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Abstract. This paper describes new methods for maintaining a point-location data structure for
a dynamically changing monotone subdivision S. The main approach is based on the maintenance
of two interlaced spanning trees, one for S and one for the graph-theoretic planar dual of S. Queries
are answered by using a centroid decomposition of the dual tree to drive searches in the primal
tree. These trees are maintained via the link-cut trees structure of Sleator and Tarjan [J. Comput.
System Sci., 26 (1983), pp. 362–381], leading to a scheme that achieves vertex insertion/deletion in
O(logn) time, insertion/deletion of k-edge monotone chains in O(logn+k) time, and answers queries
in O(log2 n) time, with O(n) space, where n is the current size of subdivision S. The techniques
described also allow for the dual operations expand and contract to be implemented in O(logn) time,
leading to an improved method for spatial point location in a 3-dimensional convex subdivision.
In addition, the interlaced-tree approach is applied to on-line point location (where one builds S
incrementally), improving the query bound to O(logn log logn) time and the update bounds to O(1)
amortized time in this case. This appears to be the first on-line method to achieve a polylogarithmic
query time and constant update time.
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1. Introduction. An exciting direction in algorithmic research has been to show
how one can efficiently maintain various properties of a combinatoric or geometric
structure while updating that structure in a dynamic fashion (e.g., see [13]). A prob-
lem with tremendous potential for dynamization is planar point location, a classic
problem in computational geometry (e.g., see [1, 17, 28, 33, 37]). Given a subdivision
S of the plane into “cells,” described by a total of n line segments, the problem is
to preprocess S to allow for efficiently naming the cell containing a query point p.
An important special case of the point-location problem occurs when each face in
the planar subdivision is a monotone polygon with respect to the y-axis; that is, the
boundary of each face is intersected at most twice by any horizontal line. Given such
a subdivision, Kirkpatrick [26] shows that one can construct an O(n)-space structure
in O(n) time that allows O(log n)-time point-location queries. Edelsbrunner, Guibas,
and Stolfi [18] show that one can achieve these same bounds by applying the frac-
tional cascading paradigm of Chazelle and Guibas [8, 9] to the chain method of Lee
and Preparata [27]. Cole [15] and Sarnak and Tarjan [41] independently show that
one can also achieve these bounds after O(n log n) preprocessing by applying a per-
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sistence technique (e.g., see Driscoll et al. [16]) to a simple plane-sweeping procedure
(as an example of a static→dynamic→static conversion). (See [17, 28, 37] for other
references on this important problem.)

We are interested in maintaining a monotone subdivision dynamically, subject
to edge insertion and deletion, vertex insertion and deletion, as well as the insertion
or deletion of a monotone chain of k edges. In addition, we are also interested in
operations that are duals to edge insertion and deletion, as in the framework of Guibas
and Stolfi [25], where we allow for vertex expansion and contraction: an expansion
splits a vertex v into two new vertices connected by an edge, and a contraction merges
two adjacent vertices into a new vertex. These operations are useful in applying a
dynamic point location to spatial point location in 3-dimensional subdivisions [40] via
persistence [16].

1.1. Previous work. Before we describe our main results, let us briefly review
previous work on dynamic point location, which we summarize in Table 1. Early work
on dynamic point location includes a method by Overmars [35], which is based on a
segment-tree [4] approach to planar-point location, and achieves an O(log2 n) query
and update time with O(n log n) space. Fries [20] and Fries, Mehlhorn, and Näher [21]
present a data structure with O(n) space, O(log2 n) query time, and O(log4 n) amor-
tized update time (for edge insertion/deletion only), using an approach based on the
static chain method of Lee and Preparata [27]. Neither of these methods seems to
extend to the dual update operations of expand and contract, however.

Table 1
Previous results for dynamic point location. N denotes the number of possible y-coordinates

for edge endpoints in the subdivision. Also, we use Ō(∗) to denote an amortized bound.

Type Queries Insert Delete

General [3] O(logn log logn) Ō(logn log logn) Ō(log2 n)
Connected [11] O(log2 n) O(logn) O(logn)
Connected [12] O(logn) Ō(log3 n) Ō(log3 n)
Monotone [14] O(logn) Ō(log2 n) Ō(log2 n)
Convex [39] O(logn+ logN) O(logn logN) O(logn logN)
Staircase [2] O(logn) Ō(logn) Ō(logn)

Preparata and Tamassia [38] have given techniques for maintaining monotone
subdivisions that are also based on this chain method, but they improve the bounds
of Fries, Melhorn, and Näher by representing the chains topologically rather than
geometrically. In their scheme, inserting/deleting vertices on edges requires O(log n)
time, and inserting/deleting monotone chains of edges requires O(log2 n + k) time.
Moreover, as shown in [40], their scheme can be extended to the dual update opera-
tions, which leads, via persistence [16], to a data structure for spatial point location
that uses O(N log2N) space, requires O(N log2N) processing time, and allows for
queries to be answered in O(log2N) time, where N is the size of the 3-dimensional
subdivision.

Cheng and Janardan [11] present two methods for dynamic planar point location
that improve the time of edge updates. In their Scheme I they achieve O(log2 n) query
time, O(log n) time for inserting/deleting a vertex, and O(k log n) time for insert-
ing/deleting a chain of k edges, and in their Scheme II they achieve O(log n log log n+
k) time for inserting/deleting monotone chains, at the expense of increasing ver-
tex insertion/deletion time to O(log n log log n) and increasing the query time to
O(log2 n log log n). Both of their methods are based on a search strategy derived
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from the priority search tree data structure of McCreight [30]. They dynamize this
approach with the BB(α) tree data structure (e.g., see [32]) using the approach of
Willard and Lueker [43] to spread local updates over future operations and the method
of Overmars [34] to perform global rebuilding (at the same time) before the “current”
data structure becomes too unbalanced. Their methods do not seem to extend to the
dual update operations, however, nor does it seem possible to improve their bounds
for the on-line case.

The dynamic data structure by Baumgarten, Jung, and Mehlhorn [3] combines
interval trees, segment trees, fractional cascading, and the data structure of [11].
It achieves O(n) space, O(log n log log n) query and insertion time, and O(log2 n)
deletion time, where the time bounds for updates are amortized.

Chiang and Tamassia [14] present a dynamic data structure for monotone subdi-
visions, which is based on the static trapezoid method of Preparata [36] and extends
previous work by Preparata and Tamassia [39] on dynamic point location in con-
vex subdivisions with vertices on a fixed set of lines. The operations supported are
insertion and deletion of vertices and edges and horizontal translation of vertices.
They show how to achieve queries in O(log n) time, while requiring O(log2 n) time
for updates. The space requirement for their method is O(n log n). Finally, Atallah,
Goodrich, and Ramaiyer [2] show how to apply a new data structure, which they call
biased finger trees to achieve an O(log n) query time and O(log n) amortized update
time for a fairly restricted class of subdivisions known as staircase subdivisions, where
each face is bounded above and below by “staircase” polygonal chains.

In related work, Chiang, Preparata, and Tamassia [12] have shown that one can
achieve an O(log n) query time in a dynamic environment that allows for ray-shooting
queries and subdivision updates in O(log3 n) time, and Goodrich and Tamassia [23]
show how to maintain a similar environment so as to achieve O(log2 n) time for all
updates and queries (using a method built upon the scheme of the present paper).

1.2. Our results. In this paper we show how to dynamically maintain a mono-
tone subdivision so as to achieve O(log2 n) query time, O(log n) time for vertex inser-
tion/deletion, and O(log n + k) time for the insertion/deletion of a monotone chain
of k edges. Our methods are based on the maintenance of two interlaced spanning
trees, one for the subdivision and one for its graph-theoretic dual, to answer queries.
Queries are performed by using a centroid decomposition of the dual tree to drive
searches in the primal tree. We dynamize this approach using the edge-ordered dy-
namic tree data structure of Eppstein et al. [19], which is an extension of the link-cut
trees data structure of Sleator and Tarjan [42]. We use the “built-in” operations of
link, cut, split, and merge to implement both our updates and queries. Our methods
improve the previous bounds for dynamically maintaining monotone subdivisions.

We also show how to extend our approach to implement the dual operations of
expand and contract, which, in turn, leads to an improved data structure for spatial
point location via the persistence paradigm of Driscoll et al. [16], where one dynamizes
the problem to a 3-dimensional space sweep that uses our data structure to maintain
the current “slice.” This leads to an O(N logN) space data structure that requires
only O(N logN) preprocessing time while achieving an O(log2N) query time, for
a 3-dimensional convex subdivision with N facets, which improves the space and
preprocessing of the previous method [40] by a logN factor.

Finally, we show how to apply our approach to on-line planar point location,
where one builds a monotone subdivision incrementally. In this case we show how to
maintain the centroid decomposition of the dual tree explicitly (in a BB(α) tree [32])
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and apply a simple version of the fractional cascading paradigm of Chazelle and
Guibas [8, 9] to improve the query time to O(log n log log n) while also improving the
complexity of updates to O(1) amortized time. We believe this is the first on-line
point location method to achieve a polylogarithmic query time and constant update
time.

2. Preliminaries.

2.1. Monotone subdivisions. A (planar) subdivision S is a partition of the
plane into polygons, called the regions of S. We assume that S has one unbounded
region, called the external region. A subdivision S is generated by a planar graph
embedded in the plane such that the edges are straight-line segments. We assume a
standard representation for the subdivision S such as doubly connected edge lists [37].

A monotone chain is a polygonal chain such that each horizontal line intersects it
in at most one point. A polygon is monotone if its boundary is partitionable into two
monotone chains. A monotone subdivision is such that all its regions are monotone
polygons (even the external region). A triangulation is a subdivision such that the
boundary of each region has three edges.

Let us orient each edge of a monotone subdivision S by decreasing ordinate, i.e.,
so that it “points down.” Because each face in S is a monotone polygon, in orienting
the edges of S in this way we obtain a planar st-graph, i.e., a planar acyclic digraph
with exactly one source (vertex without incoming edges) and one sink (vertex without
outgoing edges). The source s and sink t of S are the highest and lowest vertices of S,
respectively. The left chain of a region r of S is the monotone chain on the boundary
of r such that r is on the left side of it when traversed from top to bottom. The
right chain is similarly defined. Note that according to this definition the left (resp.,
right) chain of the external region appears on the right (resp., left) boundary of the
subdivision.

2.2. Centroid decomposition. Let T be free tree with n vertices of degree at
most 3. A centroid edge of T is an edge e whose removal partitions T into two trees
of size at most 1 + 2n/3 each. It is well known that if n > 1, such an edge exists and
can be found in time O(n) (e.g., see [6, 31]).

A centroid decomposition tree for T is a rooted binary tree B recursively defined
as follows: if T has a single vertex v, then B consists of a single leaf node that
stores vertex v. Otherwise, let e be a centroid edge of T , and let T ′ and T ′′ be the
trees that result when removing e from T . The root of B stores edge e, and the left
and right subtrees of B are centroid trees for T ′ and T ′′, respectively. The centroid
decomposition tree B has O(log n) height and can be constructed in O(n) time (e.g.,
see [10, 24]).

2.3. Dynamic trees. Dynamic trees [42] are a versatile dynamic data structure
for maintaining a forest of rooted trees. We shall use an extension of dynamic trees,
called edge-ordered dynamic trees [19].

An edge-ordered tree is a rooted tree in which a cyclic order is imposed on the
edges incident on each node (including the edge to the parent). The circular sequence
of edges incident to node µ is called the edge ring of µ. For example, in our application
the trees are drawn in the plane and we use the counterclockwise ordering of the edges
around each vertex given by the embedding. Edge-ordered dynamic trees support the
following repertory of update operations [19].
link(µ′, µ′′, e′, e′′). This operation assumes that µ′ is the root of a tree T ′, µ′′ is a

node of another tree T ′′, and e′′ is an edge incident on µ′′. Add a new edge
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e′ from node µ′ to node µ′′, thus making T ′ a subtree of T ′′. The new edge
e′ is inserted after edge e′′ in the edge ring of µ′′.

cut(µ, e). This operation assumes that node µ is not the root of a tree and e is the
edge from µ to its parent. Remove edge e, thus separating the subtree rooted
at µ.

split(µ, µ′, µ′′, e, e1, e2). Split node µ into two nodes µ′ and µ′′ connected by a new
edge e. If (αe1βe2γ) is the edge ring of µ, then αeγ and ee1βe2 are the
edge-rings of µ′ and µ′′, respectively.

merge(µ′, µ′′, e). Merge adjacent nodes µ′ and µ′′ connected by edge e into a single
node µ. If αe is the edge ring of µ′ and βe is the edge ring of µ′′, then αβ is
the edge ring of µ.

Let T be a dynamic tree, subject to the above operations. Sleator and Tarjan [42]
present two schemes for efficiently performing the link and cut operations on T , and
these schemes carry over naturally to edge-ordered dynamic trees [19]. In this paper
we assume the scheme that uses partitioning by size. In this scheme the edges of T
are considered to be directed from the child to the parent, and an edge e from µ to
ν is said to be solid if the subtree rooted at µ has more than half of the edges of the
subtree rooted at ν. Otherwise, edge e is said to be dashed. There is at most one
solid edge entering any node (from its children). Therefore, every node is in exactly
one path of solid edges (of length 0 or more). We refer to these paths as solid paths.
(See Fig. 1a.) A solid path π is represented as a balanced binary tree Pπ, so that T is
then stored as a collection of these path trees. For more details on partitioning by size
and how it can be exploited to efficiently perform dynamic tree updates and queries,
see [19, 42].

While link-cut trees support a variety of query operations, such as finding the
least-common ancestor of two nodes, we shall use only the following operation that is
part of the standard repertory of dynamic trees [19, 42].
expose(µ). Create a solid path π from node µ to the root by converting to solid all

the dashed edges of π, and converting to dashed all the solid edges that enter
a node of π but are not on π. (See Fig. 1b.) This operation may violate the
definition of solid edges, so it is always followed by a procedure that undoes
its effects.

Edge-ordered dynamic trees use linear space and support each of the above op-
erations in O(log n) time, where n is the size of the tree(s) involved in the opera-
tion [19, 42].

3. Our approach. In this section we address the problem of performing point
location in a triangulation S with n vertices. Without loss of generality, we assume
that S does not have horizontal edges. General subdivisions can be handled via a pre-
liminary triangulation step, which takes O(n) time if the subdivision is connected [7],
and O(n log n) time otherwise [22].

We describe here a static method that uses O(n log n) space and preprocessing
time and supports point-location queries in O(log2 n) time. We will show in the
subsequent section how to dynamize this approach so as to achieve O(n) space, the
same query time, and an update time that is O(log n).

3.1. Building the structure. A monotone spanning tree T of S is a rooted
spanning tree such that any root-to-leaf path of T is monotone with respect to the y-
axis. The root T then is the vertex t in S with smallest y-coordinate. Such a monotone
spanning tree T is obtained by choosing for each vertex v in S some edge emanating
from v, assuming all edges are directed downward. Note that this simple choosing
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v

v

(a)

(b)
Fig. 1. (a) A link-cut tree with edges partitioned into solid and dashed. (b) Effect of operation

expose(v) on the tree of part (a).

operation would not necessarily define a spanning tree if S were not monotone. (See
Fig. 2.) As we show in the next lemma, such a spanning tree has a nice property that
can be exploited for point location.

Lemma 3.1. For any nontree edge e of S, the fundamental cycle F (e) determined
by e and T is a monotone polygon.

Proof. Let e = (v′, v′′). Since the spanning tree T is monotone, the paths π′ and
π′′ of T from v′ to t and v′′ to t are monotone chains. Let v be the least-common
ancestor of v′ and v′′. The cycle F (e) that results when adding e to T is the polygon
formed by the following monotone chains: (i) the subpath of π′ from v to v′ plus edge
e and (ii) the subpath of π′′ from v to v′′. Therefore, we have that F (e) is a monotone
polygon.
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t

t

(a)

(b)
Fig. 2. (a) A monotone spanning tree. (b) Its dual spanning tree.

This motivates the construction of our point-location structure, which is per-
formed in the following four steps.

Step 1. Construct a monotone spanning tree T for S and represent T as an edge-
ordered tree rooted at the sink vertex t, where the ordering of the edges incident on
a vertex is given by the planar embedding.

Step 2. Construct the graph-theoretic planar dual [5] of S, but exclude any edges
dual to edges in T . This defines a spanning tree D on the dual graph [19], called the
dual spanning tree of T (see Fig. 2). Each node of D is a region r of S, and each edge
e∗ of D corresponds to a nontree edge e in S, which in turn determines a unique cycle
F (e) in S (when e is added to T ). We represent D as an edge-ordered tree rooted
at the external region, where the ordering of the edges incident on a node (region) is
given by the planar embedding.
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Step 3. Form a centroid decomposition of D [6, 10, 24]. Recall that a centroid
edge in D divides D into two subtrees whose sizes are in the interval [|D|/3, 2|D|/3];
hence, a centroid decomposition defines a binary tree B, where each internal node µ
in B corresponds to a centroid edge e∗µ of D, with the left child of µ being the portion
of D “below” eµ (i.e., inside F (eµ)) and the right child being the portion “above” eµ
(i.e., outside F (eµ)). (See Fig. 3.)

Step 4. With each node µ in B we store the left and right chains of monotone
polygon F (eµ) in two sorted arrays L(µ) and R(µ), respectively. Note that to avoid
confusion in the L and R lists we consider each edge to have two sides, a left side and
a right side, which are distinct edges for the sake of this definition. (See Fig. 3.)

Lemma 3.2. The above method runs in O(n log n) time and uses O(n log n)
space.

Proof. Steps 1 and 2 can be easily implemented in O(n) time. Step 3 takes O(n)
time using the method of [10, 24]. Step 4 is the bottleneck step, in that it requires
O(n log n) time and space to copy and store all the L and R lists for the nodes in B
(since B has depth O(log n)).

Having presented our structure, let us describe how it can be used to answer a
point-location query.

3.2. Querying the structure. Suppose we are given a query point p, and we
wish to locate the cell in S containing p. Our method for performing this point-
location query is actually quite simple. We perform a search down B, where at each
node µ we use the lists L(µ) and R(µ) to determine if p is inside or outside the polygon
F (eµ). Since L(µ) and R(µ) are stored as arrays, we can perform two binary searches
to determine if p is inside F (eµ) in O(log n) time. If p is inside F (eµ), then we visit
µ’s left child next; otherwise, we visit µ’s right child next. This procedure continues
until we reach the leaf of B corresponding to a single region—the cell of S containing
p. Therefore, we have the following lemma.

Lemma 3.3. Our point-location data structure supports point-location queries in
O(log2 n) time.

Incidentally, one can improve the query time to O(log n), while increasing the
preprocessing time and space by at most a constant factor, via the fractional cascading
technique of Chazelle and Guibas [8, 9]. Thus one can modify the above approach
to match the query bounds of previous point location methods [18, 26, 41]. Our
motivation for designing this new method was not to simply match the performance of
previous methods, however, but to design a scheme that leads to an efficient dynamic
point-location method. So, let us leave the details of this static data structure to the
interested reader and concentrate instead on how this approach can be dynamized.

4. Dynamic planar point location. In this section we show how to implement
our point-location method dynamically using dynamic trees. Our dynamic environ-
ment supports the following repertory of update operations on a monotone subdivision
S (i.e., we assume that each operation is performed only if it is known to preserve the
monotonicity of S).
InsertEdge(e, r, v, w; r1, r2). Insert edge e between vertices v and w inside region r,

which is then decomposed into regions r1 and r2 to the left and right of e,
respectively.

DeleteEdge(e, v, w, r1, r2; r). Remove edge e between vertices v and w and merge
into region r the two regions r1 and r2 formerly to the left and right of e,
respectively.
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Fig. 3. A centroid decomposition of the dual spanning tree of the previous figure. (a) The

subdivision S and monotone spanning tree T . In this example the edges in L(µ) are marked with a
“∗” and the edge in R(µ) (other than e4) is marked with a “ †,” where µ is the node in B associated
with edge e4. (b) The dual tree D. (c) The centroid decomposition tree B.

Expand(e, v, r1, r2; v1, v2). Expand vertex v into vertices v1 and v2 connected by edge
e, which has regions r1 and r2 to its left and right, respectively.

Contract(e, r1, r2, v1, v2; v). Contract edge e between vertices v1 and v2 into vertex
v. Regions r1 and r2 are those formerly to the left and right of e, respectively.

InsertChain(γ, r, v, w; r1, r2). Insert a monotone chain γ between vertices v and w
inside region r, which is then decomposed into regions r1 and r2 to the left
and right of e, respectively.
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Fig. 4. Example of refinement of a region.

DeleteChain(γ, v, w, r1, r2; r). Let γ be a monotone chain between vertices v and w,
whose internal vertices have degree 2. Remove γ and merge into region r the
two regions r1 and r2 formerly to the left and right of γ, respectively.

Several problems arise in the dynamization of the static structure of section 3.
The first is that the static data structure assumes a preliminary triangulation step to
ensure that the dual spanning tree has bounded degree and therefore admits a centroid
decomposition. But it appears difficult to dynamically maintain a triangulation, since
a newly inserted edge could intersect many triangulation edges. So we do not attempt
to maintain a triangulation of our current subdivision; instead we refine it so as to
maintain a crucial property that such a triangulation would give us.

4.1. A virtual triangulation of the regions in S. Let S be a monotone
subdivision. We refine S into a new subdivision R as follows. For each region r of S,
let vk, vk−1, . . . , v0 be the left chain of r as traversed from top to bottom. If k ≥ 3, we
add inside r a “comb” consisting of k − 2 new vertices, v′2, v

′
3, . . . , v

′
k−1, and 2(k − 2)

edges, (v2, v
′
0), (v′i+1, v

′
i), (i = 2, . . . , k − 2), and (vi, v

′
i) (i = 2, . . . , k − 1). See an

example in Fig. 4. We assume that each new vertex v′i is placed below and to the
right of vi and infinitesimally close to it. Hence the above refinement affects only the
topology of the subdivision, so that a point location query has the same answer in S
and R. Also, it is immediate to verify that the refined subdivision has O(n) vertices.

The leftist spanning tree of a monotone subdivision is defined as the monotone
spanning tree obtained by selecting the leftmost outgoing edge of every vertex, except
the source (see Fig. 5a). In addition to the above refinement of S into R, we also
maintain T as a leftist spanning tree of R, with D being its graph-theoretic planar
dual. As we show in the following lemma, this is sufficient to achieve the desired
result.

Lemma 4.1. The planar dual of the leftist spanning tree in R has degree at
most 3.

Proof. Let T be the leftist spanning tree, and D its dual (see Fig. 5b). We observe
that tree D exactly consists of the dual edges of the topmost edges of the right chain
of each region. Also, all the remaining edges of the right chain of each region are in
tree T . Hence the degree of a node r of D is at most one plus the number of nontree
edges on the left chain of region r.
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(a) (b)

Fig. 5. (a) Leftist spanning tree of a refined subdivision R. (b) Dual of the leftist spanning tree
of part (a). Tree edges are drawn thick, with the comb edges in this tree being dark gray. The edges
of the dual tree are drawn as thick light gray lines, and their dual edges in the comb are drawn as
dotted lines. (We use this same convention in all the figures that follow as well.)

To prove the lemma, we show that every region r of the refined subdivision R
has at most two nontree edges in its left chain. Namely, if region r is to the left of a
comb, then it has exactly two edges and thus no more than two nontree edges in its
left chain. Else (r is to the right of a comb), only the two topmost edges of the left
chain of r may not be in T , since each of the remaining edges (which form the “spine”
of the comb) is the only outgoing edge of its end vertex and hence is in T .

Our dynamic data structure for point location in S simply consists of the leftist
spanning tree T of R, and of its dual spanning tree D, each represented as an edge-
ordered dynamic tree [19, 42]. Tree T is rooted at the node associated with the
(bottom-most) sink vertex t, and tree D is rooted at the node associated with the
external region. In both trees, the ordering of the edges incident on each node is
given by the planar embedding. The overall space requirement of the data structure
is O(n).

4.2. Finding fundamental cycles. In order to perform queries efficiently we
must be able to construct searchable representations of fundamental cycles in T ,
the monotone spanning tree for R. More significantly, like our triangulation, our
representations must be virtual, since an update operation may cause substantial
restructurings in the centroid tree and edge lists. Our approach for overcoming this
difficulty consists of representing T as an edge-ordered dynamic tree [19] (see also
[42]). As we show in the following lemma, this is sufficient for us to be able to quickly
perform a point-cycle query in T .

Lemma 4.2. Let T be a monotone spanning tree of S, with root t. By representing
T as an edge-ordered link-cut tree, one can determine in time O(log n) whether a query
point p is on, inside, or outside the fundamental cycle F (e) induced by a nontree edge
e of S.



DYNAMIC TREES AND DYNAMIC POINT LOCATION 623

Proof. In a link-cut tree [19, 42] representing T the operation expose(v) returns
a balanced binary tree Pπ that represents the path π of T between the root t and
vertex v (i.e., the external and internal nodes of Pπ store the vertices and edges of
π, respectively, such that the in-order visit of Pπ yields π). Hence we can determine
if a query point p is inside F (e) as follows. Let v′ and v′′ denote the left and right
endpoints of edge e, respectively. We issue an expose(v′) and perform a binary search
on the balanced-tree representation of the left chain of F (e), minus edge e, that is
returned, to determine if p is to the left, to the right, or outside the scope of y-
coordinates for this chain. After the structural changes in the link-cut representation
of T from this expose are undone, we then issue an expose(v′′) and perform a similar
binary search on the balanced-tree representation of the right chain of F (e), minus
edge e, that is returned. Whether a point p is on, inside, or outside cycle F (e) can then
be easily determined from the results of these two searches and a simple comparison
involving the edge e. All of the above steps take O(log n) time.

Constructing fundamental cycles in S is important, but not sufficient, for, in order
to achieve an O(log2 n) query time, we must also be able to find a centroid edge in
the dual tree, D.

4.3. Locating a centroid edge in the dual tree. We do not explicitly main-
tain a centroid decomposition tree for D, however. Instead, we show in the following
lemma that the link-cut representation of D can itself be used to quickly find a cen-
troid edge in D.

Lemma 4.3. Let D be a tree of degree 3 represented by a link-cut tree with
partitioning by size. Then a centroid edge in D can be located in O(log n) time.

Proof. As mentioned above, one of the main ideas of the link-cut tree data
structure is to partition the tree D into “solid” paths and “dashed” edges [19, 42] and
represent each solid path with a binary search tree. Let π be the solid path containing
the root of D. We claim that the set of edges that are either in π or incident on the
first node of π contains a centroid edge.

Proof of claim. Let π = (µ1, . . . , µk). We denote with Si the subset of nodes
of D consisting of node µi and the nodes in the (at most three) subtrees connected
to µi by dashed edges (see Fig. 6a). Let wi be the size of Si, called the weight of

node µi. We have that
∑k
i=1 wi = n, where n is the number of nodes of D. From

the definition of dashed edges [19, 42], we have that wi < n/2 for i = 2, . . . , k.
We distinguish two cases. If w1 ≤ 1 + 2n/3, then there exists some j such that

n/3 − 1 ≤ ∑j
i=1 wi ≤ 1 + 2n/3. In this case the solid edge from µj to µj+1 is a

centroid edge. Otherwise, the dashed edge connecting the largest subtree of µ1 is a
centroid edge, since the largest of the subtrees of µ1 has at most n/2 nodes (because
it is connected by a dashed edge) and at least n/3− 1 nodes (because µ1 has no more
than three incident edges). The claim is proved.

Therefore, we can find a centroid edge of D in O(log n) time by traversing a
root-to leaf path in the binary tree of the solid path containing the root of D. (See
Fig. 6b.)

Thus we have shown how to perform the two main components of our point-
location procedure.

4.4. Point-location querying. The location of a query point p, therefore, is
performed as follows.

1. If D consists of a single node, we return the corresponding region and stop.
2. We find a centroid edge e∗ of D using the algorithm of Lemma 4.3.
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Fig. 6. (a) Solid path containing the root of a dynamic tree. (b) Balanced tree associated with

the solid path of part (a).

3. We cut tree D at edge e∗ and let D′ and D′′ be the resulting trees, where
D′′ contains the former root of D. Note that since this is a query step, not
an update, we also store the edge e∗ on a stack in this step, so that after the
query is done we can reconstruct the original D via a series of link operations.

4. We determine if p is on, inside, or outside cycle F (e) by applying the algorithm
of Lemma 4.2 to tree T .

5. If p is on cycle F (e), return the edge or vertex of F (e) that contains e. Else,
if p is inside the cycle, recursively apply the algorithm using D′. Otherwise
(p is outside the cycle), recursively apply the algorithm using D′′.

Our query operation is completed by reconstructing tree D by means of a sequence
of O(log n) link operations that undo the cuts (by a series of pop operations on the
stack used in step 3).
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Thus we have the following theorem.
Theorem 4.4. The above dynamic point-location data structure supports point-

location queries in time O(log2 n) and uses O(n) space.
Proof. The query time bound should be immediately apparent given the above

description. For the space bound note that the data structure is no more than R,
represented using any standard plane graph representation and T and D represented
as link-cut trees (plus cross pointers, so, for example, each nontree edge in R has a
pointer to its dual in D).

Having given our method for performing queries, let us next address our methods
for updating R. We begin with the Contractand Expandoperations.

4.5. Edge contraction and expansion. Recall that in the Expand(v, v1, v2, e)
operation we expand vertex v into vertices v1 and v2 connected by edge e with regions
r1 and r2 being to the left and right of e, respectively (see Fig. 7). There are two
cases. In the first case the relative positions of v1 and v2 require that e become an
edge in the leftist spanning tree T (as illustrated in Fig. 7a). In this case we perform
the obvious split in T at v and update the corresponding pointer structures in R and
D. We may also have to add an edge to the combs of pseudo edges in r1 and r2 so as
to maintain our refinement invariant. If this occurs we also need to update the dual
tree D (using O(1) split and link operations) so that it remains a planar dual to R.
This can all be done in O(log n) time.

In the second case the positions of v1 and v2 require that e become a nontree edge
(see Fig. 7b). In this case we perform the obvious split in T at v, forming v1 and
v1, cut T along e, and then link v2 to its leftmost adjacent node, w in R. We also
perform any edge additions to combs in r1 and r2, if necessary, as in the first case.
Of course, our modifications of T require that we perform changes to D. Specifically,
we must cut D at the edge dual to (v2, w) and perform a link to create a node dual
to e. Since this can all be done in O(log n) time, it implies that we can perform the
Contractoperation in O(log n) time.

We implement the Expandoperation by “reversing” the above steps in the obvious
manner. Thus we may also perform the Expandoperation in O(log n) time.

4.6. Edge insertions and deletions. The next update operation we consider
is edge insertion. Recall that in the operation InsertEdge(e, r, v, w; r1, r2) we insert
edge e between vertices v and w inside region r, which is then decomposed into regions
r1 and r2 to the left and right of e, respectively. There are two cases.

In the first case v and w are on opposite sides of r; i.e., without loss of generality,
v is on the left chain of r and w is on the right chain of r (see Fig. 8). We distinguish
two subcases.

1.1. Suppose e = (v, w) must become an edge in the leftist spanning tree T (see
Fig. 8a). In this case we perform a cut in T along the edge going out of w and
then link the resulting subtree rooted at w to v. This may also require that
we cut the comb in r at the vertex associated with v, deleting its incident
edges, and begin a new comb at v (which contains any previous comb edges
above v). Likewise, each cut in T has a corresponding link in D, and each
link in T has a corresponding cut in D. Since the number of needed cut and
link operations is O(1), the total time for this case is O(log n).

1.2. Suppose e = (v, w) must become a nontree edge (see Fig. 8b). In this case we
need only change the comb in r by cutting it at the vertex associated with
v and beginning a new comb at w. This can be done with O(1) cut and link
operations in T , but it does not change the topology of D. Thus this case
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Fig. 7. (a) An Expandoperation in which e becomes an edge in the leftist spanning tree T , and

(b) an Expandin which e becomes a nontree edge.

also takes only O(log n) time.
In the second case for edge insertion vertices v and w are on the same side of r.

There are two obvious subcases.
2.1. Suppose v and w are both in the left chain of r (see Fig. 9a), where, without

loss of generality, v has larger y-coordinate than w. In this case we must
cut the comb in r at the vertex associated with v and the vertex associated
with w, and add the edge e = (v, w) as a nontree edge in R. We begin a
new comb at w in r1 that retains the edges of the old comb between the
vertices associated with v and w, and we concatenate the portion of the old
comb below the vertex associated with w with the portion of the old comb
above the vertex associated with v, to form the new comb for r2. This can
all be done using O(1) link and cut operations in T . Likewise, cutting the
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Fig. 8. Insertions where v and w are on opposite sides of the region r. We illustrate in

(a) an InsertEdgeoperation in which e becomes an edge in the leftist spanning tree T and in (b) an
InsertEdgein which e becomes a nontree edge.

comb in r also requires that we perform associated cuts in D, and the comb
concatenations have associated links in D. Again, there are only O(1) such
operations, however, so this case can be implemented in O(log n) time.

2.2. Suppose v and w are both in the right chain of r (see Fig. 9b), where, without
loss of generality, v has larger y-coordinate than w. In this case we simply
cut T at the edge f going out of v and perform a link of the subtree rooted
at v along the edge e = (v, w). This also requires that we create a new (leaf)
node in D and link it along the edge dual to f . We need not change the comb
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Fig. 9. Insertions where v and w are on the same side of the region r. We illustrate in (a) the
case when v and w are in the left chain and in (b) the case when v and w are in the right chain.

in r (which is now the comb for r1), and the comb in r2 is the null comb, so
this completes the construction. Clearly, this case requires O(log n) time.

Thus we can perform the InsertEdgeoperation in O(log n) time. Since the Dele-
teEdgeoperation is the “reverse” of an InsertEdge, this also implies that we can per-
form the DeleteEdgeoperation in O(log n) time.

4.7. Chain updates. The only update operations that remain to be described
are the chain update operations. Recall that in the operation InsertChain(γ, r, v, w; r1,
r2) we insert a monotone chain γ between vertices v and w inside region r, which is
then decomposed into regions r1 and r2 to the left and right of e, respectively. Note
that this is essentially the same as in the case of the InsertEdgeoperation, except that
instead of adding a single edge (v, w) we are now inserting a monotone chain. It should
not be surprising, then, that our method for performing the InsertChainoperation
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is the same as that for the InsertEdgeoperation, except that where we previously
performed a single link in T from v to w, and added a trivial chain in r2 from v to
w, we must now link in an entire chain in T , as well as its corresponding comb. If we
perform these link operations in series, then we will require O(k log n) time, where k is
the length of the chain. So, instead, we first build a link-cut tree representation of the
chain and its corresponding comb, which takes O(k) time [19, 42], and then we perform
the O(1) link operations required to link these chains into T . Likewise, we must build
a chain of size O(k) dual to the inserted chain and its comb and link this into D, but
again a link-cut tree representation of the chain can be built in O(k) time, and then
this can be linked into D with O(1) link operations. Thus the entire time needed for
the InsertChainoperation is O(log n+k). Since the DeleteChainoperation amounts to
the reversal of this procedure, this also implies that the DeleteChainoperation can be
implemented in O(log n+ k) time (it is actually easier, since we replace the building
of link-cut tree representations of O(k)-length chains with the garbage collection of
the space used by such representations). Therefore, we have the following theorem.

Theorem 4.5. Let S be a monotone subdivision of current size n that is subject
to a sequence of on-line updates. Point location in S can be done with a fully dynamic
data structure that uses O(n) space and supports queries in time O(log2 n) and update
operations InsertEdge, DeleteEdge, Expand, and Contractin time O(log n). Also,
update operations InsertChainand DeleteChaintake time O(log n+ k), where k is the
size of the monotone chain being inserted or deleted. All the time bounds are worst
case.

5. Spatial point location. We can extend our method further to derive an
efficient algorithm for performing point location in 3-dimensional cell complexes whose
cells are convex polytopes. Let C be such a convex cell complex with n vertices and N
facets. Note that both n and the number of edges of C are O(N). Following the same
general approach of Preparata and Tamassia [40], we obtain a spatial point-location
data structure by combining the persistence-addition technique of Driscoll et al. [16]
and our dynamic structure for planar point location.

A conventional dynamic data structure is called ephemeral since its instantiation
preceding an update is not recoverable after the execution of the update. A fully
persistent structure supports both accesses and updates to any of its past versions; a
partially persistent structure supports accesses to any of its past versions but updates
only to its most current version. The general technique of Driscoll et al. [16] can
be used to add persistence to an ephemeral linked data structure whose records are
pointed to by a bounded number of pointers. The resulting persistent data structure
uses additional O(1) amortized space per update operation and has the same asymp-
totic query time (worst case for partial persistence and amortized for full persistence).
Since each of our update operations requires a total time of O(log n) in the worst case,
this implies that we make at most O(log n) pointer updates in any update. Therefore,
each of our update operations can be implemented persistently in O(log n) amortized
time, and each one adds O(log n) amortized additional space to be added to the per-
sistent data structure. In order to implement this persistent strategy, however, we
need the following lemma.

Lemma 5.1. The dynamic point-location data structure of Theorem 4.5 can be
implemented with a linked representation such that each record is pointed to by a
bounded number of pointers.
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Proof. As mentioned above, our data structure is essentially just a link-cut tree
representation of a leftist monotone spanning tree T and its graph-theoretic planar
dualD. Moreover, we maintainD as a degree-3 tree, which implies that the underlying
link-cut tree representation satisfies the bounded number of pointers condition (see
[19, 42] for details). The tree T need not have bounded degree, however. Nevertheless,
by using the implementation of edge-ordered dynamic trees given by Eppstein et
al. [19], we represent T so as to satisfy the bounded-degree condition (see [19] for
details).

Thus we can create a persistent version of our point location data structure. But
being able to search in the “past” must also be meaningful. We find this meaning in
the following lemma.

Lemma 5.2. Let S1 and S2 be monotone subdivisions whose associated planar st-
graphs are isomorphic. A dynamic point location data structure for S1 (as discussed
in Theorem 4.5) can be used for dynamic point location in S2 after changing only the
values of the vertex coordinates.

Proof. Since the planar st-graphs associated with S1 and S2 are isomorphic, the
leftist spanning tree for (the refinement of) S1 and the leftist spanning tree for (the
refinement of) S2 are isomorphic (as are their respective graph-theoretic planar duals).
Thus applying our construction to S1 yields a data structure that is topologically
identical to that for S2. Moreover, at no place in our point-location method do we
ever explicitly need the coordinates of the subdivision endpoints. We only needed to
be able to perform a comparison-based binary search for a y-coordinate in a monotone
chain, and then we must be able to determine to which side of a line L a query point
lies. That is, we can use the actual x- and y-coordinates of a query point implicitly
to resolve y-coordinate comparisons in a binary search of a monotone chain or the
“side-of” comparisons with an oriented line L (i.e., we “plug” them in at the last
moment). Thus by replacing the comparison tests of S1 with the isomorphic tests in
S2, we obtain a dynamic point-location structure for S2.

We reduce the 3-dimensional point-location problem to an application of persis-
tence to a dynamic 2-dimensional point location where we “sweep” space by a plane
π(z) parallel to the x- and y-axes and at height z for z = −∞ to z = +∞. Let C(z)
be the intersection of C with the plane π(z). It is easy to verify that C(z) is a convex
(and hence monotone) subdivision. We view the z-axis as a measure of “time” and
consider the process of making plane π(z) sweep the cell complex C. The location of
a query point q = (x, y, z) in the cell complex C can be reduced to the location of
point (x, y) in the monotone subdivision C(z). Hence spatial point location can be
performed using a partially persistent planar point location data structure.

While the geometry of C(z) continuously evolves in time, its topology changes
only when plane π(z) goes through a vertex v of C; i.e., for z′, z′′ such that zi <
z′ < z′′ < zi+1 the planar st-graphs associated with C(z′) and C(z′′) are isomorphic.
Hence the space-sweep process goes through 2n+1 topologically different subdivisions.
Also, when the plane π(z) goes through a vertex vi, the resulting modification of the
subdivision C(z) can be performed by a sequence of fi update operations, each an
Expandor a Contract, where fi is the number of facets whose top or bottom vertex is
vi (see Preparata and Tamassia [40] for more details). Note that

∑n
i=1 fi = O(N).

By Lemma 5.2, the same planar point-location data structure can be used for all
query points whose z-coordinate is in the range (zi, zi+1), provided the x and y coordi-
nates of the vertices are expressed as (linear) functions of z. Thus our data structure
for spatial point location consists of a partially persistent version of the dynamic
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planar point-location data structure of Theorem 4.5. By Lemma 5.1, such structure
satisfies the hypothesis for applying the persistence-addition technique of [16].

It is important to observe that although our query algorithm modifies the ephem-
eral data structure (see section 4.2), such changes are only temporary and need not
be remembered by the persistent data structure. Hence at the expense of increasing
the storage space by a constant factor we can use duplicate copies for the pointers
and data fields that are modified by a query operation. The duplicate fields are
disregarded during the updates.

We summarize the performance of our spatial point-location data structure in the
following theorem.

Theorem 5.3. Let C be a convex 3-dimensional cell complex with N facets.
There exists a data structure for point location in C that uses O(N logN) space and
supports queries in O(log2N) time worst case.

6. On-line point location. Many applications involve constructing an object
incrementally while requiring that all the properties of the structure be maintained
on line. In the context of this paper, we desire a scheme to incrementally construct a
planar subdivision while maintaining an efficient point-location data structure for it.
This can also be viewed as an instance of dynamic point location when only insertions
are allowed. In this section we show how to implement our centroid-decomposition
approach to planar point location on line using BB(α) trees and some dynamic data
structuring techniques of Overmars [34] to achieve O(1) amortized time per update
and O(log n log log n) time (worst case) for answering queries.

We support the following operations.
InsertVertex (v, e, r1, r2; e1, e2). Insert a vertex v on edge e, which has regions r1 and

r2 to its left and right, respectively, expanding e into e1 and e2.
InsertEdge(e, r, v1, v2; r1, r2). Insert edge e between vertices v1 and v2 inside region

r, which is decomposed into regions r1 and r2 to the left and right of e,
respectively. v1 and v2.

InsertChain(γ, r, v1, v2; r1, r2). Insert a monotone chain γ between vertices v1 and
v2 inside region r, which is decomposed into regions r1 and r2 to the left and
right of e, respectively.

6.1. A simple on-line point location structure. We explicitly maintain the
monotone tree T and the dual tree D for the refined subdivision R. We also explicitly
maintain B, the balanced decomposition tree of D, in a BB(α) tree. Each node µ in
B corresponds to a subtree Dµ of D, which in turn corresponds to a subpolygon Pµ
of P . Thus each leaf in B corresponds to a node of D, which in turn corresponds to
a region in R. For each node µ in B we explicitly store the chains L(µ) and R(µ).
In addition, in the spirit of fractional cascading1 [8, 9], for each node µ we maintain
auxiliary lists AL(µ) and AR(µ), which are defined recursively as follows:

AL(µ) =

{
L(µ) µ is a leaf,
L(µ) ∪AL(λ) ∪AL(ν) otherwise,

AR(µ) =

{
R(µ) µ is a leaf,
R(µ) ∪AR(λ) ∪AR(ν) otherwise,

where λ and ν are the children of µ should µ be an internal node. By keeping pointers
from each element x in AL(µ) to its predecessors in L(µ), AL(λ), and AL(ν) (and

1Specifically, we create auxiliary search lists as in the fractional cascading paradigm; we do not,
however, need to implement fractional list propagation.
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similar pointers for each x in AR(µ)) we can answer queries in O(log n) time. This is
because after an O(log n) time binary search in the AL and AR lists for the root of B,
the search at every other node in B requires only O(1) time, and there are O(log n)
such other nodes. The update operations are easily implemented as follows.

InsertVertex (v, e, r1, r2; e1, e2). We first make the obvious update to the planar
graph representation of R, inserting v on e and splitting e into e1 and e2. We then
use the pointer to e to locate the records in L(µ) and R(µ′) for the endpoint w of
e that is nearer to the root of T . We then add a record for v next to w’s record in
L(µ) and R(µ′), respectively. This can all easily be done in O(1) time. We must also
update the auxiliary lists, however, by adding a record for v to the AL list for each
node from µ to the root of B and a record for v to the AR list for each node from µ′

to the root. This can be implemented in O(log n) time by performing a query for v
from the root to µ and µ′, respectively, and adding v to each list we search in along
the way.

InsertEdge(e, r, v1, v2; r1, r2). We first make the obvious update to the planar
graph representation of R, inserting e into r and splitting r into r1 and r2. This also
necessitates that we modify the node λ in D corresponding to r. This modification
will be in the form of the division of λ into two nodes λ1 and λ2, with some of λ’s
adjacencies becoming λ1’s adjacencies and the other adjacencies of λ becoming λ2’s
adjacencies. Of course, in performing this modification of D we must also update
B to reflect this modification. We do this by visiting the leaf µ in B associated
with λ, creating two new nodes µ1 and µ2, which are associated with λ1 and λ2,
respectively, and making these nodes be the children of µ. This addition, in turn,
requires that we update the balance information stored in B, and in some cases
this requires that we perform node rotations in B to maintain the weight-balance
requirements of this BB(α) tree. Performing a rotation at a node µ in B requires
more than just updating balance information and changing some pointers at the nodes
around µ—it also requires that we change the L and R lists (and their associated
auxiliary lists) for µ and ν, the child of µ that is now becoming the parent of ν. Note,
however, that we must change the pointer fields of the records in the auxiliary lists
at µ’s old parent ρ, but we do not need to add or delete any records from these lists.
This is because the set of descendants of ρ do not change. Thus the time required to
perform such a rotation is proportional to the size of the L, R, AL, and AR lists at
µ and ν, which is proportional to nµ, the number of descendants of µ.

InsertChain(γ, v1, v2). This operation can be implemented by combining the
methods for InsertVertex and InsertEdge. We leave the details to the interested
reader.

From the above descriptions it should be clear that queries can be answered in
O(log n) worst-case time, as can InsertVertex operations. Also, the worst-case time
for an InsertEdge operation is O(n). Nevertheless, since we are represented B as a
BB(α) tree, we can derive an efficient amortized running time for the InsertEdge
operation. In particular, we observe that performing a rotation at µ requires O(nµ)
time, where nµ is the number of leaf descendants of µ. This is because the size of
AL(µ) and AR(µ) is bounded by the number of vertices in P (µ), the subpolygon
associated with µ, which is O(nµ). We can, therefore, take advantage of the following
lemma.

Lemma 6.1 (see [32]). Let α ∈ (1/4, 1 − √2/2) and let f be a nondecreasing
function such that the cost of performing a rotation in a BB(α) tree at a node µ is
f(nµ). Then the total cost of the rebalancing operations in a sequence of m insertions
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and deletions into an initially empty tree is

O

(
m

c logm∑
i=1

(1− α)if((1− α)−i−1)

)
,

where c = 1/ log(1− α).
This immediately implies that the cost of performing a sequence of n Insert-

Edge operations starting with an initially empty subdivision is O(n log n); hence the
amortized cost of each InsertEdge operation is O(log n). This gives us the following
theorem.

Theorem 6.2. One can maintain a monotone subdivision on-line with O(log n)
query time for point locations and O(log n) amortized time for vertex and edge inser-
tions (inserting a chain of k vertices requires O(k log n) amortized time). The space
for this data structure is O(n log n).

One can improve the space of the above method to O(n) at the expense of making
the query time an amortized bound, using the methods of Fries [20], and Fries, Mel-
horn, and Näher [21]. As we mentioned earlier, however, our interest is in performing
updates in O(1) amortized time (O(k) time for chain insertion). In the next section
we show how to modify our approach to achieve this goal. Our modification reduces
the space to O(n) and increases the query time by only a log logn factor.

6.2. Improving the implementation. The main idea of our improvement is
to apply a “bucketing” technique [34] at two different places in our structure. The
first application is for the L and R lists at the nodes of B. For simplicity of expression,
let us concentrate our attention on the L lists; the modifications for the R lists are
similar. For each node µ we add a list L′(µ), which we maintain to be a subsequence of
L(µ) so that between any two consecutive elements (e, f) in L′(µ) there are at most
2N elements of L(µ), where N is Θ(log n). Moreover, for each pair of consecutive
elements (e, f) in L′(µ) we store the elements of L(µ) that fall between e and f in
a data structure that allows O(1) insertion time, given an element’s position, and
O(log ne) query time, where ne = O(N) is the number of elements between e and
f [29]. The elements of L(µ) between e and f can intuitively be viewed as belonging
to a “bucket” for the pair (e, f).

We modify our definition of the AL and AR lists to take advantage of the sublists
L′ and R′. In particular we now define AL(µ) and AR(µ) as follows:

AL(µ) =

{
L′(µ) µ is a leaf,
L′(µ) ∪AL(λ) ∪AL(ν) otherwise,

AR(µ) =

{
R′(µ) µ is a leaf,
R′(µ) ∪AR(λ) ∪AR(ν) otherwise,

where λ and ν are the children of µ should µ be an internal node. This immediately
implies that the query time increases to O(log n logN) = O(log n log log n), since,
given a query value x, determining the predecessor of x in L(µ) requires O(logN) =
O(log log n) time given the position of x in AL(µ). Nevertheless, this modification has
a worthwhile consequence—it reduces the time for InsertVertex operations to O(1)
(amortized). This bound follows from the fact that an InsertVertex requires more
than O(1) time only if that InsertVertex operation causes a bucket size to grow larger
than 2N . In such a case we simply split this bucket into two buckets with sizes N and
N + 1, respectively. Of course, splitting a bucket in, say, L(µ) requires that we add a
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new element to L′(µ) and, hence, to the AL list at each node from µ to the root of B.
Since all of these updates can be implemented in O(log n+N) = O(N) time, we can
charge this cost to the N operations that previously inserted elements to this bucket
(to make it grow to size 2N). Thus the amortized cost of an InsertVertex is O(1).

We can also reduce the space of this method to O(n + n log n/N) = O(n), since
N is Θ(log n), by insuring that any time two consecutive buckets have size smaller
than bN/2c we concatenate these buckets into a single bucket.

These modifications do not reduce the cost for InsertEdge operations, however.
To reduce their cost we apply the bucketing idea a second time, this time to the tree
B itself. In particular, we modify our maintenance of B so that, instead of associating
a single node of D (corresponding to a single region of R) with each leaf of B, we
associate a subtree of D with at most 2N nodes. Any time an InsertEdge operation
causes a leaf subtree Dµ to grow to more than 2N nodes, we locate the centroid
edge in Dµ and split Dµ into two trees Dµ1

and Dµ2
, creating two new nodes µ1

and µ2, which become the children of µ. This of course necessitates that we build
new lists (L, R, L′, R′, AL, and AR) for µ1 and µ2 and update the AL and AR
lists from µ to the root to reflect the addition of any new values (needed to maintain
the recursive definitions of the AL and AR lists). Nevertheless, this can all be done
in O(log n + N) = O(N) time, which can be charged to the N previous InsertEdge
operations at µ (each were implemented in O(1) time). Thus each InsertEdge will run
in O(1) amortized time.

The method for implementing InsertChain operations is basically a combination
of the methods for InsertVertex and InsertEdge, the details of which we leave to the
interested reader. Thus we have the following theorem.

Theorem 6.3. One can maintain a monotone subdivision on-line with the query
time O(log n log log n) for point locations and O(1) amortized time for vertex and edge
insertions (inserting a chain of k vertices requires O(k) amortized time). The space
needed for this data structure is O(n).

We believe this theorem provides the first on-line point-location data structure
with an O(1) amortized update time and polylogarithmic query time.

7. Conclusion. We have given a new approach to planar point location and
showed how it can be used to derive new, improved bounds for dynamic point location,
spatial point location, and on-line point location. We leave as an open problem the
existence of a fully dynamic method for point location in subdivisions that are at least
as combinatorially rich as the monotone subdivisions that runs in O(log n) time per
query and O(log n) amortized time per update. As mentioned in the introduction,
Atallah, Goodrich, and Ramaiyer [2] achieve this result for the fairly restrictive class
of staircase subdivisions.
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