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There are clear tradeoffs among security, �exibility, and 

cost in possible designs for such SOAs. Traditional (pre-GIG) 

DoD network architectures have created logical airgaps 

between different networks such as the NIPRNET and 

SIPRNET, and services are replicated in each such network 

environment. Information security is, in principle, guaran-

teed with separated networks, since there is no network 

path from the more secure to the less secure network.

Although the GIG is a DoD-speci�c project, many of 

the trust management problems it exposes also occur 

naturally in existing and emerging commercial and other 

public networked computing environments, particularly 

those based on SOAs. In particular, traditional decentral-

ized trust management architectures,1 while useful, do not 

directly address questions such as policy changes under 

rapidly changing network conditions or revocation and 

autonomous versus centralized control. These problems 

occur in any large-scale system based on a rapidly chang-

ing, potentially unreliable network framework such as the 

Internet. Therefore, we believe that the GIG architecture 

is a useful platform and opportunity for studying trust in 

large-scale computing in general, not just in the military 

and government.
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A 
service-oriented architecture (SOA) separates 

functions into services, which process requests 

from peers over a network. In processing a 

request, the service can, in turn, send requests 

to secondary services and so on.

The Global Information Grid (GIG), an ongoing effort by 

the US Department of Defense (DoD) and Intelligence Com-

munity (IC), rationalizes and modernizes the architecture 

of US network-centric operations. It couples a common 

network architecture to advanced information assurance 

techniques and, as GIG’s name implies, focuses on the in-

formation the network carries and the services it provides, 

rather than on the network’s attributes.
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Trust management forms the basis for 

communicating policy among system 

elements and demands credential 

checking for access to all virtual private 

service resources—along with careful 

evaluation of credentials against specified 

policies—before a party can be trusted.
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GIG CHALLENGES 
In practice, the GIG architecture has several problems. 

First, all nodes on the secure network must be trusted to 

operate at their designated security level, so accidental 

physical access—such as that by a laptop user—can break 

the security model. Second, the architecture can make 

sharing appropriate information dif�cult or impossible. 

Finally, the broad division of information into security 

levels such as unclassi�ed, secret, and top secret does not 

provide �ne-grained access control based on the need-to-

know principle, which is key in securing information.

The research problem faced by SOAs, then, is to provide 

�ne-grained access control to services and information 

within the context of a shared network infrastructure. Our 

conception of the access-control challenge in dynamic 

environments might best be differentiated from previous 

ideas, such as role-based access control (RBAC), by calling 

it mission-based access control (MBAC).

Fine-grained access controls, such as those required 

for access on a need-to-know basis, require �ne-grained 

speci�cation of policies, sometimes to the level of indi-

vidual users and objects, but certainly at the level of roles 

and services. We believe that �ne-grained access control 

is possible by using a formal speci�cation of policy with a 

policy language that can be understood by both managers 

and interconnected systems that must make decisions to 

permit or deny access. Once such a policy is speci�ed, the 

speci�cation can be used to check access decisions for �les 

on a computer, database records, imagery, Web services, 

or real-time chat.

TWO EXAMPLES
Large-scale distributed malice provides our �rst example. 

In this scenario, malicious actors use botnets—connections 

of hijacked machines that coordinate operations with each 

other—to carry out a wide variety of actions.

The future promises more malice on a larger scale. A 

detected botnet should result in a security policy change 

such as access to services and protection of data manage-

ment facilities. A central research question we address 

considers how to react at machine speeds to an appar-

ently distributed adversary given that botnets operate 

from diverse locations. Clearly, the reaction itself must 

be global, and it must be rapid to minimize damage to 

information services. The “shields up” decision for each 

network, object, and service should let systems operate 

autonomously if required.

Dynamic team formation for disaster relief provides 

our second example. Suppose a search-and-rescue team 

is operating a disaster-relief effort in the aftermath of a 

hurricane or �ood that has struck an urban area. Rescue 

team members possess GPS-augmented communications 

devices with a tracking capability that lets them visualize 

their locations relative to each other. Given that this is a 

worldwide disaster-relief effort, other teams must coordi-

nate with an independent force-tracking technology.

For the duration of disaster relief, the location informa-

tion should be shared because everyone has become part 

of the same team. Thus, this dynamic policy must authorize 

access to friendly location information and take into ac-

count issues such as personally identi�able information that 

cannot be shared between the communicating parties.

This effort raises questions regarding how accesses are 

authorized in such a situation and how accesses to particu-

lar services can be kept from extending to all networked 

services. It also presents a complex information-manage-

ment challenge that must be met in a way that does not 

require complete access to networks and servers to pro-

vide a necessary capability. Other issues involve

determining how to grant access rapidly in the face of 

a changing policy, as well as how to revoke it;

deciding how resources must be defended from unau-

thorized accesses at a �ne-grained level; and

assessing how coordinated support for information-

sharing with team members will affect the resources 

required of the GIG.

CHALLENGES FOR SOAS
In complex SOAs the problem becomes even more dif-

�cult. The goal might not be to rigidly enforce complete 

separation at all times due to mission demands and the 

�exible roles the network must take, such as support of 

dynamically changing disaster relief teaming. Rather, it 

might be desirable to maintain a high degree of separa-

tion between applications most of the time, but to relax or 

strengthen this separation under speci�c circumstances in 

response to emergencies or rapidly changing conditions.

For example, during speci�c operations or emergen-

cies, the need for relaxation of normal policy might occur 

in response to explicit decisions by a central authority, or 

the triggering of a predetermined risk-management strat-

egy—for example, for data in which the sensitivity decays 

over time. An increased security posture might be assumed 

when available network sensors, such as intrusion- 

detection systems, provide situation awareness that indi-

cates an increased threat level.

•

•

•

Trust management provides the  

basis for communicating policy  

among system elements.
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We see the challenge as dynamic provision of virtual 

private services (VPSs)—services for which access is con-

trolled on the basis of a security policy. Trust management 

provides the basis for communicating policy among system 

elements. Trust management systems demand credential 

checking for access to all VPS resources, along with careful 

evaluation of credentials against speci�ed policies before a 

party can be trusted. Thus, the default assumption is to not 

trust. An architecture based on trust management systems 

and languages therefore provides an extremely promising 

approach for analysis and compliance enforcement in 

systems with complex architectures. If successful, such an 

approach will enable the secure composition of services 

needed to adaptively achieve mission-critical tasks in the 

short timeframes that today’s time-sensitive military en-

vironments mandate.

DYNAMIC TRUST MANAGEMENT
At �rst glance, the hierarchical deployment of existing 

trust-management systems �ts well with the concept of 

service orientation. Speci�cation and enforcement of a 

security policy for a given service are decomposed accord-

ing to the service’s structure and partially conferred on  

the secondary services in terms of their policies.

In our past work, we defined and formalized trust 

management as an explicit policy compliance layer for 

decentralized systems1,2 and developed practical trust 

management languages and systems for small- and 

medium-scale applications such as distributed �rewalls3 

and virtual private services.4 A VPS contains components 

distributed over several hosts on a network. A central au-

thority speci�es security policies, but the host enforces 

the policies according to policy rules applicable to the VPS 

component deployed on that host.

Despite the seemingly good match, existing 

trust-management approaches are clearly insuf-

�cient for SOAs. The key problem is that policies 

speci�ed by existing trust management systems 

are static: a VPS policy identi�es precisely the 

subservices and hosts they are deployed on and 

prescribes the policy enforcement strategy. To 

support a modern SOA, a policy specification 

should be dynamic to accommodate changes in 

both the system and its environment.

Dynamic service availability
The network might have multiple hosts ca-

pable of performing the necessary service. To 

make things more complicated, service avail-

ability changes dynamically. Dynamic service 

discovery now forms an integral part of most 

modern SOAs, and should be accommodated 

by the SOA’s trust management system. Not all 

alternative services can be equivalent from the 

security perspective. Some services might require that a 

request have a higher degree of trust to gain access to the 

service. Others might have inferior trustworthiness if they 

are offered by less-trusted hosts, and thus cannot be used 

to serve some classes of requests.

Situational dynamism
The system’s changing environment provides the other 

source of dynamism in SOAs, when the same request 

might be processed differently depending on the situa-

tion. Suppose, for example, that a request requires access 

to a reliable and secure set of terrain data. In a particular 

situation, this set of data might be inaccessible, but less 

reliable or less secure data might be available. A static 

policy could reject this request because the required data 

is unavailable. However, even a less reliable result of the 

request might be critical to ensure an effort’s success. A 

dynamic policy will let the system either deny the request 

or service it with inferior data.

In its simplest form, situational dynamism can be im-

plemented by means of a set of prede�ned security modes. 

A security mode could be switched either manually by a 

person with suf�cient privileges—by a commander in the 

�eld, for example—or by the enforcement engine auto-

matically, according to a given criteria set.

TRUST MANAGEMENT ARCHITECTURE
Existing trust management systems such as Key-

Note rely on a strict boundary between the trusted and 

untrusted zones. Figure 1 shows the KeyNote system’s 

architecture. Requests from the untrusted zone sent by 

clients and peers are processed centrally by the trust 

management engine according to the policies of individ-

ual applications. This model works well for small- and 
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Figure 1. KeyNote system’s trust-management architecture. The 

trust-management engine processes requests from the untrusted 

zone sent by clients and peers according to the policies of individual 

applications. This model works well for small- and medium-scale 

applications.



medium-scale applications in which there are well-de-

�ned administrative and topological boundaries between 

internal and external services. But the model can make it 

dif�cult to support complex systems where these relation-

ships are more �uid.

By contrast, dynamic trust management does not rely 

on �xed boundaries between trusted and untrusted com-

ponents. Instead, each principal in the system, such as a 

service, derives a trust level for each principal with which 

it interacts. This trust level will be derived dynamically.

Figure 2 shows a possible architecture for such a system. 

The trust levels appearing in Figure 2 are shown from Ser-

vice A’s perspective, which receives a request from some 

client with the trust level TRUST_X. To process this re-

quest, Service A must send secondary requests to Services 

B and C. Service B is deployed locally with Service A and 

has the highest level of trust.

Service C, on the other hand, is deployed remotely and 

has a lower level of trust, TRUST_Y. The policy for Service 

A, then, is stated in terms of the dynamic trust levels for 

incoming requests and subservices that A uses. If the trust 

level of Service C is deemed too low to process the request, 

the request might be denied or an alternative to C might 

be sought.

The idea of cooperative policy evaluation5 is the starting 

point for our dynamic trust management system. A global 

policy controls evaluation of trust levels for principals in 

the system.

TRUST POLICY LANGUAGE
The trust-management approach1 frames security 

questions as follows: “Does the set C of credentials prove 

that the request r complies with the local security policy 

P?” This approach subsumes traditional authentication 

and certi�cation questions under an action authoriza-

tion model. In this model, remote requests with security 

implications are authorized or denied based on local 

policy in conjunction with credentials and authenticated 

identity.

The policy and credential language with which we will 

conduct our work will be based on KeyNote,6 with exten-

sions we will add to support dynamic policies. In particular, 

we will introduce new constructs to the language that sup-

port an active trigger mechanism for policies and tested 

conditions. The trust management model implemented 

by the current KeyNote system (and most other systems) 

is entirely passive. Policies and assertions are written in 

a scripting language in which an authorizer trusts one 

or more licensees to perform actions that match certain 

conditions. For example, a simple access control credential 

might be written as:

Authorizer: “rsa-hex:1023abcd....”

Licensees: “dsa-hex:986512a1...” || 
“rsa-hex:19abcd02...”

Comment: Authorizer delegates read 
access to

either of the Licensees

Conditions: (file == “/etc/passwd” &&

access == “read”) -> “true”;

Signature: “sig-rsa-md5-hex:f00f5673...”
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Figure 2. KeyNote system dynamic trust management architecture. Requests from the untrusted zone sent by clients and peers 

are processed by the trust management engine in a centralized fashion according to individual applications’ policies.
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This approach has proven useful for small- and 

medium-scale systems in which all security-sensitive 

applications and services can query the trust manage-

ment system explicitly whenever it receives a potentially 

dangerous remote request, but it does not easily sup-

port tight coupling to network conditions or actively 

pushing new policies into remote systems.

Developers are extending KeyNote to support an active 

model in which both the Licensees and Conditions can 

include not only passive pattern matching but also active 

triggers that can be executed automatically in response to 

changing conditions. 

We are investigating two kinds of active triggers: pred-

icates and actions. Predicate triggers cause a local policy 

to be evaluated asynchronously on a network element 

whenever the external state matches some predicate. 

Action triggers push policy change information out to 

other network elements and can appear as part of local 

policy.

In our current research, we address the exact syntax 

and semantics of these active trigger mechanisms, 

which allow highly dynamic trust management poli-

cies tightly coupled to network health and changing 

policy. For example, predicates could be triggered when  

the local network detects some botnet-style attack  

behavior, allowing the system to push out a policy  

that introduces more restrict ive access control  

rules:

authentication_failures(hosts>4) -> 
require_certificates()

Other approaches could be tailored to different threat 

levels.

COOPERATIVE POLICY EVALUATION  
WITH FEEDBACK

To evaluate dynamic policies, we are designing and 

implementing novel mechanisms for collaborative decen-

tralized policy enforcement. To that end, we propose a new 

model, dynamic policy evaluation. In DPE, security policy 

decisions can be revisited at any time during the session’s 

lifetime (with the term session informally de�ned as a 

temporally extended sequence of security-relevant interac-

tions among those components of the distributed system 

that collectively handle a speci�c request) and may recom-

mend actions beyond the typical permit/deny outcome of 

such security policies. 

The access-control mechanisms that govern the dis-

tributed system’s components participating in a session 

form a logical ad hoc clique for exchanging security-

critical information during the session’s lifetime. The 

clique avoids the performance and complexity of having 

all such components communicate with each other at 

all times. The exchanged information includes policy 

decisions made by the various components during the 

session, changes in the session environment—such as 

when traf�c starts arriving over a wireless link—and 

information from other “sensors,” including intrusion 

detection systems, behavior-based anomaly detectors, 

and credential revocation. The dynamic policy evalua-

tion model is reevaluated as new information becomes 

available, and privileges could be revoked or restricted 

as a result.

Consider the simple system shown in Figure 3, consist-

ing of a website that uses a �rewall, a front-end webserver 

such as Apache, a back-end business-logic server running 

PHP or JavaBeans, a �le server storing static content, con-

Business logic

Database server

File serverWebserver

Firewall

Internet

Remote user

Remote user

Figure 3. Interaction between components of a webserver in the context of sessions initiated by external users.
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�guration �les, executables and scripts, and a database 

storing order and customer information.

In this con�guration example, an unauthorized wire-

less access point located inside the �rewall perimeter lets 

outsiders access the webserver, whose security policy 

assumes that any traf�c reaching it must have been autho-

rized by the �rewall. Given that there is no way to validate 

this assumption—which changed due to external, unfore-

seen factors—the outsider can be granted access under 

false premises.

Further, once admitted by the access-control process 

of one component, the user can interact with the remain-

der of the system without much supervision by that �rst 

component. An attacker can probe the system for weak-

nesses without fear of losing already established access. 

For example, an attacker who exploits a miscon�guration 

of the �rewall to probe the internal webserver’s scripts 

for SQL-injection vulnerabilities will have his access re-

stricted only after an administrator (possibly prompted 

by an intrusion-detection system) takes action. Although 

the �rewall continues to verify the conformance of each 

packet to policy, the attacker’s misbehavior is invisible to 

the �rewall.

We observe that, although the system components 

work together in handling application requests, there is 

no cooperation in determining the proper security con-

text for authorizing these requests. Currently, there is no 

mechanism through which security policy can reevaluate 

the privileges of that user and indicate some necessary 

action. For example, the �rewall policy might request a 

reauthentication of the user, the webserver might decide to 

handle that user’s requests under a more restrictive policy, 

and the database might let the user issue queries but not 

update any tables.

Although it would seem straightforward to manually 

address the security problems in a small environment such 

as this example, con�guration errors can lead to insecure 

postures even in con�gurations involving just one �rewall.7 

The complexity of verifying security policy correctness 

and safety for a large nontrivial system—such as a �nan-

cial-services �rm with 50,000 servers, 90,000 desktops, 

2,500 �nancial applications, hundreds of entry points, and 

a large supporting infrastructure—is beyond the state of 

the art.8 Other examples of such systems include military 

networks, online gaming services, large ISPs and ASPs, 

and e-commerce sites.

There is no uni�ed policy-based mechanism through 

which to scalably handle access control, intrusion detec-

tion, and other recovery mechanisms consistently across 

a large distributed system. We need a way for the secu-

rity policies across all these mechanisms to continuously 

validate the assumptions upon which access was initially 

granted, taking into consideration additional information 

as it becomes available.

Further, because we cannot determine the true intent 

of a user or system component that appears to be misbe-

having, the security policy must have a larger repertoire 

of reactions than simple accept or deny. Again in our ex-

ample, possible reactions beyond completely revoking 

the user’s access might be to slow down the handling of 

requests (potentially while notifying the administrator), 

redirecting traf�c to an appropriately instrumented in-

stance of the webserver that might be much slower but 

will detect a wide variety of attacks, or request additional 

authentication and migrate the server and that user’s �les 

to a honey-pot-like system that enables recovery from 

malicious changes to persistent storage.

DPE offers several advantages over traditional access-

control models. First, it uni�es access control and intrusion 

detection under a common security policy, allowing ad-

ministrators to make better use of them. Second, it lets the 

system react to changes in the security environment faster, 

while remaining under security policy guidance. Third, 

it allows integration of mechanisms that go beyond the 

simple permit/deny approach of access-control policies, 

enabling �ner-grained reaction to potential misbehavior.

Our approach can conceptually be viewed as com-

plementary to static policy-verification techniques: By 

allowing component policies to exchange information 

relevant to future and past decisions, we can continu-

ously verify the assumptions upon which statically veri�ed 

policies are based and con�rm their soundness and any 

deviations while the system operates.

Currently, our work proceeds along three fronts: formal, 

systems design, and experimental.

We are developing a model for DPE based on our 

previous work on trust-management systems.6 Our 

starting point is the PolicyMaker1,2 evaluation model; 

our concept of cross-layer communication stems from 

thesis work on the Strongman system.9

We are investigating integration of intrusion detection 

and other security-event generators with access-con-

trol mechanisms and other appropriate response 

and recovery mechanisms, such as slowdowns in 

response to attack.10 We plan to build research proto-

types demonstrating the proposed model for realistic 

•

•

There is no unified policy-based 

mechanism through which to scalably 

handle access control, intrusion 

detection, and other recovery 

mechanisms consistently across a  

large distributed system.
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environments, starting with deployments and exper-

imentation in lab environments, and scaling up to 

department-scale infrastructures and beyond, as op-

portunities for collaboration and deployment in other 

environments arise.

Our current plan seeks to experimentally validate DPE 

through participation in “capture the �ag” experi-

ments in a “quantitative trust management” effort. 

This experimentation will seek to determine our mod-

el’s effectiveness and shortcomings, identify possible 

ways the system can fail, and develop techniques and 

mechanisms that can prevent or mitigate the impact 

of such failures.

SYSTEM PROTOTYPING AND  
EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our approach to dynamic 

policy, we will implement and validate the DPE algorithm 

experimentally in realistic service-oriented environments. 

We will evaluate the strongman scaled enforcement of 

access-control policies to large-scale environments by 

translating high-level general security policies into com-

ponents specialized to address multiple local-enforcement 

points, but will leave policy correctness unaddressed. If 

the high-level policy made incorrect assumptions, local 

components could not detect this and recover and, due to 

the common translation process, would all be affected by 

the �awed assumption.

A self-recovering system must dynamically discover the 

set of components that should be exchanging information 

(a “community of interest,” as it were) and identify the 

conditions under which policy revaluation should occur. 

Distributed �rewalls3 and distributed intrusion detection11 

provide a basis for statically determining possible compo-

nent interactions and the types of information that might 

be exchanged. Strongman introduced the notion of a com-

position hook, a piece of information exchanged between 

two policy enforcement mechanisms residing at different 

layers of the network stack in the same system.

Composition hooks are provisioned at policy-genera-

tion time, based on the high-level policy speci�cation, 

and provide a simple mechanism for dynamically coordi-

nating different security mechanisms that coexist in the 

same system, such as IPsec and SSL in a webserver. This 

mechanism will be generalized to runtime events to permit 

ad hoc component interactions and integration with other 

•

dynamically generated information, such as IDS alerts.

We will use a distributed blackboard on which policy 

assertions post (and read) access-control decisions and 

other events of interest. Key foci in the detailed design 

of the system will be scalability and tradeoffs between 

performance and effectiveness. We believe that signi�cant 

gains can be achieved in reducing false positives and creat-

ing more agile systems that can better react to changing 

circumstances. DPE policy evaluation will be based on the 

KeyNote model, which allows for answers to policy que-

ries from among a totally ordered set of valid responses, 

such as “permit unconditionally,” “permit with additional 

monitoring,” “permit in honey pot,” “deny,” or “deny and 

ban the user.”

The systems and software artifacts expected as the 

result of this work include middleware for creating 

sessions, integrated intrusion and anomaly detection 

capabilities, and behavior tracking. We plan to integrate 

existing security mechanisms that provide gradual re-

sponses, such as “shadow honey pots,” �lesystem/database 

tracking/journaling, network rate-limiting, and reauthenti-

cation into our system, and then develop new mechanisms 

as our understanding of cooperative policy concepts in the 

proposed work matures.

That maturation process will require developing new 

policy models and language support for policy speci�ca-

tion. Our choice of KeyNote is bene�cial because of its wide 

use and deployment on Apache webservers, which are 

representative of SOAs. Experimental evaluation of the pro-

totype will be performed on a surrogate SOA con�guration 

with multiple independent but collaborating webservers, 

consistent with SOAs. Each system will be equipped with a 

database, �leserver, and �rewall components. The system 

will also have its defenses “red-teamed” using “capture the 

�ag” exercises with careful postmortems to strengthen our 

agile dynamic defense architecture for MBAC.

SYNERGIES
Trust management provides a uni�ed approach to spec-

ifying and interpreting security policies, credentials, and 

relationships.2 We de�ne some important trust manage-

ment terms informally. An access request seeks access 

to a resource, possibly in a speci�ed mode. A policy is a 

speci�cation of conditions under which access may be 

granted. A credential is a claim of meeting the conditions 

of some policy. A transaction is an access request followed 

by the granting of the request and subsequent access to the 

resource. An agent or component is any entity that interacts 

with other agents in the system by means of transactions. 

An agent is trusted in a transaction if its access request is 

granted.

The KeyNote system’s6 goal is to de�ne notions of trust 

using policy speci�cations and to check that a transac-

tion request has the credentials necessary to satisfy the 

Trust management provides a unified 

approach to specifying and interpreting 

security policies, credentials, and 

relationships.
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relevant policy. Thus, rather than simply classifying the 

world as trusted and untrusted, this approach allows more- 

sophisticated policies and notions of trust. For example, 

trust that an unknown party’s public key is correct can 

be built up by having trusted parties certify this to be the 

case. Thus, systems such as KeyNote let users have very 

�ne-grained notions of trust and manage trust �exibly. An 

obvious but important point is that most trust manage-

ment systems, including KeyNote, start with a complete 

absence of trust between parties. Only the active presen-

tation of a satisfactory credential can overcome this lack 

of trust. We believe that an architecture based on trust 

management systems and languages offers an extremely 

promising approach for analysis and compliance enforce-

ment in SOAs.

Several features of current trust management systems 

such as KeyNote are particularly attractive for SOAs. First, 

policies can encode complex rules and risk management 

strategies appropriate to a particular application or service. 

We can then analyze these polices for various required 

properties.2 Second, “credentials” are digitally signed and 

written in the same language as policies, making it possible 

to centrally control and dynamically modify the policies that 

govern even highly decentralized distributed systems.1

Researchers have successfully applied the KeyNote trust 

management language and compliance checking archi-

tecture (albeit at a smaller scale) to several subproblems 

of the large-scale SOA problem. In particular, KeyNote has 

been used as the basis for policy control in network-layer 

security (IPsec) and to control the interaction between ap-

plication- and network-layer policies, as in the webserver 

(SSL).9 Further, KeyNote has been used to encode complex 

risk-management strategies in a micropayment architecture 

that combines of�ine authorization of low-risk transactions 

with online control over higher-risk actions.12 KeyNote has 

also been used as the policy layer for �exible system-call-

based process execution supervision, such as distributed 

�le systems with credential-based access control.

Work on next-generation management of scalable trust 

(Strongman) demonstrated the scalability of a trust-man-

agement-based architecture to manage large collections 

of networked systems.9 The separation of compliance 

checking from policy enforcement and the use of caching 

demonstrated particular advantages, ideas applied to the 

construction of a scalable distributed network boundary 

controller.

W
e continue to investigate the use of trust 

management techniques to specify 

dynamic policies in complex integrated 

service-oriented networks. For this 

work, we use the DoD GIG’s service-ori-

ented architecture as a focal point.

In this research’s initial phase, we are developing pro-

totype dynamic trust management policy services for a 

service-oriented architecture. We base our initial design 

on our existing trust management system and language, 

KeyNote, and on our prior work on distributed �rewalls3 

and virtual private services.4 The service will provide a 

standard compliance checking interface to the various 

services running on the architecture.

In our research’s next phase, we will develop and ana-

lyze policies with properties that maintain strict separation 

between services while allowing exceptions. In particu-

lar, we will focus on supporting two kinds of exceptions. 

One will allow explicit centralized control, such as issuing 

orders that make classi�ed information available to battle-

�eld networks during operations. Another will encode risk 

management strategies that allow exceptions based on 

predetermined criteria.

Finally, we are developing improved trust management 

languages and systems that more explicitly support dy-

namic policies in service-oriented architectures, based on 

the semantic and performance experiences gained in the 

research’s �rst phases.

Our focus will be twofold. First, we will explore adding 

trust-management language features that better support 

dynamic policies, based both on our experiences in the 

initial research and on the GIG’s speci�c requirements.

Second, we will conduct experiments to measure the 

performance implications of incorporating the trust man-

agement layer in the various layers of such systems. A 

signi�cant open research question is whether trust man-

agement is architecturally best implemented as a low-level 

operating system service, an application-layer service, or 

somewhere in between. 
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