞P
[
B1

√
H⊺

2,1Σ21,21H2,11H⊺

2,1β
∗
2,1=0

]

√
2π

.

The preceding results show that the asymptotic bias of Q-learning is:
(i) only nonzero when the second stage treatment effect, H⊺

2,1β
∗
2,1, satisfies

P (H⊺

2,1β
∗
2,1 = 0) > 0; (ii) bounded under (A1); and (iii) is a weighted aver-

age of c⊺Σ−1
1,∞B1 with weights

√
nV ar(H⊺

2,1β̂2,11H⊺

2,1β
∗
2,1=0|H2,1)/

√
2π =

√
H⊺

2,1Σ2,1H2,11H⊺

2,1β
∗
2,1=0/

√
2π, these weights will be large when the estimated

treatment effect has high variance for subjects with a null treatment effect. From
(iii) it can be seen that the asymptotic bias might be reduced if the variability

of H⊺

2,1β̂2,1 is reduced for histories that satisfy H⊺

2,1β
∗
2,1 = 0. Shrinkage methods

have been proposed as one way to reduce this variability.

A common strategy for reducing asymptotic bias in Q-learning is to shrink
the predicted outcome Ỹ . Moodie et al. (2010) proposed a hard-thresholding
approach; Chakraborty et al. (2009) proposed a soft-thresholding estimator; and
more recently Song et al. (2011) proposed a penalized version of Q-learning. We
use the soft-thresholding estimator proposed by Chakraborty et al. (2009) as
an illustrative example. Chakraborty et al. (2009) illustrate, using simulation
studies, that soft-thresholding reduces bias in small samples. Define

Ỹ σ , β̂⊺

2,0H2,0 +
[
H⊺

2,1β̂2,1

]
+

(
1−

σH⊺

2,1Σ̂21,21H2,1

n(β̂⊺

2,1H2,1)2

)

+

, (3)

where σ is a nonnegative constant. For positive values of σ, the soft-thresholding
estimator shrinks the nonsmooth part of the predicted outcome toward zero. The
first stage soft-thresholding estimators are given by

β̂σ1 , argmin
β1

Pn

(
Ỹ σ −Q1(H1, A1;β1)

)2
.

The following result is proved in Appendix B.

Theorem 3.2. Assume (A1) and (A2) and let c ∈ Rp1 be fixed. Then:

1.
∣∣Bias(β̂σ1 , c)

∣∣ ≤
∣∣Bias(β̂1, c)

∣∣ for any σ ≥ 0.
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2. If Bias(β̂1, c) 6= 0 then for σ > 0

Bias(β̂σ1 , c)

Bias(β̂1, c)
= exp{−σ/2} − σ

∫ ∞

√
σ

1

x
exp{−x2/2}dx.

Chakraborty et al. (2009) recommend σ = 3, which corresponds to an approx-
imate empirical Bayes estimator; plugging σ = 3 into the above expression shows
an approximate 13-fold reduction in asymptotic bias. The soft-thresholding es-
timator has smaller asymptotic bias than Q-learning, and the preceding result
seems to suggest that larger values of σ are preferred. Indeed, if σ → ∞ the
asymptotic bias of the soft-thresholding estimator converges to zero. These re-
sults are point-wise in the parameter space for (β1, β2); that is, for any fixed
true parameter value of (β1, β2) the asymptotic bias converges to zero.

While it appears that these methods reduce asymptotic bias, it is known that
the methods cannot completely remove the asymptotic bias without driving the
mean squared error to infinity (see, for example, Liu and Brown, 1993; Chen,
2004). Furthermore, even considering just the bias, if we evaluate the bias in a
uniform (across the parameter space) manner the situation looks quite different.
In fact, from this viewpoint, we see that soft-thresholding may actually incur
significantly more bias in finite samples than Q-learning, especially for large
values of σ. Intuitively reducing bias at one point in the parameter space leads
to increased bias at other points. We illustrate the bias both from a theoretical
viewpoint and provide a toy example that highlights the bias.

Local or moving-parameter asymptotics play an important role in the theo-
retical study of nonsmooth estimators, such as β̂1. Local asymptotics provide a
way to understand and study the behavior of a nonsmooth estimator in a more
uniform manner across the parameter space, in particular by using generative
models that are arbitrarily ‘close’ to the problematic nonsmooth points in the
parameter space. Consider the following local asymptotic framework.

(A3) For any s ∈ R
dim(β∗

2,1), there exists a sequence of local alternatives Pn
converging to P in the sense that:

∫ [√
n
(
dP 1/2

n − dP 1/2
)
− 1

2
vsdP

1/2

]2
→ 0,

for some real-valued measurable function vs for which

• if β∗
2,n , argminβ Pn(Y −Q2(H2, A2;β)

2, then β∗
2,1,n , β

∗
2,1+s/

√
n+

o(1/
√
n) and

• Pn||H2||2 ||B1||2, PnY 2
2 ||B2||2 are bounded sequences.

See the Appendix for the relationship between vs and s. Define Ỹ ∗
n = H⊺

2,0β
∗
2,0,n+

[H⊺

2,1β
∗
2,1,n]+ and β∗

1,n , argminβ Pn(Ỹ
∗
n − Q1(H1, A1;β))

2. For any estimator

β̃1 of β
∗
1 for which

√
n(β̃1−β∗

1,n) converges in distribution under Pn to a random
vector indexed by s, say M(s), define the c-directional asymptotic bias under
Pn as

Bias(β̂1, c, s) , Ec⊺M(s).

The following result is proved in Appendix B.
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Theorem 3.3. Assume (A1)–(A3) and let c ∈ Rdim(β∗
1 ) be fixed. Further assume

that P1H⊺

2,1β
∗
2,1=0 > 0. Then:

1. sup
s∈R

dim(β∗
2,1)

∣∣Bias(β̂1, c, s)| ≤
||c⊺Σ−1

1,∞||P [||B1||
√
H⊺

2,1Σ21,21H2,11H⊺

2,1
β∗
2,1

=0]
√
2π

+

o(1).

2. sup
s∈R

dim(β∗
2,1

)

∣∣Bias(β̂σ1 , c, s)
∣∣→ ∞ as σ → ∞.

The preceding suggests that thresholding too aggressively may lead to large
bias in finite samples; results of this type are anticipated by Liu and Brown
(1993); Hirano and Porter (2012).

Next we consider a toy example which more clearly illuminates the effect of
thresholding on bias. Consider data {(Ai, Yi)}ni=1 from a two-arm randomized
study where: A ∈ {0, 1} denotes a randomly assigned binary treatment; and
Y ∈ R denotes the outcome coded so that higher values are better. Assume
subjects are randomized with equal probability so that P (A = 1) = 1/2. Define
µ∗
a , E(Y |A = a), and θ∗ , max(µ∗

0, µ
∗
1) so that θ∗ denotes mean outcome if all

subjects are assigned treatment argmaxa µ
∗
a. Let µ̂a , PnY 1A=a/Pn1A=a, then

the plug-in estimator of θ∗ is

θ̂ = max(µ̂0, µ̂1) =
µ̂0 + µ̂1

2
+

|µ̂0 − µ̂1|
2

,

which is the sum of a smooth term, (µ̂0 + µ̂1)/2, and a non-smooth term |µ̂0 −
µ̂1|/2. In this example, the problematic area of the parameter space is ΘBad =
{(µ1, µ2) ∈ R2 : µ1 = µ2}; under mild regularity conditions it can be seen that

if θ∗ /∈ ΘBad, then
√
n(θ̂ − θ∗) converges in distribution to mean zero normal

random variable, whereas if θ∗ ∈ ΘBad, then
√
n(θ̂−θ∗) converges in distribution

to (Z0 + Z1)/2 + |Z0 − Z1|/2 where Z0, Z1 are independent mean zero normal
random variables. Thus, when θ∗ ∈ ΘBad, since E|Z0 − Z1| ≥ 0 with equality

only when both Z0 and Z1 are degenerate, θ̂ has positive asymptotic bias.
One approach to reducing the asymptotic bias of θ̂ is by thresholding the

nonsmooth term in θ̂. Assume that Var(Y |A = a) = 1 for a = 0, 1. For σ > 0,
define

θ̂σ ,
µ̂0 + µ̂1

2
+

|µ̂0 − µ̂1|
2

(
1− 4σ

n(µ̂0 − µ̂1)2

)

+

, (4)

so that (4) is analogous to (3). In fact, (4) is a special case of (3) and is the
resulting estimator of the mean response at the first stage when there are no
stage 2 covariates (except for the treatment indicator). Thus, analogous argu-

ments to those in the preceding section show that, for θ∗ ∈ ΘBad, θ̂
σ has smaller

asymptotic bias than θ̂, and that this asymptotic bias decreases as σ increases.
Similarly, a local asymptotic analysis suggests that aggressive shrinkage may
lead to large bias in finite samples.

We now illustrate the small sample behavior of θ̂σ using simulated data. We
assume Y |A = a ∼ Normal(µa, 1) and that treatment assignment is perfectly
balanced. We use 1000 Monte Carlo replications to estimate bias for each pa-
rameter setting. The leftmost plot in Figure 2 shows the bias as a function of
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Fig 2. Left: Bias, in units of 1/
√
n, as a function of effect size µ∗

1 −µ∗
0 and tuning parameter

σ for n = 10. Center: Bias, in units of 1/
√
n, as a function of effect size µ∗

1 −µ∗
0 and tuning

parameter σ for n = 100; Right: Same as center plot after rescaling y-axis.

the treatment effect µ∗
1−µ∗

0 and tuning parameter σ for n = 10. Note that when
n = 10 a standard normal 90% confidence interval for µ∗

1 − µ∗
0 has a width of

about two. Thus, the y-axis has been scaled to roughly correspond to a 90%
confidence interval centered around the problematic point 0. From the plot it
is clear that if µ∗

1 − µ∗
0 = 0, larger values of σ correspond to lower bias; how-

ever, as anticipated from the local asymptotic analysis, large values of σ cause
the bias to increase dramatically as µ∗

1 − µ∗
0 moves away from zero but stays

within the confidence interval. As the data do not contain sufficient information
to differentiate between different parameter values within the confidence inter-
val, an adaptive shrinkage strategy based on the estimated treatment difference
µ̂1 − µ̂0 is not possible. The middle plot in Figure 2 shows the same bias plot
for n = 100 displayed with the same y-axis as the n = 10 case; the very small
yellow-red cross-section above the region around σ = 0 is anticipated by the
fixed asymptotic analysis which states for if µ∗

1 − µ∗
0 6= 0 the bias decreases as

the sample size increases. However, the rightmost plot in Figure 2 shows the
bias for n = 100 after rescaling the y-axis to reflect power (i.e., now the range
of the y-axis corresponds to the length of a standard normal 90% confidence
interval for µ∗

1 − µ∗
0 when n = 100); the figure is essentially identical to the

leftmost (n = 10) plot. The similarity of these plots after rescaling exemplifies
the insights gained from a local asymptotics approach which allows notions of
‘closeness’ to persist as the sample size increases.

4. Confidence intervals

If estimated optimal DTRs are to be used to inform clinical decision making or
future research it is essential that they be accompanied by reliable measures of
uncertainty. For example, confidence intervals for the parameters in Q-learning
can be used to determine which subject covariates are significant, i.e., important
for choosing treatment at time t. If a covariate is not important for choosing
treatment then it may be possible to forgo collecting it thereby potentially
reducing cost and patient burden. Furthermore, a confidence interval for a linear
combination of parameters in Q-learning can be used to construct a confidence
set for argmaxat Qt(ht, at;β

∗
t ); if this confidence interval equals {0, 1} then there

is insufficient evidence to recommend a single treatment for a patient presenting
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with Ht = ht and other factors, e.g., clinical judgment, patient preference, cost,
and availability, should be used to choose a treatment.

Constructing valid confidence intervals from nonregular estimators is difficult
because it is impossible to uniformly consistently estimate the sampling distri-
bution of a nonregular estimator (Van der Vaart, 1991; Andrews, 2000; Leeb
and Poetscher, 2003; Hirano and Porter, 2012). Estimators that reduce asymp-
totic bias, for example thresholding (Chakraborty et al., 2009) and singular
penalization (Song et al., 2011; Goldberg et al., 2012), were originally suggested
as methods for constructing high-quality confidence intervals for parameters in
Q-learning. However, these methods involve additional nonsmooth operations
of the data and it can be shown that the confidence intervals proposed with
these estimators are inconsistent under local alternatives. Furthermore, asymp-
totic bias only reflects the mean of the sampling distribution whereas confidence
intervals require estimation of the tails of the sampling distribution. Thus, in
general reducing asymptotic bias is not sufficient for valid inference.

On the other hand, confidence intervals that deliver the desired level of confi-
dence can be used to conduct inference even in the presence of bias on the order
1/

√
n. In this section we: (i) review a projection interval proposed by Robins

(2004); and (ii) propose a new procedure that is adaptive and locally consistent.
Additional discussion and potential extensions of the methods proposed here are
provided in Section 7.

4.1. A projection interval

Recall that h⊺2,1β
∗
2,1 is the second stage treatment effect (see Section 2.1) for

feature vector h2,1; small sample inferential problems occur when this second
stage treatment effect is small with positive probability (e.g., small sample bias,
poor coverage properties of standard CIs). Robins (2004) using ideas similar
to those of Berger and Boos (1994) proposed a projection confidence interval.
A projection region for β∗

1 is constructed as follows. If β∗
2,1 were known then it

is possible to form a regular asymptotically normal estimator of β∗
1 , say β̂1(β

∗
2,1)

(given below), and use this estimator to form a valid (1−α)× 100% confidence
region for β∗

1 , say In,α(β
∗
2,1). However, since β

∗
2,1 is unknown, a conservative

approach is to first form a (1 − η) × 100% confidence region for β∗
2,1, say ζn,η.

Second for each β2,1 ∈ ζn,η form a confidence region for β̂1(β2,1), say In,α(β2,1).
The projection confidence region for β∗

1 is the union of In,α(β2,1) over all where
β2,1 ∈ ζn,η. There are two chances to ‘miss’ with this approach: (i) ζn,η may fail
to contain β∗

2,1 which occurs with probability no more than η; and (ii) β∗
2,1 ∈ ζn,η

but In(β
∗
2,1) fails to contain β∗

1 which occurs with probability no more than α.
Thus, the coverage of the foregoing procedure is at least (1− α− η)× 100%.

In the context of Q-learning this idea is implemented as follows. For any β2,1
define Ỹ (β2,1) , maxa2 Q2(H2, a2; (β̂

⊺

2,0, β
⊺

2,1)) and Ỹ
∗(β2,1) , maxa2 Q2(H2, a2;

(β∗⊺
2,0, β

⊺

2,1)); subsequently define β̂1(β2,1) , argminβ1 Pn(Ỹ1(β2,1)−Q1(H1, A1;

β1))
2 and β∗

1(β2,1) , argminβ1 P (Ỹ
∗−Q1(H1, A1;β1))

2. Note that β∗
1 = β∗

1 (β
∗
2,1).
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For β2,1 fixed, it follows from standard arguments that
√
n(β̂1(β2,1)−β∗

1 (β2,1)) is
regular, asymptotically normal with mean zero. Let C(β2,1) denote the asymp-

totic variance-covariance matrix of
√
n(β̂1(β2,1)− β∗

1(β2,1)) and let Ĉ(β2,1) de-
note a consistent estimator of C(β2,1). A Wald-type asymptotic (1−α)× 100%
confidence region for β∗

1 (β2,1) is therefore

In,α(β2,1) ,

{
β1 ∈ R

dim(β∗
1 ) :

n
(
β̂1(β2,1)− β1

)⊺
Ĉ−1(β2,1)

(
β̂1(β2,1)− β1

)
≤ χ2

1−α,dim(β∗
1 )

}
,

where χ2
α,d is the (1 − α) × 100 percentile of a χ2-distribution with d degrees

of freedom. In particular, In,α(β
∗
2,1) is a valid asymptotic (1 − α) × 100% con-

fidence interval for β∗
1(β

∗
2,1) = β∗

1 . Of course, β∗
2,1 is unknown, but β̂2,1 is a

regular asymptotically normal estimator of β∗
2,1 and thus standard methods for

constructing confidence sets, e.g., the bootstrap or Taylor series arguments, can
be used to construct a valid (1− η)× 100% for β∗

2,1, say ζn,η. Then, the union
⋃

β2,1∈ζn,η

In,α(β2,1), (5)

is a valid (1− α− η)× 100% confidence region for β∗
1 . To see this, note that

P


β∗

1 /∈
⋃

β2,1∈ζn,η

In,α(β2,1)


 = P


β∗

1 /∈
⋃

β2,1∈ζn,η

In,α(β2,1), β
∗
2,1 /∈ ζn,η




+ P


β∗

1 /∈
⋃

β2,1∈ζn,η

In,α(β2,1), β
∗
2,1 ∈ ζn,η


 ,

which is bounded above by P (β∗
2,1 /∈ ζn,η) + P (β∗

1 (β
∗
2,1) /∈ In,α(β

∗
2,1)) ≤ η + α+

oP (1). This confidence interval is appealing for its simplicity but may be conser-
vative especially whenH⊺

2,1β
∗
2,1 is bounded away from zero with high probability.

One approach to reduce conservatism is to first test H0 : β∗
2,1 ≡ 0, if the test

rejects then In,α(β̂2,1) is used, if the test fails to reject then the projection in-
terval (5) is used (Robins, 2004). This pretesting approach is adaptive at the
population level but may be conservative when the distribution of H⊺

2,1β
∗
2,1 has

mass both near to and far from zero. A potentially less conservative approach is
to partition the observed sample into two groups according to the (estimated)
magnitude of H⊺

2,1β
∗
2,1 and apply a conservative procedure only to observations

for which H⊺

2,1β
∗
2,1 is small. We now discuss such a procedure.

4.2. Adaptive confidence intervals

In this section we construct a regular, i.e., locally consistent, confidence interval
for linear combinations of the first stage coefficients. Note that confidence inter-
vals for the second stage coefficients can be obtained using standard methods
for least squares estimators. Let Σ̂1 , PnB1B

⊺

1 so that β̂1 = Σ̂−1
1 PnB1Ỹ and



1240 E. B. Laber et al.

β∗
1 = Σ−1

1,∞PB1Ỹ
∗. Recall that it is not possible in general to construct a uni-

formly convergent estimator of the limiting distribution of
√
n(β̂1−β∗

1) (Van der
Vaart, 1991; Hirano and Porter, 2009). For a given constant c ∈ Rdim(β∗

1 ), our

approach is to bound c⊺
√
n(β̂1−β∗

1) between two regular, uniformly convergent,
upper and lower bounds. Because these bounds are smooth, we can bootstrap
them to form a confidence set for c⊺β∗

1 . This strategy is similar to the work
of Laber and Murphy (2011) on classification but differs in that here the func-
tional of interest is a fixed (rather than data-dependent) parameter and the
functional is more complicated. We present the two-stage binary-treatment case
here; extensions to the case of an arbitrary number of treatments and stages of
treatment can be found in a technical report (Laber et al., 2010).

Recall that for any c ∈ Rdim(β∗
1 ) c⊺

√
n(β̂1 − β∗

1) = c⊺Σ̂−1
1 PnB1(Ỹ − B⊺

1β
∗
1 )

can be decomposed as c⊺Sn + c⊺Σ̂−1
1 PnB1Un, where the term Sn is smooth and

asymptotically normal but Un is nonsmooth. Also recall that
Un =

√
n(
[
H⊺

2,1β̂2,1
]
+
−[H⊺

2,1β
∗
2,1]+). Our goal is to form smooth upper and lower

bounds on c⊺
√
n(β̂1−β∗

1). To limit conservatism, these bounds are based on the
nonsmooth term Un and only involve subjects with small second stage treatment
effects, i.e., those subjects with histories h2,1 with h⊺2,1β

∗
2,1 ≈ 0. We partition

the observed data into two groups: (Group 1) subjects for whom h⊺2,1β
∗
2,1 can-

not be distinguished from zero; and (Group 2) subjects for whom h⊺2,1β
∗
2,1 is

unlikely to be near zero. This partitioning is based on a “pretest” (see Olshen,
1973; Andrews, 2001b; Andrews and Soares, 2007; Cheng, 2008; Andrews and
Guggenberger, 2009). The pretest is based on T̂ (h2,1) which is a test statistic
that diverges to +∞ when h⊺2,1β

∗
2,1 is nonzero but is bounded in probability

when h⊺2,1β
∗
2,1 = 0. The pretest assigns a subject with H2,1 = h2,1 to Group 1 if

T̂ (h2,1) ≤ λn and Group 2 otherwise; λn is a tuning parameter. In what follows

we assume T̂ (h2,1) = n(h⊺2,1β̂2,1)
2/h⊺2,1Σ̂21,21h2,1 where Σ̂21,21 is the submatrix

of (PnB2B
⊺

2 )
−1PnB2B

⊺

2 (Y −B⊺

2 β̂2,1)
2(PnB2B

⊺

2 )
−1 corresponding to the plug-in

estimator of the asymptotic variance of Vn ,
√
n(β̂2,1 − β∗

2,1).

The upper bound on c⊺
√
n(β̂1 − β∗

1) is given by

U(c) , c⊺Sn + c⊺Σ̂−1
1 PnB1Un1T̂ (H2,1)>λn

+ sup
γ∈R

dim(β∗
2,1

)

c⊺Σ̂−1
1 PnB1

([
H⊺

2,1(Vn + γ)
]
+
−
[
H⊺

2,1γ
]
+

)
1T̂ (H2,1)≤λn

. (6)

A lower bound, say L(c), is obtained by replacing sup with inf in the above
display. The intuition behind this upper bound is as follows. Notice that the sec-
ond term in (2), namely c⊺Σ̂−1

1 PnB1Un, is equal to c
⊺Σ̂−1

1 PnB1Un1T̂ (H2,1)>λn
+

c⊺Σ̂−1
1 PnB1Un1T̂ (H2,1)≤λn

. Rewrite the Un in c⊺Σ̂−1
1 PnB1Un1T̂ (H2,1)≤λn

as

[H⊺

2,1(Vn +
√
nβ∗

2,1)]+ − [H⊺

2,1

√
nβ∗

2,1]+. Thus c
⊺Σ̂−1

1 PnB1Un, is equal to

c⊺Σ̂−1
1 PnB1Un1T̂ (H2,1)>λn

+ c⊺Σ̂−1
1 PnB1

([
H⊺

2,1(Vn +
√
nβ∗

2,1)
]
+
−
[
H⊺

2,1

√
nβ∗

2,1

]
+

)
1T̂ (H2,1)≤λn

. (7)
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The quantity, [H⊺

2,1

√
nβ∗

2,1]+ characterizes the degree of nonregularity of
√
n(β̂1−

β∗
1) (see Theorem 4.2 below). Replacing

√
nβ∗

2,1 with γ and taking the supremum

over all γ ∈ R
dim(β∗

2,1) is one way of making the second term in (7) insensitive
to local perturbations of β∗

2,1.
To use the bounds to construct a (1−α)×100% confidence interval for c⊺β∗

1 ,

first note that c⊺β̂1 − U(c)/√n ≤ c⊺β∗
1 ≤ c⊺β̂1 − L(c)/√n. We approximate

the distribution of the bounds using the nonparametric bootstrap. Let û denote
the (1 − α/2) × 100 percentile of the bootstrap distribution of U(c), and let l̂
denote the (α/2) × 100 percentile of the bootstrap distribution of L(c). Then,
[c⊺β̂1− û

√
n, c⊺β̂1− l̂/

√
n] is the proposed confidence interval for c⊺β∗

1 . We term
this confidence interval an adaptive confidence interval (ACI) for reasons that
will become clear shortly.

Remark. In the ACI λn is a potentially important tuning parameter. In Sec-
tion 5 we demonstrate that the double bootstrap is an effective strategy for
constructing a data-driven choice of λn.

4.2.1. Theoretical results

In this section we describe the limiting behavior of the bounds L(c) and U(c)
and relate them to the limiting distribution of c⊺

√
n(β̂1 − β∗

1 ). We assume:

(A4) With probability one the sequence λn satisfies λn → ∞ and λn/n→ 0 as
n→ ∞.

Theorem 4.1 (Validity of population bounds). Assume (A1)–(A2) and (A4)
and fix c ∈ Rdim(β∗

1 ).

1. c⊺
√
n(β̂1 − β∗

1)  c⊺S∞ + c⊺Σ−1
1,∞P (B1H

⊺

2,1V∞1H⊺

2,1β
∗
2,1>0) +

c⊺Σ−1
1,∞PB1[H

⊺

2,1V∞]+1H⊺

2,1β
∗
2,1=0.

2. If for each n, the underlying generative distribution is Pn, which satisfies
(A3), then the limiting distribution of c⊺

√
n(β̂1 − β∗

1,n) is equal to

c⊺S∞ + c⊺Σ−1
1,∞P

(
B1H

⊺

2,1V∞1H⊺

2,1β
∗
2,1>0

)

+ c⊺Σ−1
1,∞P

[
B1

([
H⊺

2,1(V∞ + s)
]
+
−
[
H⊺

2,1s
]
+

)
1H⊺

2,1β
∗
2,1=0

]
. (8)

3. The limiting distribution of U(c) under both P and under Pn is equal to

c⊺S∞ + c⊺Σ−1
1,∞P

(
B1H

⊺

2,1V∞1H⊺

2,1β
∗
2,1>0

)

+ sup
γ∈R

dim(β∗
2,1

)

c⊺Σ−1
1,∞P

[
B1

([
H⊺

2,1(V∞ + γ)
]
+
−
[
H⊺

2,1γ
]
+

)
1H⊺

2,1β
∗
2,1=0

]
,

(9)

where (S⊺∞, V⊺

∞) is asymptotically multivariate normal with mean zero.
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See the Appendix for a proof and the formula for the Cov(S∞,V∞). Notice

that limiting distributions of c⊺
√
n(β̂1 − β∗

1 ) and U(c) (or equivalently L(c))
are equal in the case H⊺

2,1β
∗
2,1 6= 0 with probability one. That is, when there

is a large treatment effect for almost all patients then the upper (or lower)
bound is tight. However, when there is a non-null subset of patients for whom
there is no treatment effect, then the limiting distribution of the upper bound
is stochastically larger than the limiting distribution of c⊺

√
n(β̂1 − β∗

1). Thus,
the ACI adapts to the setting in which all patients experience a treatment
effect.

Because the distribution of (8) depends on the local alternative, s, β̂1 is a
nonregular estimator (Van der Vaart and Wellner, 1996). One might hope to
construct an estimator of the distribution of (8) and use this estimator to ap-

proximate the distribution of c⊺
√
n(β̂1−β∗

1). However, a consistent estimator of
the distribution of (8) does not exist because Pn is contiguous with respect to P
(by assumption (A3)). To see this, let Fs(u) be the distribution of (8) evaluated
at a point, u. If a consistent estimator, say F̂n(u), existed, that is F̂n(u) con-
verges in probability to Fs(u) under Pn, then the contiguity implies that F̂n(u)
converges in probability to Fs(u) under P . This is a contradiction (at best F̂n(u)
converges in probability to F0(u) under P ). Because we cannot consistently es-
timate s and we do not know the value of s, the tightest estimable upper bound
on (8) is given by (9). As we shall next see, we are able to consistently estimate
the distribution of (9).

In order to form confidence sets, the bootstrap distributions of U(c) and
L(c) are used. The next result regards the consistency of these bootstrap dis-

tributions. Let P̂
(b)
n denote the bootstrap empirical measure, that is, P̂

(b)
n ,

n−1
∑n
i=1Mn,iδTi

for (Mn,1,Mn,2, . . . ,Mn,n) ∼ Multinomial(n, (1/n, . . . , 1/n)).
We use the superscript (b) to denote that a functional has been replaced by its

bootstrap analog, so that if ω , f(Pn) then w
(b) , f(P̂

(b)
n ). Denote the space of

bounded Lipschitz-1 functions on R2 by BL1(R
2). Furthermore, let EM and PM

denote the expectation and probability with respect to the bootstrap weights.
The following results are proved in the Appendix.

Theorem 4.2. Assume (A1)–(A2), (A4) and fix c ∈ Rdim(β∗
1 ). Then (U(c),L(c))

and (U (b)(c),L(b)(c)) converge to the same limiting distribution in probability.
That is,

sup
v∈BL1(R2)

∣∣∣∣Ev ((U(c),L(c)))− EMv
((

U (b)(c),L(b)(c)
)) ∣∣∣∣

converges in probability to zero.

Corollary 4.3. Assume (A1)–(A2), (A4) and fix c ∈ Rdim(β∗
1 ). Let û denote

the (1−α/2)× 100 percentile of U (b)(c) and l̂ denote the (α/2)× 100 percentile
of L(b)(c). Then

PM

(
c⊺β̂1 − û/

√
n ≤ c⊺β∗

1 ≤ c⊺β̂1 − l̂/
√
n
)
≥ 1− α+ oP (1).
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Furthermore, if P (H⊺

2,1β
∗
2,1 = 0) = 0, then the above inequality can be strength-

ened to equality.

The preceding results show that the ACI can be use to construct valid con-
fidence intervals regardless of the underlying parameters or generative model.
Moreover, in settings where there is a treatment effect for almost every patient,
the ACI delivers asymptotically exact coverage. See Section 5 for discussion of
the choice of the tuning parameter λn.

5. Experiments

In this section we examine the small sample performance of the adaptive confi-
dence interval (ACI) proposed in the Section 4.2 where performance is measured
in terms of coverage and average interval width. We consider both fixed and
data-driven choices for the tuning parameter λn. For a fixed value we choose
λn =

√
log log n; additional simulations taken over a range of λn values are pro-

vided in the Appendix. These simulations show that the method is potentially
sensitive to the choice of λn. Consequently, we also consider a data-driven choice
of λn, tuned using the double-bootstrap (Davison and Hinkley, 1997). In par-
ticular, we consider a range of values of λn of the form λn = τ

√
log log n where

τ ∈ [m,M ] where 0 < m < M < ∞ are fixed constants. See the Appendix
for the specifics of the double bootstrap algorithm. Note that the theoretical
properties of the ACI continue to hold with this adaptive scheme for choosing
λn since m

√
log log n ≤ τ

√
log log n ≤M

√
log log n so that λn satisfies (A4).

We compare the empirical performance of the ACI with λn fixed to equal√
log log n (FACI) and λn chosen using the double-bootstrap (DACI) with the

following methods: the centered percentile bootstrap (CPB); the centered per-
centile bootstrap of the soft-thresholding (ST) method of Chakraborty et al.
(2009) as described in Section 3; and the adaptive m-out-of-n (MOFN) boot-
strap with data-driven tuning of Chakraborty et al. (2013). We also implemented
and tested the projection interval described in Section 4.1 with η = 0.01, α =
0.04; results are not shown in the tables as they were too wide to be useful. The
projection interval always covered at least at the nominal level (and frequently
much more – in 6 of 18 experiments it covered 100% of the time) but it was
between 1.46 and 2.07 times wider than the DACI, which also achieves or ex-
ceeds nominal coverage. The hard-thresholding method of Moodie et al. (2010)
and the penalized approach of Song et al. (2011) are similar in both theory and
performance to the soft-thresholding approach and thus are omitted from our
experiments.

Nine generative models are used in these evaluations; each of these gener-
ative models has two stages of treatment and two treatments at each stage.
Generically, each of the models can be described as follows:

• Xt ∈ {−1, 1}, At ∈ {−1, 1} for t ∈ {1, 2}
• P (A1 = 1) = P (A1 = −1) = 0.5, P (A2 = 1) = P (A2 = −1) = 0.5
• X1 ∼ Bernoulli(0.5), X2|X1, A1 ∼ Bernoulli(expit(δ1X1 + δ2A1))
• Y = γ1+γ2X1+γ3A1+γ4X1A1+γ5A2+γ6X2A2+γ7A1A2+ǫ, ǫ ∼ N(0, 1)
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Table 1

Parameters indexing the example models

Example γ δ Type Regularity Measures
1 (0, 0, 0, 0, 0, 0, 0)⊺ (0.5, 0.5)⊺ nonregular p = 1 φ = 0/0
2 (0, 0, 0, 0, 0.01, 0, 0)⊺ (0.5, 0.5)⊺ near-nonregular p = 0 φ = ∞
3 (0, 0,−0.5, 0, 0.5, 0, 0.5)⊺ (0.5, 0.5)⊺ nonregular p = 1/2 φ = 1.0
4 (0, 0,−0.5, 0, 0.5, 0, 0.49)⊺ (0.5, 0.5)⊺ near-nonregular p = 0 φ = 1.02
5 (0, 0,−0.5, 0, 1.0, 0.5, 0.5)⊺ (1.0, 0.0)⊺ nonregular p = 1/4 φ = 1.41
6 (0, 0,−0.5, 0, 0.25, 0.5, 0.5)⊺ (0.1, 0.1)⊺ regular p = 0 φ = 0.35
A (0, 0,−0.25, 0, 0.75, 0.5, 0.5)⊺ (0.1, 0.1)⊺ regular p = 0 φ = 1.035
B (0, 0, 0, 0, 0.25, 0, 0.25)⊺ (0, 0)⊺ nonregular p = 1/2 φ = 1.00
C (0, 0, 0, 0, 0.25, 0, 0.24)⊺ (0, 0)⊺ near-nonregular p = 0 φ = 1.03

where expit(x) = ex/(1+ex). This class is parameterized by nine values γ1, γ2, . . . ,
γ7, δ1, δ2. The analysis model uses feature vectors defined by:

H2,0 = (1, X1, A1, X1A1, X2)
⊺, H2,1 = (1, X2, A1)

⊺,
H1,0 = (1, X1)

⊺, H1,1 = (1, X1)
⊺.

Our analysis models are given by Q2(H2, A2;β2) , H⊺

2,0β2,0 +H⊺

2,1β2,1A2 and

Q1(H1, A1;β1) , H⊺

1,0β1,0 + H⊺

1,1β1,1A1. Below the analysis models are cor-
rectly specified (match the generative models). This avoids conflating poor per-
formance of confidence intervals due to misspecification with poor performance
due to nonregularity. We use a contrast encoding for A1 and A2 to allow for a
comparison with Chakraborty et al. (2009).

The form of this class of generative models is useful as it allows us to influence
the degree of nonregularity present in our example problems through the choice
of the γ and δ, and in turn evaluate performance in these different scenarios.
Recall that in Q-learning, nonregularity occurs when more than one stage-two
treatment produces nearly the same optimal expected reward for a set of patient
histories that occur with positive probability. In the model class above, this
occurs if the model generates histories for which γ5A2 + γ6X2A2 + γ7A1A2 ≈ 0,
i.e., if it generates histories for which Q2 depends weakly or not at all on A2.
By manipulating the values of γi and δi, we can control i) the probability of
generating a patient history such that γ5A2 + γ6X2A2 + γ7A1A2 = 0, and
ii) a standardized effect size E[(γ5 + γ6X2 + γ7A1)/

√
Var(γ5 + γ6X2 + γ7A1)].

Each of these quantities, denoted by p and φ, respectively, can be thought of as
measures of nonregularity.

Table 1 provides the parameter settings; the first six settings were consid-
ered by Chakraborty et al. (2009), and are described by them as “nonregular”,
“near-nonregular”, and “regular”. To these six, we have added three additional
examples labeled A, B, and C. Example A is an example of a strongly regular
setting. Example B is an example of a nonregular setting where the nonregular-
ity is strongly dependent on the stage 1 treatment. In example B, for histories
with A1 = 1, there is a moderate effect of A2 at the second stage. However, for
histories with A1 = −1, there is no effect of A2 at the second stage, i.e., both
treatments at the second stage are equally optimal. In example C, for histories
with A1 = 1, there is a moderate effect of A2, and for histories with A1 = −1,
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Table 2

Monte Carlo estimates of coverage probabilities of confidence intervals for the main effect of
treatment, β∗

1,1,1 at the 95% nominal level. Estimates are constructed using 1000 datasets of
size 150 drawn from each model, and 1000 bootstraps drawn from each dataset. Estimates
significantly below 0.95 at the 0.05 level are marked with ∗. There is no ST or MOFN
method when there are three treatments at Stage 2. Examples are designated NR =

nonregular, NNR = near-nonregular, R = regular

Two txts
at stage 2

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. A
R

Ex. B
NR

Ex. C
NNR

CPB 0.934* 0.935* 0.930* 0.933* 0.938 0.928* 0.939 0.925* 0.928*
FACI 0.989 0.987 0.967 0.969 0.954 0.952 0.950 0.962 0.962
DACI 0.968 0.971 0.958 0.961 0.949 0.943 0.949 0.953 0.953
MOFN 0.965 0.966 0.957 0.958 0.952 0.945 0.949 0.954 0.959
ST 0.948 0.945 0.938 0.942 0.952 0.943 0.919* 0.759* 0.762*

All three of the FACI, DACI, and MOFN methods deliver nominal coverage on all of the
examples. The FACI in particular is conservative on examples one and two. The average
interval diameters are shown in Table 3; this is to be expected given that it is based on
upper and lower bounds. However, we note that the DACI, whose λn is tuned using the

double bootstrap, has a much smaller width than the FACI, particularly in the
three-treatment examples. It is the narrowest among the methods that cover in all examples.

Three txts
at stage 2

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. A
R

Ex. B
NR

Ex. C
NNR

CPB 0.933* 0.938 0.915* 0.921* 0.931* 0.907* 0.940 0.885* 0.895*
FACI 0.999 0.999 0.967 0.968 0.963 0.969 0.958 0.969 0.969*
DACI 0.987 0.987 0.952 0.955 0.957 0.945 0.953 0.940 0.945

there is a small effect of A2. Thus example C is a ‘near-nonregular’ setting that
behaves similarly to example B. In addition to these new examples, we give
extensions of all nine examples to a setting with three treatments at the second
stage; details are given in Appendix C.

We first provide confidence intervals for the coefficient of A1 (the treatment
variable), β∗

1,1,1 in settings in which there are two or three treatments at stage 2.
(The three-treatment version of the ACI is given by Laber et al. (2010).) Note
that given the working models and generative models defined by the parameter
settings in Table 10, we can determine the exact value of any parameter c⊺β∗

1 of
interest to set the ground truth for our experiments. Table 2 shows the estimated
coverage for the coefficient of A1, β

∗
1,1,1. This simulation uses a sample size of

150, a total of 1000Monte Carlo replications and 1000 bootstrap samples. Target
coverage is 0.95. The CPB fares poorly in terms of coverage, falling significantly
below nominal coverage on seven of nine examples. The ST method fails to cover
for examples A, B and C. Recall that the ST method has not been developed
for the setting in which there are more than two treatments at the second stage.

The coefficient of A1 is perhaps most relevant from a clinical perspective.
However, from a methodological point of view, other contrasts can be illumi-
nating. Table 4 shows the estimated coverage for the intercept using the same
generative models. The coverage of the CPB and ST methods is quite poor; the
CPB attains nominal coverage on only two of the nine examples, and the ST
never achieves nominal coverage. Particularly disturbing is that the ST method
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Table 3

Monte Carlo estimates of the mean width of confidence intervals for the main effect of
treatment β∗

1,1,1 at the 95% nominal level. Estimates are constructed using 1000 datasets of
size 150 drawn from each model, and 1000 bootstraps drawn from each dataset. Models have
two treatments at each of two stages. Widths with corresponding coverage significantly below

nominal are marked with ∗. There is no ST or MOFN method when there are three
treatments at Stage 2. Examples are designated NR = nonregular, NNR = near-nonregular,

R = regular

Two txts
at stage 2

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. A
R

Ex. B
NR

Ex. C
NNR

CPB 0.385* 0.385* 0.430* 0.430* 0.457 0.436* 0.451 0.428* 0.428*
FACI 0.490 0.490 0.481 0.481 0.483 0.471 0.474 0.484 0.484
DACI 0.442 0.441 0.470 0.470 0.482 0.469 0.474 0.473 0.473
MOFN 0.443 0.443 0.474 0.474 0.489 0.486 0.482 0.488 0.488
ST 0.339 0.339 0.426 0.427 0.469 0.436 0.480* 0.426* 0.424*

Three txts
at stage 2

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. A
R

Ex. B
NR

Ex. C
NNR

CPB 0.446* 0.446 0.518* 0.518* 0.567* 0.518* 0.557 0.508* 0.507*
FACI 0.700 0.700 0.652 0.652 0.637 0.632 0.617 0.661 0.662
DACI 0.564 0.564 0.590 0.590 0.617 0.591 0.604 0.596 0.597

Table 4

Monte Carlo estimates of coverage probabilities of confidence intervals for the coefficient of
the intercept, β∗

1,0,1 at the 95% nominal level. Estimates are constructed using 1000 datasets
of size 150 drawn from each model, and 1000 bootstraps drawn from each dataset. Estimates
significantly below 0.95 at the 0.05 level are marked with ∗. Examples are designated NR =

nonregular, NNR = near-nonregular, R = regular

Two txts
at stage 2

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. A
R

Ex. B
NR

Ex. C
NNR

CPB 0.892* 0.908* 0.924* 0.925* 0.940 0.930* 0.936 0.925* 0.931*
FACI 0.952 0.962 0.952 0.954 0.950 0.953 0.947 0.952 0.954
DACI 0.940 0.946 0.946 0.948 0.947 0.945 0.951 0.952 0.947
MOFN 0.944 0.947 0.948 0.948 0.952 0.942 0.951 0.950 0.950
ST 0.935* 0.930* 0.889* 0.878* 0.891* 0.620* 0.687* 0.686* 0.663*

falls more than 30% below nominal levels. In contrast, the FACI and DACI
deliver nominal coverage on all examples. Table 5 shows the average interval
widths; the DACI is the narrowest among the covering methods.

6. Analysis of the ADHD study

In this section we illustrate the use of the ACI on data from the Adaptive Phar-
macological and Behavioral Treatments for Children with ADHD Trial (Nahum-
Shani et al. 2012a; Lei et al. 2012). The ADHD data we use here consists of
n = 138 trajectories which are a subset of the original N = 155 observations.
This subset was formed by removing the N − n = 17 subjects who were either
never randomized to an initial treatment (14 subjects), or had massive item
missingness (3 subjects). A description of each of the variables is provided in
Table 6. Notice that the outcomes Y1 and Y2 satisfy Y1+Y2 ≡ Y , where Y is the
teacher reported TIRS5 score after 32 weeks, i.e. at the end of the last month
of the study (month 8).
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Table 5

Monte Carlo estimates of the mean width of confidence intervals for the coefficient of the
intercept, β∗

1,0,1 at the 95% nominal level. Estimates are constructed using 1000 datasets of
size 150 drawn from each model, and 1000 bootstraps drawn from each dataset. Models have
two treatments at each of two stages. Widths with corresponding coverage significantly below

nominal are marked with ∗. Examples are designated NR = nonregular, NNR =
near-nonregular, R = regular

Two txts
at stage 2

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. A
R

Ex. B
NR

Ex. C
NNR

CPB 0.404* 0.404* 0.430* 0.429* 0.457 0.449* 0.450 0.428* 0.428*
FACI 0.506 0.506 0.481 0.481 0.483 0.490 0.474 0.490 0.490
DACI 0.459 0.459 0.466 0.466 0.481 0.482 0.473 0.473 0.473
MOFN 0.475 0.476 0.469 0.470 0.488 0.486 0.477 0.483 0.483
ST 0.344* 0.344* 0.427* 0.427* 0.466* 0.469* 0.474* 0.430* 0.428*

The first step in using Q-learning is to estimate a regression model for the sec-
ond stage; this analysis only uses data from subjects that were re-randomized
during the 8 month study. Of the n = 138 subjects, 81 were re-randomized
prior to the end of the study. The feature vectors at the second stage are
H2,0 , (1, X1,1, X1,2, X1,2, X1,3, X2,1, A1)

⊺ and H2,1 , (1, X2,1, A1)
⊺. Thus, the

Q-function Q2(H2, A2;β2) , H
⊺

2,0β2,0+H
⊺

2,1β2,1A2 contains an interaction term
between the second stage action A2 and a subject’s initial treatment A1, an in-
teraction between A2 and adherence to their initial medication X2,1, a main
effect for A2, and main effects for all the other terms. Table 7 provides the
second stage least squares coefficients along with centered percentile bootstrap
interval estimates. Examination of the residuals (not shown here) showed no
obvious signs of model misspecification. In short, the linear model described
above seems to fit the data reasonably well.

Recall that the dependent variable in the first stage regression model is the
predicted future outcome Ỹ1 , Y1 +maxa2∈{−1,1}Q2(H2, a2; β̂2). Since the pre-
dictors used in the first stage must predate the assignment of first treatment,
the available predictors in Table 6 are baseline ADHD symptoms X1,1, diagno-
sis of ODD at baseline X1,2, indicator of a subject’s prior exposure to ADHD
medication X1,3, and first stage treatment A1. The feature vectors for the sec-

ond stage are H1,0 , (1, X1,1, X1,2, X1,3) and H1,1 , (1, X1,3), so that the first

stage Q-function Q1(H1, A1;β1) , H⊺

1,0β1,0 + H⊺

1,1β1,1A1 contains an interac-
tion term between the first stage action A1 and a subject’s prior exposure to
ADHD medication X1,3, a main effect for A1, and main effects for all other co-
variates. The first stage regression coefficients are estimated using least squares
β̂1 , argminβ1 Pn(Ỹ1 − Q1(H1, A1;β1))

2. Table 8 provides the least squares
coefficients along with interval estimates formed using the DACI. Plots of the
residuals for this model (not shown here) show no obvious signs of model mis-
specification. Again a linear model seems to provide a reasonable approximation
to the Q-function in the first stage.

To construct an estimate of the optimal DTR, recall that for anyHt = ht, t =
1, 2 the estimated optimal DTR π̂ = (π̂1, π̂2) satisfies π̂t(ht) ∈ argmaxat Q(ht, at;

β̂t). The coefficients in Table 7 and the form of the second stage Q-function re-
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Table 6

Features, treatments and the outcome for the ADHD study

X1,1 ∈ [0, 3] : Baseline symptoms. Teacher-reported mean ADHD symptom
score. Measured at the end of the school year preceding the
study.

X1,2 ∈ {0, 1} : ODD diagnosis. Indicator of a diagnosis of ODD (oppositional
defiant disorder) at baseline, coded so that 0 corresponds to
no such diagnosis.

X1,3 ∈ {0, 1} : Prior med. exposure. Indicator that subject received ADHD
medication in the prior year, coded so that 0 corresponds to
no ADHD medication.

A1 ∈ {−1, 1} : 1st stage treatment. Coded so that −1 corresponds to medica-
tion while 1 corresponds to behavioral modification therapy.

1NonRsp : Indicator of non-response, i.e. that a patient was re-
randomized to a second-stage treatment during the study.
Non-response was determined on the basis of two measures
the Impairment Rating Scale (IRS) (Fabiano et al. 2006) and
an individualized list of target behaviors (ITB) (e.g., Pelham
et al. 1992). The criterion for nonresponse at each month was
an average performance of less than 75 on the ITB and a rat-
ing of impairment in at least one domain on the IRS. These
were measured beginning in week 8 of the study, and montly
thereafter.

Y1 , Y · (1− 1NonRsp) : First stage outcome of responders, i.e. those who were not
re-randomized (see definition of Y and Ỹ below).

X2,1 ∈ {0, 1} : Adherence. Indicator of subject’s adherence to their initial
treatment. Adherence is coded so that a value of 0 corre-
sponds to low adherence (taking less than 100% of prescribed
medication or attending less than 75% of therapy sessions)
while a value of 1 corresponds to high adherence.

X2,2 ∈ {2, 8} : Month of non-response. Month during school year of observed
non-response and re-randomization (not used for responders)
Two subjects did not follow protocol and were re-randomized
during month 8.

A2 ∈ {−1, 1} : 2nd stage treatment. Coded so that A2 = −1 corresponds
to augmenting the initial treatment with the treatment not
received initially, and A2 = 1 corresponds to enhancing (in-
creasing the dosage of) the initial treatment.

Y ∈ {1, 2, . . . , 5} : Teacher-reported Impairment Rating Scale - Effect on Class-
room(TIRS5) item score 8 months (32 weeks) after initial ran-
domization to treatment (Fabiano et al. 2006). The TIRS5 is
coded so that higher values correspond to better clinical out-
comes.

Y2 , Y · 1NonRsp : Second stage outcome. Only used for non-responders, i.e. sub-
jects who were re-randomized.

veal that the second stage decision rule π̂2 is quite simple. In particular, π̂2
prescribes treatment enhancement to subjects with high adherence to their ini-
tial medication and it prescribes treatment augmentation to subjects with low
adherence to their initial medication. The first stage decision rule π̂1 is equally
simplistic. The coefficients in Table 8 show that the first stage decision rule,
π̂1 prescribes medication to subjects who have had prior exposure to medica-
tion, and behavioral modification to subjects who have not had any such prior
exposure.
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Table 7

Least squares coefficients and 90% CPB interval estimates for second stage regression

Term Coeff. Estimate Lower (5%) Upper (95%)
1 Intercept β2,0,1 1.36 0.48 2.26
X1,1 Baseline symptoms β2,0,2 0.94 0.48 1.39
X1,2 ODD diagnosis β2,0,3 0.92 0.46 1.41
X1,3 Prior med. exposure β2,0,4 -0.27 -0.77 0.21
X2,1 Adherence β2,0,5 0.17 -0.28 0.66
X2,2 Month of non-response β2,0,6 0.02 -0.20 0.20
A1 1st stage txt β2,0,7 0.03 -0.18 0.23
A2 2nd stage txt β2,1,1 -0.72 -1.13 -0.35
A2 : X2,1 2nd stage txt : Adherence β2,1,2 0.97 0.48 1.52
A2 : A1 2nd stage txt : 1st stage txt β2,1,3 0.05 -0.17 0.27

Table 8

Least squares coefficients and 90% DACI interval estimates for first stage regression

Term Coeff. Estimate Lower (5%) Upper (95%)
1 Intercept β1,0,1 2.61 2.13 3.05
X1,1 Baseline symptoms β1,0,2 0.72 0.47 1.00
X1,2 ODD diagnosis β1,0,3 0.75 0.37 1.08
X1,3 Prior med. exposure β1,0,4 -0.37 -0.80 0.01
A1 Initial txt β1,1,1 0.17 -0.02 0.36
A1 : X1,3 Initial txt : Prior med. exposure β1,1,2 -0.32 -0.59 -0.07

The prescriptions given by the estimated optimal DTR π̂ are excessively de-
cisive. That is, they recommend one and only one treatment regardless of the
amount of evidence in the data to support that the recommended treatment is
in fact optimal. When there is insufficient evidence to recommend a single treat-
ment as best for a given patient history, it is preferred to leave the choice of treat-
ment to the clinician. This allows the clinician to recommend treatment based
on cost, local availability, patient individual preference, and clinical experience.
One way to assess if there is sufficient evidence to recommend a unique optimal
treatment for a patient is to construct a confidence interval for the predicted
difference in mean response across treatments. In the case of binary treatments,
for a fixed patient history Ht = ht, one would construct a confidence interval
for the difference Qt(ht, 1;β

∗
t ) − Qt(h1,−1;β∗

t ) = c⊺β∗
t where c = (0⊺, 2h⊺t,1)

⊺.
If this confidence interval contains zero then one would conclude that there is
insufficient evidence at the nominal level for a unique best treatment.

In this example, the subject features that interact with treatment are cat-
egorical. Consequently, we can construct confidence intervals for the predicted
difference in mean response across treatments for every possible subject history.
These confidence intervals are given in Table 9. The 90% confidence intervals
suggest that there is insufficient evidence at the first stage to recommend a
unique best treatment for each subject history. Rather, we would prefer not to
make a strong recommendation at stage one, and leave treatment choice solely
at the discretion of the clinician. Conversely, in the second stage, the 90% con-
fidence intervals suggest that there is evidence to recommend a unique best
treatment when a subject had low adherence—knowledge that is important for
evidence-based clinical decision making.
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Table 9

Confidence intervals for the predicted difference in mean response across treatments for
each possible patient history. Intervals are at the 90% leve. Confidence intervals that

contain zero indicate insufficient evidence for recommending a unique best treatment for
patients with the given history

Stage History Contrast
for βt,1

Lower (5%) Upper (95% ) Conclusion

1 Had prior med. (2 2) -0.88 0.28 Insufficient evidence
1 No prior med. (2 0) -0.04 0.72 Insufficient evidence
2 High adherence

and BMOD
(2 2 2) -0.17 1.39 Insufficient evidence

2 Low adherence
and BMOD

(2 0 2) -2.21 -0.57 Sufficient evidence

2 High adherence
and MEDS

(2 2 -2) -0.37 1.26 Insufficient evidence

2 Low adherence
and MEDS

(2 0 -2) -2.51 -0.60 Sufficient evidence

7. Summary, open problems, and the future of DTRs

DTRs have the potential to produce better patient outcomes while simultane-
ously reducing cost and patient burden. Furthermore, estimated optimal DTRs
can provide important scientific insight by revealing interactions between treat-
ments and patient history and delayed treatment effects. As a result, SMART
studies for use in constructing DTRs are of much interest in the clinical commu-
nity. A large number of SMART studies are completed or currently in the field
(see PSU Methodology Center, 2014b). Recent funding calls for SMART designs
from the National Institutes of Health (NIH, PSU Methodology Center, 2014a)
and a commitment to funding for personalized medicine from both the NIH and
US Food and Drug Administration (Hamburg and Collins, 2010) suggest that
the number of SMART studies will continue to grow.

As has been discussed here, the construction of optimal DTRs from data can
involve the vexing problem of nonregularity. When the treatment effect is small
relative to noise in the data, nonregularity can make it difficult to conduct basic
statistical analyses essential to informing clinical practice or future research. We
have shown that these difficulties arise even in the simple setting of two-stages
of binary treatment and linear working models. We expect the impact of non-
regularity to grow with both the number of treatment options as well as the
number of treatment stages. Thus, new methods for estimation and inference,
especially those intended for the many-stage, many-treatment setting, must ac-
count for the effects of nonregularity. Simulated experiments demonstrating the
performance of methods for estimation of and inference for DTRs should include
generative models with a mix of treatment effect sizes including those that are
zero, small but nonzero, and far from zero, where proximity to zero is measured
in terms of statistical power.

We discussed how nonregularity leads to asymptotic bias and complicates
inference. It is natural to think that reducing the asymptotic bias (via shrinkage
methods) in the estimated β’s will assist in the construction of valid confidence
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intervals; we conjecture that bias reduction techniques will be very difficult,
if not impossible, to tune thus leading to situations in which over-shrinkage
occurs. Indeed as shown here, such over-shrinkage can be infinitely worse than no
shrinkage at all. Instead of attempting to reduce the bias, we used regular upper
and lower bounds on c⊺

√
n(β̂1 −β∗

1 ) to form an adaptive confidence interval for
first stage parameters in Q-learning. However, a potentially less conservative
strategy would be to form bounds on the (α/2) × 100 and (1 − α/2) × 100

percentiles of the sampling distribution of c⊺
√
n(β̂1−β∗

1). For example, one could
define B(c, γ) = c⊺Sn + c⊺Σ̂−1

1 PnB1Un1T̂ (H2,1)>λn
+ c⊺Σ̂−1

1 PnB1([H
⊺

2,1(Vn +

γ)]+− [H⊺

2,1γ]+)1T̂ (H2,1)≤λn
. Then, for any fixed γ and level η one could use the

bootstrap to estimate the η × 100 percentile of B(c, γ), say, q̂(b)η (γ). The final
confidence interval would be


c⊺β̂1 − sup

γ∈R
dim(β∗

2,1)

q̂
(b)
1−α/2(γ), c

⊺β̂1 − inf
γ∈R

dim(β∗
2,1

q
(b)
α/2(γ)


 .

See (Andrews, 2001a; Cheng, 2008) and references therein for bounding proba-
bilities rather than statistics. It would be interesting to compare this approach
with the ACI.

Technological advances are continually improving the efficiency with which
both observational and SMART study data can be collected, stored, and ac-
cessed. DTR methodologies must adapt with these changes. Here we discuss
three areas where current DTR methodology is insufficient. These areas present
unique estimation, inference, and computational challenges.

Infinite horizon problems. In settings where number of treatment stages is
large (e.g., hundreds or thousands) it may be appropriate to approximate the
decision problems as having an infinite number of time points. An important
area where such decision problems arise is mobile-health (mHealth) where inter-
ventions are delivered using smartphones or other mobile devices (see, for exam-
ple, Kelly et al., 2012). Mobile devices present unprecedented opportunity for
collecting patient information and delivering interventions in situ, and thereby
potentially narrowing the so-called research-practice gap (Bickman et al., 2012).
However, the breadth of opportunities presented by mHealth are matched by
their technical challenges. As the number of decision points grows large it be-
comes infeasible to have separate models for the Q-function at each decision
point, in this case additional structure, for example, that the generative model
can be characterized as a stationary Markov Decision Process (MDP, Putter-
man, 1994), is useful. Existing methods for estimating an optimal DTR in the
MDP setup (Sutton and Barto, 1998) are highly algorithmic and their statistical
properties are largely unknown. There are tremendous opportunities for trans-
lating these algorithms into a statistical framework and characterizing their
statistical properties, e.g., convergence rates and limiting distribution theory.

Feature Construction An important open problem is the development of
formal feature extraction and construction techniques for DTRs. In the ADHD



1252 E. B. Laber et al.

study X1 contains more than 25 variables, some discrete and some continuous,
andXt, t = 2, 3 contains more than 40 measurements collected each month; thus,
over the course of the eight month study the protocol dictated the collection of
more then 360 measurements per subject. In general Xt, t = 1, 2, 3 will contain
a large number of repeated measurements. The current state-of-the-art is that
these measurements are summarized into low-dimensional summaries motivated
by clinical judgment, exploratory analyses and convenience; this is certainly the
case in the ADHD example. However, in many practical examples, thousands or
more than thousands of sparsely observed and irregularly spaced measurements
may be collected. By design, information is accumulating over time; if one uses
linear models nested inside the sequence of treatments received, then the model
size will grow exponentially in the number of treatment stages. Principled, i.e.,
data-driven, methods for feature construction and extraction are needed. On
approach would be to extend dimensionality-reduction methods from machine
learning (e.g., isomap, ICA, etc.) or functional data analysis (e.g., functional
principle components) to DTRs.

Spatial decision processes In some applications, for example, adaptive wild-
life management, separate treatments must be administered across a series of
spatial locations at each time point. The treatment assignment at one spatial
location may affect the outcomes at neighboring locations. Furthermore, the
total number of treatments than can be administered across all the spatial lo-
cations is often limited by budget or other resource constraints. Thus, it is not
feasible to estimate a separate DTR at each spatial location but rather a single
large DTR recommending treatments for all spatial locations simultaneously
is needed. That is, a DTR in this setting is a sequence of functions mapping
up-to-date information at all spatial locations to a treatment recommendation
at every spatial location. Q-learning, as described, cannot be applied as the di-
mension of the model grows exponentially in the number of spatial locations.
Suppose, for example, that there are S spatial locations, K treatment options
available at each location, and a p-dimensional feature vector at each spatial
location; a linear model with a main effect of feature, a main effect for treat-
ment, and an interaction between treatments and features would contain p×KS

terms. Furthermore, even if the Q-functions were known exactly, simply com-
puting the argmax over all KS possibilities is computationally intractable for
moderate values of S and K.

Appendix A: Outcome weighted learning

Recall that the value of a DTR π, EπY , is the expected outcome of Y under
the restriction that At = πt(Ht). For expositional simplicity, assume P (At =
1|Ht) = 1/2 and that Y is coded so that Y ≥ 0 in this section. Then a change of
measure implies that the value EπY = 4P (Y 1A1=π1(H1)1A2=π2(H2)); the empir-
ical analog is 4Pn(Y 1A1=π1(H1)1A2=π2(H2)). Note the resemblance to the classi-
fication rate. As in classification, directly maximizing the empirical value over a
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class of DTRs is a discrete optimization problem and is usually computationally
burdensome. Zhao et al. (2013) solve a concave relaxation of this problem by
replacing the nonsmooth indicator functions with concave surrogates. Consider
decision rules of the form πt(ht) = 1h⊺

t,1ψt,1≥0 where ht,1 is a known feature

of ht. Note that 1At=πt(Ht) = 1(2At−1)H⊺

t,1ψt,1≥0. Let φ : R → R be a concave

function that satisfies φ(z) ≤ k+1z≥0 for all z where k is a constant. A version
of the algorithm is as follows.

1. Stage 2 optimization: ψ̂2,1 = argmaxψ2,1 PnY φ((2A2 − 1)H⊺

2,1ψ2,1).
2. Stage 1 optimization:
ψ̂1,1 = argmaxψ1,1 PnY 1(2A2−1)H⊺

2,1ψ̂2,1≥0φ((2A1 − 1)H⊺

1,1ψ1,1).

The estimator of the optimal DTR is thus π̂t(ht) = 1h⊺

t,1ψ̂t,1≥0. For illustration

we use φ(z) = 1− (1− z)2. Define the population parameters:

ψ∗
2,1 , argmin

ψ2,1

P
[
Y (1 − (2A2 − 1)H⊺

2,1ψ2,1)
2
]
,

ψ∗
1,1 , argmin

ψ1,1

P
[
Y 1(2A2−1)H⊺

2,1ψ
∗
2,1≥0(1− (2A1 − 1)H⊺

1,1ψ1,1)
2
]
.

In addition, define Ψ1 , PY H1,1H
⊺

1,11(2A2−1)H⊺

2,1ψ
∗
2,1≥0 and the corresponding

plugin estimator Ψ̂1 , PnY H1,1H
⊺

1,11(2A2−1)H⊺

2,1ψ̂2,1≥0, which we assume is in-

vertible. Then
√
n(ψ̂1,1−ψ∗

1,1) =
√
nΨ̂−1

1 PnY H1,1(2A1−1)1(2A1−1)H⊺

2,1ψ̂2,1≥0(1−
(2A1 − 1)H⊺

1,1ψ
∗
1,1) which can be decomposed as

Tn +
√
nΨ̂−1

1 PnY H1,1(2A1 − 1)(1− (2A1 − 1)H⊺

1,1ψ
∗
1,1)Ln,

where

Tn = Ψ̂−1
1

√
n(Pn − P )[

Y H1,1(2A1 − 1)(1− (2A1 − 1)H⊺

1,1ψ
∗
1,1)1(2A2−1)H⊺

2,1ψ
∗
2,1≥0

]
,

Ln = 1(2A2−1)H⊺

2,1ψ̂2,1≥0 − 1(2A2−1)H⊺

2,1ψ
∗
2,1≥0.

The term Tn is smooth and asymptotically normal under mild conditions whereas
Ln is nonsmooth. If h2,1 satisfies h⊺2,1ψ

∗
2,1 = 0 then Ln

∣∣
H2,1=h2,1

converges in

distribution to a Bernoulli random variable with probability of success equal to
1/2. On the other hand, if h⊺2,1ψ

∗
2,1 6= 0 then Ln

∣∣
H2,1=h2,1

converges in probabil-

ity to zero. Thus, in parallel with the Q-learning case, the limiting distribution
of

√
n(ψ̂1,1−ψ∗

1,1) depends abruptly on both the value of ψ∗
2,1 and the distribu-

tion of H2,1. Therefore the same theoretical challenges as in Q-learning occur
in outcome-weighted learning.

Appendix B: Proofs

B.1. Proof of Theorems in Section 3

Lemma B.1. If ω ∼ Normal(0, ν2) then E[ω]+ = ν/
√
2π.
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Proof. Let φ denote the density of a standard normal random variable. Then

E [ω]+ =

∫

R

[ω]+ φ(ω/ν)/νdω =

∫

R+

ωφ(ω/ν)/νdω = ν/
√
2π.

Proof of Theorem 3.1. Using Theorem 4.2, part I, it follows that Bias(β̂1, c) is
equal to

E

(
c⊺Σ−1

1,∞PB1

[
H⊺

2,1V∞
]
+
1H⊺

2,1β
∗
2,1=0

)
.

Exchanging expectations and applying Lemma B.1 gives the result.

Lemma B.2. If z ∼ Normal(0, 1) and σ > 0 then

E [z]+
(
1− σ/z2

)
+
=

1√
2π

{
exp{−σ/2} − σ

∫ ∞

√
σ

exp−z2/2/zdz
}
.

Proof. Let φ denote the density of a standard normal random variable, then

E [z]+

(
1− σ

z2

)
+

=

∫ ∞

√
σ

z
(
1− σ

z2

)
φ(z)dz

=
1√
2π

{
exp{−σ/2} − σ

∫ ∞

√
σ

1

z
exp(−z2/2)dz

}
.

Proof of Theorem 3.2. Notice that
√
n(β̂σ1 − β∗

1) = Σ̂−1
1

√
nPnB1(Ỹ

σ − B⊺

1β
∗
1 )

which can be decomposed as

Σ̂−1
1

√
n(Pn − P )B1(Ỹ

∗ −B⊺

1β
∗
1) + Σ̂−1

1

√
nPnB1(Ỹ

σ − Ỹ ∗),

where we have used PB1(Ỹ
∗ − B⊺

1β
∗
1 ) = 0. The first term in the above display

is asymptotically normal with mean zero and thus does not contribute to the
asymptotic bias. The second term in the above display is equal to

Σ̂−1
1 PnB1H

⊺

2,0

√
n(β̂2,0 − β∗

2,0)

+ Σ̂−1
1

√
nPnB1

([
H⊺

2,1β̂2,1

]
+

(
1−

σH⊺

2,1Σ̂21,21H2,1

n(β̂⊺

2,1H2,1)2

)

+

−
[
H⊺

2,1β
∗
2,1

]
+

)
1H⊺

2,1β
∗
2,1 6=0

+ Σ̂−1
1 PnB1

[
H⊺

2,1

√
n(β̂2,1 − β∗

2,1)
]
+

(
1−

σH⊺

2,1Σ̂21,21H2,1

(H⊺

2,1

√
n(β̂2,1 − β∗

2,1))
2

)

+

1H⊺

2,1β
∗
2,1=0.

The first two terms can be shown to have asymptotic mean zero and thus they
do not contribute the asymptotic bias. The last term converges in distribution
to

Σ−1
1,∞P

[
B1 [Z]+

√
H⊺

2,1Σ21,21H2,1

(
1− σ

Z2

)
+
1H⊺

2,1β
∗
2,1=0

]
,

where Z is a standard normal random variable. Exchanging expectations and
applying Lemma B.2 gives the result.
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Proof of Theorem 3.3. From Theorem 4.2 part 2 it follows that Bias(β̂1, c, s) is
equal to

E

(
c⊺Σ−1

1,∞PB1

([
H⊺

2,1(V∞ + s)
]
+
−
[
H⊺

2,1s
]
+

)
1H⊺

2,1β
∗
2,1=0

)
,

taking absolute values and applying the Cauchy-Schwarz and triangle inequali-
ties gives the first result of the theorem.

It can be shown that c⊺
√
n(β̂σ1 − β∗

1) converges in distribution to

c⊺Σ−1
1,∞PB1

(
[
H⊺

2,1(V∞ + s)
]
+

(
1−

σH⊺

2,1Σ21,21H2,1

(H⊺

2,1(V∞ + s))2

)

+

−
[
H⊺

2,1s
]
+

)
1H⊺

2,1β
∗
2,1=0.

Recall that H2,1 is assumed to have an intercept. Let e1 denote the first column
of an dim(β∗

2,1) × dim(β∗
2,1) identity matrix, and choose s = −V∞ + e1 log σ

then as σ → ∞ the above term behaves as

c⊺Σ−1
1,∞PB11H⊺

2,1β
∗
2,1=0 log(σ),

which tends to ∞ in magnitude. Thus, the supremum over s, of |Bias(β̂σ1 , c, s)|
must be at least as large.

B.2. Proof of Theorems in Section 4

In the main body we assumed a single terminal reward Y , here, to cover a more
general case we assume that an intermediate reward, Y1 may be observed at
the end of the first stage as well as a terminal reward Y2. Thus, one seeks to
maximize Eπ(Y1 + Y2) where Eπ denotes expectation with respect to the joint
distribution of the trajectory under the restriction that At = πt(Ht), t = 1, 2.
Throughout this section, let K denote a sufficiently large positive constant that
may vary from line to line. Let Dp denote the space of p× p symmetric positive
definite matrices equipped with the spectral norm, and for any k ∈ (0, 1), let Dk

p

denote the subset of Dp with members having eigenvalues in the range [k, 1/k].

For any class of real-valued functions F , let ρP (f) , (P (f − Pf)2)1/2 denote
the centered L2-norm on F , l∞(F) denote the space of uniformly bounded
real-valued functions on F equipped with the sup norm, and Cb(F) denote
the subspace of l∞(F) of continuous and bounded functions from F into R,

respectively. Furthermore, let Gn ,
√
n(Pn − P ), G

(b)
n ,

√
n(P̂

(b)
n − Pn), and

PM denote probability taken with respect to the bootstrap weights defining the
bootstrap empirical measure, respectively.

B.2.1. Results for second stage parameters

In this section we will characterize the limiting distributions of the second stage
parameters under fixed and local alternatives. We will also derive the limiting
distribution of the bootstrap analog of the second stage parameters. For conve-
nience, let pt0 , dim(β∗

t,0), pt1 , dim(β∗
t,1), and pt , dim(β∗

t ) = pt0 + pt1 for
t = 1, 2.
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Theorem B.3. Assume (A1) and (A2) and fix a ∈ Rp2 , then

1. a⊺
√
n(β̂2 − β∗

2 ) P a
⊺Z∞,

2. a⊺
√
n(β̂

(b)
2 − β̂2) PM

a⊺Z∞ in P -probability; and

3. if in addition (A3) holds, a⊺
√
n(β̂2 − β∗

2,n) Pn
a⊺Z∞,

where Z∞ is a mean zero normal random vector with covariance matrix
Σ−1

2,∞P [B2B
⊺

2 (Y2 −B⊺

2β
∗
2 )

2]Σ−1
2,∞.

Proof. Define the class of functions F2 as

F2 , {f(b2, y2; a, β2) , a⊺b2(y2 − b⊺2β2) : a, β2 ∈ R
p2 , ||a|| ≤ K, ||β2|| ≤ K},

(10)
and the function w2 : Dp2 × l∞(F2)× Rp2 × Rp2 → R as

w2(Σ, µ, β2, a) , µ
(
a⊺Σ−1B2(Y2 −B⊺

2β2)
)
. (11)

Since the estimated covariance matrices Σ̂2 = PnB2B
⊺

2 and Σ̂
(b)
2 = P̂

(b)
n B2B

⊺

2

are weakly consistent (by Lemma B.5), we will avoid additional notation by
assuming they are nonsingular for all n without loss of generality. Thus

a⊺
√
n(β̂2 − β∗

2) = w2(Σ̂2,Gn, β
∗
2 , a),

a⊺
√
n(β̂

(b)
2 − β̂2) = w2(Σ̂

(b)
2 ,G(b)

n , β̂2, a),

and a⊺
√
n(β̂2 − β∗

2,n) = w2(Σ̂2,
√
n(Pn − Pn), β

∗
2,n, a).

In addition, note that a⊺Z∞ = w2(Σ2,∞,G∞, β∗
2 , a) in distribution, where G∞ is

a tight Gaussian process in l∞(F2) with covariance function Cov(G∞f1,G∞f2) =
P (f1−Pf1)(f2−Pf2). Results 1 and 3 follow from Lemmas B.4–B.7 and the con-
tinuous mapping theorem [Theorem 1.3.6 of Van der Vaart and Wellner 1996].
Result 2 follows from the bootstrap continuous mapping theorem [Theorem 10.8
of Kosorok 2008] together with Lemmas B.4–B.8.

Lemma B.4. Under (A1), the function w2 defined in (11) is continuous at
points in Dp2 × Cb(F)× Rp2 × Rp2 .

Proof. Let ǫ > 0 be arbitrary and let (Σ, µ, β2, a) be an element ofDp2×Cb(F)×
Rp2×Rp2 . In addition, let (Σ′, µ′, β′

2, a
′) be an element ofDp2×l∞(F)×Rp2×Rp2 .

From the form of F and the moment assumptions in (A1) we see that if Σ−Σ′,
a− a′, and β2 − β′

2 are small then so must ρP (f − f ′) be small, where

f(B2, Y2) = a⊺Σ−1B2(Y2 −B⊺

2β2),

f ′(B2, Y2) = a
′
⊺Σ′−1B2(Y2 −B⊺

2β
′
2).

In particular, we can choose δ > 0 sufficiently small so that ||Σ − Σ′|| +
||a − a′|| + ||β2 − β′

2|| < δ implies that ρP (f − f ′) is small enough to guar-
antee, by appeal to the continuity of µ, that |µ(f)− µ(f ′)| ≤ ǫ/2. Finally, note
that

∣∣w2(Σ, µ, β2, a)− w2(Σ
′, µ′, β′

2, a
′)
∣∣ ≤ |µ(f)− µ(f ′)|+ ||µ− µ′||F2 .
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Let δ′ = min(δ, ǫ/2), then ||Σ− Σ′||+ ||µ − µ′||F2 + ||β2 − β′
2|| + ||a− a′|| < δ′

implies that |w2(Σ, µ, β2, a) − w2(Σ
′, µ′, β′

2, a
′)| ≤ ǫ. Thus, the desired result is

proved.

Having established the continuity of w2 the next step will be to characterize

the limiting behavior of β∗
2,n, β̂2, Σ̂2, Σ̂

(b)
2 , and the limiting distributions of

Gn,
√
n(Pn−Pn), and

√
n(P̂

(b)
n −Pn). These limits are established in a series of

lemmas. Once this has been accomplished we will be able to apply the continuous
mapping theorem to obtain the limiting distributions of

√
n(β̂2 − β∗

2),
√
n(β̂ −

β∗
2,n), and

√
n(β̂

(b)
2 − β̂2).

Lemma B.5. Assume (A1)–(A2), then Σ̂2 →P Σ2,∞ and Σ̂
(b)
2 →PM

Σ2,∞ in

P -probability as n → ∞. Furthermore, if (A3) holds, then Σ̂2 →Pn
Σ2,∞ as

n→ ∞.

Proof. The first two claims follow from weak law of large numbers [Bickel and
Freedman 1981; Csörgő and Rosalsky 2003]. For the third claim, note that
Σ̂2 − Σ2,∞ = (Σ̂2 − Σ2,n) + (Σ2,n − Σ2,∞) and Σ̂2 − Σ2,n →Pn

0 by law
of large numbers. Below we show that Σ2,n → Σ2,∞. This will complete the
proof.

let c ∈ Rp2 be arbitrary and define ν , c⊺B2B
⊺

2 c. We will show that
∫
ν(dPn−

dP ) = o(1). First, note that

∫
ν(dPn − dP ) =

∫
ν(dP 1/2

n + dP 1/2)(dP 1/2
n − dP 1/2).

Furthermore, the absolute value of the foregoing expression is bounded above
by

∫
|ν||(dP 1/2

n + dP 1/2)|(dP 1/2
n − dP 1/2)

≤
√∫

ν2(dP
1/2
n + dP 1/2)2

√∫
(dP

1/2
n − dP 1/2)2,

where the last inequality is simply Hölder’s inequality. Next, note that owing to
the inequality (

√
a+

√
b)2 ≤ 2a+ 2b it follows that

∫
ν2(dP 1/2

n + dP 1/2)2 ≤ 2

∫
ν2dPn + 2

∫
ν2dP = O(1),

by appeal to (A3). Now write

∫
(dP 1/2

n − dP 1/2)2 = n−1

{∫ (√
n(dP 1/2

n − dP 1/2)− 1

2
vdP 1/2

)2

− 1

4

∫
v2dP +

√
n

∫
vdP 1/2(dP 1/2

n − dP 1/2)

}
.
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The right hand side of the preceding display is equal to

O(1/n) + n−1/2

∫
vdP 1/2(dP 1/2

n − dP 1/2)

≤ O(1/n) + n−1/2

√∫
v2dP

√∫
(dP

1/2
n − dP 1/2)2,

which is o(1). Thus Σ2,n → Σ2,∞.

Lemma B.6. Under (A1) and (A2), β̂2 →P β
∗
2 as n→ ∞. If, in addition (A3)

holds, then limn→∞
√
n(β∗

2,n − β∗
2) = Σ−1

2 PvB2(Y2 −B⊺

2β
∗
2 ).

Proof. β̂2 →P β∗
2 follows from weak law of large numbers and Slutsky’s lemma.

Recall that 0 = PnB2(Y2 −B⊺

2β
∗
2,n) which we can write as

√
n(Pn − P )B2(Y2 −B⊺

2β
∗
2 )− Σ2,n

√
n(β∗

2 − β∗
2,n),

so that for sufficiently large n it follows that
√
n(β∗

2,n − β∗
2 ) = Σ−1

2,n

√
n(Pn −

P )B2(Y2 −B⊺

2β
∗
2). By appeal to (A3) it follows that for any vector a ∈ Rp2 we

have supn Pn(a
⊺B2(Y2 −B⊺

2β
∗
2))

2 <∞. Theorem 3.10.12 of Van der Vaart and
Wellner (1996) ensures that

√
n(Pn − P )B2(Y2 −B⊺

2β
∗
2) → PvB2(Y2 −B⊺

2β
∗
2 )

as n→ ∞. This completes the proof.

Lemma B.7. Assume (A1)–(A2), then

1) Gn  P G∞ in l∞(F2), where F2 is defined in (10), and G∞ is a tight
Gaussian process in l∞(F2) with covariance function Cov(G∞f1,G∞f2) = P (f1−
Pf1)(f2 − Pf2); and

2) supω∈BL1

∣∣EMω(
√
n(P̂

(b)
n − Pn))− Eω(G∞)

∣∣→P∗ 0 in l∞(F2).
If, in addition (A3) holds, then

3)
√
n(Pn − Pn) Pn

G∞ in l∞(F2).

Proof. First note that F2 is a subset of the pairwise product of the linear classes
{a⊺b2 : a ∈ Rp2} and {y2 − b⊺2β2 : β ∈ Rp2} each of which is VC-subgraph of
index no more than p2 + 1 and P -measurable. Under (A1), the envelope of F2,
F2(B2, Y2) = K||B2||(|Y2| + K||B2||), is square integrable. This implies that
F2 is P-Donsker, and 1) follows immediately. 2) follows from Theorem 3.6.1 of
Van der Vaart and Wellner (1996). For 3), note that from (A3) it follows that
supf |Pnf | is a bounded sequence. The result follows from theorem 3.10.12 of
Van der Vaart and Wellner (1996).

Lemma B.8. The space Cb(F2) is a closed subset of l∞(F2) and P(G∞ ∈
Cb(F2)) = 1.
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Proof. Let {µn}∞n=1 be a convergent sequence of elements in Cb(F2) and µ0

the limiting element. For the first claim, we only need to show that ||µ0||F2 =
supf∈F2

|µ0(f)| is bounded, and for any f ∈ F and ǫ > 0, there exists some
positive δ depending on f so that |µ0(f

′) − µ0(f)| < ǫ for all f ′ ∈ F2 and
ρP (f

′, f) < δ. The boundedness argument follows by noticing that ||µ0||F2 ≤
||µn||F2 + ||µn − µ0||F2 for any n; in particular, for some fixed large enough
n, ||µn||F2 is bounded by the fact µn ∈ Cb(F2), and ||µn − µ0||F2 is bounded
above by a constant due to the convergence of µn to µ0. For continuity, note
that since µn converges to µ0, we can choose n∗ so that ||µn−µ0|| < ǫ/4 for all
n ≥ n∗. In addition, by the continuity of µn∗ , there exists some δ > 0 so that
|µn∗(f ′)− µn∗(f)| < ǫ for all ρP (f

′, f) < δ. Thus

|µ0(f
′)− µ0(f)| ≤ |µ0(f)− µn∗(f)|+ |µn∗(f ′)− µ0(f

′)|+ |µn∗(f)− µn∗(f ′)|
≤ 2||µ0 − µn∗ ||F2 + |µn∗(f)− µn∗(f ′)|
≤ 3ǫ/4.

This implies that Cb(F) is closed.
Next note that G∞ is a tight Gaussian process in l∞(F2). By the argu-

ment in section 1.5 of van de Van der Vaart and Wellner (1996), almost all
sample paths f → G∞(f, ω) are uniformly ρ2-continuous, where ρ2(f1, f2) =
[P (G∞f1 − G∞f2)2]1/2 is a semimetric on F . Since ρ2(f1, f2) = [V ar(f1 −
f2)]

1/2 ≤ ρP (f1, f2), the continuity of the sample paths of G∞ follows immedi-
ately.

B.2.2. A characterization of the first stage coefficients and the upper
bound U(c)

In this section we present the proofs for Theorems 4.1 and 4.2. We first derive
an expansion for the first stage coefficients and two useful expansions of the
upper bound U(c). The terms in the forementioned expansions will be treated
individually in subsequent sections. We will make use of the following functions.

1. w11 : Dp1 ×Dp1×p20 × l∞(F11)× l∞(F11)× Rp2 × Rp1+p2 → R is defined
as

w11(Σ1,Σ12, µ, ω, ν, β)

, c⊺Σ−1
1 Σ12ν0 + ω

(
c⊺Σ−1

1 B1H
⊺

2,1ν11H⊺

2,1β
∗
2,1>0

)

+ µ
[
c⊺Σ−1

1 B1

(
Y1 +H⊺

2,0β2,0 +
[
H⊺

2,1β2,1
]
+
−B⊺

1β1
)]
, (12)

where Dp1×p20 is the space of p1×p20 matrices equipped with the spectral

norm, and F11 =
{
f(b1, y1, h2,0, h2,1) = a⊺1b1

(
y1 + h⊺2,0β2,0 + [h⊺2,1β2,1]+ −

b⊺1β1
)
+ a⊺2b1(h

⊺

2,1ν1)1h⊺

2,1β
∗
2,1>0, : β = (β⊺

1 , β
⊺

2,0, β
⊺

2,1)
⊺ ∈ Rp1+p2 , ν = (ν⊺0 ,

ν⊺1 )
⊺ ∈ Rp2 , a1, a2 ∈ Rp1 ,max{||a1||, ||a2||, ||β||, ||ν||} ≤ K

}
.
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2. w12 : Dp1 × l∞(F12)× Rp21 × Rp21 → R is defined as

w12(Σ1, µ, ν, γ)

, µ
[
c⊺Σ−1

1 B1

([
H⊺

2,1ν +H⊺

2,1γ
]
+
−
[
H⊺

2,1γ
]
+

)
1H⊺

2,1β
∗
2,1=0

]
, (13)

where F12 =
{
f(b1, h2,1) = a⊺b1([h

T
2,1ν + h⊺2,1γ]+ − [h⊺2,1γ]+)1h⊺

2,1β
∗
2,1=0 :

a ∈ Rp1 , γ, ν ∈ Rp21 ,max{||a||, ||ν||} ≤ K
}
.

3. ρ11 : Dp1 ×Dk
p21 × l∞(F̃11)× Rp21 × Rp21 × Rp21 × R → R, is defined as

ρ11(Σ1,Σ21,21, µ, ν, η, γ, λ)

, µ

[
c⊺Σ−1

1 B1

([
H⊺

2,1ν +H⊺

2,1γ
]
+
− [H⊺

2,1γ]+

)

×


1 (H

⊺

2,1
ν+H

⊺

2,1
η)2

H
⊺

2,1
Σ21,21H2,1

≤λ
− 1H⊺

2,1β
∗
2,1=0



]
, (14)

where F̃11 =
{
f(b1, h2,1) = a⊺b1([h

⊺

2,1ν − h⊺2,1γ]+ − [h⊺2,1γ]+) ×
(1 (h

⊺

2,1ν+h
⊺

2,1η)2

h
⊺

2,1
Σ21,21h2,1

≤λ
− 1h⊺

2,1β
∗
2,1=0), : a ∈ Rp1 , ν, η, γ ∈ Rp21 ,max{||a||, ||ν||} ≤

K,λ ∈ R,Σ21,21 ∈ Dk
p21

}
.

4. ρ12 : Dp1 × l∞(F̃12)× R
p21 × R

p21 → R, defined as

ρ12(Σ1, µ, ν, η)

, µ

[
c⊺Σ−1

1 B1

([
H⊺

2,1ν +H⊺

2,1η
]
+
− [H⊺

2,1η]+ −H⊺

2,1ν
)
1H⊺

2,1β
∗
2,1>0

+ c⊺Σ−1
1 B1

([
H⊺

2,1ν +H⊺

2,1η
]
+
− [H⊺

2,1η]+

)
1H⊺

2,1β
∗
2,1<0

]
, (15)

where F̃12 = {a⊺b1([h⊺2,1ν + h⊺2,1η]+ − [h⊺2,1η]+ − h⊺2,1ν)1h⊺

2,1β
∗
2,1>0 − a⊺b1 ×

([h⊺2,1ν+h
⊺

2,1η]+−[h⊺2,1η]+)1h⊺

2,1β
∗
2,1<0 : a ∈ Rp1 , ν ∈ Rp21 ,max{||a||, ||ν||} ≤

K, η ∈ Rp21}.
Using the foregoing functions, we have the following expressions for the first
stage parameters:

c⊺
√
n(β̂1 − β∗

1) = w11(Σ̂1, Σ̂12,Gn,Pn,
√
n(β̂2 − β∗

2), (β
∗⊺
1 , β∗⊺

2 )⊺)

+ w12(Σ̂1,Pn,
√
n(β̂2,1 − β∗

2,1),
√
nβ∗

2,1)

+ ρ12(Σ̂1,Pn,
√
n(β̂2,1 − β∗

2,1),
√
nβ∗

2,1); (16)
√
n(β̂1 − β∗

1,n) = w11(Σ̂1, Σ̂12,
√
n(Pn − Pn),Pn,

√
n(β̂2 − β∗

2,n), (β
∗⊺
1,n, β

∗⊺
2,n)

⊺)

+ w12(Σ̂1,Pn,
√
n(β̂2,1 − β∗

2,1,n),
√
nβ∗

2,1,n)

+ ρ12(Σ̂1,Pn,
√
n(β̂2,1 − β∗

2,1,n),
√
nβ∗

2,1,n), (17)
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where Σ̂12 = PnB1H
⊺

2,0. Similarly, we can express the upper bound U(c) in terms
of the above functions:

U(c) = w11(Σ̂1, Σ̂12,Gn,Pn,
√
n(β̂2 − β∗

2 ), (β
∗⊺
1 , β∗⊺

2 )⊺)

+ ρ12(Σ̂1,Pn,
√
n(β̂2,1 − β∗

2,1),
√
nβ∗

2,1)

− ρ11(Σ̂1, Σ̂21,21,Pn,
√
n(β̂2,1 − β∗

2,1),
√
nβ∗

2,1,
√
nβ∗

2,1, λn)

+ sup
γ∈R

p2,1

{
w12(Σ̂1,Pn,

√
n(β̂2,1 − β∗

2,1), γ)

+ ρ11(Σ̂1, Σ̂21,21,Pn,
√
n(β̂2,1 − β∗

2,1),
√
nβ∗

2,1, γ, λn)

}
. (18)

We will also make use of the following alternative expression for the upper bound
U(c) under Pn:

U(c) = w11(Σ̂1, Σ̂12,
√
n(Pn − Pn),Pn,

√
n(β̂2 − β∗

2,n), (β
∗⊺
1,n, β

∗⊺
2,n)

⊺)

+ ρ12(Σ̂1,Pn,
√
n(β̂2,1 − β∗

2,1,n),
√
nβ∗

2,1,n)

− ρ11(Σ̂1, Σ̂21,21,Pn,
√
n(β̂2,1 − β∗

2,1,n),
√
nβ∗

2,1,n,
√
nβ∗

2,1,n, λn)

+ sup
γ∈Rp21

{
w12(Σ̂1,Pn,

√
n(β̂2,1 − β∗

2,1,n), γ)

+ ρ11(Σ̂1, Σ̂21,21,Pn,
√
n(β̂2,1 − β∗

2,1,n),
√
nβ∗

2,1,n, γ, λn)

}
. (19)

Similarly, we will make use of following expression for the bootstrap analog of
the upper bound:

Û (b)(c) = w11(Σ̂
(b)
1 , Σ̂

(b)
12 ,

√
n(P(b)

n − Pn),P
(b)
n ,

√
n(β̂

(b)
2 − β̂2), (β̂

⊺

1 , β̂
⊺

2 )
⊺)

+ ρ12(Σ̂
(b)
1 , P̂(b)

n ,
√
n(β̂

(b)
2,1 − β̂2,1),

√
nβ̂2,1)

− ρ11(Σ̂
(b)
1 , Σ̂

(b)
21,21, P̂

(b)
n ,

√
n(β̂

(b)
2,1 − β̂2,1),

√
nβ̂2,1,

√
nβ̂2,1, λn)

+ sup
γ∈Rp21

{
w12(Σ̂

(b)
1 , P̂(b)

n ,
√
n(β̂

(b)
2,1 − β̂2,1), γ)

+ ρ11(Σ̂
(b)
1 , Σ̂

(b)
21,21, P̂

(b)
n ,

√
n(β̂

(b)
2,1 − β̂2,1),

√
nβ̂2,1, γ, λn)

}
. (20)

The lower bound L(c) and its bootstrap analog L̂(b)(c) can be expressed in a
similar fashion by replacing the sup with an inf in the expression of U(c) and
Û (b)(c), respectively.

By Lemmas B.9 and B.11 below, ρ11 is negligible, and w11 and w12 are
continuous at desired points. The negligibility of ρ12 can be obtained in a similar

fashion. Note that the convergence of Σ̂1 and Σ̂
(b)
1 to Σ1 and the convergence

of Σ̂12 and Σ̂
(b)
12 to PB1H

⊺

2,0 can be obtained using similar proof techniques
as in Lemma B.5. This together with Theorem B.3, Lemmas B.5–B.8, and the
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continuous mapping theorems as presented in the previous section, implies that
the conclusions of Theorems 4.1 and 4.2 hold with

S∞ = Σ−1
1,∞
[
G∞

(
B1(Y1 +H⊺

2,0β
∗
2,0+ [H⊺

2,1β
∗
2,1]+ −B⊺

1β
∗
1 )
)
+PB1H

⊺

2,0Z∞,0

]

and V∞ = Z∞,1,

where Z
⊺

∞,0 ∈ Rp20 , Z⊺

∞,1 ∈ Rp21 , and Z∞ = (Z⊺

∞,0,Z
⊺

∞,1)
⊺ = Σ−1

2,∞G∞[B2(Y2 −
B⊺

2β
∗
2)].

Lemma B.9. Assume (A1), (A2) and (A4). Then

1. supγ∈Rp21

∣∣ρ11(Σ̂1, Σ̂21,21,Pn,
√
n(β̂2,1 − β∗

2,1),
√
nβ∗

2,1, γ, λn)| →P 0, and

2. supγ∈Rp21

∣∣ρ11(Σ̂(b)
1 , Σ̂

(b)
21,21, P̂

(b)
n ,

√
n(β̂

(b)
2,1− β̂2,1),

√
nβ̂2,1, γ, λn)

∣∣→PM
0 al-

most surely P .

If, in addition, we assume (A3), then

3. supγ∈Rp21

∣∣ρ11(Σ̂1, Σ̂21,21,Pn,
√
n(β̂2,1 − β∗

2,1,n),
√
nβ∗

2,1,n, γ, λn)
∣∣→Pn

0.

Proof. First it is easy to verify that |[H⊺

2,1ν − H⊺

2,1γ]+ − [H⊺

2,1γ]+| ≤ |h⊺2,1ν|.
Thus for any probability measure µ in l∞(F̃11),

|ρ11(Σ1,Σ21,21, µ, ν, η, γ, λ)| ≤ K

{
µ

(
||B1|| ||H2,1|| 1

H⊺

2,1β
∗
2,1=0,

H
⊺

2,1
η

||H2,1||
>
√
λk−K

)

+ µ

(
||B1|| ||H2,1|| 1

H⊺

2,1β
∗
2,1=0,

H
⊺

2,1η

||H2,1||
<−

√
λk−K

)

+ µ

(
||B1|| ||H2,1|| 1

H⊺

2,1β
∗
2,1 6=0,−

√
λ/k−K≤

H
⊺

2,1
η

||H2,1||
≤
√
λ/k+K

)}

for a sufficiently large constantK > 0 and a sufficiently small constant k ∈ (0, 1).
Since k is held constant there is no loss in generality taking k = 1. Define
ρ′11 : l∞(F ′

11)× Rp21 × R× R → R as

ρ′11(µ, η, δ, δ
′) = µ

(
||B1|| ||H2,1|| 1

H⊺

2,1β
∗
2,1=0,

H
⊺

2,1
η

||H2,1||
>δ

)

+ µ

(
||B1|| ||H2,1|| 1

H⊺

2,1β
∗
2,1=0,

H
⊺

2,1η

||H2,1||
<δ′

)

+ µ

(
||B1|| ||H2,1|| 1

H⊺

2,1β
∗
2,1 6=0,δ′≤

H
⊺

2,1η

||H2,1||
≤−δ′

)
, (21)

where

F ′
11 =

{
f(b1, h2,1) = ||b1|| ||h2,1||1

h⊺

2,1β
∗
2,1=0,

h
⊺

2,1η

||h2,1||
>δ
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+ ||b1|| |||h2,1||1
h⊺

2,1β
∗
2,1=0,

H
⊺

2,1
η

||h2,1||
<δ′

+ ||b1|| ||h2,1||1
h⊺

2,1β
∗
2,1 6=0,δ′≤

h
⊺

2,1
η

||h2,1||
≤−δ′

,

η ∈ R
p21 ,max{||η||, ||δ||, ||δ′||} ≤ K

}
.

Then

|ρ11(Σ1,Σ21,21, µ, ν, η, γ, λ)| ≤ Kρ′11

(
µ, η/

√
n, (

√
λ−K)/

√
n,−(

√
λ+K)/

√
n
)

for µ ∈ l∞(F̃11). In particular for n sufficiently large,

∣∣ρ11(Σ̂(b)
1 , Σ̂

(b)
21,21, P̂

(b)
n ,

√
n(β̂

(b)
2,1 − β̂2,1),

√
nβ̂2,1, γ, λn)

∣∣

≤ K ρ′11

(
P̂
(b)
n , β̂2,1, (

√
λn −K)/

√
n,−(

√
λn −K)/

√
n
)

+ ||c|| ||Σ̂(b)
1 || ||

√
n(β̂

(b)
2,1 − β̂2,1)|| P̂(b)

n (||B1|| ||H2,1||) 1||√n(β̂(b)
2,1−β̂2,1)||>K ,

where we have assumed, without loss of generality, that Σ̂
(b)
21,21 is the identity

matrix. By part 2 of Lemma B.10 below, we see that the first term on the right
hand side of the above display is oPM

(1) almost surely P . To deal with the second

term, for any ǫ, δ > 0, let K sufficiently large so that PM (
∣∣∣∣√n(β̂(b)

2,1 − β̂2,1)
∣∣∣∣ >

K) < δ for sufficiently large n for almost all sequences P . Then

PM

(
||c|| ||Σ̂(b)

1 || ||
√
n(β̂

(b)
2,1 − β̂2,1)||P̂(b)

n ||B1|| ||H2,1||1|√n(β̂(b)
2,1−β̂2,1)|>K > ǫ

)

≤ PM

(∣∣∣∣√n(β̂(b)
2,1 − β̂2,1)

∣∣∣∣ > K
)
≤ δ,

almost surely P . This completes the proof of result 2. Similar arguments can be
used to prove results 1 and 3, and are omitted.

Lemma B.10. Let ρ′11 be defined in (21). Assume (A1), (A2) and (A4), then

1. ρ′11(Pn, β
∗
2,1, (

√
λn −K)/

√
n, (−

√
λn −K)/

√
n) →P 0, and

2. ρ′11(P̂
(b)
n , β̂2,1, (

√
λn−K)/

√
n, (−

√
λn−K)/

√
n) →PM

0, P -almost surely.

If, in addition, we assume (A3), then

3. ρ′11(Pn, β
∗
2,1,n, (

√
λn −K)/

√
n, (−

√
λn −K)/

√
n) →Pn

0.

Proof. The class F ′
11 is P -Donsker and measurable by Theorem 8.14 in Anthony

and Bartlett (1999) and Donkser preservation results (for example, see Theo-
rem 2.10.6 in Van der Vaart and Wellner 1996). Note that by (A1) and (A3)
supf∈F ′

11
|Pf2| <∞ and supf∈F ′

11
|Pnf2| is a bounded sequence. Thus, it follows

that (i) ||Pn − P || → 0 almost surely under P in l∞(F ′
11), (ii) ||P̂

(b)
n − P || → 0

almost surely PM for almost all sequences P (Lemma 3.6.16 in Van der Vaart
and Wellner 1996), and (iii) ||Pn− Pn|| → 0 almost surely under Pn in l∞(F ′

11)
(Theorem 3.10.12 in Van der Vaart and Wellner 1996). Additionally, the argu-
ment in the proof of Lemma (B.5) shows that Σ̂1 is convergent to Σ1 under Pn,
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and the weak law of large numbers establishes convergence under P . The boot-

strap strong law shows that Σ̂
(b)
1 converges to Σ1 in PM probability for almost

all sequences P .
Next we show that ρ′11 is continuous at the point (P, β∗

2,1, 0, 0). Let µn → P
in l∞(F ′

11), ηn → β∗
2,1, δn → 0, and δ′n → 0. We have

∣∣ρ′11(µn, ηn, δn, δ′n)− ρ′11(P, β
∗
2,1, 0, 0)

∣∣

≤
∣∣ρ′11(P, ηn, δn, δ′n)− ρ′11(P, β

∗
2,1, 0, 0)

∣∣+ ||µn − P ||,

which converges to zero by the dominated convergence theorem. The results fol-
low from the continuous mapping theorems and the fact that ρ′11(P, β

∗
2,1, 0, 0) = 0.

Lemma B.11. Assume (A1) and (A2). Then

1. w11 is continuous at points in (Σ1,∞,Σ12,∞, Cb(F11), P,R
p2 , (β∗⊺

1 , β∗⊺
2 )⊺);

2. w12(·, ·, ·,
√
nβ∗

2,1) and w12(·, ·, ·,
√
nβ∗

2,1,n) are continuous at points in
(Σ1,∞, P,Rp21); and

3. w′
12(Σ1, µ, ν) , supγ∈Rp21 w12(Σ1, µ, ν, γ) is continuous at points in

(Σ1,∞, P,Rp21).

Proof. To prove the desired continuity of w12 and w′
12, we will establish the

stronger result that w12 is continuous at points (Σ1,∞, P,Rp21 , γ) uniformly in
γ. That is, for any Σn → Σ1,∞, probability measures µn → P and νn → ν, we
have

sup
γ

∣∣∣∣w12(Σn, µn, νn, γ)− w12(Σ1, P, ν, γ)

∣∣∣∣→ 0.

Note that

∣∣w12(Σn, µn, νn, γ)− w12(Σ1, P, ν, γ)
∣∣

≤
∣∣w12(Σn, µn, νn, γ)− w12(Σn, µn, ν, γ)

∣∣

+
∣∣w12(Σn, P, ν, γ)− w12(Σ1, P, ν, γ)

∣∣
+
∣∣w12(Σn, µn, ν, γ)− w12(Σn, P, ν, γ)

∣∣

≤ µn
(∣∣c⊺Σ−1

n B1|H⊺

2,1(νn − ν)|
∣∣)+ P

(
|c⊺(Σ−1

n − Σ−1
1,∞)B1| |H⊺

2,1ν|
)

+
∣∣∣(µn − P )

(
c⊺Σ−1

n B1([H
⊺

2,1ν +H⊺

2,1γ]+ − [H⊺

2,1γ]+)1H⊺

2,1β
∗
2,1=0

)∣∣∣

By (A2), we have that ||Σ−1
n || is bounded above for sufficiently large n, where

|| · || of a matrix denotes the spectral norm of the matrix. Thus the first term
in the above display is bounded by ||c|| ||Σ−1

n ||µn(||B1|| ||H2,1||) ||νn − ν|| =
o(1), and the second term in the above display is bounded by ||c|| ||Σ−1

1 −
Σ−1
n ||P (||B1|| ||H2,1||)||ν|| = o(1). For the third term, note that if ||ν|| = 0,

then it is zero. Otherwise,

∣∣∣(µn − P )
(
c⊺Σ−1

n B1([H
⊺

2,1ν +H⊺

2,1γ]+ − [H⊺

2,1γ]+)1H⊺

2,1β
∗
2,1=0

)∣∣∣
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Table 10

Parameters indexing the example models

Example ξ δ Regularity
1 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)⊺ (0.5, 0.5)⊺ p = 1, φ = 0/0
2 (0, 0, 0, 0, 0.01, 0.01, 0, 0, 0, 0)⊺ (0.5, 0.5)⊺ p = 0, φ = ∞
3 (0, 0,−0.5, 0, 0.5, 0.5, 0, 0, 0.5, 0.5)⊺ (0.5, 0.5)⊺ p = 1/2, φ = 1.0
4 (0, 0,−0.5, 0, 0.5, 0.5, 0, 0, 0.49, 0.49)⊺ (0.5, 0.5)⊺ p = 0, φ = 1.0204
5 (0, 0,−0.5, 0, 1.00, 1.00, 0.5, 0.5, 0.5, 0.5)⊺ (1.0, 0.0)⊺ p = 1/4, φ = 1.4142
6 (0, 0,−0.5, 0, 0.25, 0.25, 0.5, 0.5, 0.5, 0.5)⊺ (0.1, 0.1)⊺ p = 0, φ = 0.3451
A (0, 0,−0.25, 0, 0.75, 0.75, 0.5, 0.5, 0.5, 0.5)⊺ (0.1, 0.1)⊺ p = 0, φ = 1.035
B (0, 0, 0, 0, 0.25, 0.25, 0, 0, 0.25, 0.25)⊺ (0, 0)⊺ p = 1/2, φ = 1.00
C (0, 0, 0, 0, 0.25, 0.25, 0, 0, 0.24, 0.24)⊺ (0, 0)⊺ p = 1/2, φ = 1.00

≤
∣∣(µn − P )

(
c⊺Σ−1

n B1([H
⊺

2,1ν/||ν||+H⊺

2,1γ/||ν||]+
−[H⊺

2,1γ/||ν||]+)1H⊺

2,1β
∗
2,1=0

)∣∣∣ ||ν|| ≤ ||µn − P ||F12 ||ν|| = o(1).

This established the continuity of w12 and hence w′
12. The continuity of w11 can

be established through similar arguments and is therefore omitted.

Appendix C: Definitions of three-treatment models

Here, we present a suite of example models similar to those of Chakraborty
et al. (2009), but that have three possible treatments at the second stage. These
models are defined as follows:

• Xi ∈ {−1, 1} for i ∈ {1, 2},
A1 ∈ {−1, 1}, and A2 ∈ {(0,−0.5)⊺, (−1, 0.5)⊺, (1, 0.5)⊺}

• P (A1 = 1) = P (A1 = −1) = 1/2,
P (A2 = (0,−1)⊺) = P (A2 = (−1, 0.5)⊺) = P (A2 = (1, 0.5)⊺) = 1/3

• P (X1 = 1) = P (X1 = −1) = 1/2,
P (X2 = 1|X1, A1) = expit(δ1X1 + δ2A1)

• Y1 , 0,
Y2 = ξ1+ξ2X1+ξ3A1+ξ4X1A1+(ξ5, ξ6)A2+X2(ξ7, ξ8)A2+A1(ξ9, ξ10)A2+
ǫ, ǫ ∼ N(0, 1)

where expit(x) = ex/(1 + ex). This class is parameterized by twelve values
ξ1, ξ2, . . . , ξ10, δ1, δ2. The analysis model uses histories defined by:

H2,0 = (1, X1, A1, X1A1, X2)
⊺ (22)

H2,1 = (1, X2, A1)
⊺ (23)

H1,0 = (1, X1)
⊺ (24)

H1,1 = (1, X1)
⊺. (25)

Our working models are given by Q2(H2, A2;β2) , H
⊺

2,0β2,0 +H⊺

2,1β2,1,1A2,1 +

H⊺

2,1β2,1,2A2,2 and Q1(H1, A1;β1) , H⊺

1,0β1,0 + H⊺

1,1β1,1A1. In Table 10, for
each of these models we give the probability p of generating a history where
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Table 11

Monte Carlo estimates of coverage probabilities for the ACI method at the 95% nominal
level for different choices of λn. Here, β1,1,1 denotes the main effect of treatment and β1,0,1

denotes the intercept. Estimates are constructed using 1000 datasets of size 150 drawn from
each model, and 1000 bootstraps drawn from each dataset. No coverage estimates are

significantly below 0.95 at the 0.05 level. Models have two treatments at each of two stages.
Examples are designated NR = nonregular, NNR = near-nonregular, R = regular

β1,1,1

λn =
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. A
R

Ex. B
R

Ex. C
R

√
log logn 0.989 0.987 0.967 0.969 0.954 0.952 0.950 0.962 0.962
log logn 0.992 0.992 0.968 0.972 0.957 0.955 0.950 0.964 0.965
logn 0.993 0.994 0.975 0.976 0.962 0.966 0.959 0.969 0.972√

n 0.994 0.995 0.975 0.976 0.967 0.972 0.968 0.973 0.975
n 0.994 0.995 0.975 0.976 0.969 0.972 0.968 0.975 0.976

β1,0,1

λn =
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. A
R

Ex. B
R

Ex. C
R

√
log logn 0.952 0.962 0.952 0.954 0.950 0.953 0.947 0.952 0.954
log logn 0.956 0.964 0.954 0.955 0.950 0.957 0.948 0.956 0.957
logn 0.970 0.974 0.961 0.964 0.950 0.966 0.959 0.965 0.968√

n 0.971 0.975 0.963 0.968 0.954 0.973 0.965 0.974 0.978
n 0.971 0.975 0.987 0.987 0.979 0.980 0.975 0.983 0.984

each of the three possible treatments at the second stage have exactly the same
effect. This is analogous to having the second stage treatment show no effect
in a binary model. Furthermore, because of the Helmert encoding we have used
in our analysis models, and because of the structure of ξ, it happens that the
standardized effect size of treatment 1 versus treatment 2, treatment 1 versus
treatment 3, and treatment 2 versus treatment 3 are all exactly equal in our
examples. We report this as φ in Table 10.

Appendix D: Additional empirical results

Here we present additional empirical results. Tables 11 and 12 show the esti-
mated coverage and interval diameter of the ACI across the nine generative
models with two stages and two treatments per stage. The results appear stable
across choices of λn for which the ACI is consistent. However, the ACI becomes
quite conservative when λn is allowed to grow faster than

√
log log n.

Appendix E: The double bootstrap algorithm for selecting λ

Our algorithmic approach to choosing λn is similar to that used by Chakraborty
et al. (2013) to choose m for their m-out-of-n bootstrap method. To select λn,
we first draw r bootstrapped datasets D(1), . . . ,D(r) from the original dataset D.
We take each of these in turn and compute an ACI bootstrap confidence interval
at level 1− α with parameter λn = τ

√
log logn for τ ∈ {0.125, 0.25, 0.5, 1, 2, 4}.

(Because the ACI uses the bootstrap itself, it actually uses double-bootstraps
of D to compute each interval.) Using the parameters estimated by Q-learning
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Table 12

Monte Carlo estimates of mean width of the ACI method at the 95% nominal level for
different choices of λn. Here, β1,1,1 denotes the main effect of treatment and β1,0,1 denotes
the intercept. Estimates are constructed using 1000 datasets of size 150 drawn from each

model, and 1000 bootstraps drawn from each dataset. No corresponding estimated coverages
are significantly below 0.95 at the 0.05 level. Models have two treatments at each of two
stages. Examples are designated NR = nonregular, NNR = near-nonregular, R = regular

β1,1,1

λn =
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. A
R

Ex. B
R

Ex. C
R

√
log logn 0.490 0.490 0.481 0.481 0.483 0.471 0.474 0.484 0.484
log logn 0.502 0.502 0.488 0.488 0.487 0.475 0.477 0.491 0.491
logn 0.557 0.557 0.518 0.518 0.503 0.495 0.492 0.523 0.523√

n 0.583 0.582 0.533 0.533 0.513 0.514 0.511 0.540 0.540
n 0.586 0.586 0.538 0.538 0.525 0.521 0.519 0.543 0.543

β1,0,1

λn =
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. A
R

Ex. B
R

Ex. C
R

√
log logn 0.506 0.506 0.481 0.481 0.483 0.490 0.474 0.490 0.490
log logn 0.518 0.518 0.487 0.487 0.486 0.494 0.476 0.497 0.498
logn 0.574 0.574 0.517 0.517 0.502 0.517 0.493 0.540 0.541√

n 0.596 0.596 0.536 0.536 0.515 0.543 0.519 0.571 0.572
n 0.598 0.598 0.576 0.576 0.565 0.586 0.565 0.579 0.579

on the original D as ground truth, we compute for each value of τ the number
of bootstrapped datasets κ(τ) for which the ACI covers. We then select τ∗ to be
the smallest τ that satisfies κ(τ)/r > 1 − α, and apply the ACI to the original
dataset D using λ = τ∗

√
log logn. In our experiments we used r = 100.
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