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Abstract. Dynamic tree data structures maintain forests that change
over time through edge insertions and deletions. Besides maintaining con-
nectivity information in logarithmic time, they can support aggregation
of information over paths, trees, or both. We perform an experimen-
tal comparison of several versions of dynamic trees: ST-trees, ET-trees,
RC-trees, and two variants of top trees (self-adjusting and worst-case).
We quantify their strengths and weaknesses through tests with various
workloads, most stemming from practical applications. We observe that a
simple, linear-time implementation is remarkably fast for graphs of small
diameter, and that worst-case and randomized data structures are best
when queries are very frequent. The best overall performance, however,
is achieved by self-adjusting ST-trees.

1 Introduction

The dynamic tree problem is that of maintaining an n-vertex forest that changes
over time. Edges can be added or deleted in any order, as long as no cycle is
ever created. In addition, data can be associated with vertices, edges, or both.
This data can be manipulated individually (one vertex or edge at a time) or in
bulk, with operations that deal with an entire path or tree at a time. Typical
operations include finding the minimum-cost edge on a path, adding a constant
to the costs of all edges on a path, and finding the maximum-cost vertex in
a tree. The dynamic tree problem has applications in network flows [14,22,25],
dynamic graphs [9,11,12,15,20,28], and other combinatorial problems [16,17,18].

Several well-known data structures can (at least partially) solve the dynamic
tree problem in O(log n) time per operation: ST-trees [22,23], topology trees
[11,12,13], ET-trees [15,25], top trees [4,6,26,27], and RC-trees [1,2]. They all
map an arbitrary tree into a balanced one, but use different techniques to achieve
this goal: path decomposition (ST-trees), linearization (ET-trees), and tree con-
traction (topology trees, top trees, and RC-trees). As a result, their relative
performance depends significantly on the workload. We consider nine variants
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of these data structures. Section 2 presents a high-level description of each of
them, including their limitations and some implementation issues. (A more com-
prehensive overview can be found in [27, Chapter 2].)

Our experimental analysis, presented in Section 3, includes three applications
(maximum flows, online minimum spanning forests, and a simple shortest path
algorithm), as well as randomized sequences of operations. Being relatively sim-
ple, these applications have dynamic tree operations as their bottleneck. We test
different combinations of operations (queries and structural updates), as well as
different types of aggregation (over paths or entire trees). The experiments allow
for a comprehensive assessment of the strengths and weaknesses of each strategy
and a clear separation between them. Section 4 summarizes our findings and
compares them with others reported in the literature.

2 Data Structures

ET-trees. The simplest (and most limited) dynamic-tree data structures are ET-
trees [15,25]. They represent an Euler tour of an arbitrary unrooted tree, i.e., a
tour that traverses each edge of the tree twice, once in each direction. It can be
thought of as a circular list, with each node representing either an arc (one of
the two occurrences of an edge) or a vertex of the forest. For efficiency, the list
is broken at an arbitrary point and represented as a binary search tree, with the
nodes appearing in symmetric (left-to-right) order. This allows edge insertions
(link) and deletions (cut) to be implemented in O(log n) time as joins and splits
of binary trees. Our implementation of ET-trees (denoted by et) follows Tarjan’s
specification [25] and uses splay trees [23], a self-adjusting form of binary search
trees whose performance guarantees are amortized.

As described by Tarjan [25], ET-trees associate values with vertices. Besides
allowing queries and updates to individual values, the ET-tree interface also has
operations to add a constant to all values in a tree and to find the minimum-
valued vertex in a tree. These operations take O(log n) time if every node stores
its value in difference form, i.e., relative to the value of its parent in the binary
tree; this allows value changes at the root to implicitly affect all descendants.
ET-trees can be adapted to support other types of queries, but they have a
fundamental limitation: information can only be aggregated over trees. Efficient
path-based aggregation is impossible because the two nodes representing an edge
may be arbitrarily far apart in the data structure.

ST-trees. The best-known dynamic tree data structures supporting path oper-
ations are Sleator and Tarjan’s ST-trees (also known as link-cut trees). They
predate ET-trees [22,23], and were the first to support dynamic-tree operations
in logarithmic time. ST-trees represent rooted trees. The basic structural op-
erations are link(v, w), which creates an arc from a root v to a vertex w, and
cut(v), which deletes the arc from v to its parent. The root can be changed by
evert(v), which reverses all arcs on the path from v to the previous root. Func-
tions findroot(v) and parent(v) can be used to query the structure of the tree.
As described in [23], ST-trees associate a cost with each vertex v, retrievable by
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the findcost(v) function. Two operations deal with the path from v to the root
of its tree: addcost(v, x) adds x to the cost of every vertex on this path, and
findmin(v) returns its minimum-cost vertex.

The obvious implementation of the ST-tree interface is to store with each node
its value and a pointer to its parent. This supports link, cut, parent and findcost
in constant time, but evert, findroot, findmin and addcost must traverse the entire
path to the root. Despite the linear-time worst case, this representation might be
good enough for graphs with small diameter, given its simplicity. We tested two
variants of this implementation, lin-v and lin-e; the former associates costs
with vertices, the latter with edges. Both store values at vertices, but lin-e

interprets such a value as the cost of the arc to the parent (the values must be
moved during evert).

To achieve sublinear time per operation, Sleator and Tarjan propose an indi-
rect representation that partitions the underlying tree into vertex-disjoint solid
paths joined by dashed edges. Each solid path is represented by a binary search
tree where the original nodes appear in symmetric order. These binary trees are
then “glued” together to create a single virtual tree: the root of a binary tree rep-
resenting a path P becomes a middle child (in the virtual tree) of the parent (in
the original forest) of the topmost vertex of P . For an efficient implementation
of addcost and evert, values are stored in difference form.

To manipulate a path from v to the root, the data structure first exposes it,
i.e., changes the partition of the tree (by a series of joins and splits of binary
trees) so that the unique solid path containing the root starts at v. Standard
binary tree operations can then be applied to the exposed path to implement
findroot, parent and findmin in logarithmic time. When paths are represented
as splay trees, expose and the other dynamic tree operations run in O(log n)
amortized time [23]. A worst-case logarithmic bound is achievable with globally
biased search trees [22], but this solution is too complicated to be practical.

We call the splay-based implementation used in our experiments st-v. Al-
though it has costs on vertices, it can also represent costs on edges as long as
evert is never called. Supporting evert with costs on edges requires maintaining
additional nodes to represent the edges explicitly. Our implementation of this
variant, st-e, uses st-v as the underlying data structure.

ST-trees can be modified to support other types of queries, as long as in-
formation is aggregated over paths only. Aggregation over arbitrary trees would
require traversing the ST-tree in a top-down fashion, which is impossible because
nodes do not maintain pointers to their (potentially numerous) middle children.
A solution is to apply ternarization to the underlying forest, which replaces each
high-degree vertex by a chain of low-degree ones [14,16,17,18,20].

Tree contraction. A third approach is to represent a contraction of the tree,
as done by topology trees, RC-trees, and top trees. We concentrate on the most
general, top trees, and briefly discuss the other two.

Top trees were introduced by Alstrup et al. [4,6], but we borrow the notation
used by Tarjan and Werneck [26]. The data structure represents free (unrooted)
trees with sorted adjacency lists (i.e., the edges adjacent to each vertex are
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arranged in some fixed circular order, which can be arbitrary). A cluster repre-
sents both a subtree and a path of the original tree. Each original edge of the
graph is a base cluster. A tree contraction is a sequence of local operations that
successively pair up these clusters until a single cluster remains. The top tree is
merely the binary tree representing the contraction. If two clusters (u, v) and
(v, w) share a degree-two endpoint v, they can be combined into a compress clus-
ter (u, w). Also, if (w, x) is the successor of (v, x) (in the circular order around
x) and v has degree one, these clusters can be combined into a rake cluster, also
with endpoints w and x. Each rake or compress cluster can be viewed as a parent
that aggregates the information contained in its children. It represents both the
subtree induced by its descendants and the path between its two endpoints, and
can also be viewed as a higher-level edge. The root of the top tree represents
the entire underlying tree. Whenever there is a link or cut, the data structure
merely updates the contractions affected.

An important feature of the top tree interface is that it decouples the contrac-
tion itself from the values that must be manipulated. The data structure decides
which operations (rake or compress) must be performed, but updates no values
on its own. Instead, it calls user-defined internal functions to handle value up-
dates whenever a pairing of clusters is performed (join) or undone (split). The
interface stipulates that these calls will be made when all clusters involved are
roots of (maybe partial) top trees—none of the input clusters will have a parent.
This makes the implementation of the call-back functions easier, but it may hurt
performance: because joins must be called bottom-up and splits top-down, the
tree cannot be updated in a single pass.

To perform a query, the user calls the expose(v, w) operation, which returns
a root cluster having v and w as endpoints (or null, if v and w are in different
trees). Note that, even if v and w are in the same tree, expose may need to
change the contraction to ensure that the root cluster actually represents the
path from v to w. In principle, the user should define the internal functions so
that the cluster returned by expose automatically contains the answer to the
user’s query; there is no need to actually search the tree. Top trees support
aggregation over paths or trees directly, with no degree limitation. In particular,
they naturally support applications that require both types of aggregation, such
as maintaining the diameter, the center, or the median of a tree [6].

The first contraction-based data structures were in fact not top trees but Fred-
erickson’s topology trees [11,12,13]. They interpret clusters as vertices instead of
edges. This leads to a simpler contraction algorithm, but it requires all vertices
in the forest to have degree bounded by a constant. Although ternarization can
remedy this, it is somewhat inelegant and adds an extra layer of complexity to
the data structure. Recently, Acar et al. [1,2] invented RC-trees, which can be
seen as a simpler, randomized version of topology trees. RC-trees also require
the underlying tree to have bounded degree, and use space proportional to the
bound (following [2], we set the bound to 8 in our experiments). We call the
implementation (by Acar et al. [2]) of RC-trees used in our experiments rc. The
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name “RC-trees” is a reference to rake and compress, which were introduced by
Miller and Reif [19] in the context of parallel algorithms.

RC-trees have a generic interface to separate value updates from the actual
contraction. Unlike top trees, queries require a traversal of the tree. This makes
queries faster, but requires extra implementation effort from the user and is less
intuitive than a simple call to expose (as in top trees). In addition, the interface
assumes that the underlying tree has bounded degree: with ternarization, the
interface will be to the transformed tree, with dummy vertices.

Alstrup et al. [6] proposed implementing top trees not as a standalone data
structure, but as a layer on top of topology trees. Given the complexity of topol-
ogy trees, this extra layer (which may as much as double the depth of the con-
traction) is undesirable. Recently, Holm, Tarjan, Thorup and Werneck proposed
a direct implementation that still guarantees O(log n) worst-case time without
the extra layer of topology trees. (Details, still unpublished, can be found in [27].)
The data structure represents a natural contraction scheme: it works in rounds,
and in each round performs a maximal set of independent pairings (i.e., no clus-
ter participates in more than one pair). Level zero consists of all base clusters
(the original edges). Level i+1 contains rake and compress clusters with children
at level i, with dummy clusters added as parents of unpaired level-i clusters.

After a link, cut, or expose, the contraction can be updated in O(log n) worst-
case time [27]. In practice, however, this implementation (which we refer to as
top-w) has some important drawbacks. First, to preserve the circular order,
each level maintains a linked list representing an Euler tour of its clusters, which
makes updating the contraction expensive. Second, even though a “pure” top
tree representing an n-vertex forest will have no more than 2n nodes, when
dummy nodes are taken into account this number might be as large as 6n. As a
result, top-w uses considerably more memory than simpler data structures.

To overcome these drawbacks, Tarjan and Werneck [26] proposed a self-
adjusting implementation of top trees (which we call top-s) that supports all
operations in O(log n) amortized time. It partitions a tree into maximal edge-
disjoint paths, each represented as a compress tree (a binary tree of compress
clusters with base clusters as leaves). Each subtree incident to a path is rep-
resented recursively as a binary tree of rake clusters (which is akin to ternar-
ization, but transparent to the user), and its root becomes a middle child of a
compress node. This is the same basic approach as ST-trees, but ST-trees repre-
sent vertex-disjoint paths, have no embedded ternarization, and do not support
circular adjacency lists directly.

3 Experimental Results

Experimental Setup. This section presents an experimental comparison of the
data structures discussed above: ET-trees (et), self-adjusting top trees (top-s),
worst-case top trees (top-w), RC-trees (rc), and ST-trees implemented both
with splay trees (st-v/st-e) and explicitly (lin-v/lin-e). We tested these on
algorithms for three problems: maximum flows, minimum spanning trees, and
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shortest paths on arbitrary graphs. Given our emphasis on the underlying data
structures, we did not test more elaborate dynamic graph algorithms, in which
dynamic trees are typically just one of several components; the reader is referred
to [28] for a survey on this topic.

All algorithms were implemented in C++ and compiled with g++ 3.4.4 with
the -O4 (full optimization) option. We ran the experiments on a Pentium 4
running Microsoft Windows XP Professional at 3.6 GHz, 16 KB of level-one
data cache, 2 MB of level-two cache, and 2 GB of RAM. With the exception of
RC-trees, all data structures were implemented by the authors and are available
upon request. RC-trees, available at http://www.cs.cmu.edu/∼jvittes/rc-trees/,
were implemented by Acar, Blelloch, and Vittes [2]. We only tested RC-trees on
online minimum spanning forests, readily supported by the code provided.

CPU times were measured with the getrusage function, which has precision
of 1/60 second. We ran each individual computation repeatedly (within a single
loop in the program) until the aggregate time (measured directly) was at least
two seconds, then took the average. The timed executions were preceded by a
single untimed run, used to warm up the cache. Running times do not include
generating or reading the input data (which is done only once by the entire pro-
gram), but include the time to allocate, initialize, and destroy the data structure
(each done once per run within the program). For each set of parameters, we
report the average results from five different randomized inputs.

To ensure uniformity among our implementations, we reused code whenever
possible. In particular, routines for splaying were implemented only once (as
template functions) and used by top-s, st-e, st-v, and et. To update values,
each data structure defines an inline function that is called by the splaying
routine whenever there is a rotation. Also, the user-defined functions used by
top trees were implemented as templates (thus allowing them to be inlined)
and were shared by both top tree implementations. Values were stored as 32-bit
integers. At initialization time, each data structure allocates all the memory it
might need as a single block, which is managed by the data structure itself (the
only exception is RC-trees, which allocates memory as needed in large blocks,
and frees it all at once). All executions fit in RAM, unless specifically noted.

Maximum flows. One of the original motivations for dynamic tree data structures
was the maximum flow problem (see, e.g., [3]). Given a directed graph G = (V, A)
(with n = |V | and m = |A|) with capacities on the arcs, a source s and a sink
t, the goal is to send as much flow as possible from s to t. We implemented
the shortest augmenting path algorithm for this problem, due to Edmonds and
Karp [10]. In each iteration, it finds a path with positive residual capacity that
has the fewest arcs and sends as much flow as possible along it; the algorithm
stops when no such augmenting path exists. Intuitively, the algorithm grows a
path from s containing only admissible arcs (potential candidates to belong to
the shortest path) until it reaches t, backtracking whenever it reaches a vertex
with no outgoing admissible arcs. A direct implementation takes O(n2m) worst-
case time, which can be reduced to O(mn log n) if we use dynamic trees to
maintain a forest of admissible arcs. The modified algorithm always processes
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the root v of the tree containing the source s. If v has an admissible outgoing
arc, the arc is added to the forest (by link); otherwise, all incoming arcs into v
are cut from the forest. Eventually s and t will belong to the same tree; flow is
sent along the s-t path by decrementing the capacities of all arcs on the path
and cutting those that drop to zero. See [3] for details.

The operations supported by the ST-tree interface (such as addcost, findmin,
findroot) are, by construction, exactly those needed to implement this algorithm.
With top trees, we make each cluster C = (v, w) represent both a rooted tree
and a directed path between its endpoints. The cluster stores the root vertex of
the subtree it represents, a pointer to the minimum-capacity arc on the path
between v and w (or null, if the root is neither v nor w), the actual capacity of
this arc, and a “lazy” value to be added to the capacities of all subpaths of v · · · w
(it supports the equivalent of ST-tree’s addcost). We also tried implementing the
full ST-tree interface on top of top trees, as suggested in [5], but it was up to
twice as slow as the direct method.

Our first experiment is on random layer graphs [7], parameterized by the
number of rows (r) and columns (c). Each vertex in column i has outgoing
arcs to three random vertices in column i + 1, with integer capacities chosen
uniformly at random from [0; 216]. In addition, the source s is connected to all
vertices in column 1, and all vertices in column c are connected to the sink t
(in both cases, the arcs have infinite capacity). We used r = 4 (thus making all
augmenting paths have Θ(n) length) and varied c from 128 to 16 384. Figure 1
reports average running times normalized with respect to st-v.

Our second experiment is on directed meshes, also parameterized by the num-
ber of rows (r) and columns (c). A mesh consists of a source s, a sink t, and an
r × c grid. Each grid vertex has outgoing arcs to its (up to four) neighbors1 with
random integer capacities in the range [0; 216]. The grid is circular: the first and
last rows are considered adjacent. In addition, there are infinite-capacity arcs
1 A similar description was mistakenly given to the “directed meshes” tested in [27];

those graphs, obtained with a different generator [7], were actually acyclic.
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from s to the first column, and from the last column to t. We kept the product
of r and c constant at 216 and varied their ratio. See Figure 2.

For both graph families, the O(log n) data structures have similar relative
performance: ST-trees are the fastest, followed by self-adjusting top trees and,
finally, worst-case top trees. Although there are costs (capacities) on edges, st-v

can be used because evert is never called; st-e, included in the experiments
for comparison, is slightly slower. With the linear-time data structure (lin-v),
the maximum flow algorithm is asymptotically worse, running in O(n2m) time.
Being quite simple, the algorithm is still the fastest with small trees, but is
eventually surpassed by st-v. On random layer graphs, this happens when aug-
menting paths have roughly 500 vertices; for directed meshes, both algorithms
still have comparable running times when augmenting paths have more than
16 384 vertices. With so many columns, the average number of links between
augmentations is almost 9000 on directed meshes, but only four on layer graphs
(which are acyclic). This explains the difference in performance.

In the maximum flow algorithm, every query is soon followed by a structural
update (link or cut). Next, we consider an application in which queries can vastly
outnumber structural updates.

Online minimum spanning forests. The online minimum spanning forest problem
is that of maintaining the minimum spanning forest (MSF) of an n-vertex graph
to which m edges are added one by one. If we use a dynamic tree to maintain
the MSF, each new edge can be processed in O(log n) time. Suppose a new edge
e = (v, w) is added to the graph. If v and w belong to different components, we
simply add (link) e to the MSF. Otherwise, we find the maximum-cost edge f
on the path from v to w. If it costs more than e, we remove (cut) f from the
forest and add (link) e instead. This is a straightforward application of the “red
rule” described by Tarjan in [24]: if an edge is the most expensive in some cycle
in the graph, then it does not belong to the minimum spanning forest.

To find the maximum-cost edge of an arbitrary path with ST-trees, we simply
maintain the negative of the original edge costs and call findmin. Because the
evert operation is required, we must use st-e in this case. With top trees, it
suffices to maintain in each cluster C = (v, w) a pointer to the maximum-cost
base cluster on the path from v to w, together with the maximum cost itself.

Our first experiment is on random graphs: edges are random pairs of distinct
vertices with integer costs picked uniformly at random from [1; 1000]. We varied
n from 210 to 220 and set m = 8n. With this density, we observed that roughly
37% of the edges processed by the algorithm are actually inserted; the others
generate only queries. Figure 3 shows the average time necessary to process each
edge. For reference, it also reports the time taken by Kruskal’s algorithm, which
is offline: it sorts all edges (with quicksort) and adds them to the solution one at
a time (using a union-find data structure to detect cycles). Being much simpler,
it is roughly 20 times faster than st-e.

Our second experiment also involves random graphs, but we now fix n = 216

and vary the average vertex degree from 4 to 512 (i.e., we vary m from 217 to
225). As the density increases, relatively fewer links and cuts will be performed:
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when the average degree is 512, only roughly 2.5% of the input edges are actually
inserted into the MSF. As a result, as Figure 4 shows, the average time to process
an edge decreases with the density, and queries dominate the running time. The
speedup is more pronounced for top-w and rc, since the self-adjusting data
structures (st-e and top-s) must change the tree even during queries.

Recall that top-w must change the contraction when performing queries (ex-
pose) to ensure that the relevant path is represented at the root of its top tree. In
principle, this would make exposes about as expensive as links and cuts. As sug-
gested by Alstrup et al. [6], however, we implemented expose by marking some
existing top tree nodes as “invalid” and building a temporary top tree with the
O(log n) root clusters that remain. This eliminates expensive updates of Euler
tours during queries. Fast queries help explain why top-w is more competitive
with top-s for the online MSF application as compared to maximum flows. Be-
ing self-adjusting, top-s also benefits from the fact that consecutive dynamic
tree operations are correlated in the maximum flow application.

RC-trees do not modify the tree (even temporarily) during queries: instead,
they traverse the tree in a bottom-up fashion, aggregating information contained
in internal nodes. For comparison, we have implemented top-q, a variant of
top-w that explicitly traverses the tree during queries, with no calls to expose.
Technically, top-w is not an implementation of top trees, since it violates its
well-defined interface. As Figure 4 shows, however, it is significantly faster than
top-w when queries are numerous, and about as fast as rc. Speed comes at a
cost, however: implementing a different query algorithm for each application is
much more complicated (and less intuitive) than simply calling expose.

To further assess query performance, we tested the algorithms on augmented
random graphs. A graph with n vertices, m edges, and core size c ≤ n is created
in three steps: first, generate a random spanning tree on c vertices; second,
progressively transform the original edges into paths (until there are n vertices in
total); finally, add m−n+1 random edges to the graph. Costs are assigned so that
only the first n−1 edges (which are processed first by the online MSF algorithm,
in random order) result in links ; the remaining edges result in queries only.
Figure 5 shows the performance of various algorithms with n = 213, m = 218,
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and c varying from 2 to 213. The average length of the paths queried is inversely
proportional to the core size; when the length drops below roughly 100, lin-e

becomes the fastest online algorithm (surpassing top-q, which is particularly
fast because more than 95% of the operations are queries). The crossover point
between lin-e and st-e is closer to 150 (in Figure 3 as well).

Finally, we investigate the effect of caching on the data structures. We ran
the MSF algorithm on graphs consisting of 32c vertices (for a given parameter
c) randomly partitioned into c equal-sized components. Edges are inserted into
the graph by first picking a random component, then a random pair of vertices
within it. The total number of edges added is 128c, so that each component
has 128 edges on average. Figure 6 shows that, due to cache effects, the average
time to process each edge actually varies as a function of c: all methods become
slower as the number of components increases. Interestingly, lin-e has the most
noticeable slowdown: almost a factor of eight, compared to around two for other
data structures. It benefits the most from caching when processing very small
instances, since it has the smallest footprint per node (only 16 bytes). This
is significantly less than st-e (57 bytes), top-s (216), top-w (399), and rc

(roughly one kilobyte). If fact, RC-trees even ran out of RAM for the largest
graph tested (this is the only case reported in the paper in which this happened—
all other tests ran entirely in memory); the excessive memory usage of this
particular implementation helps explain why it is consistently slower than worst-
case top trees, despite being presumably much simpler.

Even though Figure 6 shows an extreme case, cache effects should not be
disregarded. Take, for instance, the layer graphs used in the maximum flow
application. The graph generator assigns similar identifiers to adjacent vertices,
which means that path traversals have strong locality. Randomly permuting
vertex identifiers would slow down all algorithms, but lin-v (which uses only 8
bytes per node) would be affected the most: on layer graphs with 65 538 vertices,
running times would increase by 150% for lin-v, 40% for st-v (which uses 24
bytes per node), and only 11% for top-w.

Single-source shortest paths. The applications considered so far require dynamic
trees to aggregate information over paths. We now test an application that
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aggregates over trees: a label-correcting single-source shortest path algorithm.
Given a directed graph G = (V, A) (with |V | = n and |A| = m), a length function
�, and a source s ∈ V , it either finds the distances between s and every vertex
in V or detects a negative cycle (if present). Bellman’s algorithm [8] maintains
a distance label d(v) for every vertex v, representing an upper bound on its dis-
tance from s (initially zero for s and infinite otherwise). While there exists an arc
(v, w) ∈ A such that d(v) + �(v, w) < d(w), the algorithm relaxes it by setting
d(w) ← d(v) + �(v, w). After n − 1 passes through the list of arcs (in O(mn)
time) either all distance labels will be exact or a negative cycle will be found.

After an arc (v, w) is relaxed, we could immediately decrease the distance la-
bels of all descendants of w in the current candidate shortest path tree. Bellman’s
algorithm will eventually do it, but it may take several iterations. With a dy-
namic tree data structure that supports aggregation over trees (such as ET-trees
or top trees), we can perform such an update in O(log n) time. Although dy-
namic trees increase the worst-case complexity of the algorithm to O(mn log n),
one can expect fewer iterations to be performed in practice.

We tested this algorithm on graphs consisting of a Hamiltonian circuit (cor-
responding to a random permutation of the vertices) augmented with random
arcs. We used m = 4n arcs, n of which belong to the Hamiltonian circuit. All
arcs have lengths picked uniformly at random; those on the cycle have lengths
in the interval [1; 10], and the others have lengths in [1; 1000].

Figure 7 shows the average time each method takes to process an arc. (ST-
tree implementations are omitted because they cannot aggregate information
over arbitrary trees.) ET-trees are much faster than both versions of top trees
(top-w and top-s), and about as fast as top-q, which explicitly traverses the
tree during queries instead of calling expose. In these experiments, only 10% of
the arcs tested result in structural updates. This makes top-w competitive with
top-s, and top-q competitive with et (which is much simpler).

The standard version of Bellman’s algorithm (denoted by bellman), which
maintains a single array and consists of one tight loop over the arcs, can process
an arc up to 600 times faster than et. Even though dynamic trees do reduce the
number of iterations, they do so by a factor of at most four (for n = 262 144,
the algorithm requires 14.4 iterations to converge with dynamic trees and 56.6
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without). As a result, et is 100 to 200 times slower than Bellman’s algorithm.
This is obviously a poor application of dynamic trees, since the straightforward
algorithm is trivial and has better running time; the only purpose of the exper-
iment is to compare the performance of the data structures among themselves.

Random structural operations. In order to compare all data structures at once,
we consider a sequence of m operations consisting entirely of links and cuts, with
no queries. We start with n − 1 links that create a random spanning tree. We
then execute a sequence of m − n + 1 alternating cuts and links : we remove a
random edge from the current tree and replace it with a random edge between
the two resulting components. We fixed m = 10n and varied n from 26 to 218.
For implementations of the ST-interface, every link or cut is preceded by the
evert of one of the endpoints. Even though there are no queries, values were
still appropriately updated by the data structure (as if we were maintaining
the MSF). Figure 8 shows the average time to execute each operation of the
precomputed sequence. The results are in line with those observed for previous
experiments. ST-trees are the fastest logarithmic data structure, followed by
ET-trees, self-adjusting top trees, worst-case top trees, and RC-trees.

Additional observations. An efficient implementation of the evert operation in
ST-trees requires each node to store a reverse bit (in difference form), which
implicitly swaps left and right children. Our implementation of lin-v always
supports evert, even in experiments where it is not needed (such as the maximum
flow algorithm). Preliminary tests show that a modified version of lin-v with no
support for evert is roughly 5% faster in the maximum flow application. Also, as
observed by Philip Klein (personal communication), an additional speedup of at
least 10% can be obtained with a more specialized implementation of splaying
that delays value updates until they are final (our current implementation does
each rotation separately, updating all values). In an extreme case, if we do not
update values at all during rotations, st-v becomes almost 20% faster on a
random sequence of links and cuts. The main reason is better locality: value
updates require looking outside the splaying path.

The performance of the data structures also depends on how much data is
stored in each node. If we stored values as 64-bit doubles (instead of 32-bit
integers), all data structures would be slightly slower, but more compact ones
would be affected the most. For random links and cuts, 64-bit values slow down
st-v by at least 10% and top-w by only 1%.

4 Final Remarks

We have shown that the linear-time implementation of the ST-tree interface can
be significantly faster than other methods when the paths queried have up to a
few hundred vertices, but they become impractical as path sizes increase. Alstrup
et al. [5] observed the same for randomized sequences of operations. Recently,
Ribeiro and Toso [21] have used the linear-time data structure as a building
block for a simple method to maintain fully dynamic minimum spanning trees,
which can be competitive with more elaborate algorithms for some graphs.
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Among the logarithmic data structures, the self-adjusting implementation of
ST-trees is generally the fastest, especially when links and cuts are numerous. It
is relatively simple and can benefit from correlation of consecutive operations,
as in the maximum flow application. Self-adjusting top trees are slower than
ST-trees by a factor of up to four, but often much less. These are reasonably
good results, given how much more general top trees are: our implementation
supports sorted adjacency lists and aggregation over trees. As explained in [26],
the data structure can be simplified if these features are not required (as in the
maximum flow and MSF applications). We plan to implement restricted versions
in the future, but even the current slowdown (relative to ST-trees) is arguably
a reasonable price to pay for generality and ease of use. None of the logarithmic
data structures studied is particularly easy to implement; the ability to adapt
an existing implementation to different applications is a valuable asset.

When queries vastly outnumber links and cuts, worst-case and randomized
data structures are competitive with self-adjusting ones. Even top-w, which
changes the tree during queries, can be faster than self-adjusting top trees. But
top-q and rc prove that not making changes at all is the best strategy. Similar
results were obtained by Acar et al. [2], who observed that RC-trees are signif-
icantly slower than ST-trees for structural operations, but faster when queries
are numerous. In [9], a randomized implementation of ET-trees is used in con-
junction with (self-adjusting) ST-trees to speed up connectivity queries within a
dynamic minimum spanning tree algorithm. Although ST-trees can easily sup-
port such queries, the authors found them too slow.

This situation is not ideal. A clear direction for future research is to create
general data structures that have a more favorable trade-off between queries
and structural operations. A more efficient implementation of worst-case top
trees would be an important step in this direction. In addition, testing the data
structures on more elaborate applications would be valuable.
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