
COMPUTER 44

COVER FE ATURE

There are clear tradeoffs among security, �exibility, and

cost in possible designs for such SOAs. Traditional (pre-GIG)

DoD network architectures have created logical airgaps

between different networks such as the NIPRNET and

SIPRNET, and services are replicated in each such network

environment. Information security is, in principle, guaran-

teed with separated networks, since there is no network

path from the more secure to the less secure network.

Although the GIG is a DoD-speci�c project, many of

the trust management problems it exposes also occur

naturally in existing and emerging commercial and other

public networked computing environments, particularly

those based on SOAs. In particular, traditional decentral-

ized trust management architectures,1 while useful, do not

directly address questions such as policy changes under

rapidly changing network conditions or revocation and

autonomous versus centralized control. These problems

occur in any large-scale system based on a rapidly chang-

ing, potentially unreliable network framework such as the

Internet. Therefore, we believe that the GIG architecture

is a useful platform and opportunity for studying trust in

large-scale computing in general, not just in the military

and government.

Published by the IEEE Computer Society 0018-9162/09/$25.00 © 2009 IEEE

A
service-oriented architecture (SOA) separates

functions into services, which process requests

from peers over a network. In processing a

request, the service can, in turn, send requests

to secondary services and so on.

The Global Information Grid (GIG), an ongoing effort by

the US Department of Defense (DoD) and Intelligence Com-

munity (IC), rationalizes and modernizes the architecture

of US network-centric operations. It couples a common

network architecture to advanced information assurance

techniques and, as GIG’s name implies, focuses on the in-

formation the network carries and the services it provides,

rather than on the network’s attributes.

Matt Blaze, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Jonathan M. Smith,
University of Pennsylvania

Angelos D. Keromytis, Columbia University

Wenke Lee, Georgia Institute of Technology

Trust management forms the basis for

communicating policy among system

elements and demands credential

checking for access to all virtual private

service resources—along with careful

evaluation of credentials against specified

policies—before a party can be trusted.

DYNAMIC

TRUST

MANAGEMENT

GIG CHALLENGES
In practice, the GIG architecture has several problems.

First, all nodes on the secure network must be trusted to

operate at their designated security level, so accidental

physical access—such as that by a laptop user—can break

the security model. Second, the architecture can make

sharing appropriate information dif�cult or impossible.

Finally, the broad division of information into security

levels such as unclassi�ed, secret, and top secret does not

provide �ne-grained access control based on the need-to-

know principle, which is key in securing information.

The research problem faced by SOAs, then, is to provide

�ne-grained access control to services and information

within the context of a shared network infrastructure. Our

conception of the access-control challenge in dynamic

environments might best be differentiated from previous

ideas, such as role-based access control (RBAC), by calling

it mission-based access control (MBAC).

Fine-grained access controls, such as those required

for access on a need-to-know basis, require �ne-grained

speci�cation of policies, sometimes to the level of indi-

vidual users and objects, but certainly at the level of roles

and services. We believe that �ne-grained access control

is possible by using a formal speci�cation of policy with a

policy language that can be understood by both managers

and interconnected systems that must make decisions to

permit or deny access. Once such a policy is speci�ed, the

speci�cation can be used to check access decisions for �les

on a computer, database records, imagery, Web services,

or real-time chat.

TWO EXAMPLES
Large-scale distributed malice provides our �rst example.

In this scenario, malicious actors use botnets—connections

of hijacked machines that coordinate operations with each

other—to carry out a wide variety of actions.

The future promises more malice on a larger scale. A

detected botnet should result in a security policy change

such as access to services and protection of data manage-

ment facilities. A central research question we address

considers how to react at machine speeds to an appar-

ently distributed adversary given that botnets operate

from diverse locations. Clearly, the reaction itself must

be global, and it must be rapid to minimize damage to

information services. The “shields up” decision for each

network, object, and service should let systems operate

autonomously if required.

Dynamic team formation for disaster relief provides

our second example. Suppose a search-and-rescue team

is operating a disaster-relief effort in the aftermath of a

hurricane or �ood that has struck an urban area. Rescue

team members possess GPS-augmented communications

devices with a tracking capability that lets them visualize

their locations relative to each other. Given that this is a

worldwide disaster-relief effort, other teams must coordi-

nate with an independent force-tracking technology.

For the duration of disaster relief, the location informa-

tion should be shared because everyone has become part

of the same team. Thus, this dynamic policy must authorize

access to friendly location information and take into ac-

count issues such as personally identi�able information that

cannot be shared between the communicating parties.

This effort raises questions regarding how accesses are

authorized in such a situation and how accesses to particu-

lar services can be kept from extending to all networked

services. It also presents a complex information-manage-

ment challenge that must be met in a way that does not

require complete access to networks and servers to pro-

vide a necessary capability. Other issues involve

determining how to grant access rapidly in the face of

a changing policy, as well as how to revoke it;

deciding how resources must be defended from unau-

thorized accesses at a �ne-grained level; and

assessing how coordinated support for information-

sharing with team members will affect the resources

required of the GIG.

CHALLENGES FOR SOAS
In complex SOAs the problem becomes even more dif-

�cult. The goal might not be to rigidly enforce complete

separation at all times due to mission demands and the

�exible roles the network must take, such as support of

dynamically changing disaster relief teaming. Rather, it

might be desirable to maintain a high degree of separa-

tion between applications most of the time, but to relax or

strengthen this separation under speci�c circumstances in

response to emergencies or rapidly changing conditions.

For example, during speci�c operations or emergen-

cies, the need for relaxation of normal policy might occur

in response to explicit decisions by a central authority, or

the triggering of a predetermined risk-management strat-

egy—for example, for data in which the sensitivity decays

over time. An increased security posture might be assumed

when available network sensors, such as intrusion-

detection systems, provide situation awareness that indi-

cates an increased threat level.

•

•

•

Trust management provides the

basis for communicating policy

among system elements.

45FEBRUARY 2009

COVER FE ATURE

COMPUTER 46

We see the challenge as dynamic provision of virtual

private services (VPSs)—services for which access is con-

trolled on the basis of a security policy. Trust management

provides the basis for communicating policy among system

elements. Trust management systems demand credential

checking for access to all VPS resources, along with careful

evaluation of credentials against speci�ed policies before a

party can be trusted. Thus, the default assumption is to not

trust. An architecture based on trust management systems

and languages therefore provides an extremely promising

approach for analysis and compliance enforcement in

systems with complex architectures. If successful, such an

approach will enable the secure composition of services

needed to adaptively achieve mission-critical tasks in the

short timeframes that today’s time-sensitive military en-

vironments mandate.

DYNAMIC TRUST MANAGEMENT
At �rst glance, the hierarchical deployment of existing

trust-management systems �ts well with the concept of

service orientation. Speci�cation and enforcement of a

security policy for a given service are decomposed accord-

ing to the service’s structure and partially conferred on

the secondary services in terms of their policies.

In our past work, we defined and formalized trust

management as an explicit policy compliance layer for

decentralized systems1,2 and developed practical trust

management languages and systems for small- and

medium-scale applications such as distributed �rewalls3

and virtual private services.4 A VPS contains components

distributed over several hosts on a network. A central au-

thority speci�es security policies, but the host enforces

the policies according to policy rules applicable to the VPS

component deployed on that host.

Despite the seemingly good match, existing

trust-management approaches are clearly insuf-

�cient for SOAs. The key problem is that policies

speci�ed by existing trust management systems

are static: a VPS policy identi�es precisely the

subservices and hosts they are deployed on and

prescribes the policy enforcement strategy. To

support a modern SOA, a policy specification

should be dynamic to accommodate changes in

both the system and its environment.

Dynamic service availability
The network might have multiple hosts ca-

pable of performing the necessary service. To

make things more complicated, service avail-

ability changes dynamically. Dynamic service

discovery now forms an integral part of most

modern SOAs, and should be accommodated

by the SOA’s trust management system. Not all

alternative services can be equivalent from the

security perspective. Some services might require that a

request have a higher degree of trust to gain access to the

service. Others might have inferior trustworthiness if they

are offered by less-trusted hosts, and thus cannot be used

to serve some classes of requests.

Situational dynamism
The system’s changing environment provides the other

source of dynamism in SOAs, when the same request

might be processed differently depending on the situa-

tion. Suppose, for example, that a request requires access

to a reliable and secure set of terrain data. In a particular

situation, this set of data might be inaccessible, but less

reliable or less secure data might be available. A static

policy could reject this request because the required data

is unavailable. However, even a less reliable result of the

request might be critical to ensure an effort’s success. A

dynamic policy will let the system either deny the request

or service it with inferior data.

In its simplest form, situational dynamism can be im-

plemented by means of a set of prede�ned security modes.

A security mode could be switched either manually by a

person with suf�cient privileges—by a commander in the

�eld, for example—or by the enforcement engine auto-

matically, according to a given criteria set.

TRUST MANAGEMENT ARCHITECTURE
Existing trust management systems such as Key-

Note rely on a strict boundary between the trusted and

untrusted zones. Figure 1 shows the KeyNote system’s

architecture. Requests from the untrusted zone sent by

clients and peers are processed centrally by the trust

management engine according to the policies of individ-

ual applications. This model works well for small- and

Trust
management
system

Credential
management

Application

Policy

Application

Policy

Trusted zoneUntrusted zone

Untrusted
requests

Client

Client

Client

Figure 1. KeyNote system’s trust-management architecture. The

trust-management engine processes requests from the untrusted

zone sent by clients and peers according to the policies of individual

applications. This model works well for small- and medium-scale

applications.

medium-scale applications in which there are well-de-

�ned administrative and topological boundaries between

internal and external services. But the model can make it

dif�cult to support complex systems where these relation-

ships are more �uid.

By contrast, dynamic trust management does not rely

on �xed boundaries between trusted and untrusted com-

ponents. Instead, each principal in the system, such as a

service, derives a trust level for each principal with which

it interacts. This trust level will be derived dynamically.

Figure 2 shows a possible architecture for such a system.

The trust levels appearing in Figure 2 are shown from Ser-

vice A’s perspective, which receives a request from some

client with the trust level TRUST_X. To process this re-

quest, Service A must send secondary requests to Services

B and C. Service B is deployed locally with Service A and

has the highest level of trust.

Service C, on the other hand, is deployed remotely and

has a lower level of trust, TRUST_Y. The policy for Service

A, then, is stated in terms of the dynamic trust levels for

incoming requests and subservices that A uses. If the trust

level of Service C is deemed too low to process the request,

the request might be denied or an alternative to C might

be sought.

The idea of cooperative policy evaluation5 is the starting

point for our dynamic trust management system. A global

policy controls evaluation of trust levels for principals in

the system.

TRUST POLICY LANGUAGE
The trust-management approach1 frames security

questions as follows: “Does the set C of credentials prove

that the request r complies with the local security policy

P?” This approach subsumes traditional authentication

and certi�cation questions under an action authoriza-

tion model. In this model, remote requests with security

implications are authorized or denied based on local

policy in conjunction with credentials and authenticated

identity.

The policy and credential language with which we will

conduct our work will be based on KeyNote,6 with exten-

sions we will add to support dynamic policies. In particular,

we will introduce new constructs to the language that sup-

port an active trigger mechanism for policies and tested

conditions. The trust management model implemented

by the current KeyNote system (and most other systems)

is entirely passive. Policies and assertions are written in

a scripting language in which an authorizer trusts one

or more licensees to perform actions that match certain

conditions. For example, a simple access control credential

might be written as:

Authorizer: “rsa-hex:1023abcd....”

Licensees: “dsa-hex:986512a1...” ||
“rsa-hex:19abcd02...”

Comment: Authorizer delegates read
access to

either of the Licensees

Conditions: (file == “/etc/passwd” &&

access == “read”) -> “true”;

Signature: “sig-rsa-md5-hex:f00f5673...”

Network host

Cooperative
policy

evaluation

Credential
management

Service C
TRUST_Y

PolicyCooperative
policy

evaluation

Credential
management

Service A

Policy

Service B
TRUST_MAX

Policy

Network host

Request
TRUST_X

Client

Client

Client

Global policy

Figure 2. KeyNote system dynamic trust management architecture. Requests from the untrusted zone sent by clients and peers

are processed by the trust management engine in a centralized fashion according to individual applications’ policies.

47FEBRUARY 2009

This approach has proven useful for small- and

medium-scale systems in which all security-sensitive

applications and services can query the trust manage-

ment system explicitly whenever it receives a potentially

dangerous remote request, but it does not easily sup-

port tight coupling to network conditions or actively

pushing new policies into remote systems.

Developers are extending KeyNote to support an active

model in which both the Licensees and Conditions can

include not only passive pattern matching but also active

triggers that can be executed automatically in response to

changing conditions.

We are investigating two kinds of active triggers: pred-

icates and actions. Predicate triggers cause a local policy

to be evaluated asynchronously on a network element

whenever the external state matches some predicate.

Action triggers push policy change information out to

other network elements and can appear as part of local

policy.

In our current research, we address the exact syntax

and semantics of these active trigger mechanisms,

which allow highly dynamic trust management poli-

cies tightly coupled to network health and changing

policy. For example, predicates could be triggered when

the local network detects some botnet-style attack

behavior, allowing the system to push out a policy

that introduces more restrict ive access control

rules:

authentication_failures(hosts>4) ->
require_certificates()

Other approaches could be tailored to different threat

levels.

COOPERATIVE POLICY EVALUATION
WITH FEEDBACK

To evaluate dynamic policies, we are designing and

implementing novel mechanisms for collaborative decen-

tralized policy enforcement. To that end, we propose a new

model, dynamic policy evaluation. In DPE, security policy

decisions can be revisited at any time during the session’s

lifetime (with the term session informally de�ned as a

temporally extended sequence of security-relevant interac-

tions among those components of the distributed system

that collectively handle a speci�c request) and may recom-

mend actions beyond the typical permit/deny outcome of

such security policies.

The access-control mechanisms that govern the dis-

tributed system’s components participating in a session

form a logical ad hoc clique for exchanging security-

critical information during the session’s lifetime. The

clique avoids the performance and complexity of having

all such components communicate with each other at

all times. The exchanged information includes policy

decisions made by the various components during the

session, changes in the session environment—such as

when traf�c starts arriving over a wireless link—and

information from other “sensors,” including intrusion

detection systems, behavior-based anomaly detectors,

and credential revocation. The dynamic policy evalua-

tion model is reevaluated as new information becomes

available, and privileges could be revoked or restricted

as a result.

Consider the simple system shown in Figure 3, consist-

ing of a website that uses a �rewall, a front-end webserver

such as Apache, a back-end business-logic server running

PHP or JavaBeans, a �le server storing static content, con-

Business logic

Database server

File serverWebserver

Firewall

Internet

Remote user

Remote user

Figure 3. Interaction between components of a webserver in the context of sessions initiated by external users.

COVER FE ATURE

COMPUTER 48

�guration �les, executables and scripts, and a database

storing order and customer information.

In this con�guration example, an unauthorized wire-

less access point located inside the �rewall perimeter lets

outsiders access the webserver, whose security policy

assumes that any traf�c reaching it must have been autho-

rized by the �rewall. Given that there is no way to validate

this assumption—which changed due to external, unfore-

seen factors—the outsider can be granted access under

false premises.

Further, once admitted by the access-control process

of one component, the user can interact with the remain-

der of the system without much supervision by that �rst

component. An attacker can probe the system for weak-

nesses without fear of losing already established access.

For example, an attacker who exploits a miscon�guration

of the �rewall to probe the internal webserver’s scripts

for SQL-injection vulnerabilities will have his access re-

stricted only after an administrator (possibly prompted

by an intrusion-detection system) takes action. Although

the �rewall continues to verify the conformance of each

packet to policy, the attacker’s misbehavior is invisible to

the �rewall.

We observe that, although the system components

work together in handling application requests, there is

no cooperation in determining the proper security con-

text for authorizing these requests. Currently, there is no

mechanism through which security policy can reevaluate

the privileges of that user and indicate some necessary

action. For example, the �rewall policy might request a

reauthentication of the user, the webserver might decide to

handle that user’s requests under a more restrictive policy,

and the database might let the user issue queries but not

update any tables.

Although it would seem straightforward to manually

address the security problems in a small environment such

as this example, con�guration errors can lead to insecure

postures even in con�gurations involving just one �rewall.7

The complexity of verifying security policy correctness

and safety for a large nontrivial system—such as a �nan-

cial-services �rm with 50,000 servers, 90,000 desktops,

2,500 �nancial applications, hundreds of entry points, and

a large supporting infrastructure—is beyond the state of

the art.8 Other examples of such systems include military

networks, online gaming services, large ISPs and ASPs,

and e-commerce sites.

There is no uni�ed policy-based mechanism through

which to scalably handle access control, intrusion detec-

tion, and other recovery mechanisms consistently across

a large distributed system. We need a way for the secu-

rity policies across all these mechanisms to continuously

validate the assumptions upon which access was initially

granted, taking into consideration additional information

as it becomes available.

Further, because we cannot determine the true intent

of a user or system component that appears to be misbe-

having, the security policy must have a larger repertoire

of reactions than simple accept or deny. Again in our ex-

ample, possible reactions beyond completely revoking

the user’s access might be to slow down the handling of

requests (potentially while notifying the administrator),

redirecting traf�c to an appropriately instrumented in-

stance of the webserver that might be much slower but

will detect a wide variety of attacks, or request additional

authentication and migrate the server and that user’s �les

to a honey-pot-like system that enables recovery from

malicious changes to persistent storage.

DPE offers several advantages over traditional access-

control models. First, it uni�es access control and intrusion

detection under a common security policy, allowing ad-

ministrators to make better use of them. Second, it lets the

system react to changes in the security environment faster,

while remaining under security policy guidance. Third,

it allows integration of mechanisms that go beyond the

simple permit/deny approach of access-control policies,

enabling �ner-grained reaction to potential misbehavior.

Our approach can conceptually be viewed as com-

plementary to static policy-verification techniques: By

allowing component policies to exchange information

relevant to future and past decisions, we can continu-

ously verify the assumptions upon which statically veri�ed

policies are based and con�rm their soundness and any

deviations while the system operates.

Currently, our work proceeds along three fronts: formal,

systems design, and experimental.

We are developing a model for DPE based on our

previous work on trust-management systems.6 Our

starting point is the PolicyMaker1,2 evaluation model;

our concept of cross-layer communication stems from

thesis work on the Strongman system.9

We are investigating integration of intrusion detection

and other security-event generators with access-con-

trol mechanisms and other appropriate response

and recovery mechanisms, such as slowdowns in

response to attack.10 We plan to build research proto-

types demonstrating the proposed model for realistic

•

•

There is no unified policy-based

mechanism through which to scalably

handle access control, intrusion

detection, and other recovery

mechanisms consistently across a

large distributed system.

49FEBRUARY 2009

environments, starting with deployments and exper-

imentation in lab environments, and scaling up to

department-scale infrastructures and beyond, as op-

portunities for collaboration and deployment in other

environments arise.

Our current plan seeks to experimentally validate DPE

through participation in “capture the �ag” experi-

ments in a “quantitative trust management” effort.

This experimentation will seek to determine our mod-

el’s effectiveness and shortcomings, identify possible

ways the system can fail, and develop techniques and

mechanisms that can prevent or mitigate the impact

of such failures.

SYSTEM PROTOTYPING AND
EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our approach to dynamic

policy, we will implement and validate the DPE algorithm

experimentally in realistic service-oriented environments.

We will evaluate the strongman scaled enforcement of

access-control policies to large-scale environments by

translating high-level general security policies into com-

ponents specialized to address multiple local-enforcement

points, but will leave policy correctness unaddressed. If

the high-level policy made incorrect assumptions, local

components could not detect this and recover and, due to

the common translation process, would all be affected by

the �awed assumption.

A self-recovering system must dynamically discover the

set of components that should be exchanging information

(a “community of interest,” as it were) and identify the

conditions under which policy revaluation should occur.

Distributed �rewalls3 and distributed intrusion detection11

provide a basis for statically determining possible compo-

nent interactions and the types of information that might

be exchanged. Strongman introduced the notion of a com-

position hook, a piece of information exchanged between

two policy enforcement mechanisms residing at different

layers of the network stack in the same system.

Composition hooks are provisioned at policy-genera-

tion time, based on the high-level policy speci�cation,

and provide a simple mechanism for dynamically coordi-

nating different security mechanisms that coexist in the

same system, such as IPsec and SSL in a webserver. This

mechanism will be generalized to runtime events to permit

ad hoc component interactions and integration with other

•

dynamically generated information, such as IDS alerts.

We will use a distributed blackboard on which policy

assertions post (and read) access-control decisions and

other events of interest. Key foci in the detailed design

of the system will be scalability and tradeoffs between

performance and effectiveness. We believe that signi�cant

gains can be achieved in reducing false positives and creat-

ing more agile systems that can better react to changing

circumstances. DPE policy evaluation will be based on the

KeyNote model, which allows for answers to policy que-

ries from among a totally ordered set of valid responses,

such as “permit unconditionally,” “permit with additional

monitoring,” “permit in honey pot,” “deny,” or “deny and

ban the user.”

The systems and software artifacts expected as the

result of this work include middleware for creating

sessions, integrated intrusion and anomaly detection

capabilities, and behavior tracking. We plan to integrate

existing security mechanisms that provide gradual re-

sponses, such as “shadow honey pots,” �lesystem/database

tracking/journaling, network rate-limiting, and reauthenti-

cation into our system, and then develop new mechanisms

as our understanding of cooperative policy concepts in the

proposed work matures.

That maturation process will require developing new

policy models and language support for policy speci�ca-

tion. Our choice of KeyNote is bene�cial because of its wide

use and deployment on Apache webservers, which are

representative of SOAs. Experimental evaluation of the pro-

totype will be performed on a surrogate SOA con�guration

with multiple independent but collaborating webservers,

consistent with SOAs. Each system will be equipped with a

database, �leserver, and �rewall components. The system

will also have its defenses “red-teamed” using “capture the

�ag” exercises with careful postmortems to strengthen our

agile dynamic defense architecture for MBAC.

SYNERGIES
Trust management provides a uni�ed approach to spec-

ifying and interpreting security policies, credentials, and

relationships.2 We de�ne some important trust manage-

ment terms informally. An access request seeks access

to a resource, possibly in a speci�ed mode. A policy is a

speci�cation of conditions under which access may be

granted. A credential is a claim of meeting the conditions

of some policy. A transaction is an access request followed

by the granting of the request and subsequent access to the

resource. An agent or component is any entity that interacts

with other agents in the system by means of transactions.

An agent is trusted in a transaction if its access request is

granted.

The KeyNote system’s6 goal is to de�ne notions of trust

using policy speci�cations and to check that a transac-

tion request has the credentials necessary to satisfy the

Trust management provides a unified

approach to specifying and interpreting

security policies, credentials, and

relationships.

COVER FE ATURE

COMPUTER 50

51FEBRUARY 2009

relevant policy. Thus, rather than simply classifying the

world as trusted and untrusted, this approach allows more-

sophisticated policies and notions of trust. For example,

trust that an unknown party’s public key is correct can

be built up by having trusted parties certify this to be the

case. Thus, systems such as KeyNote let users have very

�ne-grained notions of trust and manage trust �exibly. An

obvious but important point is that most trust manage-

ment systems, including KeyNote, start with a complete

absence of trust between parties. Only the active presen-

tation of a satisfactory credential can overcome this lack

of trust. We believe that an architecture based on trust

management systems and languages offers an extremely

promising approach for analysis and compliance enforce-

ment in SOAs.

Several features of current trust management systems

such as KeyNote are particularly attractive for SOAs. First,

policies can encode complex rules and risk management

strategies appropriate to a particular application or service.

We can then analyze these polices for various required

properties.2 Second, “credentials” are digitally signed and

written in the same language as policies, making it possible

to centrally control and dynamically modify the policies that

govern even highly decentralized distributed systems.1

Researchers have successfully applied the KeyNote trust

management language and compliance checking archi-

tecture (albeit at a smaller scale) to several subproblems

of the large-scale SOA problem. In particular, KeyNote has

been used as the basis for policy control in network-layer

security (IPsec) and to control the interaction between ap-

plication- and network-layer policies, as in the webserver

(SSL).9 Further, KeyNote has been used to encode complex

risk-management strategies in a micropayment architecture

that combines of�ine authorization of low-risk transactions

with online control over higher-risk actions.12 KeyNote has

also been used as the policy layer for �exible system-call-

based process execution supervision, such as distributed

�le systems with credential-based access control.

Work on next-generation management of scalable trust

(Strongman) demonstrated the scalability of a trust-man-

agement-based architecture to manage large collections

of networked systems.9 The separation of compliance

checking from policy enforcement and the use of caching

demonstrated particular advantages, ideas applied to the

construction of a scalable distributed network boundary

controller.

W
e continue to investigate the use of trust

management techniques to specify

dynamic policies in complex integrated

service-oriented networks. For this

work, we use the DoD GIG’s service-ori-

ented architecture as a focal point.

In this research’s initial phase, we are developing pro-

totype dynamic trust management policy services for a

service-oriented architecture. We base our initial design

on our existing trust management system and language,

KeyNote, and on our prior work on distributed �rewalls3

and virtual private services.4 The service will provide a

standard compliance checking interface to the various

services running on the architecture.

In our research’s next phase, we will develop and ana-

lyze policies with properties that maintain strict separation

between services while allowing exceptions. In particu-

lar, we will focus on supporting two kinds of exceptions.

One will allow explicit centralized control, such as issuing

orders that make classi�ed information available to battle-

�eld networks during operations. Another will encode risk

management strategies that allow exceptions based on

predetermined criteria.

Finally, we are developing improved trust management

languages and systems that more explicitly support dy-

namic policies in service-oriented architectures, based on

the semantic and performance experiences gained in the

research’s �rst phases.

Our focus will be twofold. First, we will explore adding

trust-management language features that better support

dynamic policies, based both on our experiences in the

initial research and on the GIG’s speci�c requirements.

Second, we will conduct experiments to measure the

performance implications of incorporating the trust man-

agement layer in the various layers of such systems. A

signi�cant open research question is whether trust man-

agement is architecturally best implemented as a low-level

operating system service, an application-layer service, or

somewhere in between.

Acknowledgment

This work was supported by ONR MURI N00014-07-1-0907,

CIS Department, University of Pennsylvania.

References

 1. M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized Trust

Management,” Proc. 17th Symp. Security and Privacy, IEEE

CS Press, 1996, pp. 164-173.

 2. M. Blaze, J. Feigenbaum, and M. Strauss, “Compliance

Checking in the PolicyMaker Trust-Management System,”

Proc. Financial Cryptography 98, LNCS 1465, Springer,

1998, pp. 254-274.

 3. S. Ioannidis et al., “Implementing a Distributed Firewall,”

Proc. Computer and Communications Security (CCS), 2000;

www.itsec.gov.cn/webportal/download/2004_ccs-df.pdf.

 4. S. Ioannidis et al., “Design and Implementation of Virtual

Private Services,” Proc. IEEE Int’l Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises

(WETICE), Workshop on Enterprise Security, Special

Session on Trust Management in Collaborative Global

Computing, IEEE Press, 2003, pp. 269-275.

IEEE Annals of the History

of Computing is an active

center for the collection

and dissemination of

information on historical

projects and organizations,

oral history activities, and

international conferences.

www.computer.org/
annals

 5. S. Ioannidis, “Security Policy Consistency and Distributed

Evaluation in Heterogeneous Environments,” doctoral dis-

sertation, University of Pennsylvania, 2005.

 6. M. Blaze, J. Ioannidis, and A.D. Keromytis, “Experience

with the KeyNote Trust Management System: Applica-

tions and Future Directions,” Proc. 1st Int’l Conf. Trust

Management, 2003; http://nsl.cs.columbia.edu/projects/

gridlock/newkeynote.pdf.

 7. A. Wool, “A Quantitative Study of Firewall Con� guration

Errors,” Computer, June 2004, pp. 62-67.

 8. W.H. Winsborough and N. Li, “Safety in Automated Trust

Negotiation,” Proc. IEEE Symp. Security & Privacy, IEEE

Press, 2004, pp. 147-160.

 9. A.D. Keromytis et al., “The Strongman Architecture,” Proc.

3rdDARPA Information Survivability Conf. and Exposition

(DISCEX III), 2003; www1.cs.columbia.edu/~angelos/

Papers/strongman.pdf.

 10. A. Somayaji and S. Forrest, “Automated Response Using

System-Call Delays,” Proc. 9th Usenix Security Symposium,

Usenix, 2000; www.csd.uoc.gr/~hy558/papers/somayaji-

00automated.pdf.

 11. M.E. Locasto et al., “Towards Collaborative Security and

P2P Intrusion Detection,” Proc. 6th Ann. IEEE SMC Infor-

mation Assurance Workshop (IAW), IEEE Press, 2005, pp.

333-339.

 12. M. Blaze, J. Ioannidis, and A.D. Keromytis, “Of� ine Mi-

cropayments without Trusted Hardware,” Proc. 5th

Financial Cryptography (FC) Conf., 2001; www.crypto.

com/papers/knpay.pdf.

Matt Blaze is an associate professor of Computer and In-

formation Science at the University of Pennsylvania. His

research focuses on cryptography and its applications,

trust management, human scale security, secure systems

design, and networking and distributed computing. He is

particularly interested in security technology with bearing

on public policy issues, including cryptography policy (key

escrow), wiretapping and surveillance, and the security of

electronic voting systems. Blaze received a PhD in computer

science from Princeton University. Contact him at blaze@

cis.upenn.edu.

Sampath Kannan is a professor in Computer and Infor-

mation Science at the University of Pennsylvania. He is

currently on leave and serving as the Director of the Com-

puting and Communication Foundations Division at NSF.

His research interests are in algorithms, program reliabil-

ity, and security. Contact him at kannan@cis.upenn.edu.

Insup Lee is the Cecilia Fitler Moore Professor of Computer

and Information Science at the University of Pennsylva-

nia. His research interests include embedded and real-time

systems, cyber-physical systems, medical device systems,

model-based development, and quantitative trust manage-

ment. Lee received a PhD in computer science from the

University of Wisconsin, Madison. He is a Fellow of the

IEEE. Contact him at lee@cis.upenn.edu.

Oleg Sokolsky is a research associate professor of Computer

and Information Science at the University of Pennsylvania.

His research interests include application of formal meth-

ods to model-based development and real-time systems,

quantitative trust management, and runtime veri� cation.

Sokolsky a received a PhD in computer science from Stony

Brook University. He is a member of the IEEE. Contact him

at sokolsky@cis.upenn.edu.

Jonathan M. Smith is the Olga and Alberico Pompa Profes-

sor of Engineering and Applied Science at the University of

Pennsylvania. He recently returned to Penn after serving

as a program manager at DARPA/IPTO, where he initiated

research programs in cognitive networking and distributed

radio. His current research interests are in terabit-per-

second networks and wireless network security. He is a

Fellow of the IEEE. Contact him at jms@cis.upenn.edu.

Angelos D. Keromytis is an associate professor with the

Department of Computer Science at Columbia Univer-

sity, and director of the Network Security Laboratory. His

research interests revolve around systems and network

security. Keromytis received a BS in computer science

from the University of Crete, in Greece, and an MS and

PhD from the Computer and Information Science Depart-

ment, University of Pennsylvania. Contact him at angelos@

cs.columbia.edu.

Wenke Lee is an associate professor in the School of Com-

puter Science, College of Computing, the Georgia Institute

of Technology. His research interests are in systems and

network security, applied cryptography, and data mining.

Contact him at wenke@cc.gatech.edu.

COVER FE ATURE

COMPUTER 52

