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Dynamic Tube MPC for Nonlinear Systems

Brett T. Lopez1, Jean-Jacques E. Slotine2, and Jonathan P. How1

Abstract— Modeling error or external disturbances can
severely degrade the performance of Model Predictive Control
(MPC) in real-world scenarios. Robust MPC (RMPC) addresses
this limitation by optimizing over feedback policies but at the
expense of increased computational complexity. Tube MPC is
an approximate solution strategy in which a robust controller,
designed offline, keeps the system in an invariant tube around
a desired nominal trajectory, generated online. Naturally,
this decomposition is suboptimal, especially for systems with
changing objectives or operating conditions. In addition, many
tube MPC approaches are unable to capture state-dependent
uncertainty due to the complexity of calculating invariant tubes,
resulting in overly-conservative approximations. This work
presents the Dynamic Tube MPC (DTMPC) framework for
nonlinear systems where both the tube geometry and open-loop
trajectory are optimized simultaneously. By using boundary
layer sliding control, the tube geometry can be expressed as
a simple relation between control parameters and uncertainty
bound; enabling the tube geometry dynamics to be added
to the nominal MPC optimization with minimal increase in
computational complexity. In addition, DTMPC is able to
leverage state-dependent uncertainty to reduce conservativeness
and improve optimization feasibility. DTMPC is demonstrated
to robustly perform obstacle avoidance and modify the tube
geometry in response to obstacle proximity.

I. INTRODUCTION

Model predictive control (MPC) has become a core control

strategy because of its natural ability to handle constraints

and balance competing objectives. Heavy reliance on a

model though makes MPC susceptible to modeling error and

external disturbances, often leading to poor performance or

instability. Robust MPC (RMPC) addresses this limitation

(at the expense of additional computational complexity) by

optimizing over control policies instead of open-loop control

actions. Tube MPC is a tractable alternative that decomposes

RMPC into an offline robust controller design and online

open-loop MPC problem. However, this decoupled design

strategy restricts the tube geometry (i.e., feedback controller)

to be fixed for all operating conditions, which can lead to

suboptimal performance. This article presents a framework

for nonlinear systems where the tube geometry and open-

loop reference trajectory are designed simultaneously online,

giving the optimization an additional degree of freedom to

satisfy constraints or changing objectives.

Tube MPC for nonlinear systems has been an active area

of research. For example, hierarchical MPC [1], reachability

theory [2], sliding mode control [3], [4], sum-of-square op-

timization [5], and Control Contraction Metrics [6] have all
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been recently used in nonlinear tube MPC. These approaches

try to maximize robustness by minimizing tube size given

control constraints and bounds on uncertainty. However,

minimizing tube size typically results in a high-bandwidth

controller that responds aggressively to measurement noise

or external disturbances. For mobile systems that use onboard

sensing for estimation or perception, this type of response

can severely degrade performance or cause a catastrophic

failure. Further, the performance reduction often depends on

the current operating environment so modifying the tube

geometry online would be advantageous. While there is

a precedent for optimizing tube geometry in linear MPC

[7], [8], the relationship between tube geometry and control

parameters for nonlinear systems is often too complex to put

in a form suitable for real-time optimization. The approach

described herein circumvents this issue by providing a simple

and exact description of how the tube geometry, control

parameters, and uncertainty are related, enabling the tube

geometry to be optimized in real-time.

The primary contribution of this work is a tube MPC

framework for nonlinear systems that simultaneously opti-

mizes tube geometry and open-loop reference trajectories

in the presence of uncertainty. The proposed framework

leverages the simplicity and strong robustness properties of

time-varying boundary layer sliding control [9] to establish a

connection between tube geometry, control parameters, and

uncertainty. Specifically, the tube geometry can be described

by a simple first-order differential equation that is a function

of control bandwidth and uncertainty bound. This allows the

development of a framework with several desirable proper-

ties. First, the tube geometry can be easily optimized, with

minimal increase in computational complexity, by treating

the control bandwidth as a decision variable and augmenting

the state vector with the tube geometry dynamics. Second,

the uncertainty bound in the tube dynamics can be made

state-dependent, allowing the optimizer to make smarter

decisions about which states to avoid given the system’s

current state and proximity to constraints. And third, less

conservative tubes can be constructed by combining the tube

and tracking error dynamics. Simulation results demonstrate

DTMPC’s ability to optimize the tube geometry, via modu-

lating control bandwidth and/or utilize knowledge of state-

dependent uncertainty, to robustly avoid obstacles.

II. RELATED WORKS

A number of works have been published on the stability,

feasibility, and performance of linear tube MPC [10]–[12].

While this is an effective strategy to achieve robustness,

decoupling the nominal MPC problem and controller design
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is suboptimal. Rakovic̀ et al. [7] showed that the region of

attraction can be enlarged by parameterizing the problem

with the open-loop trajectory and tube size. The authors

presented the homothetic tube MPC (HTMPC) algorithm that

treated the state and control tubes as homothetic copies of a

fixed cross-section shape, enabling the problem to be param-

eterized by the tubes centers (i.e., open-loop trajectory) and a

cross-section scaling factor. The work was extended to tubes

with varying shapes, known as elastic tube MPC (ETMPC),

but at the expense of computational complexity [8]. Both

HTMPC and ETMPC possess strong theoretical properties

and have the potential to significantly improve performance

but a nonlinear extension has yet to be developed.

Recent theoretical and computational advances in nonlin-

ear control design and invariant set computation has aided

in the development of new nonlinear tube MPC techniques.

Mayne et al. proposed a two-tier MPC architecture where

the nominal MPC problem, with tightened constraints, is

solved followed by an ancillary problem that drives the

current state to the nominal trajectory [1]. Linear reachability

theory is another strategy but tends to be overly conservative

because nonlinearities are treated as disturbances [2]. Be-

cause of its strong robustness properties, a number of works

have proposed using sliding mode control as an ancillary

controller [3], [4], [13]–[15]. The work by Muske et al. is

of particular interest because the parameters of the sliding

surface were optimized within the MPC optimization to

achieve minimum time state convergence. Majumdar et al.

constructed ancillary controllers for nonlinear systems via

sum-of-squares (SOS) optimization that minimized funnel

size (akin to a tube) [5]. The method, however, required

a pre-specified trajectory library and an extremely time

consuming offline computation phase. Singh et al. proposed

using Control Contraction Metrics to construct tubes and

showed their approach increases the region of feasibility for

the optimization [6]. All of the aforementioned works fall

into the category of rigid tube MPC (i.e., fixed tube size)

so are inherently suboptimal. Further, these approaches tend

to produce overly conservative tubes because they cannot

leverage knowledge of state-dependent uncertainty.

This work uses boundary layer sliding control to address

the suboptimality and conservatism of the aforementioned

techniques for nonlinear systems. This is accomplished by:

1) incorporating the tube geometry into the optimization,

subsequently bridging the gap between linear and nonlinear

homothetic/elastic tube MPC; 2) leveraging knowledge of

state-dependent uncertainty; and 3) combining the tube and

error dynamics to reduce the spread of possible trajectories.

III. PROBLEM FORMULATION

Consider a nonlinear, time-invariant, and control affine

system given by (omitting the time argument)

ẋ = f (x) + b (x)u+ d, (1)

where x ∈ R
n is the state of the system, u ∈ R

m is the

control input, and d ∈ R
n is an external disturbance.

Fig. 1: Illustration of robust control invariant (RCI) tube Ω centered around
desired state x∗. If the state x begins in Ω then it remains in Ω indefinitely
for all realizations of the model error or external disturbance.

Assumption 1. The dynamics f can be expressed as

f = f̂ + f̃ where f̂ is the nominal dynamics and f̃ is the

bounded model error (i.e., |f̃(x)| ≤ ∆(x)).

Note that the model error bound in assumption 1 is

state-dependent, which can be leveraged to construct less

conservative tubes.

Assumption 2. The disturbance d belongs to a closed,

bounded, and connected set D (i.e., D := {d ∈ R
n : |d| ≤

D}) and is in the span of the control input matrix (i.e.,

d ∈ span (b(x))).

The standard RMPC formulation involves a minimax

optimization to construct a feedback policy π : X × R →
U where x ∈ X and u ∈ U are the allowable states

and control inputs, respectively. However, optimizing over

arbitrary functions is not tractable and discretization suffers

from the curse of dimensionality. The standard approach

taken in tube MPC [10] is to change the decision variable

from control policy π to open-loop control input u∗. In order

to achieve this re-parameterization, the following assumption

is made about the structure of the control policy π.

Assumption 3. The control policy π takes the form

π = u∗ +κ(x, x∗) where u∗ and x∗ are the open-loop input

and reference trajectory, respectively.

In the tube MPC literature κ is known as the ancillary

controller and is typically designed offline. The role of the

ancillary controller is to ensure the state x remains in a robust

control invariant (RCI) tube around the nominal trajectory

x∗.

Definition 1. Let X denote the set of allowable states and let

x̃ := x− x∗. The set Ω ⊂ X is a RCI tube if there exists an

ancillary controller κ (x, x∗) such that if x̃ (t0) ∈ Ω, then,

for all realizations of the disturbance and modeling error,

x̃(t) ∈ Ω, ∀t ≥ t0.

Fig. 1 provides a visualization of a RCI tube. Given an

ancillary control κ and associated RCI tube Ω, a constraint-

tightened version of the nominal MPC problem can be solved

to generate an open-loop control input u∗ and trajectory x∗.

Calculating a RCI tube for a given ancillary controller

can be difficult for nonlinear systems. Unsurprisingly, the

chosen methodology for synthesizing the ancillary controller

can dramatically influence the complexity of calculating the



tube geometry. Ideally, the controller and tube geometry

could be parameterized such that an explicit relationship

between the two can be derived; enabling the controller and

tube geometry to be designed online within the optimization.

Also, the control strategy should be able capture state-

dependent uncertainty and how it impacts the tube geometry

to reduce conservativeness. While it may seem infeasible to

find such a control synthesis strategy, Section IV will show

that boundary layer sliding control possesses both properties.

IV. BOUNDARY LAYER SLIDING CONTROL

A. Overview

This section reviews time-varying boundary layer sliding

control [9], [16], provides analysis supporting its use as an

ancillary controller, and shows how the DTMPC framework

leverages its properties. As reviewed in Section II, sliding

mode control has been extensively used for nonlinear tube

MPC because of its simplicity and strong robustness prop-

erties. Unlike other control strategies, sliding mode control

completely cancels any bounded modeling error or exter-

nal disturbance (reducing the RCI tube to zero). However,

complete cancellation comes at the cost of high-frequency

discontinuous control making it impractical for many real

systems; a number of version that ensure continuity in the

control signal have since been developed. Note that the

boundary layer controller was originally developed in [9] and

is only presented here for completeness. Before proceeding

the following assumption is made.

Assumption 4. The system given by (1) has the same

number of outputs to be controlled as inputs. More precisely,

the dynamic can be expressed as

x
(ni)
i = fi(x) +

m
∑

j=1

bij(x)uj + di, i = 1, ...,m. (2)

Note that assumption 4 requires system (1) to be either

feedback linearizable or minimum phase. While many sys-

tems fall into one of these categories, future work will extend

DTMPC to more general nonlinear systems.

B. Sliding Control

Let x̃i := xi−x∗

i be the tracking error for output xi. Then,

for λi > 0, the sliding variable si for output xi is defined as

si =

(

d

dt
+ λi

)ni−1

x̃i (3)

= x̃
(ni−1)
i + · · ·+ λni−1

i x̃i

= x
(ni−1)
i − x

(ni−1)
ri ,

where

x
(ni−1)
ri = x

∗(ni−1)
i −

ni−1
∑

k=1

(

ni − 1

k − 1

)

λni−k
i x̃

(k−1)
i . (4)

In sliding mode control, a sliding manifold Si is defined

such that si = 0 for all time once the manifold is reached.

This condition guarantees the tracking error goes to zero

exponentially via (3). It can be shown that a discontin-

uous controller is required to ensure the manifold Si is

reached in finite time and is invariant to uncertainty [16].

However, high-frequency discontinuous control can, among

other things, excite unmodeled high-frequency dynamics and

shorten actuator life span.

One strategy to smooth the control input is to introduce a

boundary layer around the switching surface. Specifically, let

the boundary layer be defined as Bi := {x : |si| ≤ Φi} where

Φi is the boundary layer thickness. If Φi is time varying, then

the boundary layer can be made attractive if the following

differential equation is satisfied

1

2

d

dt
s2i ≤

(

Φ̇i − ηi

)

|si|, (5)

where ηi dictates the convergence rate to the sliding surface.

Differentiating (3),

ṡi = x
(ni)
i − x

(ni)
ri

= fi(x) +

m
∑

j=1

bij(x)uj + di − x
(ni)
ri . (6)

Stacking (6) for each output, the vector version is obtained

ṡ = F (x) +B(x)u+ d+ x(n)
r . (7)

Note that F and B are stacked versions of the dynamics

and input matrix, respectively, that correspond to the output

variables. If the output variables are chosen to be the full

state vector (i.e., state feedback linearization), then F and B
simply become the dynamics and input matrix in (1).

Let the controller take the form

u = B(x)−1
[

−F̂ (x)− x(n)
r −K(x)sat (s/Φ)

]

, (8)

where sat(·) is the saturation function and the division is

element-wise. Then, for |s| > Φ, the boundary layer is

attractive if

K(x) = ∆(x) +D + η − Φ̇. (9)

Addition information can be inferred by considering the

sliding variable dynamics inside the boundary. Again substi-

tuting (8) into (7) with |s| ≤ Φ,

ṡ = −
K(x)

Φ
s+ F (x)− F̂ (x) + d, (10)

where again the division is element-wise. Alternatively, (10)

can be written as

ṡ = −
K(x∗)

Φ
s+

(

F (x∗)− F̂ (x∗) + d+O (x̃)
)

, (11)

which is a first order filter with cutoff frequency
K(x∗)

Φ . Let

α be the desired cutoff frequency, then, leveraging (9), one

obtains
∆(x∗) +D + η − Φ̇

Φ
= α, (12)

or

Φ̇ = −αΦ+∆(x∗) +D + η. (13)

Thus, the final control law is given by (8), (9), and (13).



C. Discussion

The boundary layer sliding controller in (8) allows us to

establish several key properties at the core of DTMPC.

Theorem 1 (RCI Tube). Let z̃i =
[

x̃i
˙̃xi · · ·

]T
be the error

vector for output x̃i. Boundary layer control induces a robust

control invariant tube Ωi where the tube geometry is given

by

Ωi(t) ≤ eAc,i(t−t0)Ωi(t0) +
∫ t

t0

eAc,i(t−t0−τ)Bc,iΦi(τ)dτ,
(14)

where Ac,i and Bc,i are found by putting (3) into the

controllable canonical form.

Proof. Recalling the definition of si from (3), the error

dynamics are given by the linear differential equation

x̃
(ni−1)
i + · · ·+ λni−1

i x̃i = si. (15)

With the error vector z̃i =
[

x̃i
˙̃xi · · ·

]T
and putting (15)

into the controllable canonical form, the solution to (15) is

z̃i(t) = eAc,i(t−t0)z̃i(t0) +

∫ t

t0

eAc,i(t−t0−τ)Bc,isidτ. (16)

Taking the element-wise absolute value | · |, setting Ωi(t) =
|z̃i(t)|, and noting |si| ≤ Φi, (14) is obtained. Thus, by

Definition 1, Ωi is a RCI tube since the error vector z̃i is

bounded.

Theorem 1 proves that the geometry of the RCI tube Ωi

is uniquely described by the boundary layer thickness Φi.

Using the terminology introduced by Rakovic̀ et al., the tubes

in our approach are both homothetic and elastic. For this

reason, and the ability to capture state-dependent uncertainty,

the approach developed here is called Dynamic Tube MPC.

Further, as briefly discussed in [6], a tighter geometry can be

obtained if the current (as opposed to the predicted) tracking

error is used in (14).

The importance of (13) and (14) cannot be understated.

It gives a precise description for how the tube geometry

changes with the level of uncertainty (from the model or

otherwise). This is an incredibly useful relation for con-

structing tubes that are not overly conservative since, in

most cases, the model error bound is typically picked to

be a large constant because of the difficulty/inability to

establish a relation like (13). By letting the uncertainty be

state-dependent, the controller and the MPC optimizer (to

be discussed in Section V) can leverage all the available in-

formation to maximize performance. This further underlines

the importance of acquiring a high-fidelity model to reduce

uncertainty and make the tube as small as possible without

using high-bandwidth control.

Another interesting aspect of (13) is the choice of the

cutoff frequency α. In general, α and λ are picked based

on control-bandwidth requirements, such as actuator limits

or preventing excitation of higher-order dynamics. It is clear

from (13) that a larger α produces a smaller boundary

layer thickness (i.e., high-bandwidth control leads to com-

pact tubes). However, from (11), increasing the bandwidth

also increases the influence of the uncertainty. Hence, the

bandwidth should change depending on the current objective

and proximity to state/control constraints (see Section V).

V. DYNAMIC TUBE MPC

A. Overview

This section presents the DTMPC algorithm and discusses

its properties. DTMPC is a unique algorithm because of its

ability to change the tube geometry to meet changing objec-

tives and to leverage state-dependent uncertainty to maximize

performance. This section first presents a constraint tighten-

ing procedure necessary to prevent constraint violation due to

uncertainty. Next, optimizing the tube geometry by adding

the control bandwidth as a decision variable is discussed.

Lastly, the non-convex formulation of DTMPC is presented.

Before proceeding, the following assumption is made about

the form of the state and actuator constraints.

Assumption 5. The state and actuator constraints take the

form

‖Pxx+ qx‖ ≤ cx, ‖Puu+ qu‖ ≤ cu, (17)

where ‖ · ‖ is the 2-norm.

Many physical systems posses these type of constrains so

the above assumption is not overly restrictive.

B. Constraint Tightening

State and actuator constraints must be modified to account

for the nonzero tracking error and control input caused

by model error and disturbances. The following corollary

establishes the modified state constraint.

Corollary 1 (Tightened State Constraint). Assume the

control law (8) is used as an ancillary controller with

associated RCI tube B and bounded tracking error |x̃|. Then,

the following modified state constraint

‖Pxx
∗ + qx‖ ≤ cx − ‖Pxx̃‖, (18)

guarantees, for all realization of the uncertainty, the true

constraint is satisfied.

Proof. Recall that Theorem 1 established that the boundary

layer controller induces is a RCI tube with geometry given

by (14). Then, the state is always upper bounded by x ≤
x∗+ |x̃|. Substituting this bound into the state constraint (17)

and using the triangle inequality, the result is obtained.

Tightening the actuator constraints is more complicated

since the control law in (8) depends on the current state x.

However, the tracking error bound can be used to obtain an

upper bound on the control input that is only a function of

the boundary layer thickness, desired state, and dynamics. It



is helpful to put the controller into a more useful form for

the following theorem

u = B(x)−1

[

x∗(n) − F̂ (x)−

n−1
∑

k=1

(

n− 1

k − 1

)

λn−kx̃(k)

−K(x)sat (s/Φ)

]

,

(19)

where the first term is the feedforward (and hence the

decision variable in the optimization) and the last three are

the feedback terms.

Theorem 2 (Control Input Upper Bound). Assume that

the control law is given by (19). Then, the control input is

upper bounded, for all realizations of the uncertainty, by

u ≤ B̄−1

[

x∗(n)+F̄ +

n−1
∑

k=1

(

n− 1

k − 1

)

λn−k|x̃(k)|+K̄

]

, (20)

where

B̄−1 = max
{

B−1 (
¯
x) , B−1 (x̄)

}

, (21)

F̄ = max
{
∣

∣

∣
F̂ (

¯
x)
∣

∣

∣
,
∣

∣

∣
F̂ (x̄)

∣

∣

∣

}

, (22)

K̄ = max {K (
¯
x) ,K (x̄)} , (23)

with
¯
x := x∗−|x̃|, x̄ := x∗+|x̃|, and max {·} is the element-

wise maximum.

Proof. The tracking error bound can be leveraged to elim-

inate the state-dependency in (19). Specifically, the state is

bounded by

x∗ − |x̃| ≤ x ≤ x∗ + |x̃|, (24)

where |x̃| is the solution to (14) when equality is imposed.

It is clear from (19) that to upper bound u, the inverse of the

input matrix B−1 and the last three feedback terms should

be maximized. Define
¯
x := x∗ − |x̃| and x̄ := x∗ + |x̃|,

then using (24), each term in (19) can be upper bounded by

evaluating at
¯
x and x̄ and taking the maximum, resulting in

Eqs. (21) to (23) and hence (20).

The bound established by Theorem 2 can be put into a

more concise form

u ≤ B̄−1 [u∗ + ūfb] , (25)

where u∗ := x∗(n) and ūfb is the sum of the last three terms

in (20). Using Theorem 2, the following corollary establishes

the tightened actuator constraint.

Corollary 2 (Tightened Actuator Constraint). Assume the

control law (8) is used as an ancillary controller with asso-

ciated RCI tube B and upper bound on input due to feedback

ūfb. Then, the following modified actuator constraint

‖PuB̄
−1u∗ + qu‖ ≤ cu − ‖PuB̄

−1ūfb‖, (26)

guarantees, for all realization of the uncertainty, the true

constraint is satisfied.

Proof. Theorem 2 established the upper bound on the control

input to be u ≤ B̄−1 [u∗ + ūfb]. Substituting this bound into

the actuator constraint (17) and using the triangle inequality,

the result is obtained.

C. Optimized Tube Geometry

For many autonomous systems, the ability to react to

changing operating conditions is crucial for maximizing

performance. For instance, a UAV performing obstacle avoid-

ance should modify the aggressiveness of the controller

based on the current obstacle density to minimize expended

energy. Formally, the tube geometry must be added as a

decision variable in the optimization to achieve this behavior.

DTMPC is able to optimize the tube geometry because of

the simple relationship between the tube geometry, control

bandwidth, and level of uncertainty given by (13). This is

one of the distinguishing features of DTMPC since other

state-of-the-art nonlinear tube MPC algorithms are not able

to establish an explicit relationship like (13).

In Section IV, it was shown that the control bandwidth

α is responsible for how the uncertainty affects the sliding

variable s. Subsequently, the choice of α influences the tube

geometry (via (13)) and control gain (via (9)). In order to

maintain continuity in the control signal, the tube geometry

dynamics are augmented such that α and Φ remain smooth.

More precisely, the augmented tube dynamics are

Φ̇ = −αΦ+∆(x∗) +D + η,

α̇ = v, (27)

where v ∈ V is an artificial input that will serve as an

additional decision variable in the optimization. It is easy

to show that the above set of differential equations is stable

so long as α remains positive.

D. Complete Formulation

With Corollary 1 and 2 establishing the tightened state and

actuator constraints, the Dynamic Tube MPC optimization

can now be formulated as

Problem 1 – Dynamic Tube MPC

min
ǔ(t),v̌(t)

J = h(x̌(tf )) +

tf
∫

t0

ℓ(x̌(t), ǔ(t), α̌(t), v̌(t))dt

subject to ˙̌x(t) = f̂(x̌(t)) + b(x̌(t))ǔ(t), ˙̌α(t) = v̌(t),

Φ̇(t) = −α̌(t)Φ(t) + ∆(x̌(t)) +D + η,

Ω̇(t) = AcΩ(t) +BcΦ(t), Ω(t0) = |x̃(t0)|,

x̌(t0) = x∗

0, Φ(t0) = Φ0, x̌ (tf ) = x∗

f ,

x̌(t) ∈ X̄, ǔ(t) ∈ Ū, α̌(t) ∈ A, v̌(t) ∈ V,

where ·̌ denotes the internal variables in the optimization;

Ω is the tube geometry with matrices Ac and Bc given by

putting (3) into controllable canonical form; X̄ and Ū are

the tightened state and actuator constraints; and ℓ and h are

the quadratic state and terminal cost. The output of DTMPC

is an optimal open-loop (i.e., feedforward) control input u∗,

trajectory x∗, and control bandwidth α∗.

DTMPC is inherently a non-convex optimization problem

because of the nonlinear dynamics. However, non-convexity



is a fundamental characteristic of nonlinear tube MPC and

a number of approximate solution procedures have been

proposed. The key takeaway, though, is that Problem 1 is a

nonlinear tube MPC algorithm that simultaneously optimizes

the open-loop trajectory and tube geometry, eliminating the

duality gap in standard tube MPC. Furthermore, conserva-

tiveness can be reduced since Problem 1 is able to leverage

state-dependent uncertainty to select an open-loop trajectory

based on the structure of the uncertainty and proximity to

constraints. The benefits of these properties, in addition to

combining the tube geometry and error dynamics, will be

demonstrated in Section VIII.

VI. COLLISION AVOIDANCE MODEL

A. Overview

Collision avoidance is a fundamental capability for many

autonomous systems, and is an ideal domain to test DTMPC

for two reasons. First, enough safety margin must be allo-

cated to prevent collisions when model error or disturbances

are present. More precisely, the optimizer must leverage

knowledge of the peak tracking error (given by the tube

geometry) to prevent collisions. The robustness of DTMPC

and ability to utilize knowledge of state dependent uncer-

tainty can thus be demonstrated. Second, many real-world

operating environments have variable obstacle densities so

the tube geometry can be optimized in response to a changing

environment. The rest of this section presents the model and

formal optimal control problem.

B. Model

This work uses a double integrator model with nonlinear

drag, which describes the dynamics of many mechanical

systems. Let r = [rx ry rz]
T

be the inertial position of the

system that is to be tracked. The dynamics are

r̈ = −Cd ‖ṙ‖ ṙ + g + u+ d, (28)

where g ∈ R
3 is the gravity vector, Cd is the unknown but

bounded drag coefficient (0 ≤ Cd ≤ C̄d), and d is a bounded

disturbance (|d| ≤ D). From (8), the control law is

u = Ĉd ‖ṙ‖ ṙ + r̈∗ − λ ˙̃r −Ksat (s/Φ) , (29)

where Ĉd is the best estimate of the drag coefficient, s =
˙̃r + λr̃, and

K = C̄d ‖ṙ‖ |ṙ| − C̄d ‖ṙ
∗‖ |ṙ∗|+ αΦ, (30)

Φ̇ = −α∗Φ+ C̄d ‖ṙ
∗‖ |ṙ∗|+D + η. (31)

C. Collision Avoidance DTMPC

Let H , pc, and ro denote the shape, location, and size of an

obstacle. The minimum control effort DTMPC optimization

with collision avoidance for system (28) is formulated as

Problem 2 – Collision Avoidance DTMPC

min
ǔ(t),v̌(t)

J =

tf
∫

t0

[

ǔ(t)TQǔ(t) + α̃(t)TRα̃(t)
]

dt

subject to ¨̌r(t) = −Ĉd

∥

∥ ˙̌r(t)
∥

∥ ˙̌r(t) + g + ǔ(t), α̇(t) = v(t),

˙̌Φ(t) = −α̌(t)Φ̌(t) + C̄d

∥

∥ ˙̌r(t)
∥

∥

∣

∣ ˙̌r(t)
∣

∣+D + η,

˙̌Ω(t) = AcΩ̌(t) +BcΦ̌(t), Ω̌(t0) = |r̃(t0)|,

ř (t0) = r∗0 , Φ̌ (t0) = Φ0, ř (tf ) = r∗f ,

‖Hir(t)− pc,i‖ ≥ ro,i + ‖Hir̃(t)‖, i = 1 : No,

| ˙̌r(t)| ≤ ṙm − | ˙̃r|, ‖u∗(t)‖ ≤ um − ūfb,

|v(t)| ≤ vm, 0 <
¯
α ≤ α̌(t) ≤ ᾱ, α̃ = α̌(t)−

¯
α,

where again ·̌ denotes the internal variables of the optimiza-

tion, | · | is the element-wise absolute value,
¯
α and ᾱ are the

upper and lower bounds of the control bandwidth, ṙm is the

peak desired speed, vm is the max artificial input, and No is

the number of obstacles.

VII. SIMULATION ENVIRONMENT

DTMPC was tested in simulation to demonstrate its ability

to optimize tube geometry and utilize knowledge of state-

dependent uncertainty through an environment with obsta-

cles. The obstacles were placed non-uniformly to emulate

a changing operating condition (i.e., dense/open environ-

ment). In order to emphasize both characteristics of DTMPC,

three test cases were conducted. First, the bandwidth was

optimized when both the model and obstacle locations

were completely known. Second, the bandwidth was again

optimized with a known model but the obstacle locations

were unknown, requiring a receding horizon implementation.

Third, state-dependent uncertainty is considered but control

bandwidth is kept constant. Nothing about the formula-

tion prevents optimizing bandwidth and leveraging state-

dependent uncertainty simultaneously in a receding horizon

fashion, this decoupling is only for clarity. The tracking error

(14) is used to tighten the obstacle and velocity constraint.

Problem 2 is non-convex due to the nonlinear dynamics

and non-convex obstacle constraints so sequential convex

programming, similar to that in [17], was used to obtain

a solution. The optimization was initialized with a naı̈ve

straight-line solution and solved using YALMIP [18] and

MOSEK [19] in MATLAB. If large perturbations to the

initial guess are required to find a feasible solution, then

warm starting the optimization with a better initial guess

(possibly provided by a global geometric planner) might be

necessary. For the cases tested in this work, the optimization

converged within three to four iterations – fast enough

for real-time applications. The simulation parameters are

summarized in Table I.

VIII. RESULTS AND ANALYSIS

A. Optimized Tube Geometry

The first test scenario for DTMPC highlights its ability

to simultaneously optimize an open-loop trajectory and tube



TABLE I: Simulation Parameters.

Param. Value Param. Value

r0 [0 0 1]T m rf [0 25 1]T m

ṙ0 [0 1 0]T m/s ṙf [0 1 0]T m/s

λ [2 2 2]T rad/s Rf 2I3
Q 2I3 R 0.1I3

¯
α 0.5 rad/s ᾱ 4 rad/s

um 5 m/s2 vm 2 rad/s2

ṙm 2.5 m/s D 0.5 m/s2

Ĉd 0.1 kg/m C̄d 0.2 kg/m
tf 14 s No 5

η 0.1 rad/s2 - -

geometry in a known environment with obstacles placed

non-uniformly. Fig. 2 shows the open-loop trajectory (multi-

color), tube geometry (black), and obstacles (grey) when

DTMPC optimizes both the trajectory and tube geometry.

The color of the trajectory indicates the spatial variation

of the control bandwidth, where low- and high-bandwidth

are mapped to dark blue and yellow, respectively. It is clear

that the bandwidth changes dramatically along the trajectory,

especially in the vicinity of obstacles. The insets in Fig. 2

show that high-bandwidth (compact tube geometry) is used

for the narrow gap and slalom and low-bandwidth (large tube

geometry) for open space. Hence, high-bandwidth control

is only used when the system is in close proximity to

constraints (i.e., obstacles), consequently limiting aggressive

control inputs to only when they are absolutely necessary.

Thus, DTMPC can react to varying operating conditions by

modifying the trajectory and tube geometry appropriately.

Since the tube geometry changes dramatically along the

trajectory, it is important to verify that the tube remains

invariant. This was tested by conducting 1000 simulations

of the closed-loop system with a disturbance profile sampled

uniformly from the disturbance set D. Fig. 3 shows the

nominal trajectory (red), each closed-loop trial run (blue),

tube geometry (black), and obstacles (grey). The inserts show

that the state stays within the tube, even as the geometry

changes, which verifies that the time-varying tube remains

invariant.

B. Receding Horizon Optimized Tube Geometry

In many situations the operating environment is not com-

pletely known and requires a receding horizon implemen-

tation. The second test scenario for DTMPC highlights its

ability to simultaneously optimize an open-loop trajectory

and tube geometry in a unknown environment. Fig. 4 shows

a receding horizon implementation of DTMPC where only

a subset of obstacles are known (dark-grey) and the rest are

unknown (light-grey). The bandwidth along the trajectory

is visualized with the color map where low- and high-

bandwidth are mapped to dark blue and yellow. The first

planned trajectory (Fig. 4a) uses high-bandwidth at the

narrow gap and low-bandwidth in open space. When the

second and third set of obstacles are observed, Fig. 4b

and Fig. 4c respectively, DTMPC modifies the trajectory to

again use high-bandwidth when in close-proximity to newly

discovered obstacles. This further demonstrates DTMPC’s

ability to construct an optimized trajectory and tube geometry

Fig. 2: DTMPC simultaneously optimizing an open-loop trajectory (multi-
color) and tube geometry (black) around obstacles (grey). High-bandwidth
control (yellow) is used when in close proximity to obstacles while low-
bandwidth control (dark blue) is used in open space.

Fig. 3: Monte Carlo verification that the time-varying boundary layer in
DTMPC remains a robust control invariant tube. The closed-loop system
(blue) was simulated with a different disturbance profile uniformly sampled
from the disturbance set.

(a) Planned trajectory at t = 0s.

(b) Planned trajectory a t = 6s.

(c) Planned trajectory at t = 8s.

Fig. 4: Receding horizon implementation of DTMPC with known (dark-
grey) and unknown (light-grey) obstacles. The bandwidth along trajectory
(multi-color) varies, resulting in a dynamic tube geometry (black). (a): First
planned trajectory and tube geometry when only the first two obstacles
are known. (b): New planned trajectory when the next two obstacles are
observed. (c): New planned trajectory when the last obstacle is observed.

in response to new obstacles.



Fig. 5: DTMPC leveraging state-dependent uncertainty to robustly avoid
obstacles (grey). The speed along the trajectory, given by the color map, is
low (dark) when in close proximity to obstacles and is high (light) in open
regions. This causes the tube geometry (black) to contract and expand.

C. State-Dependent Uncertainty

The third test scenario for DTMPC highlights its ability

to leverage knowledge of state-dependent uncertainty, in this

case arising from an unknown drag coefficient. From (31),

the uncertainty scales with the square of the velocity so

higher speeds increase uncertainty. Fig. 5 shows the open-

loop trajectory (multi-color), tube geometry (black), and

obstacles (grey) when DTMPC leverages state-dependent

uncertainty. The color of the trajectory is an indication of

the instantaneous speed, where low and high speed are

mapped to black and peach, respectively. It is clear that

DTMPC generates a speed profile modulated by proximity

to obstacles. For instance, using the insets in Fig. 5, the

speed is lower (darker) when the trajectory goes through

the narrow gap and around the other obstacles; reducing

uncertainty and tightening the tube geometry. Further, the

speed is higher (lighter) when in the open, subsequently

increasing uncertainty causing the tube geometry to expand.

If the state-dependent uncertainty is just assumed to be

bounded, a simplification often made out of necessity in other

tube MPC algorithms, the tube geometry is so large that, for

this obstacle field, the optimization is infeasible with the

same straight-line initialization as DTMPC. Hence, DTMPC

is able to leverage knowledge of state-dependent uncertainty

to reduce conservatism and improve feasibility.

IX. CONCLUSIONS

This work presented the Dynamic Tube MPC (DTMPC)

algorithm that addresses a number of shortcomings of ex-

isting nonlinear tube MPC algorithms. First, the open-loop

MPC optimization is augmented with the tube geometry

dynamics enabling the trajectory and tube to be optimized

simultaneously. Second, DTMPC is able to utilize state-

dependent uncertainty to reduce conservativeness and im-

prove optimization feasibility. And third, the tube geometry

and error dynamics can be combined to further reduce

conservativeness. All three of these properties were made

possible by leveraging the simplicity and robustness of

boundary layer sliding control. Simulation results showed

that DTMPC is able to control the tube geometry size, by

changing control bandwidth or leveraging state-dependent

uncertainty, in response to changing operating conditions.

Future work includes expanding DTMPC to more general

nonlinear systems.
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